JP3124324B2 - Method for producing thermoplastic resin molded article for optical use - Google Patents

Method for producing thermoplastic resin molded article for optical use

Info

Publication number
JP3124324B2
JP3124324B2 JP03203754A JP20375491A JP3124324B2 JP 3124324 B2 JP3124324 B2 JP 3124324B2 JP 03203754 A JP03203754 A JP 03203754A JP 20375491 A JP20375491 A JP 20375491A JP 3124324 B2 JP3124324 B2 JP 3124324B2
Authority
JP
Japan
Prior art keywords
mold
resin
thermoplastic resin
molding
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03203754A
Other languages
Japanese (ja)
Other versions
JPH0524050A (en
Inventor
雅己 西口
義昭 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP03203754A priority Critical patent/JP3124324B2/en
Priority to US07/757,714 priority patent/US5230840A/en
Priority to EP91115549A priority patent/EP0475431B1/en
Priority to CA002051349A priority patent/CA2051349C/en
Priority to DE69119004T priority patent/DE69119004T2/en
Publication of JPH0524050A publication Critical patent/JPH0524050A/en
Application granted granted Critical
Publication of JP3124324B2 publication Critical patent/JP3124324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、光学部品、プ
ラスチック光ファイバのプリフォーム、光導波路の如き
光学用熱可塑性樹脂成形体の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical thermoplastic resin molded article such as an optical component, a plastic optical fiber preform, and an optical waveguide.

【0002】[0002]

【従来の技術】この種の光学用熱可塑性樹脂成形体は、
成形体の種類に応じて押出成形や射出成形によって製造
されている。
2. Description of the Related Art This type of optical thermoplastic resin molding is
It is manufactured by extrusion molding or injection molding depending on the type of the molded body.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの従来
技術の光学用熱可塑性樹脂成形体の製造方法では、種々
の欠点を有していた。先ず、光学用成形体を押出し成形
によって製造する場合、押出機の樹脂通路にはスクリュ
ーによって形成される樹脂が溜り易い多数の溝があり、
ホッパーから押出機に同時に供給された樹脂は、同時に
押出されるわけではなく、一部は対流を引き起こすため
スクリューに付着して残り、このスクリューに付着した
樹脂は、成形温度が高い場合にはスクリューの熱によっ
て劣化し、着色を生ずる。このため、この着色が生じた
樹脂は、後続の樹脂と混合されて押出されるので、成形
体に着色を生ずる欠点があった。
However, these conventional methods for producing a molded article of an optical thermoplastic resin have various disadvantages. First, when the optical molded body is manufactured by extrusion molding, there are a large number of grooves in the resin passage of the extruder in which the resin formed by the screw is easy to accumulate,
The resin supplied simultaneously from the hopper to the extruder is not extruded at the same time, but partly adheres to the screw because it causes convection, and the resin adhered to this screw becomes a screw when the molding temperature is high. And is colored by the heat of Therefore, the colored resin is mixed with the subsequent resin and extruded, so that there is a disadvantage that the molded product is colored.

【0004】また、光学用成形体を射出成形によって製
造する場合、樹脂が型内で固化される際に樹脂内部に歪
みが発生し、成形体が割れ易くなり、このような歪みを
有する成形体は、光学製品には不適当である。また、射
出成形は、細長い成形体や特殊な形状を有する成形体の
製造には不適であった。
When an optical molded product is manufactured by injection molding, distortion occurs in the resin when the resin is solidified in a mold, so that the molded product is easily broken, and a molded product having such distortion is generated. Are not suitable for optical products. In addition, injection molding is not suitable for producing an elongated molded article or a molded article having a special shape.

【0005】本発明の目的は、上記の欠点を回避し、内
部に歪みを生ずることなく、また高い成形温度でも着色
を起こすことがなく、成形体を製造することができる光
学用熱可塑性樹脂成形体の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical thermoplastic resin molding capable of producing a molded article without the above-mentioned drawbacks, without causing internal distortion and without causing coloring even at a high molding temperature. An object of the present invention is to provide a method for producing a body.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、開口する成形型内に充填された熱可塑
性樹脂を加熱溶融しながら真空引きして脱泡し、その後
この熱可塑性樹脂を不活性ガスで加圧しつつ成形型の下
部から上部に順次冷却して光学用熱可塑性樹脂成形体を
製造することを特徴とする光学用熱可塑性樹脂成形体の
製造方法を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a thermoplastic resin filled in an opening mold.
Vacuum degassing while heating and melting the conductive resin , then
A method for producing a thermoplastic resin molded article for optical use , comprising sequentially cooling the thermoplastic resin from the bottom to the top of the mold while pressurizing the thermoplastic resin with an inert gas to produce the thermoplastic resin molded article for optical use. Is to do.

【0007】[0007]

【作用】このように、開口を有する成形型内に充填され
た熱可塑性樹脂を加熱溶融しながら真空引きして脱泡す
ると、樹脂内に空隙が残ることがなく、またその後この
樹脂を不活性ガスによって加圧すると、成形体内部に巣
が形成されることがない。更に、成形型の下部から上部
に順次冷却することによって歪みの解放が成形体の下か
ら上へと良好に行なわれる。
As described above, the mold is filled in the mold having the opening.
Vacuuming and defoaming the heated thermoplastic resin while heating and melting it, no voids remain in the resin, and this
When the resin is pressurized with an inert gas, no cavities are formed inside the molded body. In addition, from the bottom of the mold to the top
By successively cooling, the strain is favorably released from the bottom to the top of the compact.

【0008】[0008]

【実施例】本発明の光学用熱可塑性樹脂成形体の製造方
法は、ガラス製または金属製容器から成る成形型内に成
形材料である熱可塑性樹脂を充填した後、この成形型を
恒温槽内に入れ、この恒温槽内で熱可塑性樹脂を加熱溶
しながら真空引きして脱泡し、その後、恒温槽内に不
活性ガスを注入して成形型内の熱可塑性樹脂を加圧して
成形し、最後に恒温槽内を下から上へと徐々に冷却し恒
温槽から成形型を取出して光学用成形体を得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing an optical thermoplastic resin molded article of the present invention is as follows. A molding die made of a glass or metal container is filled with a thermoplastic resin as a molding material, and this molding die is placed in a thermostat. put, a thermoplastic resin heated solvent in the thermostatic chamber
Vacuuming and defoaming while melting , then injecting an inert gas into the thermostat, pressurizing the thermoplastic resin in the mold to form it, and finally gradually moving the thermostat from bottom to top And the mold is taken out of the thermostat to obtain a molded article for optical use.

【0009】成形材料である熱可塑性樹脂は、結晶性樹
脂、非結晶性樹脂のいずれでもよいが、成形温度が通常
200℃以上であることが要求される樹脂は、通常の方
法では酸化劣化し易いので本発明の方法によって製造す
るのに適当である。また、熱可塑性樹脂は、内部に揮発
物がほとんどないものが好ましい。
The thermoplastic resin as a molding material may be either a crystalline resin or an amorphous resin. However, a resin which requires a molding temperature of usually 200 ° C. or higher is oxidatively degraded by an ordinary method. It is suitable for production by the method of the present invention because of its ease. Further, it is preferable that the thermoplastic resin has almost no volatile substances inside.

【0010】熱可塑性樹脂は、成形型に常温でペレッ
ト、粉末またはフレークの形態で充填することができる
が、成形温度またはそれより低い温度で流動状態で流し
込んで充填してもよい。尚、樹脂を流動状態で流し込む
際には真空状態で行なうのが好ましい。
The thermoplastic resin can be filled in the form of pellets, powders or flakes at normal temperature into the mold, but may be filled by flowing at a molding temperature or lower in a fluid state. When the resin is poured in a fluidized state, it is preferable to perform it in a vacuum state.

【0011】恒温槽内で真空状態で脱泡を行なう際に、
樹脂内に混在しているモノマー等の不純物が除去される
上に外界に接触することがないので外界から不純物や異
物が混入することがなく、成形体が光学製品である場
合、光学的特性に影響を与えることがない。
When defoaming in a vacuum state in a thermostat,
Since impurities such as monomers mixed in the resin are removed and there is no contact with the outside, no impurities or foreign substances are mixed from the outside.If the molded article is an optical product, Has no effect.

【0012】成形時の不活性ガスによる加圧は、樹脂の
成形の外に熱可塑性樹脂に残留する微小な泡や冷却時に
材料の内部からの収縮による空隙の発生を防止する機能
を有する。この加圧力は、その値が小さすぎると、成形
体の内部に空隙が発生し、またその値が大きすぎると、
ガスが材料内部に多く溶けすぎて逆に成形体内に空隙が
発生するので、その中間の適当な値に設定される。尚、
この圧力は、従来の射出成形時に加えられる圧力である
数100kgf/cm2 に比べて著しく低い数10kg
f/cm2 のオーダの圧力でよいので、脆い樹脂や細長
いものを成形する場合に、樹脂の割れを生ずることがほ
とんどない。
The pressurization by the inert gas at the time of molding has a function of preventing generation of minute bubbles remaining in the thermoplastic resin outside the molding of the resin and voids due to shrinkage from inside the material at the time of cooling. If the pressure is too small, voids are generated inside the molded body, and if the value is too large,
Since the gas is too much dissolved in the material and voids are generated in the molded body, an appropriate value is set in between. still,
This pressure is several tens of kg, which is significantly lower than several hundred kgf / cm 2 which is the pressure applied during the conventional injection molding.
Since a pressure on the order of f / cm 2 is sufficient, when a brittle resin or an elongated resin is molded, cracking of the resin hardly occurs.

【0013】光学用成形体の冷却時に恒温槽を下から上
に向けて冷却するのは、成形体内部の光学的な歪が下か
ら上に向けて解放されるためであり、またこの冷却は不
活性ガスによる加圧と共に行なわれることによって材料
内部の空隙を順次上方に移動して空隙を材料から有効に
除去することができる。
The reason why the thermostat is cooled from the bottom to the top when the optical molded body is cooled is that the optical distortion inside the molded body is released from the bottom to the top. By performing the process together with the pressurization with the inert gas, the voids inside the material can be sequentially moved upward to effectively remove the voids from the material.

【0014】このように冷却して形成された成形体を後
に延伸加工する場合には、この延伸加工前には、ガラス
転移点以下の温度に維持しつつ充分に真空状態を保持し
た雰囲気で乾燥するのが好ましい。このようにすると、
成形体内に溶けていたガスは、充分に外部に逃され、良
質の光学製品が製造される。
In the case where the molded body formed by cooling in this manner is stretched later, before the stretching, drying is performed in an atmosphere in which a vacuum state is sufficiently maintained while maintaining the temperature at or below the glass transition point. Is preferred. This way,
The gas dissolved in the molded body is sufficiently released to the outside, and a high-quality optical product is manufactured.

【0015】成形型は、成形体の形成後の成形体の剥離
を容易にするために、剥離材を塗布することが好まし
い。この剥離材は、平滑性及び樹脂への光学的影響を加
味して炭化弗素溶媒に可溶な弗素樹脂、例えば主鎖に弗
素置換の脂環式基または素環基を有する弗素樹脂を用
いるのが好ましい。加えて、成形体を形成する熱可塑性
樹脂の軟化点より高いガラス転移点を有することが好ま
しい。これらの炭化弗素に可溶な弗素樹脂は、これを溶
剤に溶かし、成形型の内表面に塗布した後、溶剤を除去
して成形型に付着させる。このように、炭化弗素に可溶
な弗素樹脂を溶剤に溶かして用いると、微粒子の剥離材
を用いた場合のように成形体の表面の荒れを生ずること
がなく、従って例えば成形体が光ファイバのプリフォー
ムである場合伝送損失の増加を生ずることがない。ま
た、弗素樹脂を溶剤に溶かして成形型に塗布すると、成
形型の表面に剥離材の均一な膜を形成することができ、
従って成形型の表面が鏡面であれば、剥離材の膜面も鏡
面であり、成形体の表面も鏡面となる。更に、成形体の
成形後、成形型の表面に付着している弗素樹脂を炭化弗
素溶媒に溶かすことによって容易に除去することができ
る。尚、この炭化弗素に可溶な弗素樹脂は、高温に晒さ
れても剥離効果を維持する耐熱性を有するので、高温で
成形される樹脂にも使用することができる。また、剥離
材が成形型からの不純物を成形材料である樹脂に移行す
るのを阻止する働きを有し、光学製品の品質に悪影響を
及ぼすことがないので好ましい。
It is preferable to apply a release material to the molding die in order to facilitate the peeling of the molded body after the molded body is formed. The release liner is used smoothness and soluble fluorine resin fluorocarbon solvent in consideration of the optical effects of the resin, for example, main chain fluorine resin having an alicyclic group or multiple heterocyclic group fluorine-substituted Is preferred. In addition, it preferably has a glass transition point higher than the softening point of the thermoplastic resin forming the molded article. These fluorocarbon resins soluble in fluorine carbide are dissolved in a solvent, applied to the inner surface of the mold, and then the solvent is removed and adhered to the mold. As described above, when a fluorine resin soluble in fluorine carbide is used by dissolving it in a solvent, the surface of the molded body is not roughened as in the case of using a fine particle release material. In the case of the preform, there is no increase in transmission loss. Also, when a fluororesin is dissolved in a solvent and applied to a mold, a uniform film of a release material can be formed on the surface of the mold,
Therefore, if the surface of the mold is a mirror surface, the film surface of the release material is also a mirror surface, and the surface of the molded body is also a mirror surface. Furthermore, after molding of the molded article, the fluororesin adhering to the surface of the mold can be easily removed by dissolving it in a fluorocarbon solvent. The fluorocarbon resin soluble in fluorine carbide has heat resistance to maintain a peeling effect even when exposed to high temperature, and therefore can be used for a resin molded at high temperature. Further, the release material is preferable because it has a function of preventing impurities from the mold from migrating to the resin as the molding material and does not adversely affect the quality of the optical product.

【0016】次に、本発明の具体例の幾つかを比較例と
共にのべる。 (具体例1) 図1及び図2に示すように上面が開口する円筒形の成形
型10の内表面に剥離材として住友スリーエム製のフロ
リナートFC−72の溶媒にデュポン製の商品名テフロ
ンAF2400を0.5%溶かして形成された剥離材を
塗布し、充分に乾燥した。この成形型10内に成形材料
である帝人化成製の商品名ポリカーボネートパンライト
AD−5503を開口を通して充填し、これを図3に示
す恒温槽12に入れた。このポリカーボネートパンライ
トは、120℃で120時間乾燥した後充填された。恒
温槽12は、5ゾーンのヒータH1乃至H5と冷却ファ
ンF1乃至F5とを有し、また上部に切替バルブBを介
して真空源Vとアルゴンガスの如き不活性ガス源Iとに
接続されている。尚、図3において符号Mは圧力計、C
は恒温槽12の上部に設けられた水冷管、Lはリークバ
ルブである。
Next, some specific examples of the present invention will be described together with comparative examples. (Specific Example 1) As shown in FIGS. 1 and 2, a Teflon AF2400 (trade name, manufactured by DuPont) was used as a release material on a solvent of Fluorinert FC-72 manufactured by Sumitomo 3M on the inner surface of a cylindrical mold 10 having an open top surface . A release material formed by dissolving 0.5% was applied and dried sufficiently. The molding die 10 was filled with a molding material, polycarbonate Panlite AD-5503 (trade name, manufactured by Teijin Chemicals) through an opening , and was placed in a thermostat 12 shown in FIG. The polycarbonate panlite was filled after drying at 120 ° C. for 120 hours. The constant temperature bath 12 has five zones of heaters H1 to H5 and cooling fans F1 to F5, and is connected to a vacuum source V and an inert gas source I such as argon gas via a switching valve B at the upper part. I have. In FIG. 3, reference symbol M denotes a pressure gauge, and C denotes a pressure gauge.
Is a water cooling pipe provided on the upper part of the thermostat 12, and L is a leak valve.

【0017】恒温槽12の5つのヒータ領域H1乃至H
5に通電して恒温槽12を250℃に維持しつつ切替バ
ルブBを真空源Vに切替えて真空引きし、この状態を約
1時間継続して成形材料を脱泡した。次に、切替バルブ
Bを不活性ガス源I側に切替えてアルゴンガスを恒温槽
12内に導入し、約10分間10kgf/cm2 の圧力
を保持した。その後、先ず最も下位にあるヒータH1を
切ると同時にファンF1を駆動し、その10分後に次の
ヒータH2を切ると同時にファンF2を駆動し、同様に
して順次その上のヒータの切断とファンの駆動とを行な
って成形型10を順次下から冷却した。
The five heater areas H1 to H of the thermostat 12
5, the switching valve B was switched to the vacuum source V to evacuate the vacuum while maintaining the temperature of the thermostat 12 at 250 ° C., and this state was continued for about 1 hour to defoam the molding material. Next, the switching valve B was switched to the inert gas source I side, and argon gas was introduced into the thermostat 12, and the pressure was maintained at 10 kgf / cm 2 for about 10 minutes. After that, first, the lowest heater H1 is turned off and the fan F1 is driven at the same time, and after 10 minutes, the next heater H2 is turned off and the fan F2 is driven at the same time. By driving, the mold 10 was sequentially cooled from below.

【0018】このようにして、90分後にリークバルブ
Lを開いて恒温槽12の内部を大気圧とし成形型10を
取り出した。このようにして得られた成形体を10cm
の長さに切取り、その端面をホットプレート処理し、そ
の透過率を測定したところ660nmの光透過率は86
%であった。
In this way, after 90 minutes, the leak valve L was opened, the inside of the thermostat 12 was set to the atmospheric pressure, and the mold 10 was taken out. The molded body obtained in this way is 10 cm
The end face was hot-plated and the transmittance was measured. The light transmittance at 660 nm was 86.
%Met.

【0019】(具体例2)図4及び図5に示すように、
中心に棒状部14aを有する円筒形の成形型14の内表
面に具体例1と同じ剥離材を塗布し、また具体例1と同
じ成形材料を充填し、これを図3の恒温槽12内に入れ
て成形体を製造した。具体例1と全く同じ方法で、この
成形型12を図3に示す恒温槽12内に入れて加熱、真
空引きに引続き不活性ガスによる加圧、下からの冷却を
行なって円筒形の成形体を製造した。この円筒形成形体
は、光導波路としてはそのまま使用することができ、ま
た光ファイバのクラッドとして用いる場合には、この成
形体を延伸してチューブとする。このチューブ内には高
屈折率の熱硬化樹脂を流し込んでこれを硬化して光ファ
イバを得ることができる。尚、このようにして得られた
光ファイバは、チューブの内面が極めてきれいであるた
め伝送損失が少ないので好ましい。特に、成形材料とし
てポリカーボネートではなく、ポリメチルペンテンやエ
チレン−テトラフルオロエチレン共重合体で成形する
と、屈折率の問題からコア材(熱硬化性樹脂)が選択し
やすい。
(Specific Example 2) As shown in FIGS. 4 and 5,
The same release material as in Example 1 is applied to the inner surface of a cylindrical molding die 14 having a rod-shaped portion 14a at the center, and the same molding material as in Example 1 is filled. Then, a molded article was produced. In exactly the same manner as in Example 1, the molding die 12 is placed in a thermostat 12 shown in FIG. 3, heated, evacuated, pressurized with an inert gas, and cooled from below to form a cylindrical molded body. Was manufactured. This cylindrical formed body can be used as it is as an optical waveguide, and when used as an optical fiber clad, the formed body is drawn into a tube. An optical fiber can be obtained by pouring a thermosetting resin having a high refractive index into the tube and curing the resin. The optical fiber thus obtained is preferable because the inner surface of the tube is extremely clean and the transmission loss is small. In particular, when a molding material is molded from polymethylpentene or an ethylene-tetrafluoroethylene copolymer instead of polycarbonate, a core material (thermosetting resin) is easily selected from the problem of the refractive index.

【0020】(具体例3)図6及び図7に示すように、
内部に4つの四角形の棒状体16aを有する四角柱から
成る成形体16の内表面に具体例1及び2と同じ剥離材
を塗布し、またこの成形型16内に具体例1及び2と同
じ成形材料を充填した。具体例1と全く同じ方法で、こ
の成形型12を図3に示す恒温槽12内に入れて加熱、
真空引きに引続き不活性ガスによる加圧、下からの冷却
を行なって図8に示す内部に4つの四角形の空洞を有す
る四角柱状の成形体18を製造した。この四角柱状の成
形体18は、図9のように切断し、両端を光学的に研磨
して光導波路20とすることができる。
(Specific Example 3) As shown in FIGS. 6 and 7,
The same release material as in Examples 1 and 2 is applied to the inner surface of a molded body 16 composed of a square pillar having four square rods 16a therein, and the same molding as in Examples 1 and 2 is performed in the molding die 16. The material was filled. In exactly the same manner as in Example 1, this mold 12 was placed in a thermostat 12 shown in FIG.
After evacuation, pressurization with an inert gas and cooling from below were performed to produce a rectangular column-shaped molded body 18 having four rectangular cavities inside as shown in FIG. This rectangular column shaped body 18 can be cut as shown in FIG. 9 and both ends can be optically polished to form an optical waveguide 20.

【0021】(具体例4)具体例1と全く同じである
が、成形材料としてポリカーボネートの代わりにユニチ
カ製のポリアリレートP−5001を用い、恒温槽12
内の温度を310℃に維持して成形体を製造した。この
成形体を10cmの長さに切断し、その端面をホットプ
レート処理して透過率を測定したところ660nmの光
透過率は68%であった。
(Specific Example 4) Exactly the same as Specific Example 1, except that a polyarylate P-5001 manufactured by Unitika was used as a molding material instead of polycarbonate, and a thermostat 12 was used.
The inside temperature was maintained at 310 ° C. to produce a molded body. This molded body was cut into a length of 10 cm, and the end face was subjected to hot plate treatment to measure the transmittance. As a result, the light transmittance at 660 nm was 68%.

【0022】(具体例5)具体例1と全く同じである
が、成形材料としてポリカーボネートの代わりに三井東
圧化学製のポリエーテルサルホンを用い、恒温槽12内
の温度を330℃に維持して成形体を製造した。このよ
うにして得られた成形体も良好な形状及び光学特性を有
していた。
(Specific Example 5) Exactly the same as Specific Example 1, except that polyether sulfone manufactured by Mitsui Toatsu Chemicals was used instead of polycarbonate as the molding material, and the temperature in the thermostat 12 was maintained at 330 ° C. Thus, a molded body was produced. The molded body thus obtained also had good shape and optical characteristics.

【0023】(具体例6)図4及び図5の成形型に類似
した図10及び図11に示すように、中心に棒状体22
aを有する円筒形の成形型22の内表面に剥離材として
具体例1で用いたものと同じ剥離材を塗布し、充分に乾
燥した。この成形型22を図12に示す恒温槽24内に
入れた。この恒温槽24は、その内部の成形型22の上
部開口部22bに連通するように設けられたロートRを
有し、周面にはヒータHが設けられている。尚、図中図
3と同じ符号は同じ部分を示す。
(Example 6) As shown in FIGS. 10 and 11, which are similar to the molds of FIGS.
The same release material as that used in Example 1 was applied to the inner surface of the cylindrical mold 22 having a as the release material, and was sufficiently dried. The mold 22 was placed in a thermostat 24 shown in FIG. The thermostatic chamber 24 has a funnel R provided so as to communicate with the upper opening 22b of the molding die 22 therein, and a heater H is provided on the peripheral surface. In the drawing, the same reference numerals as those in FIG. 3 indicate the same parts.

【0024】一方、予め計量された成形材料である帝人
化成製のフレーク状のポリカーボネートL−1250を
恒温槽24のロートRを通して充填し、ヒータHによっ
て槽内を260℃に維持しつつ切替バルブBを真空源V
側に切替えて3時間この状態を維持した。尚、成形材料
は、120℃で120時間乾燥した後充填された。脱泡
後、切替バルブBを不活性ガス源I側に切替えてアルゴ
ンガスを恒温槽24内に導入し、約10分間10kgf
/cm2 の圧力を保持した。その後、ヒータHを取外
し、このヒータで覆われていた部分を水に順次下から接
触させて下部から冷却を行なった。
On the other hand, a flaky polycarbonate L-1250 manufactured by Teijin Chemicals, which is a pre-weighed molding material, is filled through the funnel R of the thermostatic chamber 24, and the switching valve B is maintained while the inside of the chamber is maintained at 260 ° C. by the heater H. Is the vacuum source V
And maintained this state for 3 hours. The molding material was filled after drying at 120 ° C. for 120 hours. After defoaming, the switching valve B is switched to the inert gas source I side, and argon gas is introduced into the thermostat 24, and 10 kgf is applied for about 10 minutes.
/ Cm 2 was maintained. After that, the heater H was removed, and the portion covered with the heater was brought into contact with water sequentially from below to cool from below.

【0025】その後、リークバルブLを開いて恒温槽1
2の内部を大気圧とし成形型22を取り出し、図13に
示す成形体26を製造した。この成形体26を図14に
示すように切断しその両端を光学的に研磨して良好な光
導波路28を形成した。尚、この成形体26は、延伸加
工して光ファイバ用クラッドに用いることもできる。
Thereafter, the leak valve L is opened to open the thermostat 1
The inside of 2 was set to atmospheric pressure, the molding die 22 was taken out, and a molded body 26 shown in FIG. 13 was manufactured. The molded body 26 was cut as shown in FIG. 14 and both ends were optically polished to form a good optical waveguide 28. It is to be noted that the molded body 26 can be drawn and used for an optical fiber clad.

【0026】(比較例1)成形材料として帝人化成製の
ポリカーボネートパンライトAD−5503を用いてこ
の材料を内径65mmの射出成形機から図15に示す金
型30に射出して成形した。金型30の内面に剥離材と
してシリコンオイルが塗布され、金型30の温度は23
0℃に維持された。成形後、金型を冷却し、成形体を取
出した。このようにして得られた成形体を10cmに切
断し、その端面をホットプレート処理し、透過率を測定
したところ、660nmの光透過率は58%と低かっ
た。また、4本製造した後、1本に割れが入っていたこ
とが確認された。
Comparative Example 1 A polycarbonate panlite AD-5503 manufactured by Teijin Chemicals was used as a molding material, and this material was injected into a mold 30 shown in FIG. 15 from an injection molding machine having an inner diameter of 65 mm. Silicone oil is applied to the inner surface of the mold 30 as a release material.
Maintained at 0 ° C. After the molding, the mold was cooled and the molded body was taken out. The molded body thus obtained was cut into 10 cm, its end face was subjected to hot plate treatment, and the transmittance was measured. As a result, the light transmittance at 660 nm was as low as 58%. In addition, it was confirmed that one was cracked after four were produced.

【0027】(比較例2)比較例1と同じ成形材料を同
様にして射出成形機から図15に示す金型30に射出し
て成形した。金型30の内面に剥離材としてセラミック
粉が塗布され、金型30の温度は260℃に維持され
た。この比較例で得られた成形体を10cmに切断し、
その端面をホットプレート処理し、透過率を測定したと
ころ、660nmの光透過率は79%であったが、5本
製造した後、4本に割れが入っていたことが確認され
た。
Comparative Example 2 The same molding material as in Comparative Example 1 was similarly injected from an injection molding machine into a mold 30 shown in FIG. Ceramic powder was applied to the inner surface of the mold 30 as a release material, and the temperature of the mold 30 was maintained at 260 ° C. The molded body obtained in this comparative example was cut into 10 cm,
The end face was subjected to a hot plate treatment, and the transmittance was measured. The light transmittance at 660 nm was 79%. However, after manufacturing five pieces, it was confirmed that four pieces had cracks.

【0028】[0028]

【発明の効果】本発明によれば、上記のように、成形型
内に充填された熱可塑性樹脂を加熱溶融しながら真空引
きして脱泡するので、樹脂内に空隙が残ることがなく、
またその後樹脂を不活性ガスによって加圧して成形する
ので、成形体内部に巣が形成されることがなく、更に成
形型の下部から上部に順次冷却することによって歪みの
解放が良好に行なわれるので良質の成形体を製造するこ
とができる。
According to the present invention, as described above,
Vacuum while heating and melting the thermoplastic resin filled inside
Since defoaming and come, without voids remain in the resin,
In addition, since the resin is molded by pressurizing it with an inert gas, no cavities are formed inside the molded body, and furthermore, since the cooling is sequentially performed from the lower part to the upper part of the mold, the strain can be released favorably. Good quality molded products can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体例に用いられる成形型の正面図で
ある。
FIG. 1 is a front view of a molding die used in a specific example of the present invention.

【図2】図1の成形型の上面図である。FIG. 2 is a top view of the mold of FIG.

【図3】本発明の具体例に用いられる恒温槽の側面図で
ある。
FIG. 3 is a side view of a thermostat used in a specific example of the present invention.

【図4】本発明の他の具体例に用いられる成形型の正面
図である。
FIG. 4 is a front view of a molding die used in another embodiment of the present invention.

【図5】図4の成形型の上面図である。FIG. 5 is a top view of the mold of FIG. 4;

【図6】本発明の更に他の具体例に用いられる成形型の
正面図である。
FIG. 6 is a front view of a molding die used in still another embodiment of the present invention.

【図7】図6の成形型の上面図である。FIG. 7 is a top view of the mold of FIG. 6;

【図8】図6及び図7の成形型によって成形された成形
体の正面図である。
FIG. 8 is a front view of a molded body molded by the molding dies of FIGS. 6 and 7.

【図9】図8の成形体から得られた光導波路の正面図で
ある。
9 is a front view of an optical waveguide obtained from the molded body of FIG.

【図10】本発明の更に別の具体例に用いられる成形型
の正面図である。
FIG. 10 is a front view of a molding die used in still another embodiment of the present invention.

【図11】図10の成形型の上面図である。FIG. 11 is a top view of the mold of FIG. 10;

【図12】図10及び図11の成形型が用いられる恒温
槽の正面図である。
FIG. 12 is a front view of a thermostat in which the molds of FIGS. 10 and 11 are used.

【図13】図10及び図11の成形型によって成形され
た成形体の正面図である。
FIG. 13 is a front view of a molded body molded by the molding dies of FIGS. 10 and 11;

【図14】図13の成形体から得られた光導波路の正面
図である。
FIG. 14 is a front view of an optical waveguide obtained from the molded body of FIG.

【図15】比較例に用いられる金型の正面図である。FIG. 15 is a front view of a mold used in a comparative example.

【符号の説明】[Explanation of symbols]

10 成形型 12 恒温槽 14 成形型 16 成形型 18 成形体 20 光導波路 22 成形型 24 恒温槽 26 成形体 28 光導波路 DESCRIPTION OF SYMBOLS 10 Mold 12 Thermostat 14 Mold 16 Mold 18 Mold 20 Optical waveguide 22 Mold 24 Thermostat 26 Mold 28 Optical waveguide

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G02B 6/13 G02B 6/12 M B29K 69:00 81:00 B29L 11:00 (58)調査した分野(Int.Cl.7,DB名) B29C 39/02 B29C 39/22 - 39/42 B29C 43/02 B29C 43/32 - 43/56 B29B 11/06 - 11/12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI G02B 6/13 G02B 6/12 MB29K 69:00 81:00 B29L 11:00 (58) Fields surveyed (Int.Cl. 7 , DB name) B29C 39/02 B29C 39/22-39/42 B29C 43/02 B29C 43/32-43/56 B29B 11/06-11/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 開口する成形型内に充填された熱可塑性
樹脂を加熱溶融しながら真空引きして脱泡し、その後
記熱可塑性樹脂を不活性ガスで加圧しつつ前記成形型の
下部から上部に順次冷却して光学用熱可塑性樹脂成形体
を製造することを特徴とする光学用熱可塑性樹脂成形体
の製造方法。
1. A thermoplastic filled in an opening mold.
Vacuumed and defoamed while heating and melting the resin, then prior to
A method for producing a molded article for optical thermoplastic resin, characterized by producing a molded article for optical thermoplastic resin by sequentially cooling the thermoplastic resin from the lower part to the upper part of the mold while pressurizing the thermoplastic resin with an inert gas.
JP03203754A 1990-09-14 1991-07-19 Method for producing thermoplastic resin molded article for optical use Expired - Fee Related JP3124324B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP03203754A JP3124324B2 (en) 1991-07-19 1991-07-19 Method for producing thermoplastic resin molded article for optical use
US07/757,714 US5230840A (en) 1990-09-14 1991-09-11 Method of manufacturing thermoplastic/resin molded optical member
EP91115549A EP0475431B1 (en) 1990-09-14 1991-09-13 Method of manufacturing thermoplastic-resin molded optical member
CA002051349A CA2051349C (en) 1990-09-14 1991-09-13 Method of manufacturing thermoplastic-resin molded optical member
DE69119004T DE69119004T2 (en) 1990-09-14 1991-09-13 Process for producing an optical part from molded thermoplastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03203754A JP3124324B2 (en) 1991-07-19 1991-07-19 Method for producing thermoplastic resin molded article for optical use

Publications (2)

Publication Number Publication Date
JPH0524050A JPH0524050A (en) 1993-02-02
JP3124324B2 true JP3124324B2 (en) 2001-01-15

Family

ID=16479287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03203754A Expired - Fee Related JP3124324B2 (en) 1990-09-14 1991-07-19 Method for producing thermoplastic resin molded article for optical use

Country Status (1)

Country Link
JP (1) JP3124324B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104240A1 (en) * 2003-11-14 2005-05-19 Jethmalani Jagdish M. Method of manufacturing an optical lens

Also Published As

Publication number Publication date
JPH0524050A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP3894966B2 (en) Mold part molding method and molding apparatus
US5928575A (en) Methods for eyeglass lens curing using ultraviolet light
US3422168A (en) Process of casting resinous lenses in thermoplastic cast replica molds
CA2151326C (en) Mold halves and molding assembly for making contact lenses
US6280171B1 (en) El apparatus for eyeglass lens curing using ultraviolet light
KR950009720B1 (en) Injection orientation blow molding method
WO1997039880A9 (en) Methods and apparatus for eyeglass lens curing using ultraviolet light and improved cooling
US5230840A (en) Method of manufacturing thermoplastic/resin molded optical member
CA1251975A (en) Optical element with a varying refractive index and a method for its manufacture
JP3124324B2 (en) Method for producing thermoplastic resin molded article for optical use
US5776222A (en) Method of eliminating light scattering bubbles in optical fiber preforms
JPH0331124B2 (en)
JP2001158044A (en) Method for molding processing of plastic material
JP3055443B2 (en) Method for producing optical molded lens and apparatus for producing optical molded lens
JP3074213B2 (en) Method for producing thermoplastic resin molded article for optical use
JPH0667040A (en) Hollow plastic optical fiber and its production
JPH033570B2 (en)
JPS6362373B2 (en)
JPS6260622A (en) Injection compression mold
US4069280A (en) Method of making plastic optical fibers
JPS61100420A (en) Manufacture of plastic lens
JPH0531738A (en) Plastic lens and preparation thereof
KR20140132270A (en) Method for molding a resin optical lens and the optical lens made thereby
CN1730419A (en) Aspheric surface glass lens stamper and manufacture method
CN88101873A (en) Make the method for transparent capsule

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees