JPH09109165A - Manufacture of optically molded lens and its device - Google Patents

Manufacture of optically molded lens and its device

Info

Publication number
JPH09109165A
JPH09109165A JP27148395A JP27148395A JPH09109165A JP H09109165 A JPH09109165 A JP H09109165A JP 27148395 A JP27148395 A JP 27148395A JP 27148395 A JP27148395 A JP 27148395A JP H09109165 A JPH09109165 A JP H09109165A
Authority
JP
Japan
Prior art keywords
mold
annealing
molded lens
temperature
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27148395A
Other languages
Japanese (ja)
Other versions
JP3055443B2 (en
Inventor
Shigeyoshi Sakurai
繁義 桜井
Shinichi Ogawa
真一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP27148395A priority Critical patent/JP3055443B2/en
Publication of JPH09109165A publication Critical patent/JPH09109165A/en
Application granted granted Critical
Publication of JP3055443B2 publication Critical patent/JP3055443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desired focus length simply in a short time and improve productivity by compression molding an optically molded lens material in a mold, cooling the same in the mold, releasing the same outside the mold, cooling the same at the normal temperature and annealing the lens material, which is cooled at the normal temperature, at the specified temperature. SOLUTION: A molding device for an optical lens comprises a mold cavity 50 consisting of a fixed mold 53 and a movable mold, and molding materials 60 for the optical lens are injected into the mold cavity 50. The molding materials 60 are left in the mold cavity 50 and cooled therein, and the cooled molding materials 60 are released and left and cooled at the normal temperature, for, for example, 24 hours. The molding materials 60 cooled at the normal temperature are placed in parallel in a pallet and stored in a constant temperature bath for storing a plurality of pallets, and annealing is carried out in the range of at -25 deg.C--55 deg.C with the glass transition point of the molding materials 60 as a reference (for example, 100 deg.C) for 2 hours. In the annealing, as a focus position is varied, a lens of desired focus length can be manufactured by setting the given temperature and given time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂成形
材料を用いた光学レンズの製造方法、および製造装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical lens manufacturing method and a manufacturing apparatus using a thermoplastic resin molding material.

【0002】[0002]

【従来の技術】特開平5−329863号公報に金型温
度を成形材料のガラス転移点以上とし、金型キャビティ
に樹脂を充填後ゆっくりと除冷する成形方法が開示さ
れ、特開平6−320568号公報に樹脂の射出時の金
型温度を材料樹脂のガラス転移点より低温に設定し、緩
和終了時(除冷開始時)に金型温度を樹脂のガラス転移
点以上の温度に昇温させる熱可塑性樹脂成形材料を用い
た光学レンズ等の製造方法、および製造装置が開示され
ている。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 5-329863 discloses a molding method in which a mold temperature is set to be equal to or higher than a glass transition point of a molding material, and a mold cavity is filled with resin and then slowly cooled. In the publication, the mold temperature at the time of resin injection is set lower than the glass transition point of the material resin, and at the end of relaxation (at the start of cooling), the mold temperature is raised to a temperature above the glass transition point of the resin. A method of manufacturing an optical lens and the like and a manufacturing apparatus using a thermoplastic resin molding material are disclosed.

【0003】[0003]

【発明が解決しようとする課題】従来より行われている
熱可塑性樹脂成形材料を用いた光学レンズの射出成形工
程を図11に示す成形フローにより説明する。ステップ
ST1で金型に合成材料を供給し、ステップST2で成
形する。所定時間の後ステップST3で成形品を取りだ
し、外観をチェックする。外観は目視でポイド、異物、
ヒケ、フローマーク、偏光盤による内部歪みのチェック
等を行う。チェックで歪みが検出された場合はステップ
ST7で成形の条件(射出条件、金型温度、型締め条
件、センサー、圧縮力、成形サイクル等)を確認してス
テップST2に戻る。外観チェックがOKとなった製品
は、ステップST5に進み、成形から24時間後にプロ
ファイル、軸スジ、内部歪み、透過率等の測定を行いス
テップST6で評価して終了する。このようにして形成
されたプラスチック光学レンズ100における光線の屈
折は、図12に示すように、光透過方向にレンズ100
の断面をとり、表面をスキン層105、内面を内面部分
103とすると、内面部分103の光は、屈折率n2と
して複屈折を起こさないが、レンズ100の表面部分で
あるスキン層105に入射する光の屈折率n1、出射す
る光の屈折率n3は複屈折を起こし光を散乱させてい
た。
A conventional injection molding process of an optical lens using a thermoplastic resin molding material will be described with reference to a molding flow shown in FIG. The synthetic material is supplied to the mold in step ST1, and the molding is performed in step ST2. After a predetermined time, the molded product is taken out and the appearance is checked in step ST3. The appearance can be visually inspected for voids, foreign matter,
Checks for internal distortions such as sink marks, flow marks, and polarizing plates. If the strain is detected in the check, the molding conditions (injection condition, mold temperature, mold clamping condition, sensor, compression force, molding cycle, etc.) are confirmed in step ST7, and the process returns to step ST2. For the products whose appearance check is OK, the process proceeds to step ST5, and 24 hours after the molding, the profile, the axial stripes, the internal strain, the transmittance, and the like are measured, and the evaluation is completed in step ST6. Refraction of light rays in the plastic optical lens 100 formed in this way is as shown in FIG.
Assuming that the surface is the skin layer 105 and the inner surface is the inner surface portion 103, the light of the inner surface portion 103 does not cause birefringence with the refractive index n2, but is incident on the skin layer 105 which is the surface portion of the lens 100. The refractive index n1 of light and the refractive index n3 of emitted light caused birefringence to scatter light.

【0004】そこで、プラスチック光学レンズのスキン
層の複屈折を防止するため、金型温度を高くしたり冷却
時間を長くし、徐々に冷却させ、この影響を押さえてい
た。例えば、上記の従来技術における光学レンズの製造
方法におけるステップST2の成形時の成形品の温度
と、ステップST3の取りだし時における成形品の温度
を経過時間によってみる(図13参照)。このグラフは
冷却時間に対する成形品の温度の変化を示している。す
なわち、除冷前の金型温度を成形材料のガラス転移点以
上としている金型内の成形品は充填後、30分程度ゆっ
くりと除冷して成形品の温度を常温としてから成形品を
取りだしている。
Therefore, in order to prevent the birefringence of the skin layer of the plastic optical lens, the mold temperature is raised or the cooling time is lengthened to gradually cool the mold to suppress this influence. For example, the temperature of the molded product at the time of molding in step ST2 and the temperature of the molded product at the time of taking out in step ST3 in the above-described conventional method for manufacturing an optical lens are examined by the elapsed time (see FIG. 13). This graph shows the change in the temperature of the molded product with respect to the cooling time. That is, the molded product in the mold whose mold temperature before cooling is not less than the glass transition temperature of the molding material is slowly cooled for about 30 minutes after filling, and the molded product is taken out after the temperature is room temperature. ing.

【0005】このように従来の方法は、成形品が常温以
下に冷却した後取り出すことによりキャビティ内に射出
充填された樹脂の残留応力を極少化し、任意の焦点距離
を得るように構成したものである。しかし、この方法
は、金型内で圧縮成形時の影響が表面スキン層に残留す
る。このスキン層に残留する応力を金型内に置いて減少
させているが、所望の焦点距離を得るまでには時間がか
かり、金型の使用効率が悪く生産性が低かった。また、
金型ごと後処理を行おうとすると、金型を多数準備する
必要があり、製造装置として大型となってしまう不都合
があった。
As described above, according to the conventional method, the residual stress of the resin injected and filled in the cavity is minimized by taking out the molded product after cooling it to a room temperature or below, so as to obtain an arbitrary focal length. is there. However, in this method, the effect of compression molding remains in the surface skin layer in the mold. Although the stress remaining in the skin layer is reduced by placing it in the mold, it takes time to obtain a desired focal length, resulting in poor mold use efficiency and low productivity. Also,
If post-processing is performed for each mold, it is necessary to prepare a large number of molds, resulting in a large manufacturing apparatus.

【0006】そこで、本発明は短時間に所望の焦点距離
が簡単に得られる生産性の高い光学レンズの製造方法、
および小型化した製造装置を提供するものである。
Therefore, the present invention provides a highly productive optical lens manufacturing method capable of easily obtaining a desired focal length in a short time,
And a miniaturized manufacturing apparatus is provided.

【0007】[0007]

【課題を解決するための手段】本発明の光学成形レンズ
材料の製造方法は、圧縮成形した光学成形レンズ材料を
金型内で2から4分間冷却して取りだし、常温で冷却し
た後、アニールする(アニール時間とアニール温度を調
整)構成を具備する。
According to the method for producing an optical molded lens material of the present invention, the compression molded optical molded lens material is taken out by cooling in a mold for 2 to 4 minutes, cooled at room temperature, and then annealed. (Adjust annealing time and annealing temperature).

【0008】本発明の光学成形レンズ材料の製造装置
は、圧縮成形手段により圧縮成形された光学成形レンズ
材料を金型内で冷却する冷却手段と、金型外に取りだし
た光学成形レンズ材料を常温で冷却する常温冷却手段
と、常温冷却された光学成形レンズ材料をアニールする
アニール手段を具備する。
The apparatus for producing an optical molded lens material of the present invention comprises a cooling means for cooling the optical molded lens material compression-molded by the compression molding means in the mold and an optical molded lens material taken out of the mold at room temperature. It is equipped with a room temperature cooling means for cooling with, and an annealing means for annealing the room temperature cooled optically molded lens material.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。先ず、本発明の製造方法および製造装置を図面を
参照して工程順に詳述する。図1は光学成形レンズの形
成工程における順序と製品温度を示し、図3は成形装置
の金型部分を示している。
Embodiments of the present invention will be described below. First, the manufacturing method and manufacturing apparatus of the present invention will be described in detail in the order of steps with reference to the drawings. FIG. 1 shows the order and product temperature in the forming process of the optical molded lens, and FIG. 3 shows the mold part of the molding apparatus.

【0010】圧縮成形工程(図3参照) 成形装置は固定金型53と移動金型55とよりなる金型
キャビティ50を備え、金型キャビテイ50内に成形材
料を射出する。成形材料としてはガラス転移点がほぼ1
40℃の熱可塑性樹脂である非晶質ポリオレフイン系の
樹脂を使用する。成形装置の射出応力は1500〜26
00Kg/cm3であって、金型温度は280℃から300℃
となっている。金型50の矢印X方向から流入した成形
材料は金型キャビテイ50内に充填される。このときの
成形品60の温度は約280℃となっている。
Compression molding step (see FIG. 3) The molding apparatus has a mold cavity 50 composed of a fixed mold 53 and a movable mold 55, and a molding material is injected into the mold cavity 50. As a molding material, glass transition point is almost 1
An amorphous polyolefin-based resin which is a thermoplastic resin at 40 ° C. is used. Injection stress of molding equipment is 1500-26
00Kg / cm 3 and mold temperature is 280 ℃ to 300 ℃
It has become. The molding material that has flowed in from the direction of the arrow X of the mold 50 is filled in the mold cavity 50. At this time, the temperature of the molded product 60 is about 280 ° C.

【0011】金型内冷却工程 成形材料は金型50内に放置され、冷却される。成形材
料は金型キャビテイ50壁面にそった部分がより早く冷
却され、固化する。この固化した表面層をレンズ表面層
をなすスキン層65という。スキン層65は約0.5mm
程度の層厚となる。冷却時間内に成形時280℃だった
成形材料は120℃まで温度降下する。この冷却時間は
ほぼ2分から4分(この実施例では3分)程度とする。
In-Mold Cooling Step The molding material is left in the mold 50 and cooled. A part of the molding material along the wall surface of the mold cavity 50 is cooled and solidified more quickly. This solidified surface layer is referred to as a skin layer 65 forming a lens surface layer. Skin layer 65 is about 0.5 mm
The layer thickness is about the same. Within the cooling time, the temperature of the molding material, which was 280 ° C. at the time of molding, drops to 120 ° C. The cooling time is about 2 to 4 minutes (3 minutes in this embodiment).

【0012】常温冷却工程(図3,4参照) 金型から成形品(光学成形レンズ材料)600を取りだ
し、24時間常温で放置冷却する。成形品は常温とな
る。取り出された光学成形レンズ材料600は長さ寸法
L:約102mm、透過方向の厚さS1:約22.6mm、
板厚S2:約10mmである。ここで、取りだした光学成
形レンズ材料の厚さ方向への光の屈折率を試験片で実験
した。この実験結果を図4に示す。光学成形レンズ材料
の試験片は長さ寸法209mm、厚さ3mm、幅15mmの小
片を用い、測定位置を長さ分率(長さ分率=ゲートから
の距離/全長)の異なる4点とした。長さ分率0.12
の測定点を黒丸印、長さ分率0.35の測定点を×印、
長さ分率0.62の測定点を〇印、長さ分率0.87の
測定点を△印で表している。このグラフからもわかるよ
うに、中央部分である内面部分は屈折率が揃っている
が、移動金型、固定金型に当接していたスキン層の部分
(約0.5mm以内)は屈折率が不揃いであって、複屈折
を発生させている。
Room Temperature Cooling Step (Refer to FIGS. 3 and 4) A molded product (optically molded lens material) 600 is taken out from the mold and left to cool at room temperature for 24 hours. The molded product is at room temperature. The taken out optical molded lens material 600 has a length dimension L of about 102 mm and a thickness S 1 in the transmission direction of about 22.6 mm.
Plate thickness S 2 : It is about 10 mm. Here, the refractive index of light in the thickness direction of the taken out optical molded lens material was tested with a test piece. FIG. 4 shows the results of this experiment. The test piece of the optical molded lens material was a small piece having a length dimension of 209 mm, a thickness of 3 mm and a width of 15 mm, and the measurement positions were four points with different length fractions (length fraction = distance from gate / total length). . Length fraction 0.12
The black circles are the measurement points of, the measurement points of the length fraction 0.35 are the X marks,
A measuring point with a length fraction of 0.62 is represented by a circle, and a measuring point with a length fraction of 0.87 is represented by a triangle. As can be seen from this graph, the inner surface part, which is the central part, has a uniform refractive index, but the skin layer part (within about 0.5 mm) that was in contact with the moving mold and the fixed mold has a refractive index. They are irregular and cause birefringence.

【0013】アニール工程 常温冷却された光学成形レンズ材料600をアニールす
る。光学成形レンズ材料600は、図6に示すように、
パレット70内に並列載置される。そして、複数のパレ
ット70が収納可能な恒温槽80内に収納してアニール
を行う。恒温槽80は表示部85により温度、時間、湿
度等の条件を設定する。例えば、この実施の形態による
アニール温度は100℃、アニール時間は2時間とす
る。
Annealing Step The optical molded lens material 600 cooled at room temperature is annealed. The optically molded lens material 600, as shown in FIG.
They are placed side by side in the pallet 70. Then, the pallets 70 are housed in a constant temperature bath 80 capable of being housed and annealed. The thermostat 80 sets conditions such as temperature, time, and humidity on the display unit 85. For example, the annealing temperature according to this embodiment is 100 ° C., and the annealing time is 2 hours.

【0014】ここで、アニールの温度、およびアニール
時間による光学成形レンズ材料の焦点位置の変化を実験
した。 (1) アニール時間を変えた光学成形レンズ材料のア
ニール温度に対する焦点位置の変化(図8参照) アニール時間を15時間とした試料A(白四角で示す) アニール時間を4時間とした試料B(点描四角で示す) アニール時間を2時間とした試料C(黒四角で示す) アニール時間を長くした試料Aはアニール温度が95℃
以上で焦点位置の移動が10mm前後となるが、アニール
時間が2時間から4時間と短い試料B、Cはアニール温
度が85℃〜95℃では焦点位置の移動がほとんどな
い。アニール温度を105℃以上とすると、試料A,
B,Cともに焦点距離の移動が大きくなり、アニール温
度を115℃とすると、各試料とも焦点がほぼ10mm移
動する。
Here, the change in the focal position of the optically molded lens material depending on the annealing temperature and the annealing time was tested. (1) Change in focal position with respect to annealing temperature of optically molded lens material with different annealing time (see FIG. 8) Sample A with annealing time of 15 hours (indicated by white squares) Sample B with annealing time of 4 hours ( Sample C with an annealing time of 2 hours (indicated by a black square) Sample A with a long annealing time has an annealing temperature of 95 ° C.
Although the focus position moves about 10 mm as described above, the focus positions of Samples B and C, which have a short annealing time of 2 hours to 4 hours, hardly move when the annealing temperature is 85 ° C to 95 ° C. If the annealing temperature is 105 ° C. or higher, sample A,
In both B and C, the movement of the focal length is large, and when the annealing temperature is 115 ° C., the focal point of each sample is moved by about 10 mm.

【0015】(2) アニール温度を変えた光学成形レ
ンズ材料のアニール時間に対する焦点位置の変化(図9
参照) アニール温度を115℃とした試料A(白丸で示す) アニール温度を105℃とした試料B(白四角で示す) アニール温度を95℃とした試料C(三角で示す) アニール温度を85℃とした試料D(×印で示す) アニール温度を高くした試料A、Bはアニール時間にか
かわらず焦点位置が10mm前後移動する。アニール温度
が95℃、85℃の試料C、Dはアニール時間4時間ま
では焦点位置の移動がほとんどないが、アニール温度が
95℃の試料Cはアニール時間が4時間を超えると移動
を始め、アニール時間15時間には焦点が10mm前後ま
で移動する。すなわち、アニール温度を95℃以上とす
ると各試料とも焦点位置はアニール時間にはあまり影響
されなく移動することが判明した。
(2) Changes in the focal position with respect to the annealing time of the optical molded lens material with different annealing temperatures (see FIG. 9).
Sample A with annealing temperature of 115 ° C. (shown by white circle) Sample B with annealing temperature of 105 ° C. (shown with white square) Sample C with annealing temperature of 95 ° C. (shown by triangle) Annealing temperature of 85 ° C. Sample D (indicated by x) Samples A and B whose annealing temperature was increased move the focal position by about 10 mm regardless of the annealing time. Samples C and D whose annealing temperatures are 95 ° C. and 85 ° C. have almost no movement of the focal position until the annealing time of 4 hours, but Sample C whose annealing temperature is 95 ° C. starts to move when the annealing time exceeds 4 hours, The focus moves to about 10 mm in the annealing time of 15 hours. That is, it was found that when the annealing temperature was 95 ° C. or higher, the focal position of each sample moved without being significantly affected by the annealing time.

【0016】以上の実験から、アニール温度は95℃以
上、アニール時間は4時間以上が最も焦点位置の変動が
大きくなる。しかし、アニール時間が2時間であって
も、アニール温度を95℃以上とすることにより、焦点
位置の移動が顕著となり、アニール温度の上昇とともに
10mm近辺まで焦点位置の移動が見られる。この実験に
より、アニール温度95℃以上としたとき、2時間以上
アニールを行うことにより、光学成形レンズ材料の焦点
位置をほぼ10mm程度移動させることができることが実
証された。すなわち、焦点距離を5mm移動させたいとき
は、アニール温度を102℃〜104℃で2時間以上と
設定することにより所望する焦点位置を有するレンズが
得られる。
From the above experiment, the fluctuation of the focal position becomes the largest when the annealing temperature is 95 ° C. or higher and the annealing time is 4 hours or longer. However, even if the annealing time is 2 hours, the movement of the focal position becomes remarkable by setting the annealing temperature to 95 ° C. or higher, and the movement of the focal position can be seen up to about 10 mm as the annealing temperature rises. This experiment demonstrated that when the annealing temperature is 95 ° C. or higher, the focal position of the optical molded lens material can be moved by about 10 mm by performing the annealing for 2 hours or longer. That is, when it is desired to move the focal length by 5 mm, the lens having the desired focal position can be obtained by setting the annealing temperature at 102 ° C. to 104 ° C. for 2 hours or more.

【0017】このように焦点の移動は、光学成形レンズ
材料を所定の温度で、約2時間以上アニールすることに
より、圧縮成形、および固化により内部に残留している
ストレスが除去されることによるものと予測される。こ
の結果、図10に示すように、スキン層の複屈折により
焦点距離が長さL1であった成形品600は、ストレス
がなくなりスキン層が複屈折しなくなることにより、焦
点距離を長さL2、(L1−L2≧10)まで短く調整さ
せることができる。なお、ここで、非晶質ポリオレフイ
ン系の樹脂による光学成形レンズ材料のガラス転移点は
130℃〜150℃であるので、アニール温度はガラス
転移点のー25℃から−55℃の範囲に設定することに
より焦点位置をほぼ10mmまで移動させることができ
る。
As described above, the movement of the focus is caused by removing the stress remaining inside by compression molding and solidification by annealing the optical molded lens material at a predetermined temperature for about 2 hours or more. Is predicted. As a result, as shown in FIG. 10, the molded product 600 having the focal length of L 1 due to the birefringence of the skin layer has the focal length of the length L 1 due to the absence of stress and the birefringence of the skin layer. 2 , it can be adjusted to as short as (L 1 −L 2 ≧ 10). Since the glass transition point of the optically molded lens material made of the amorphous polyolefin resin is 130 ° C. to 150 ° C., the annealing temperature is set in the range of −25 ° C. to −55 ° C. of the glass transition point. As a result, the focus position can be moved up to about 10 mm.

【0018】各種の光学成形レンズ材料のアニール温度
と焦点距離の変動の関係を図2に示す。このグラフによ
ると、光学成形レンズ材料はガラス転移点(Tg)の−
55℃(85℃)からガラス転移点(Tg)の−25℃
(115℃)の範囲で10mm移動する。焦点の可変可能
領域はこのようにアニール温度85℃〜115℃の範囲
となっているが、確実に所望する焦点距離を得るには、
可変幅が大きいアニール温度95℃〜105℃の範囲と
することが望ましい。また、アニールする温度は各材料
のガラス転移点より低い温度であって、アニール時間も
調整されるので、成形品の透過率、曲率などの形状、内
部歪等の発生の危惧はない。
FIG. 2 shows the relationship between the annealing temperature and the variation of the focal length of various optical molded lens materials. According to this graph, the optically molded lens material has a glass transition point (Tg) of −
55 ° C (85 ° C) to -25 ° C of glass transition point (Tg)
Move 10 mm in the range of (115 ° C). The variable range of the focus is in the range of the annealing temperature of 85 ° C. to 115 ° C. as described above, but in order to surely obtain the desired focal length,
It is desirable to set the annealing temperature, which has a large variable width, in the range of 95 ° C. to 105 ° C. Further, the annealing temperature is lower than the glass transition point of each material, and the annealing time is also adjusted. Therefore, there is no fear that the transmittance of the molded product, the shape such as the curvature, the internal strain and the like will occur.

【0019】以上のように、本発明は圧縮成形した後短
時間で成形レンズ材料を取りだし、光を散乱させるスキ
ン層を有した状態の成形品を、アニール温度とアニール
時間を変更することにより焦点距離を可変させ、所望す
る焦点距離を有する光学成形レンズ得ることができる。
また、成形時間を2分〜4分と短縮し、取りだした後に
アニールにより焦点距離を可変させるので、一度に多量
の成形品の後処理を実行することにより焦点距離を可変
させた所望するレンズの大量生産が可能となる。また、
アニールにより、成形材料の内面部分が持つ屈折率n2
も残留応力が緩和され光学特性の優れたレンズとなる。
As described above, according to the present invention, the molded lens material is taken out in a short time after compression molding, and the molded product having the skin layer for scattering light is focused by changing the annealing temperature and the annealing time. By changing the distance, it is possible to obtain an optical molded lens having a desired focal length.
Further, since the molding time is shortened to 2 to 4 minutes and the focal length is changed by annealing after taking out, a desired lens whose focal length is changed by executing post-processing of a large amount of molded products at one time is used. Mass production is possible. Also,
The refractive index n2 of the inner surface portion of the molding material due to annealing
Also, the residual stress is relaxed, and the lens has excellent optical characteristics.

【0020】[0020]

【発明の効果】本発明の光学成形レンズの製造方法は、
レンズ内部の屈折率が不均一のままアニールすることに
より所望の焦点距離を短時間で得ることができる。さら
に、後処理でまとめて焦点距離を可変することにより、
所望の焦点距離を有するレンズを大量生産することが可
能となる。また、この製造方法は大量の成形品のレンズ
内部に発生する残留応力を緩和し複屈折を極少化するこ
とができ、アニール温度の調整で任意の焦点距離を有す
るレンズの量産が達成される。
The method for producing an optical molded lens of the present invention comprises:
A desired focal length can be obtained in a short time by annealing while the refractive index inside the lens is not uniform. Furthermore, by collectively changing the focal length in post-processing,
It is possible to mass-produce a lens having a desired focal length. Further, this manufacturing method can alleviate the residual stress generated inside a large number of molded lenses and minimize birefringence, and the mass production of lenses having an arbitrary focal length can be achieved by adjusting the annealing temperature.

【0021】本発明の光学成形レンズの製造装置は、短
時間に所望の焦点距離を有するレンズが製造でき、かつ
金型の使用効率がよく、製造コストの低減化が図れる。
さらに焦点距離を後処理で可変できることにより、金型
の調整なしに所望の光学特性を有するレンズを大量に生
産することができる。
The optical molded lens manufacturing apparatus of the present invention can manufacture a lens having a desired focal length in a short period of time, has good use efficiency of a mold, and can reduce manufacturing cost.
Furthermore, since the focal length can be changed by post-processing, it is possible to mass-produce lenses having desired optical characteristics without adjusting the mold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 成形品の温度と製造工程の説明図。FIG. 1 is an explanatory view of a temperature of a molded product and a manufacturing process.

【図2】 アニール温度と焦点距離の関係を示すグラ
フ。
FIG. 2 is a graph showing the relationship between annealing temperature and focal length.

【図3】 金型の平面図。FIG. 3 is a plan view of a mold.

【図4】 成形品の位置による屈折率を表わすグラフ。FIG. 4 is a graph showing the refractive index depending on the position of a molded product.

【図5】 成形品の正面と側面を示す図。FIG. 5 is a view showing a front surface and a side surface of a molded product.

【図6】 パレットの斜視図。FIG. 6 is a perspective view of a pallet.

【図7】 恒温槽の斜視図。FIG. 7 is a perspective view of a constant temperature bath.

【図8】 アニール温度と焦点位置の関係を示すグラ
フ。
FIG. 8 is a graph showing the relationship between annealing temperature and focus position.

【図9】 アニール時間と焦点位置の関係を示すグラ
フ。
FIG. 9 is a graph showing the relationship between annealing time and focus position.

【図10】 レンズの焦点距離の移動を示す説明図。FIG. 10 is an explanatory diagram showing movement of a focal length of a lens.

【図11】 従来の成形品の製造フローチャート。FIG. 11 is a flowchart for manufacturing a conventional molded product.

【図12】 レンズの光の屈折率の説明図。FIG. 12 is an explanatory diagram of a refractive index of light of a lens.

【図13】 従来の成形方法による冷却時間と成形品温
度の関係を示すグラフ。
FIG. 13 is a graph showing the relationship between the cooling time and the temperature of the molded product according to the conventional molding method.

【符号の説明】[Explanation of symbols]

50 金型キャビテイ、 53 移動金型 55 固定
金型、 60 成形材料、 65 スキン層、 70
パレット、 80 恒温槽、 85 表示部、600
成形品。
50 Mold Cavity, 53 Moving Mold 55 Fixed Mold, 60 Molding Material, 65 Skin Layer, 70
Pallet, 80 thermostat, 85 display, 600
Molding.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光学成形レンズ材料を金型で圧縮成形す
る工程と、圧縮成形された前記光学成形レンズ材料を金
型内で冷却する工程と、金型内で冷却された前記光学成
形レンズ材料を金型外に取りだして、常温で冷却する工
程と、常温冷却された前記光学成形レンズ材料をアニー
ルする工程と、を備えた光学成形レンズの製造方法。
1. A step of compression-molding an optical molded lens material in a mold, a step of cooling the compression-molded optical molded lens material in a mold, and the optical molded lens material cooled in the mold. A method for producing an optical molded lens, comprising: a step of removing the product from the mold and cooling at room temperature; and a step of annealing the optical molded lens material cooled at room temperature.
【請求項2】 前記光学成形レンズ材料をアニールする
工程は、アニールする時間と温度により調整されている
請求項1記載の光学成形レンズの製造方法。
2. The method of manufacturing an optical molded lens according to claim 1, wherein the step of annealing the optical molded lens material is adjusted by annealing time and temperature.
【請求項3】 前記アニールする工程において、アニー
ルする温度は光学成形レンズ材料のガラス転移点を基準
として−25℃〜−55℃の範囲としてなる請求項1記
載の光学成形レンズの製造方法。
3. The method for producing an optical molded lens according to claim 1, wherein, in the annealing step, the annealing temperature is in the range of -25 ° C. to −55 ° C. based on the glass transition point of the optical molded lens material.
【請求項4】 前記アニールする工程において、アニー
ルする時間は約2時間から15時間の範囲としてなる請
求項1記載の光学成形レンズの製造方法。
4. The method for producing an optical molded lens according to claim 1, wherein in the annealing step, the annealing time is in the range of about 2 hours to 15 hours.
【請求項5】 前記光学成形レンズ材料を金型内で冷却
する工程において、冷却時間を約2分から4分としてな
る請求項1記載の光学成形レンズの製造方法。
5. The method for producing an optically molded lens according to claim 1, wherein in the step of cooling the material for the optically molded lens in a mold, the cooling time is about 2 minutes to 4 minutes.
【請求項6】 光学成形レンズ材料は、非晶質ポリオレ
フィン系の樹脂を用いてなる請求項1記載の光学成形レ
ンズの製造方法。
6. The method for producing an optically molded lens according to claim 1, wherein the optically molded lens material is an amorphous polyolefin resin.
【請求項7】 光学成形レンズ材料を金型で圧縮成形す
る圧縮成形手段と、圧縮成形された前記光学成形レンズ
材料を金型内で冷却する冷却手段と、金型内で冷却され
た前記光学成形レンズ材料を金型外に取りだして、常温
で冷却する常温冷却手段と、常温冷却された前記光学成
形レンズ材料をアニールするアニール手段と、を備えて
なる光学成形レンズの製造装置。
7. A compression molding means for compression-molding an optical molding lens material in a mold, a cooling means for cooling the compression-molded optical molding lens material in a mold, and the optical cooled in the mold. An apparatus for producing an optical molded lens, comprising: a room temperature cooling means for taking out the molded lens material from the mold and cooling it at room temperature; and an annealing means for annealing the room temperature cooled optical molded lens material.
JP27148395A 1995-10-19 1995-10-19 Method for producing optical molded lens and apparatus for producing optical molded lens Expired - Lifetime JP3055443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27148395A JP3055443B2 (en) 1995-10-19 1995-10-19 Method for producing optical molded lens and apparatus for producing optical molded lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27148395A JP3055443B2 (en) 1995-10-19 1995-10-19 Method for producing optical molded lens and apparatus for producing optical molded lens

Publications (2)

Publication Number Publication Date
JPH09109165A true JPH09109165A (en) 1997-04-28
JP3055443B2 JP3055443B2 (en) 2000-06-26

Family

ID=17500681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27148395A Expired - Lifetime JP3055443B2 (en) 1995-10-19 1995-10-19 Method for producing optical molded lens and apparatus for producing optical molded lens

Country Status (1)

Country Link
JP (1) JP3055443B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234175A (en) * 2004-02-19 2005-09-02 Konica Minolta Opto Inc Optical resin lens and method for manufacturing optical resin lens
JP2005234174A (en) * 2004-02-19 2005-09-02 Konica Minolta Opto Inc Optical resin lens and method for manufacturing optical resin lens
JP2005321710A (en) * 2004-05-11 2005-11-17 Nikon Corp Manufacturing method of photoresist lens, manufacturing method of lens, manufacturing method of die, optical device and projection exposure system
JP2009020263A (en) * 2007-07-11 2009-01-29 Konica Minolta Opto Inc Optical element and method for producing the same
WO2009057491A1 (en) * 2007-11-02 2009-05-07 Konica Minolta Opto, Inc. Optical element manufacturing method and optical element
JP2009539651A (en) * 2006-06-12 2009-11-19 ハスキー インジェクション モールディング システムズ リミテッド Method and apparatus for cooling molded article after molding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930620B2 (en) * 2011-06-28 2016-06-08 キヤノン株式会社 Optical coherence tomography apparatus and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234175A (en) * 2004-02-19 2005-09-02 Konica Minolta Opto Inc Optical resin lens and method for manufacturing optical resin lens
JP2005234174A (en) * 2004-02-19 2005-09-02 Konica Minolta Opto Inc Optical resin lens and method for manufacturing optical resin lens
JP2005321710A (en) * 2004-05-11 2005-11-17 Nikon Corp Manufacturing method of photoresist lens, manufacturing method of lens, manufacturing method of die, optical device and projection exposure system
JP4506264B2 (en) * 2004-05-11 2010-07-21 株式会社ニコン Photoresist lens manufacturing method, lens manufacturing method, mold manufacturing method, optical apparatus, and projection exposure apparatus
JP2009539651A (en) * 2006-06-12 2009-11-19 ハスキー インジェクション モールディング システムズ リミテッド Method and apparatus for cooling molded article after molding
JP4944952B2 (en) * 2006-06-12 2012-06-06 ハスキー インジェクション モールディング システムズ リミテッド Method and apparatus for cooling molded article after molding
JP2009020263A (en) * 2007-07-11 2009-01-29 Konica Minolta Opto Inc Optical element and method for producing the same
US7885007B2 (en) 2007-07-11 2011-02-08 Konica Minolta Opto, Inc. Optical element and producing method
WO2009057491A1 (en) * 2007-11-02 2009-05-07 Konica Minolta Opto, Inc. Optical element manufacturing method and optical element

Also Published As

Publication number Publication date
JP3055443B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US4095772A (en) Casting apparatus for plastic lenses
WO1999054112A1 (en) Injection compression molding method for optically formed product
US3485556A (en) Multifocal plastic ophthalmic lens
JPH09109165A (en) Manufacture of optically molded lens and its device
JP2006281765A (en) Method and apparatus for improving surface accuracy of optical element
US5067800A (en) Composite optical article and method of manufacture thereof
US20080152886A1 (en) High-pressure injection moulding process for the production of optical components
JP5864873B2 (en) Plastic molding product molding method, plastic molding system, optical element by plastic molding system
JP2001047524A (en) Manufacture of plastic optical element, manufacturing device therefor and plastic optical element manufactured using manufacturing method for plastic optical element
JPS6097301A (en) Resin optical element and method for producing said element
EP2541306A1 (en) Aromatic polycarbonate polarising lens
JP2013503060A (en) Injection molding of parts with non-uniform thickness
JPH0331124B2 (en)
US7525742B2 (en) Optical element, optical element molding die, and optical element manufacturing method
JPH09225961A (en) Manufacture of optical plastic product
JP6965871B2 (en) Resin parts and their manufacturing methods
JP2000006216A (en) Injection and compression molding method of optical molding
Zhang et al. Characterization of process and machine dynamics on the precision replication of microlens arrays using microinjection moulding
JPH05177725A (en) Manufacture of plastic molded product
JP2003001689A (en) Method for manufacturing resin molded product and optical element manufactured by this manufacturing method
JPH0552481B2 (en)
JP7074047B2 (en) Manufacturing method of resin parts
JP2859696B2 (en) Method and apparatus for manufacturing composite optical element
JPH11138610A (en) Method and apparatus for forecasting shape of finished molding
JPS62297119A (en) Molding tool of contact lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 14

EXPY Cancellation because of completion of term