JP3055443B2 - Method for producing optical molded lens and apparatus for producing optical molded lens - Google Patents
Method for producing optical molded lens and apparatus for producing optical molded lensInfo
- Publication number
- JP3055443B2 JP3055443B2 JP7271483A JP27148395A JP3055443B2 JP 3055443 B2 JP3055443 B2 JP 3055443B2 JP 7271483 A JP7271483 A JP 7271483A JP 27148395 A JP27148395 A JP 27148395A JP 3055443 B2 JP3055443 B2 JP 3055443B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- annealing
- molded lens
- optical
- optical molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 title claims description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 238000000137 annealing Methods 0.000 claims description 67
- 239000000463 material Substances 0.000 claims description 41
- 238000001816 cooling Methods 0.000 claims description 22
- 238000000465 moulding Methods 0.000 claims description 17
- 230000009477 glass transition Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 238000007493 shaping process Methods 0.000 claims 2
- 229920000098 polyolefin Polymers 0.000 claims 1
- 239000010410 layer Substances 0.000 description 13
- 239000012778 molding material Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000011521 glass Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/021—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00432—Auxiliary operations, e.g. machines for filling the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/52—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
- B29L2011/0016—Lenses
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱可塑性樹脂成形
材料を用いた光学レンズの製造方法、および製造装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing an optical lens using a thermoplastic resin molding material.
【0002】[0002]
【従来の技術】特開平5−329863号公報に金型温
度を成形材料のガラス転移点以上とし、金型キャビティ
に樹脂を充填後ゆっくりと除冷する成形方法が開示さ
れ、特開平6−320568号公報に樹脂の射出時の金
型温度を材料樹脂のガラス転移点より低温に設定し、緩
和終了時(除冷開始時)に金型温度を樹脂のガラス転移
点以上の温度に昇温させる熱可塑性樹脂成形材料を用い
た光学レンズ等の製造方法、および製造装置が開示され
ている。2. Description of the Related Art Japanese Unexamined Patent Publication No. Hei 5-329866 discloses a molding method in which a mold temperature is set to a glass transition point of a molding material or more, and a mold cavity is slowly cooled after filling with a resin. In the publication, the mold temperature at the time of resin injection is set lower than the glass transition point of the material resin, and at the end of relaxation (at the start of cooling), the mold temperature is raised to a temperature equal to or higher than the glass transition point of the resin. A manufacturing method and an apparatus for manufacturing an optical lens or the like using a thermoplastic resin molding material are disclosed.
【0003】[0003]
【発明が解決しようとする課題】従来より行われている
熱可塑性樹脂成形材料を用いた光学レンズの射出成形工
程を図11に示す成形フローにより説明する。ステップ
ST1で金型に合成材料を供給し、ステップST2で成
形する。所定時間の後ステップST3で成形品を取りだ
し、外観をチェックする。外観は目視でポイド、異物、
ヒケ、フローマーク、偏光盤による内部歪みのチェック
等を行う。チェックで歪みが検出された場合はステップ
ST7で成形の条件(射出条件、金型温度、型締め条
件、センサー、圧縮力、成形サイクル等)を確認してス
テップST2に戻る。外観チェックがOKとなった製品
は、ステップST5に進み、成形から24時間後にプロ
ファイル、軸スジ、内部歪み、透過率等の測定を行いス
テップST6で評価して終了する。このようにして形成
されたプラスチック光学レンズ100における光線の屈
折は、図12に示すように、光透過方向にレンズ100
の断面をとり、表面をスキン層105、内面を内面部分
103とすると、内面部分103の光は、屈折率n2と
して複屈折を起こさないが、レンズ100の表面部分で
あるスキン層105に入射する光の屈折率n1、出射す
る光の屈折率n3は複屈折を起こし光を散乱させてい
た。A conventional injection molding process of an optical lens using a thermoplastic resin molding material will be described with reference to a molding flow shown in FIG. In step ST1, a synthetic material is supplied to a mold, and molding is performed in step ST2. After a predetermined time, the molded product is taken out in step ST3, and the appearance is checked. Appearance is poid, foreign matter,
Checks sink marks, flow marks, internal distortions due to polarizing plates, etc. If distortion is detected in the check, the molding conditions (injection conditions, mold temperature, mold clamping conditions, sensors, compression force, molding cycle, etc.) are confirmed in step ST7, and the process returns to step ST2. The product whose appearance check is OK proceeds to step ST5, and measures the profile, axial streak, internal strain, transmittance, etc. 24 hours after molding, evaluates it in step ST6, and ends the process. The refraction of the light beam in the plastic optical lens 100 formed as described above, as shown in FIG.
When the surface is the skin layer 105 and the inner surface is the inner surface portion 103, the light of the inner surface portion 103 does not cause birefringence as the refractive index n2, but enters the skin layer 105 which is the surface portion of the lens 100. The refractive index n1 of light and the refractive index n3 of emitted light caused birefringence and scattered light.
【0004】そこで、プラスチック光学レンズのスキン
層の複屈折を防止するため、金型温度を高くしたり冷却
時間を長くし、徐々に冷却させ、この影響を押さえてい
た。例えば、上記の従来技術における光学レンズの製造
方法におけるステップST2の成形時の成形品の温度
と、ステップST3の取りだし時における成形品の温度
を経過時間によってみる(図13参照)。このグラフは
冷却時間に対する成形品の温度の変化を示している。す
なわち、除冷前の金型温度を成形材料のガラス転移点以
上としている金型内の成形品は充填後、30分程度ゆっ
くりと除冷して成形品の温度を常温としてから成形品を
取りだしている。Therefore, in order to prevent the birefringence of the skin layer of the plastic optical lens, the mold temperature is increased or the cooling time is lengthened, and the cooling is gradually performed to suppress the influence. For example, the temperature of the molded article at the time of molding in step ST2 and the temperature of the molded article at the time of removal in step ST3 in the method of manufacturing an optical lens according to the above-described prior art are examined by the elapsed time (see FIG. 13). This graph shows the change in the temperature of the molded article with respect to the cooling time. That is, after filling, the molded article in the mold whose mold temperature before cooling is equal to or higher than the glass transition point of the molding material is slowly cooled for about 30 minutes to cool the molded article to room temperature, and then the molded article is taken out. ing.
【0005】このように従来の方法は、成形品が常温以
下に冷却した後取り出すことによりキャビティ内に射出
充填された樹脂の残留応力を極少化し、任意の焦点距離
を得るように構成したものである。しかし、この方法
は、金型内で圧縮成形時の影響が表面スキン層に残留す
る。このスキン層に残留する応力を金型内に置いて減少
させているが、所望の焦点距離を得るまでには時間がか
かり、金型の使用効率が悪く生産性が低かった。また、
金型ごと後処理を行おうとすると、金型を多数準備する
必要があり、製造装置として大型となってしまう不都合
があった。[0005] As described above, the conventional method is configured so that the molded product is cooled down to a room temperature or lower and then taken out, thereby minimizing the residual stress of the resin injected and filled in the cavity and obtaining an arbitrary focal length. is there. However, in this method, the influence of the compression molding in the mold remains on the surface skin layer. Although the stress remaining in the skin layer is reduced by placing it in a mold, it takes a long time to obtain a desired focal length, and the use efficiency of the mold is poor and the productivity is low. Also,
When post-processing is performed for each mold, it is necessary to prepare a large number of molds, and there is a disadvantage that the manufacturing apparatus becomes large.
【0006】そこで、本発明は短時間に所望の焦点距離
が簡単に得られる生産性の高い光学レンズの製造方法、
および小型化した製造装置を提供するものである。Therefore, the present invention provides a method of manufacturing a highly productive optical lens which can easily obtain a desired focal length in a short time.
And a miniaturized manufacturing apparatus.
【0007】[0007]
【課題を解決するための手段】本発明の光学成形レンズ
材料の製造方法は、射出成形した光学成形レンズ材料を
金型内でレンズ材料のガラス転移点以下の温度まで冷却
して取りだし、常温で冷却した後、レンズ材料のガラス
転移点以下の温度でアニールする(アニール時間を2〜
15時間、アニール温度としてレンズ材料のガラス転移
点を基準として−25℃〜−55℃に調整)構成を具備
する。According to a method of manufacturing an optical molded lens material of the present invention, an injection molded optical molded lens material is cooled in a mold to a temperature below the glass transition point of the lens material, and is taken out at room temperature. After cooling, the lens material glass
Anneal at a temperature below the transition point (anneal time is 2
Glass transition of lens material as annealing temperature for 15 hours
( Adjusted to −25 ° C. to −55 ° C. on the basis of a point ).
【0008】本発明の光学成形レンズ材料の製造装置
は、射出成形手段により成形された光学成形レンズ材料
を金型内で冷却する(2〜4分)冷却手段と、金型外に
取りだした光学成形レンズ材料を常温で冷却する常温冷
却手段と、常温冷却された光学成形レンズ材料をガラス
転移点を基準として−25℃〜−55℃に温度調整して
アニールするアニール手段を具備する。[0008] manufacturing apparatus of an optical molding lens material of the present invention, the Li Cheng shape by an optical molding lens material by the injection molding unit to cool in the mold (2-4 min) and cooling means, to the outside of the mold Room temperature cooling means for cooling the removed optical molded lens material at room temperature, and glass cooling of the optical molded lens material cooled at room temperature
An annealing unit for adjusting the temperature to -25 ° C to -55 ° C based on the transition point and performing annealing is provided.
【0009】[0009]
【発明の実施の形態】以下に本発明の実施の形態を説明
する。先ず、本発明の製造方法および製造装置を図面を
参照して工程順に詳述する。図1は光学成形レンズの形
成工程における順序と製品温度を示し、図3は成形装置
の金型部分を示している。Embodiments of the present invention will be described below. First, a manufacturing method and a manufacturing apparatus of the present invention will be described in detail in the order of steps with reference to the drawings. FIG. 1 shows an order and a product temperature in a process of forming an optical molded lens, and FIG. 3 shows a mold portion of a molding apparatus.
【0010】成形工程(図3参照) 成形装置は固定金型53と移動金型55とよりなる金型
キャビティ50を備え、金型キャビテイ50内に成形材
料を射出する。成形材料としてはガラス転移点がほぼ1
40℃の熱可塑性樹脂である非晶質ポリオレフイン系の
樹脂を使用する。成形装置の射出応力は1500〜26
00Kg/cm3であって、金型温度は280℃から300
℃となっている。金型50の矢印X方向から流入した成
形材料は金型キャビテイ50内に充填される。このとき
の成形品60の温度は約280℃となっている。[0010] forming forms step (see FIG. 3) molding apparatus includes a stationary mold 53 and movable mold 55 and the mold cavity 50 of the additional level, injecting a molding material into the mold cavity 50. As a molding material, the glass transition point is almost 1
An amorphous polyolefin resin which is a thermoplastic resin at 40 ° C. is used. The injection stress of the molding machine is 1500-26
00Kg / cm3, mold temperature from 280 ° C to 300
° C. The molding material flowing from the mold 50 in the direction of the arrow X is filled in the mold cavity 50. The temperature of the molded article 60 at this time is about 280 ° C.
【0011】金型内冷却工程 成形材料は金型50内に放置され、冷却される。成形材
料は金型キャビテイ50壁面にそった部分がより早く冷
却され、固化する。この固化した表面層をレンズ表面層
をなすスキン層65という。スキン層65は約0.5mm
程度の層厚となる。冷却時間内に成形時280℃だった
成形材料は120℃まで温度降下する。この冷却時間は
ほぼ2分から4分(この実施例では3分)程度とする。In-Mold Cooling Step The molding material is left in the mold 50 and cooled. The portion of the molding material along the wall of the mold cavity 50 is cooled faster and solidified. This solidified surface layer is referred to as a skin layer 65 that forms the lens surface layer. Skin layer 65 is about 0.5mm
Layer thickness. The temperature of the molding material, which was 280 ° C. during the cooling time, drops to 120 ° C. The cooling time is about 2 to 4 minutes (3 minutes in this embodiment).
【0012】常温冷却工程(図3,4参照) 金型から成形品(光学成形レンズ材料)600を取りだ
し、24時間常温で放置冷却する。成形品は常温とな
る。取り出された光学成形レンズ材料600は長さ寸法
L:約102mm、透過方向の厚さS1:約22.6mm、
板厚S2:約10mmである。ここで、取りだした光学成
形レンズ材料の厚さ方向への光の屈折率を試験片で実験
した。この実験結果を図4に示す。光学成形レンズ材料
の試験片は長さ寸法209mm、厚さ3mm、幅15mmの小
片を用い、測定位置を長さ分率(長さ分率=ゲートから
の距離/全長)の異なる4点とした。長さ分率0.12
の測定点を黒丸印、長さ分率0.35の測定点を×印、
長さ分率0.62の測定点を〇印、長さ分率0.87の
測定点を△印で表している。このグラフからもわかるよ
うに、中央部分である内面部分は屈折率が揃っている
が、移動金型、固定金型に当接していたスキン層の部分
(約0.5mm以内)は屈折率が不揃いであって、複屈折
を発生させている。Room Temperature Cooling Step (See FIGS. 3 and 4) A molded product (optical molded lens material) 600 is taken out of the mold and left to cool at room temperature for 24 hours. The molded product is at room temperature. The extracted optical molded lens material 600 has a length L of about 102 mm, a thickness S 1 in the transmission direction of about 22.6 mm,
Plate thickness S 2 : about 10 mm. Here, the refractive index of light in the thickness direction of the removed optical molded lens material was tested on a test piece. FIG. 4 shows the results of this experiment. A test piece of the optical molded lens material was a small piece having a length of 209 mm, a thickness of 3 mm, and a width of 15 mm, and the measurement positions were four points having different length fractions (length fraction = distance from gate / total length). . Length fraction 0.12
The measurement point of the black circle mark, the measurement point of the length fraction 0.35 × mark,
The measurement points with a length fraction of 0.62 are indicated by triangles, and the measurement points with a length fraction of 0.87 are indicated by triangles. As can be seen from this graph, the refractive index is uniform at the inner surface portion, which is the central portion, but the refractive index of the portion of the skin layer (within about 0.5 mm) that has been in contact with the movable mold and the fixed mold has been reduced. It is irregular and generates birefringence.
【0013】アニール工程 常温冷却された光学成形レンズ材料600をアニールす
る。光学成形レンズ材料600は、図6に示すように、
パレット70内に並列載置される。そして、複数のパレ
ット70が収納可能な恒温槽80内に収納してアニール
を行う。恒温槽80は表示部85により温度、時間、湿
度等の条件を設定する。例えば、この実施の形態による
アニール温度は100℃、アニール時間は2時間とす
る。Annealing Step The optical molded lens material 600 cooled at room temperature is annealed. The optical molded lens material 600 is, as shown in FIG.
They are placed in parallel on the pallet 70. Then, the pallets 70 are stored in a constant temperature bath 80 that can store the pallets 70, and annealing is performed. The temperature, time, humidity, and other conditions of the thermostat 80 are set on the display unit 85. For example, the annealing temperature in this embodiment is 100 ° C., and the annealing time is 2 hours.
【0014】ここで、アニールの温度、およびアニール
時間による光学成形レンズ材料の焦点位置の変化を実験
した。 (1) アニール時間を変えた光学成形レンズ材料のア
ニール温度に対する焦点位置の変化(図8参照) アニール時間を15時間とした試料A(白四角で示す) アニール時間を4時間とした試料B(点描四角で示す) アニール時間を2時間とした試料C(黒四角で示す) アニール時間を長くした試料Aはアニール温度が95℃
以上で焦点位置の移動が10mm前後となるが、アニール
時間が2時間から4時間と短い試料B、Cはアニール温
度が85℃〜95℃では焦点位置の移動がほとんどな
い。アニール温度を105℃以上とすると、試料A,
B,Cともに焦点距離の移動が大きくなり、アニール温
度を115℃とすると、各試料とも焦点がほぼ10mm移
動する。Here, an experiment was conducted on the change in the focal position of the optical molded lens material depending on the annealing temperature and the annealing time. (1) Change of focal position with respect to annealing temperature of optical molded lens material with different annealing time (see FIG. 8) Sample A with an annealing time of 15 hours (shown by a white square) Sample B with an annealing time of 4 hours ( Sample C with an annealing time of 2 hours (shown by a black square) Sample A with a long annealing time had an annealing temperature of 95 ° C.
As described above, the focal position shifts about 10 mm. However, in the samples B and C having a short annealing time of 2 hours to 4 hours, the focal point position hardly shifts at an annealing temperature of 85 ° C. to 95 ° C. Assuming that the annealing temperature is 105 ° C. or more, Sample A,
For both B and C, the focal length shifts greatly. When the annealing temperature is 115 ° C., the focal point of each sample moves by approximately 10 mm.
【0015】(2) アニール温度を変えた光学成形レ
ンズ材料のアニール時間に対する焦点位置の変化(図9
参照) アニール温度を115℃とした試料A(白丸で示す) アニール温度を105℃とした試料B(白四角で示す) アニール温度を95℃とした試料C(三角で示す) アニール温度を85℃とした試料D(×印で示す) アニール温度を高くした試料A、Bはアニール時間にか
かわらず焦点位置が10mm前後移動する。アニール温度
が95℃、85℃の試料C、Dはアニール時間4時間ま
では焦点位置の移動がほとんどないが、アニール温度が
95℃の試料Cはアニール時間が4時間を超えると移動
を始め、アニール時間15時間には焦点が10mm前後ま
で移動する。すなわち、アニール温度を95℃以上とす
ると各試料とも焦点位置はアニール時間にはあまり影響
されなく移動することが判明した。(2) Changes in the focal position with respect to the annealing time of the optical molded lens material with the changed annealing temperature (FIG. 9)
Sample A with an annealing temperature of 115 ° C. (indicated by a white circle) Sample B with an annealing temperature of 105 ° C. (indicated by a white square) Sample C with an annealing temperature of 95 ° C. (indicated by a triangle) Annealing temperature of 85 ° C. Sample D (indicated by a mark x) Samples A and B whose annealing temperatures were raised have their focal positions moved about 10 mm regardless of the annealing time. Samples C and D with annealing temperatures of 95 ° C. and 85 ° C. hardly move the focal position until the annealing time of 4 hours, whereas Sample C with an annealing temperature of 95 ° C. starts moving when the annealing time exceeds 4 hours, The focus moves to about 10 mm during the annealing time of 15 hours. That is, it was found that when the annealing temperature was set to 95 ° C. or higher, the focal position of each sample moved without being affected by the annealing time.
【0016】以上の実験から、アニール温度は95℃以
上、アニール時間は4時間以上が最も焦点位置の変動が
大きくなる。しかし、アニール時間が2時間であって
も、アニール温度を95℃以上とすることにより、焦点
位置の移動が顕著となり、アニール温度の上昇とともに
10mm近辺まで焦点位置の移動が見られる。この実験に
より、アニール温度95℃以上としたとき、2時間以上
アニールを行うことにより、光学成形レンズ材料の焦点
位置をほぼ10mm程度移動させることができることが実
証された。すなわち、焦点距離を5mm移動させたいとき
は、アニール温度を102℃〜104℃で2時間以上と
設定することにより所望する焦点位置を有するレンズが
得られる。According to the above experiment, the fluctuation of the focal position becomes largest when the annealing temperature is 95 ° C. or more and the annealing time is 4 hours or more. However, even if the annealing time is 2 hours, the focal position shifts remarkably by setting the annealing temperature to 95 ° C. or higher, and the focal position shifts to around 10 mm as the annealing temperature increases. This experiment demonstrated that when the annealing temperature was set to 95 ° C. or higher, the focal position of the optical molded lens material could be moved by about 10 mm by performing the annealing for 2 hours or more. That is, when it is desired to move the focal length by 5 mm, a lens having a desired focal position can be obtained by setting the annealing temperature at 102 ° C. to 104 ° C. for 2 hours or more.
【0017】このように焦点の移動は、光学成形レンズ
材料を所定の温度で、約2時間以上アニールすることに
より、射出成形、および固化により内部に残留している
ストレスが除去されることによるものと予測される。こ
の結果、図10に示すように、スキン層の複屈折により
焦点距離が長さL1であった成形品600は、ストレス
がなくなりスキン層が複屈折しなくなることにより、焦
点距離を長さL2、(L1−L2≧10)まで短く調整
させることができる。なお、ここで、非晶質ポリオレフ
イン系の樹脂による光学成形レンズ材料のガラス転移点
は130℃〜150℃であるので、アニール温度はガラ
ス転移点のー25℃から−55℃の範囲に設定すること
により焦点位置をほぼ10mmまで移動させることができ
る。The shift of the focal point is caused by removing the stress remaining inside by injection molding and solidification by annealing the optical molded lens material at a predetermined temperature for about 2 hours or more. It is predicted. As a result, as shown in FIG. 10, the molded product 600 having the focal length L1 due to the birefringence of the skin layer has no stress, and the skin layer does not birefringent. (L1−L2 ≧ 10). Here, since the glass transition point of the optical molded lens material made of the amorphous polyolefin resin is 130 ° C. to 150 ° C., the annealing temperature is set in the range of −25 ° C. to −55 ° C. of the glass transition point. As a result, the focal position can be moved to approximately 10 mm.
【0018】各種の光学成形レンズ材料のアニール温度
と焦点距離の変動の関係を図2に示す。このグラフによ
ると、光学成形レンズ材料はガラス転移点(Tg)の−
55℃(85℃)からガラス転移点(Tg)の−25℃
(115℃)の範囲で10mm移動する。焦点の可変可能
領域はこのようにアニール温度85℃〜115℃の範囲
となっているが、確実に所望する焦点距離を得るには、
可変幅が大きいアニール温度95℃〜105℃の範囲と
することが望ましい。また、アニールする温度は各材料
のガラス転移点より低い温度であって、アニール時間も
調整されるので、成形品の透過率、曲率などの形状、内
部歪等の発生の危惧はない。FIG. 2 shows the relationship between the annealing temperature and the variation of the focal length of various optical molded lens materials. According to this graph, the optically molded lens material has a glass transition point (Tg) of-
55 ° C (85 ° C) to -25 ° C of glass transition point (Tg)
(115 ° C) within 10 mm. Although the variable range of the focal point is in the range of the annealing temperature of 85 ° C. to 115 ° C. as described above, in order to surely obtain a desired focal length,
It is desirable to set the annealing temperature in the range of 95 ° C. to 105 ° C. where the variable width is large. The annealing temperature is lower than the glass transition point of each material, and the annealing time is also adjusted. Therefore, there is no fear of occurrence of shapes such as transmittance and curvature of the molded product, internal strain, and the like.
【0019】以上のように、本発明は射出成形した後短
時間で成形レンズ材料を取りだし、光を散乱させるスキ
ン層を有した状態の成形品を、アニール温度とアニール
時間を変更することにより焦点距離を可変させ、所望す
る焦点距離を有する光学成形レンズ得ることができる。
また、成形時間を2分〜4分と短縮し、取りだした後に
アニールにより焦点距離を可変させるので、一度に多量
の成形品の後処理を実行することにより焦点距離を可変
させた所望するレンズの大量生産が可能となる。また、
アニールにより、成形材料の内面部分が持つ屈折率n2
も残留応力が緩和され光学特性の優れたレンズとなる。As described above, the present invention takes out a molded lens material in a short time after injection molding and focuses a molded article having a skin layer for scattering light by changing the annealing temperature and the annealing time. By varying the distance, an optical molded lens having a desired focal length can be obtained.
In addition, since the molding time is reduced to 2 to 4 minutes and the focal length is varied by annealing after being taken out, a large number of molded articles are subjected to post-processing at a time to change the focal length of the desired lens. Mass production becomes possible. Also,
By the annealing, the refractive index n2 of the inner surface portion of the molding material
Also, the residual stress is relaxed, resulting in a lens having excellent optical characteristics.
【0020】[0020]
【発明の効果】本発明の光学成形レンズの製造方法は、
レンズ内部の屈折率が不均一のままアニールすることに
より所望の焦点距離を短時間で得ることができる。さら
に、後処理でまとめて焦点距離を可変することにより、
所望の焦点距離を有するレンズを大量生産することが可
能となる。また、この製造方法は大量の成形品のレンズ
内部に発生する残留応力を緩和し複屈折を極少化するこ
とができ、アニール温度の調整で任意の焦点距離を有す
るレンズの量産が達成される。The method for producing an optical molded lens according to the present invention comprises:
The desired focal length can be obtained in a short time by performing annealing while the refractive index inside the lens is not uniform. Furthermore, by changing the focal length collectively in post-processing,
It becomes possible to mass produce lenses having a desired focal length. In addition, this manufacturing method can alleviate the residual stress generated inside the lens of a large number of molded products, minimize birefringence, and achieve mass production of lenses having an arbitrary focal length by adjusting the annealing temperature.
【0021】本発明の光学成形レンズの製造装置は、短
時間に所望の焦点距離を有するレンズが製造でき、かつ
金型の使用効率がよく、製造コストの低減化が図れる。
さらに焦点距離を後処理で可変させることにより、金型
の調整なしに所望の光学特性を有するレンズを大量に生
産することができる。The apparatus for manufacturing an optical molded lens according to the present invention can manufacture a lens having a desired focal length in a short time, can use a mold efficiently, and can reduce the manufacturing cost.
Further by Rukoto by varying the focal length in the post-processing, it is possible to produce a large amount of lenses having desired optical characteristics without adjustments of the mold.
【図1】 成形品の温度と製造工程の説明図。FIG. 1 is an explanatory diagram of a temperature of a molded article and a manufacturing process.
【図2】 アニール温度と焦点距離の関係を示すグラ
フ。FIG. 2 is a graph showing a relationship between an annealing temperature and a focal length.
【図3】 金型の平面図。FIG. 3 is a plan view of a mold.
【図4】 成形品の位置による屈折率を表わすグラフ。FIG. 4 is a graph showing a refractive index according to a position of a molded article.
【図5】 成形品の正面と側面を示す図。FIG. 5 is a diagram showing the front and side surfaces of a molded article.
【図6】 パレットの斜視図。FIG. 6 is a perspective view of a pallet.
【図7】 恒温槽の斜視図。FIG. 7 is a perspective view of a thermostat.
【図8】 アニール温度と焦点位置の関係を示すグラ
フ。FIG. 8 is a graph showing a relationship between an annealing temperature and a focal position.
【図9】 アニール時間と焦点位置の関係を示すグラ
フ。FIG. 9 is a graph showing a relationship between an annealing time and a focal position.
【図10】 レンズの焦点距離の移動を示す説明図。FIG. 10 is an explanatory diagram showing a movement of a focal length of a lens.
【図11】 従来の成形品の製造フローチャート。FIG. 11 is a manufacturing flowchart of a conventional molded product.
【図12】 レンズの光の屈折率の説明図。FIG. 12 is an explanatory diagram of a refractive index of light of a lens.
【図13】 従来の成形方法による冷却時間と成形品温
度の関係を示すグラフ。FIG. 13 is a graph showing the relationship between the cooling time and the temperature of a molded product according to a conventional molding method.
50 金型キャビテイ、 53 移動金型 55 固定
金型、 60 成形材料、 65 スキン層、 70
パレット、 80 恒温槽、 85 表示部、600
成形品。50 mold cavity, 53 moving mold 55 fixed mold, 60 molding material, 65 skin layer, 70
Pallet, 80 Thermostat, 85 Display, 600
Molding.
フロントページの続き (56)参考文献 特開 平1−72929(JP,A) 特開 昭57−115321(JP,A) 特開 平7−205239(JP,A) 特開 平4−284219(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 43/02 - 43/58 B29C 45/00 - 45/78 B29D 11/00 Continuation of the front page (56) References JP-A-1-72929 (JP, A) JP-A-57-115321 (JP, A) JP-A-7-205239 (JP, A) JP-A-4-284219 (JP) , A) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 43/02-43/58 B29C 45/00-45/78 B29D 11/00
Claims (5)
形する工程と、成 形された光学成形レンズ材料を金型内で冷却する工程
と、 金型内で冷却された前記光学成形レンズ材料を金型外に
取り出して、常温で冷却する工程と、 常温冷却された前記光学成形レンズ材料をアニールする
工程と、を備え、 前記常温冷却工程において、光学成形レンズ材料は光学
成形レンズ材料のガラス転移点以下の温度で金型外に取
り出されると共に、前記アニール工程におけるアニール
温度は、光学成形レンズ材料のガラス転移点以下の温度
であることを特徴とする 光学成形レンズの製造方法。1. LightStudyLensofMaterial moldInject intoSuccess
Shaping process,Success Cooling the shaped optical molded lens material in the mold
The optical molded lens material cooled in the mold outside the mold
Taking out and cooling at room temperature, annealing the optical molded lens material cooled at room temperature
And a process, In the room temperature cooling step, the optical molded lens material is
Take it out of the mold at a temperature below the glass transition point of the molded lens material.
And the annealing in the annealing step.
Temperature is the temperature below the glass transition point of the optical molded lens material
Is characterized by Manufacturing method of optical molded lens.
のガラス転移点を基準として−25℃〜−55℃の範囲
としてなる請求項1記載の光学成形レンズの製造方法。2. The method according to claim 1, wherein the annealing temperature is an optical molding lens material.
-25 ° C to -55 ° C based on the glass transition point of
The method for producing an optical molded lens according to claim 1, wherein:
5時間の範囲としてなる請求項1記載の光学成形レンズ
の製造方法。3. The annealing time is about 2 hours to 1 hour.
The method for producing an optical molded lens according to claim 1, wherein the range is 5 hours .
イン系の樹脂を用いてなる請求項1記載の光学成形レン
ズの製造方法。4. The material of the optical lens is amorphous polyolefin.
The method for producing an optical molded lens according to claim 1 , wherein the resin is an in-based resin .
形する成形手段と、成形された前記光学成形レンズ材料
を金型内で冷却する冷却手段と、 金型内で冷却された前記光学成形レンズ材料を金型外に
取り出して、常温で冷却する常温冷却手段と、 常温に冷却された前記光学成形レンズ材料をアニールす
るアニール手段とを備え、 前記金型内冷却手段で冷却する時間は約2分から4分と
すると共に、前記アニール手段は光学成形レンズ材料の
ガラス転移点を基準として−25℃〜−55℃の範囲に
温度調整可能であって、複数の光学成形レンズ材料を収
納できる 光学成形レンズの製造装置。Claim 5.Inject the material of the optical lens into the mold
Forming means for shaping;The optical molded lens material
Cool in the moldCooling means; The optical molded lens material cooled in the mold is removed from the mold
Room temperature cooling means to take out and cool at room temperature, Annealing the optical molded lens material cooled to room temperature
Annealing means, The cooling time by the cooling means in the mold is about 2 to 4 minutes.
And the annealing means comprises an optical molding lens material.
Within the range of -25 ° C to -55 ° C based on the glass transition point
Adjustable temperature to accommodate multiple optically molded lens materials
Can pay Manufacture of optical molded lensesapparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7271483A JP3055443B2 (en) | 1995-10-19 | 1995-10-19 | Method for producing optical molded lens and apparatus for producing optical molded lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7271483A JP3055443B2 (en) | 1995-10-19 | 1995-10-19 | Method for producing optical molded lens and apparatus for producing optical molded lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09109165A JPH09109165A (en) | 1997-04-28 |
JP3055443B2 true JP3055443B2 (en) | 2000-06-26 |
Family
ID=17500681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7271483A Expired - Lifetime JP3055443B2 (en) | 1995-10-19 | 1995-10-19 | Method for producing optical molded lens and apparatus for producing optical molded lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3055443B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7885007B2 (en) | 2007-07-11 | 2011-02-08 | Konica Minolta Opto, Inc. | Optical element and producing method |
JP2013009734A (en) * | 2011-06-28 | 2013-01-17 | Canon Inc | Optical coherence tomography apparatus and method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005234175A (en) * | 2004-02-19 | 2005-09-02 | Konica Minolta Opto Inc | Optical resin lens and method for manufacturing optical resin lens |
JP2005234174A (en) * | 2004-02-19 | 2005-09-02 | Konica Minolta Opto Inc | Optical resin lens and method for manufacturing optical resin lens |
JP4506264B2 (en) * | 2004-05-11 | 2010-07-21 | 株式会社ニコン | Photoresist lens manufacturing method, lens manufacturing method, mold manufacturing method, optical apparatus, and projection exposure apparatus |
US7421310B2 (en) * | 2006-06-12 | 2008-09-02 | Husky Injection Molding Systems Ltd. | Method and apparatus for controlling cooling rates during post-mold cooling of a molded article |
JPWO2009057491A1 (en) * | 2007-11-02 | 2011-03-10 | コニカミノルタオプト株式会社 | Optical element manufacturing method and optical element |
-
1995
- 1995-10-19 JP JP7271483A patent/JP3055443B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7885007B2 (en) | 2007-07-11 | 2011-02-08 | Konica Minolta Opto, Inc. | Optical element and producing method |
JP2013009734A (en) * | 2011-06-28 | 2013-01-17 | Canon Inc | Optical coherence tomography apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JPH09109165A (en) | 1997-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4095772A (en) | Casting apparatus for plastic lenses | |
KR100883456B1 (en) | Plastic glass | |
KR0152386B1 (en) | Method and device for manufacturing optical elements | |
KR20010034148A (en) | Extrusion-compression molding of optical articles | |
JP3055443B2 (en) | Method for producing optical molded lens and apparatus for producing optical molded lens | |
JP2006281765A (en) | Method and apparatus for improving surface accuracy of optical element | |
US4191717A (en) | Casting process for plastic lenses | |
JPH0331124B2 (en) | ||
KR20080037540A (en) | High-pressure injection moulding process for the production of optical components | |
JPH08187793A (en) | Plastic optical member and production thereof | |
JP2013503060A (en) | Injection molding of parts with non-uniform thickness | |
JP2537231B2 (en) | Plastic lens molding method | |
JP3130099B2 (en) | Manufacturing method of plastic molded products | |
JPH09225961A (en) | Manufacture of optical plastic product | |
KR102186832B1 (en) | Method for manufacturing a contact lens with improved fit by surface roughness | |
JP4265866B2 (en) | Plastic optical element manufacturing method, plastic optical element manufacturing apparatus, and plastic optical element | |
JP2004130750A (en) | Manufacturing process of plastic optical element and plastic optical element | |
JP2020104301A (en) | Resin part and manufacturing method thereof | |
JP3296910B2 (en) | Manufacturing method of uneven thickness molded products | |
JPH0552481B2 (en) | ||
JPH03133611A (en) | Manufacture of optical parts | |
EP0226848A2 (en) | Process and apparatus for making moulded blanks of contact lenses with final geometry of their back sides | |
KR100602730B1 (en) | Soft contact lens manufacture system | |
JPH07266391A (en) | Manufacture and manufacturing device of plastic lens | |
JPS6211619A (en) | Process of injection molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080414 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |