JP2000006216A - Injection and compression molding method of optical molding - Google Patents

Injection and compression molding method of optical molding

Info

Publication number
JP2000006216A
JP2000006216A JP10964099A JP10964099A JP2000006216A JP 2000006216 A JP2000006216 A JP 2000006216A JP 10964099 A JP10964099 A JP 10964099A JP 10964099 A JP10964099 A JP 10964099A JP 2000006216 A JP2000006216 A JP 2000006216A
Authority
JP
Japan
Prior art keywords
compression
pressure
injection
cavity
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10964099A
Other languages
Japanese (ja)
Other versions
JP3650540B2 (en
Inventor
Masahito Goto
聖人 後藤
Hiromi Ichioka
博己 市岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP10964099A priority Critical patent/JP3650540B2/en
Publication of JP2000006216A publication Critical patent/JP2000006216A/en
Application granted granted Critical
Publication of JP3650540B2 publication Critical patent/JP3650540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • B29C2045/567Expelling resin through the gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an injection and compression molding method, with which an excellent profile irregularity and favorable optical characteristics can be obtained. SOLUTION: In the injection and compression molding method of a thermoplastic resin optical molding, firstly, the volume of a cavity 3 is enlarged to be larger than that of an object optical molding. Secondly, a molten thermoplastic resin is injected through an injection cylinder in the enlarged cavity 3. Thirdly, after that, the enlarged cavity is compressed so as to obtain the regular thickness of the molding or a thickness thinner by 200 μm than its regular thickness. Fourthly, the resin pressure in the injection cylinder and the compression pressure in the cavity 3 are adjusted or changed so as not to exceed the width of change from the regular thickness of the molding over 100 μm in order to finally realize the regular thickness of the molding. Fifthly, the molten thermoplastic resin is held until an object molding is formed in the cavity. Lastly, the obtained molding is unloaded from the cavity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は射出成形方法におい
て光学成形品を得る場合に適用する。更に詳しくはポリ
カーボネート樹脂製の眼鏡レンズ等の熱可塑性樹脂製レ
ンズを射出圧縮成形方法で製造する方法において、面精
度に優れ光学特性のよい射出圧縮成形方法に関する。
The present invention is applied to a case where an optical molded product is obtained by an injection molding method. More specifically, the present invention relates to a method for producing a thermoplastic resin lens such as a spectacle lens made of a polycarbonate resin by an injection compression molding method, which relates to an injection compression molding method having excellent surface accuracy and excellent optical characteristics.

【0002】[0002]

【従来の技術】近年プラスチックレンズの需要が大きく
進展している。プラスチックレンズには注型熱硬化型の
アリル樹脂や射出成形法によって製造されるポリカーボ
ネート樹脂、ポリアクリル樹脂等の透明熱可塑性樹脂レ
ンズに大別される。
2. Description of the Related Art In recent years, the demand for plastic lenses has greatly increased. Plastic lenses are roughly classified into cast thermosetting allyl resins and transparent thermoplastic resin lenses such as polycarbonate resins and polyacryl resins manufactured by injection molding.

【0003】特に最近は射出成形方法によって製造する
ことができ、高屈折率で、軽くて、紫外線吸収性能が良
く、耐衝撃性のある安全性の高い眼鏡レンズとしてポリ
カーボネート樹脂レンズが注目され数多く使用されるよ
うになってきた。
[0003] Recently, polycarbonate resin lenses have attracted attention and have been widely used as spectacle lenses which can be manufactured by an injection molding method, have a high refractive index, are light, have good ultraviolet absorbing performance, and have high impact resistance and high safety. It has come to be.

【0004】射出成形方法によって眼鏡レンズを製造す
る方法は数多く提案されている。公知の方法によれば射
出成形方法によってセミフィニッシュレンズを成形し、
その後切削研磨によって目的の光学的な形状に仕上げる
方法、さらには単一の射出成形方法でフィニッシュレン
ズとして光学的な形状を有するレンズを得る方法があ
る。特に後者の場合はレンズ形状による基本的な問題と
して凹レンズを射出成形する場合、キャビティ内におい
てはレンズの外周部に相当する部分が厚いのでゲートか
ら流入した溶融樹脂の流れは外周部が早く、中心部は薄
いので遅く流れる。
[0004] A number of methods for producing spectacle lenses by injection molding have been proposed. According to a known method, a semi-finished lens is molded by an injection molding method,
Thereafter, there is a method of finishing to a target optical shape by cutting and polishing, and a method of obtaining a lens having an optical shape as a finish lens by a single injection molding method. Especially in the latter case, when a concave lens is injection-molded as a fundamental problem due to the lens shape, since the portion corresponding to the outer peripheral portion of the lens is thick in the cavity, the flow of molten resin flowing from the gate is faster at the outer peripheral portion, and The part flows thinly because it is thin.

【0005】射出成形でフィニッシュレンズを成形した
場合、冷却固化による樹脂の収縮により光学歪(ヒケ)
や面精度の低下を引き起こしやすい。この現象は肉厚差
の大きな成形品で収縮差が大きいレンズほど顕著であ
る。冷却固化による収縮差を解消する方法として代表的
な方法は、特公平6−71755号公報に記載された様
な予め収縮量に相当する樹脂量を充填しておいて多段圧
縮方法する方法がある。しかし、このような方法では面
精度が十分でなく光学成形品のバラツキが起き易い。こ
こで述べている面精度とは、面の曲率および平面度等が
設計されている規格範囲内に収まるがどうかのことを意
味する。
When a finish lens is molded by injection molding, optical distortion (sinking) is caused by resin shrinkage due to cooling and solidification.
Or surface accuracy is likely to be reduced. This phenomenon is more remarkable in a molded product having a large thickness difference and a lens having a large difference in shrinkage. As a typical method for resolving the difference in shrinkage due to cooling and solidification, there is a multi-stage compression method in which a resin amount corresponding to the amount of shrinkage is filled in advance as described in JP-B-6-71755. . However, such a method does not have sufficient surface accuracy and tends to cause variations in optical molded products. The surface accuracy described here means whether or not the curvature and flatness of the surface fall within a designed standard range.

【0006】これらの公知の射出圧縮成型法では、以下
に述べる2つの欠点がある。1つめは、射出時キャビテ
ィーに樹脂を充満させ十分に射出樹脂圧をかけないた
め、光学成形品の面精度および光学歪に重大な影響を及
ぼす。即ち光学成形品表面層の形成する射出完了時に、
十分な射出樹脂圧がかからない。そのため光学歪や面不
良を引き起こす。かかる光学歪は、肉眼で容易に確認で
き光学歪、レンズ表面に写る蛍光灯の反写像で確認でき
る光学歪、偏光板により薄くリング状に確認される光学
歪等がある。偏光板による観察が最もこの様な不良現象
を発見しやすい。
[0006] These known injection compression molding methods have the following two disadvantages. First, since the cavity is filled with resin at the time of injection and the injection resin pressure is not sufficiently applied, the surface precision and optical distortion of the optical molded product are significantly affected. That is, at the time of completion of the injection for forming the optical molded product surface layer,
Insufficient injection resin pressure is applied. This causes optical distortion and surface defects. Such optical distortion includes optical distortion that can be easily confirmed with the naked eye, optical distortion that can be confirmed by anti-mapping of a fluorescent lamp on the lens surface, and optical distortion that is thinly confirmed by a polarizing plate in a ring shape. Observation with a polarizing plate makes it easier to find such a defective phenomenon.

【0007】これらはレンズとして使用するにあたり致
命的な欠陥である。これらの不良現象は、プラスレンズ
(凸レンズ)ではレンズの中央部、マイナスレンズ(凹
レンズ)ではレンズ周辺部に発生しやすい。この原因
は、ともにレンズの表面層が形成される射出完了時にキ
ャビティー内に十分な樹脂圧力がかけられないことによ
って主として発生する。
These are fatal defects when used as lenses. These failure phenomena are likely to occur at the center of the plus lens (convex lens) and at the periphery of the minus lens (concave lens). This is mainly caused by insufficient resin pressure being applied to the inside of the cavity at the completion of the injection in which the surface layer of the lens is formed.

【0008】2つめは、射出成型機の射出工程における
樹脂の充填状態は、射出工程でのバラツキや計量工程で
のバラツキを含み、圧縮前のキャビティー内における樹
脂の状態が成形ショット毎に大きく異なることが多い。
そのため、光学成形品の品質管理上から許容できる範囲
を超えるバラツキを発生することが多い。これまでの射
出圧縮成形では、このバラツキの影響を大きく受ける。
Second, the state of resin filling in the injection step of the injection molding machine includes the dispersion in the injection step and the dispersion in the metering step, and the state of the resin in the cavity before compression greatly increases for each molding shot. Often different.
For this reason, variations that exceed an allowable range from the viewpoint of quality control of the optical molded product often occur. Conventional injection compression molding is greatly affected by this variation.

【0009】以下図1によって従来の射出圧縮成形法で
フィニッシュレンズを成形する1方法を簡単に説明す
る。固定側鏡面1と可動側鏡面2が相対することによっ
てできるキャビティ3を所定の形状よりも圧縮量に等し
い幅を余分に開けて設置する。可動側鏡面は台座8によ
ってエジェクタープレート7に取り付けられている。圧
縮量調整ロッド4もまたエジェクタープレートに取り付
けられており、固定側ダイセット5との間に、圧縮量と
等しい幅の空間6が設けられている。
Referring to FIG. 1, one method of forming a finish lens by a conventional injection compression molding method will be briefly described. A cavity 3 formed by opposing the fixed-side mirror surface 1 and the movable-side mirror surface 2 is provided with an extra width equal to the compression amount than a predetermined shape. The movable mirror surface is attached to the ejector plate 7 by a base 8. The compression amount adjusting rod 4 is also attached to the ejector plate, and a space 6 having a width equal to the compression amount is provided between the rod 6 and the fixed die set 5.

【0010】圧縮行程において圧縮プレート9が成形機
プラテンに設置された圧縮シリンダーより圧縮力10を
受けることによりエジェクタープレートが前進し、台
座、可動側鏡面、および圧縮量調整ロッドが前進する。
In the compression stroke, the compression plate 9 receives a compression force 10 from the compression cylinder provided on the platen of the molding machine, whereby the ejector plate advances, and the pedestal, the movable mirror surface, and the compression amount adjusting rod advance.

【0011】圧縮量調整ロッドが予め圧縮量と等しい空
間分を移動し、ダイセットと接触して圧縮力に対する反
力11を発生し、これらの可動する部品類の前進が停止
しキャビティが所定の厚みまで圧縮されるすなわちこの
方法のポイントは機械的前進限度によってキャビティ厚
みを決定することである。
The compression amount adjusting rod moves in advance in a space equal to the compression amount, and comes into contact with the die set to generate a reaction force 11 against the compressive force. Compression to thickness, ie the point of this method, is to determine the cavity thickness by the mechanical advance limit.

【0012】しかしながらこの方法には以下の欠点があ
る。 1)圧縮力10に対しその反力11が発生するためキャ
ビティに十分な圧縮圧が作用しない。また保圧、冷却工
程ではキャビティに掛かる圧縮圧を制御できない。この
ために薄肉部と厚肉部で曲率半径が微妙に変化し面精度
が十分でなかった。
However, this method has the following disadvantages. 1) Since a reaction force 11 is generated with respect to the compression force 10, a sufficient compression pressure does not act on the cavity. In the pressure holding and cooling steps, the compression pressure applied to the cavity cannot be controlled. For this reason, the radius of curvature was slightly changed between the thin portion and the thick portion, and the surface accuracy was not sufficient.

【0013】2)エジェクタープレートには圧縮力と反
力によって数十〜数百トンの加重が掛かり撓みを生じ
る。この撓みによって可動側鏡面が振動し製品の薄い部
分の面精度を悪化させる。
2) A load of several tens to several hundreds of tons is applied to the ejector plate due to the compressive force and the reaction force, and the ejector plate is bent. This bending causes the movable mirror surface to vibrate, thereby deteriorating the surface accuracy of a thin portion of the product.

【0014】3)エジェクタープレート、圧縮量調整ロ
ッド、および圧縮量調整ロッドが接触する固定側ダイセ
ットの部分には大きな応力が掛かるので十分な曲げ強
度、座屈強度を有さなければならない。特に圧縮量調整
ロッドと概ロッドが接触する固定側ダイセットの部分は
塑性変形しやすく十分な接触面積と強度を持つ素材が必
要である。このため金型構造が複雑化し、金型自体が大
型化する。
3) Since a large stress is applied to the ejector plate, the compression amount adjusting rod, and the portion of the fixed die set where the compression amount adjusting rod comes into contact, it is necessary to have sufficient bending strength and buckling strength. In particular, the portion of the fixed-side die set where the compression amount adjusting rod and the approximate rod are in contact with each other requires a material that easily undergoes plastic deformation and has a sufficient contact area and strength. This complicates the mold structure and increases the size of the mold itself.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的の1つ
は、本発明は高精度の優れた光学成形品の成形方法を提
供するものである。また、第2の目的は、本発明の成形
方法を用いることで、良好な品質のレンズ成形品を提供
するものである。
SUMMARY OF THE INVENTION One of the objects of the present invention is to provide a method for molding an optical molded article having high precision and excellent properties. A second object is to provide a good quality lens molded article by using the molding method of the present invention.

【0016】[0016]

【課題を解決するための手段】本発明者らは上記の如き
従来法の欠点を解決する方法について鋭意研究した結
果、熱可塑性樹脂からなる光学成形品を射出圧縮成形す
る方法において、(1)目的とする光学成形品の容積よ
りもキャビティの容積を拡大させ、(2)そのキャビテ
ィ内に溶融熱可塑性樹脂を射出シリンダーを通じて射出
させ、(3)次いで拡大されたキャビティを成形品の規
定の厚み、またはその厚みより200μm小さい厚みま
で圧縮させ、(4)射出シリンダーにおける樹脂圧とキ
ャビティにおける圧縮圧とを、最終的に成形品の規定の
厚みとなるように、成形品の規定の厚みよりも変動幅が
100μmを越えない範囲で調整するか変動させ、
(5)溶融熱可塑性樹脂がキャビティ内で目的とする成
形品が形成するまで保持し、次いで、(6)得られた成
形品をキャビティから取り出す、ことを特徴とする光学
成形品の射出圧縮成形方法、によってキャビティーに十
分な圧縮圧が掛かり、また保圧、冷却工程においても圧
縮圧力が制御できるので非常に面精度の良い光学成形品
を得られることを見いだし本発明を完成させた。
The present inventors have conducted intensive studies on a method for solving the above-mentioned drawbacks of the conventional method. As a result, in the method for injection-compression molding an optical molded product made of a thermoplastic resin, (1) The volume of the cavity is made larger than the desired volume of the optical molded product, (2) a molten thermoplastic resin is injected into the cavity through an injection cylinder, and (3) the enlarged cavity is then filled with a specified thickness of the molded product. Or (4) compressing the resin pressure in the injection cylinder and the compression pressure in the cavity so that the final thickness of the molded product becomes the prescribed thickness of the molded product. Adjust or fluctuate in the range where the fluctuation width does not exceed 100 μm,
(5) Injection compression molding of an optical molded product, wherein the molten thermoplastic resin is held in a cavity until a desired molded product is formed, and (6) the obtained molded product is taken out of the cavity. According to the method, it has been found that a sufficient compression pressure is applied to the cavity and that the compression pressure can be controlled even in the dwelling and cooling steps, so that it is possible to obtain an optical molded product with very good surface accuracy, and completed the present invention.

【0017】ここで述べる光学成形品とは、光の屈折お
よび反射を利用して物体の像をつくり、光線束を発散さ
せたり、或いは収束させたりする光学系およびレーザー
光線の位相差による干渉現象や発散を利用した光学成形
品をさす。その具体的例を示すと、例えばプラスチック
製の眼鏡レンズやプロジェクターレンズ等があげられ
る。特に、ポリカーボネート樹脂製の眼鏡レンズの成形
に本発明は好適である。
The optical molded product described herein refers to an optical system that forms an image of an object by using refraction and reflection of light, and diverges or converges a light beam, and an interference phenomenon caused by a phase difference between laser beams. Optical molded product using divergence. Specific examples thereof include a plastic spectacle lens and a projector lens. In particular, the present invention is suitable for molding a spectacle lens made of a polycarbonate resin.

【0018】以下本発明の成形方法をさらに詳細に説明
する。本発明に用いる射出成形機は特に制限を受けない
が、光学成形品の射出成形の基本として必要な型締め力
を有し射出、圧縮、保圧等は数段階で高精度に制御可能
な機構を有していることが望ましい。スクリュー機構は
逆流防止機構付きのものであれば特に形状は問わない。
この成形機にはインラインスクリュー、プランジャー式
等のどの様な射出成形機でもよい。
Hereinafter, the molding method of the present invention will be described in more detail. Although the injection molding machine used in the present invention is not particularly limited, it has a mold clamping force necessary as a basis for injection molding of an optical molded product, and a mechanism capable of controlling injection, compression, dwelling and the like with high accuracy in several steps. It is desirable to have. The shape of the screw mechanism is not particularly limited as long as it has a backflow prevention mechanism.
This molding machine may be any injection molding machine such as an in-line screw or a plunger type.

【0019】本発明に用いる金型は圧縮成形に対応する
物であればよく、プラテンの開閉を利用した型締め圧縮
法、成形機プラテンの圧縮シリンダー、ボールネジ等を
利用したコア圧縮法のどちらでも利用可能である。
The mold used in the present invention may be any one that is compatible with compression molding, and may be any of a mold clamping compression method using opening and closing of a platen, a core compression method using a compression cylinder of a molding machine platen, and a ball screw. Available.

【0020】型締め圧縮法とは、固定側可動側それぞれ
の金型パーティング面を所定の間隔だけ開いた状態に
し、樹脂を射出し、その後型締め力によりパーティング
面を接触させ圧縮する手法をさす。コア圧縮法とは、射
出前の型締めでは金型のそれぞれのパーティング面を接
触させ、所定の型締め力をかけて樹脂を射出する。射出
後圧縮工程では、成型機、金型等に設置され圧縮機構に
より鏡面をキャビティーの容積が縮小される方向に前進
させ圧縮させる。ここでいう圧縮機構とは、油圧シリン
ダー、ボールネジ等をさす。
The mold clamping compression method is a method in which the mold parting surfaces of the fixed and movable sides are opened at a predetermined interval, resin is injected, and then the parting surfaces are brought into contact by a mold clamping force to be compressed. Point out. In the core compression method, in mold clamping before injection, the respective parting surfaces of the mold are brought into contact with each other, and a predetermined mold clamping force is applied to inject the resin. In the post-injection compression step, the mirror surface is installed in a molding machine, a mold, or the like, and is advanced by a compression mechanism in a direction in which the volume of the cavity is reduced, and compressed. Here, the compression mechanism refers to a hydraulic cylinder, a ball screw, or the like.

【0021】本発明に使用する熱可塑性樹脂はポリカー
ボネート樹脂、ポリアクリル樹脂、変性ポリオレフィン
樹脂等の透明樹脂が使用できる。中でも光学樹脂レンズ
素材としてはポリカーボネート樹脂が最も好ましい。
As the thermoplastic resin used in the present invention, a transparent resin such as a polycarbonate resin, a polyacryl resin and a modified polyolefin resin can be used. Among them, polycarbonate resin is most preferable as the optical resin lens material.

【0022】本発明に用いることができるポリカーボネ
ート樹脂は界面重合法又はエステル交換法によって得ら
れる粘度平均分子量17、000〜40、000迄のも
ので更に好ましくは20、000〜30、000のもの
が良い。眼鏡レンズは精密成形であり、金型の鏡面を正
確に転写して規定の曲率、度数を付与することが重要で
あり、溶融流動性のよい低粘度の樹脂が望ましいが、あ
まりに低粘度過ぎるとポリカーボネート樹脂の特徴であ
る衝撃強度が保持できない。なお、ここで言う粘度平均
分子量(M)は、オストワルド粘度計を用いて、塩化メ
チレンを溶媒として20℃で測定した溶液の極限粘度
[η]を求め、下記Schnellの粘度式 [η]=1.23×10-40.83 から求められる。
The polycarbonate resin which can be used in the present invention has a viscosity average molecular weight of up to 17,000 to 40,000 obtained by an interfacial polymerization method or a transesterification method, and more preferably has a viscosity average molecular weight of 20,000 to 30,000. good. Eyeglass lenses are precision molded, it is important to accurately transfer the mirror surface of the mold to give a specified curvature and frequency, and a low-viscosity resin with good melt fluidity is desirable, but if the viscosity is too low The impact strength characteristic of polycarbonate resin cannot be maintained. In addition, the viscosity average molecular weight (M) mentioned here is obtained by using a Ostwald viscometer to determine the intrinsic viscosity [η] of a solution measured at 20 ° C. using methylene chloride as a solvent, and the following Schnell viscosity equation [η] = 1 .23 × 10 -4 M 0.83 .

【0023】ポリカーボネート樹脂を製造するためのビ
スフェノール類にはビスフェノールAが特に好ましいが
その他公知のフェノール類から重合されたポリカーボネ
ート樹脂でも制限はない。
Bisphenols for producing a polycarbonate resin are particularly preferably bisphenol A, but there is no particular limitation on polycarbonate resins polymerized from other known phenols.

【0024】本発明で用いるポリカーボネート樹脂は、
二価フェノールとカーボネート前駆体を反応させて得ら
れる芳香族ポリカーボネート樹脂である。ここで用いる
二価フェノールの具体例としては、例えば2,2−ビス
(4−ヒドロキシフェニル)プロパン(通称ビスフェノ
ールA)、ビス(4−ヒドロキシフェニル)メタン、
1,1−ビス(4−ヒドロキシフェニル)エタン、2,
2−ビス(4−ヒドロキシフェニル)ブタン、2,2−
ビス(4−ヒドロキシフェニル)オクタン、2,2−ビ
ス(4−ヒドロキシフェニル)フェニルメタン、2,2
−ビス(4−ヒドロキシ−3−メチルフェニル)プロパ
ン、1,1−ビス(4−ヒドロキシ−3−tert−ブ
チルフェニル)プロパン、2,2−ビス(4−ヒドロキ
シ−3−ブロモフェニル)プロパン、2,2−ビス(4
−ヒドロキシ−3,5−ジブロモフェニル)プロパン、
2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェ
ニル)プロパン等のビス(ヒドロキシアリール)アルカ
ン類;1,1−ビス(ヒドロキシフェニル)シクロペン
タン、1,1−ビス(ヒドロキシフェニル)シクロヘキ
サン等のビス(ヒドロキシフェニル)シクロアルカン
類;4,4’−ジヒドロキシジフェニルエーテル、4,
4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ
ーテル等のジヒドロキシアリールエーテル類;4,4’
−ジヒドロキシジフェニルスルフィド、4,4’−ジヒ
ドロキシ−3,3’−ジメチルジフェニルスルフィド等
のジヒドロキシジアリールスルフィド類;4,4’−ジ
ヒドロキシジフェニルスルホキシド、4,4’−ジヒド
ロキシ−3,3’−ジメチルジフェニルスルホキシド等
のジヒドロキシジアリールスルホキシド類;4,4’−
ジヒドロキシジフェニルスルホン、4,4’−ジヒドロ
キシ−3,3’−ジメチルジフェニルスルホン等のジヒ
ドロキシジアリールスルホン類等があげられる。これら
二価フェノールは単独で用いても、二種以上併用しても
よい。
The polycarbonate resin used in the present invention is:
An aromatic polycarbonate resin obtained by reacting a dihydric phenol with a carbonate precursor. Specific examples of the dihydric phenol used here include, for example, 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), bis (4-hydroxyphenyl) methane,
1,1-bis (4-hydroxyphenyl) ethane, 2,
2-bis (4-hydroxyphenyl) butane, 2,2-
Bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxyphenyl) phenylmethane, 2,2
-Bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4
-Hydroxy-3,5-dibromophenyl) propane,
Bis (hydroxyaryl) alkanes such as 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane; 1,1-bis (hydroxyphenyl) cyclopentane, 1,1-bis (hydroxyphenyl) cyclohexane and the like Bis (hydroxyphenyl) cycloalkanes; 4,4′-dihydroxydiphenyl ether, 4,
Dihydroxyaryl ethers such as 4'-dihydroxy-3,3'-dimethyldiphenylether; 4,4 '
Dihydroxydiaryl sulfides such as -dihydroxydiphenyl sulfide and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide; 4,4'-dihydroxydiphenyl sulphoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl Dihydroxydiaryl sulfoxides such as sulfoxide; 4,4′-
And dihydroxydiarylsulfones such as dihydroxydiphenylsulfone and 4,4′-dihydroxy-3,3′-dimethyldiphenylsulfone. These dihydric phenols may be used alone or in combination of two or more.

【0025】前記二価フェノールのうち、2,2−ビス
(4−ヒドロキシフェニル)プロパン(ビスフェノール
A)を主たる二価フェノール成分とするのが好ましく、
特に全二価フェノール成分中、70モル%以上、特に8
0モル%以上がビスフェノールAであるものが好まし
い。最も好ましいのは、二価フェノール成分が実質的に
ビスフェノールAである芳香族ポリカーボネート樹脂で
ある。
Of the above dihydric phenols, it is preferable that 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) be the main dihydric phenol component,
In particular, 70 mol% or more, particularly 8 mol%, of all dihydric phenol components.
Those in which 0 mol% or more is bisphenol A are preferred. Most preferred are aromatic polycarbonate resins wherein the dihydric phenol component is substantially bisphenol A.

【0026】ポリカーボネート樹脂を製造する界面重合
法およびエステル交換法について簡単に説明する。カー
ボネート前駆体としてホスゲンを用いる界面重合法で
は、通常酸結合剤および有機溶媒の存在下に二価フェノ
ール成分とホスゲンとの反応を行う。酸結合剤としては
例えば水酸化ナトリウムや水酸化カリウム等のアルカリ
金属の水酸化物またはピリジン等のアミン化合物が用い
られる。有機溶媒としては例えば塩化メチレン、クロロ
ベンゼン等のハロゲン化炭化水素が用いられる。また反
応促進のために例えば第三級アミンや第四級アンモニウ
ム塩等の触媒を用いることができ、分子量調節剤として
例えばフェノールやp−tert−ブチルフェノールの
ようなアルキル置換フェノール等の末端停止剤を用いる
ことが望ましい。反応温度は通常0〜40℃、反応時間
は数分〜5時間、反応中のpHは10以上に保つのが好
ましい。
The interfacial polymerization method and transesterification method for producing a polycarbonate resin will be briefly described. In the interfacial polymerization method using phosgene as a carbonate precursor, a reaction between a dihydric phenol component and phosgene is usually performed in the presence of an acid binder and an organic solvent. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. Further, a catalyst such as a tertiary amine or a quaternary ammonium salt can be used to promote the reaction, and a terminal stopper such as an alkyl-substituted phenol such as phenol or p-tert-butylphenol can be used as a molecular weight regulator. It is desirable to use. The reaction temperature is usually 0 to 40 ° C., the reaction time is preferably several minutes to 5 hours, and the pH during the reaction is preferably maintained at 10 or more.

【0027】カーボネート前駆体として炭酸ジエステル
を用いるエステル交換法(溶融法)は、不活性ガスの存
在下に所定割合の二価フェノール成分と炭酸ジエステル
とを加熱しながら攪拌し、生成するアルコールまたはフ
ェノール類を留出させる方法である。反応温度は生成す
るアルコールまたはフェノール類の沸点等により異なる
が、通常120〜330℃の範囲である。反応はその初
期から減圧にして生成するアルコールまたはフェノール
類を留出させながら反応させる。また反応を促進するた
めに通常のエステル交換反応触媒を用いることができ
る。このエステル交換反応に用いる炭酸ジエステルとし
ては例えばジフェニルカーボネート、ジナフチルカーボ
ネート、ジメチルカーボネート、ジエチルカーボネー
ト、ジブチルカーボネート等があげられ、特にジフェニ
ルカーボネートが好ましい。
In the transesterification method (melting method) using a carbonic acid diester as a carbonate precursor, a predetermined ratio of a dihydric phenol component and a carbonic acid diester are stirred while heating in the presence of an inert gas to form an alcohol or phenol formed. It is a method of distilling off kinds. The reaction temperature varies depending on the boiling point of the alcohol or phenol to be formed, but is usually in the range of 120 to 330 ° C. The reaction is carried out under reduced pressure from the beginning while distilling off alcohol or phenols produced. Further, a normal transesterification catalyst can be used to promote the reaction. Examples of the carbonic acid diester used in this transesterification reaction include diphenyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate and the like, and diphenyl carbonate is particularly preferred.

【0028】本発明のポリカーボネート樹脂には離型剤
を配合することができ、こうすることは好ましい結果を
与える。離型剤としては飽和脂肪酸エステルが一般的で
あり、例えばステアリン酸モノグリセライド等のモノグ
リセライド類、ステアリン酸ステアレート等の低級脂肪
酸エステル類、セバシン酸ベヘネート等の高級脂肪酸エ
ステル類、ペンタエリスリトールテトラステアレート等
のエリスリトールエステル類が使用される。離型剤はポ
リカーボネート樹脂100重量部当り0.03〜1重量
部用いられる。また、必要に応じて亜燐酸エステル系の
熱安定剤をポリカーボネート樹脂100重量部当り0.
001〜0.1重量部配合してもよい。亜燐酸エステル
系の熱安定剤としてはトリス(ノニルフェニル)ホスフ
ァイト、トリフェニルホスファイト、トリス(2,4−
ジ−tert−ブチルフェニル)ホスファイト、テトラ
キス(2,4−ジ−tert−ブチルフェニル)−4,
4’−ビフェニレンジホスホナイト、ビス−(2,6−
ジ−tert−ブチル−4−メチルフェニル)ペンタエ
リスリトール−ジ−ホスファイト、ビス(2,4−ジ−
tert−ブチルフェニル)ペンタエリスリトール−ジ
−ホスファイト、トリス(エチルフェニル)ホスファイ
ト、トリス(ブチルフェニル)ホスファイトおよびトリ
ス(ヒドロキシフェニル)ホスファイト等が好ましく、
トリス(ノニルフェニル)ホスファイトおよびテトラキ
ス(2,4−ジ−tert−ブチルフェニル)−4,
4’−ビフェニレンジホスホナイトが特に好ましい。
The polycarbonate resin of the present invention can contain a release agent, and this gives a favorable result. As the release agent, a saturated fatty acid ester is generally used. Erythritol esters are used. The release agent is used in an amount of 0.03 to 1 part by weight per 100 parts by weight of the polycarbonate resin. If necessary, a phosphite-based heat stabilizer may be added in an amount of 0.1 to 100 parts by weight of the polycarbonate resin.
001 to 0.1 part by weight may be blended. As a phosphite heat stabilizer, tris (nonylphenyl) phosphite, triphenylphosphite, tris (2,4-
Di-tert-butylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4,
4'-biphenylenediphosphonite, bis- (2,6-
Di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite, bis (2,4-di-
tert-butylphenyl) pentaerythritol di-phosphite, tris (ethylphenyl) phosphite, tris (butylphenyl) phosphite and tris (hydroxyphenyl) phosphite are preferred,
Tris (nonylphenyl) phosphite and tetrakis (2,4-di-tert-butylphenyl) -4,
4'-biphenylenediphosphonite is particularly preferred.

【0029】耐候性の向上および有害な紫外線をカット
する目的で、本発明のポリカーボネート樹脂には更に紫
外線吸収剤を配合することができる。かかる紫外線吸収
剤としては、例えば2,2’−ジヒドロキシ−4−メト
キシベンゾフェノンに代表されるベンゾフェノン系紫外
線吸収剤;例えば2−(3−tert−ブチル−5−メ
チル−2−ヒドロキシフェニル)−5−クロロベンゾト
リアゾール、2−(3,5−ジ−tert−ブチル−2
−ヒドロキシフェニル)−5−クロロベンゾトリアゾー
ル、2,2’−メチレンビス[4−(1,1,3,3−
テトラメチルブチル)−6−(2H−ベンゾトリアゾー
ル−2−イル)フェノール]、2−[2−ヒドロキシ−
3,5−ビス(α,α−ジメチルベンジル)フェニル]
−2H−ベンゾトリアゾールおよび2−(3,5−ジ−
tert−アミル−2−ヒドロキシフェニル)ベンゾト
リアゾールに代表されるベンゾトリアゾール系紫外線吸
収剤が例示され、これらは単独で用いても、二種以上併
用してもよい。これら紫外線吸収剤のうち、ベンゾトリ
アゾール系紫外線吸収剤が好ましい。
For the purpose of improving weather resistance and cutting off harmful ultraviolet rays, the polycarbonate resin of the present invention may further contain an ultraviolet absorbent. As such an ultraviolet absorber, for example, a benzophenone-based ultraviolet absorber represented by 2,2'-dihydroxy-4-methoxybenzophenone; for example, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5 -Chlorobenzotriazole, 2- (3,5-di-tert-butyl-2)
-Hydroxyphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3,3-
Tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- [2-hydroxy-
3,5-bis (α, α-dimethylbenzyl) phenyl]
-2H-benzotriazole and 2- (3,5-di-
Examples thereof include benzotriazole-based ultraviolet absorbers represented by (tert-amyl-2-hydroxyphenyl) benzotriazole, and these may be used alone or in combination of two or more. Among these ultraviolet absorbers, benzotriazole-based ultraviolet absorbers are preferred.

【0030】また、本発明のポリカーボネート樹脂には
更にポリカーボネート樹脂や紫外線吸収剤に基づくレン
ズの黄色味を打ち消すためにブルーイング剤を配合する
ことができる。ブルーイング剤としてはポリカーボネー
ト樹脂に使用されるものであれば、特に支障なく使用す
ることができる。一般的にはアンスラキノン系染料が入
手容易であり好ましい。
The polycarbonate resin of the present invention may further contain a bluing agent for canceling the yellow tint of the lens based on the polycarbonate resin or the ultraviolet absorber. As the bluing agent, any one can be used without any particular difficulty as long as it is used for a polycarbonate resin. Generally, anthraquinone dyes are easily available and preferred.

【0031】次に本発明の圧縮成形法につて、従来技術
を対比しながら図1〜図5を用いて具体的に説明する。
従来の技術は図1に示したように光学成形品が所定の厚
みに達した場合、圧縮量調整ロッド4とダイセット5が
接触することによりダイセットよりの反力11が発せす
る。そのため圧縮力10が充分にキャビティー3にかか
らず、また圧縮力10を増減させ制御しても圧縮力10
の増減が反力11として吸収されるので成形中のキャビ
ティー3の圧力として反映されない。そのため、ゲート
より遠い部分や厚肉部で圧力が充分にかからず面変形を
起こす。
Next, the compression molding method of the present invention will be specifically described with reference to FIGS.
In the prior art, as shown in FIG. 1, when the optical molded product reaches a predetermined thickness, the compression amount adjusting rod 4 comes into contact with the die set 5 to generate a reaction force 11 from the die set. Therefore, the compression force 10 is not sufficiently applied to the cavity 3, and even if the compression force 10 is increased or decreased, the compression force 10 is not increased.
Is absorbed as the reaction force 11 and is not reflected as the pressure of the cavity 3 during molding. For this reason, pressure is not sufficiently applied to a portion far from the gate or a thick portion, and surface deformation occurs.

【0032】本発明の射出圧縮成形法の概念を図2に示
す。本発明では圧縮力10への反力を金型構造部品から
発生させるのでなく、射出シリンダーよりの樹脂圧13
によって発生させる。そのため、圧縮圧10が充分にキ
ャビティーに伝わり、また圧縮圧10を増減させ制御す
ると圧縮圧10が直接キャビティーの圧力として反映さ
れる。圧縮工程では、樹脂圧13を圧縮圧10より低く
設定し、キャビティーの圧縮をおこなう。その後、キャ
ビティーの代表厚みが光学成形品の所定の厚みに達した
後、樹脂圧と圧縮圧を調整もしくは変動させキャビティ
ーの代表厚みを、最終的には光学成形品の所定の厚みの
規格内に制御する。従来の技術ではできなかった保圧工
程中の圧縮圧10によるキャビティー3内の圧力コント
ロールが本発明では可能であり十分な圧縮圧力を確保す
ることができる。
FIG. 2 shows the concept of the injection compression molding method of the present invention. According to the present invention, instead of generating a reaction force to the compression force 10 from the mold structural parts, the resin pressure 13 from the injection cylinder is reduced.
Caused by Therefore, the compression pressure 10 is sufficiently transmitted to the cavity, and when the compression pressure 10 is increased and decreased, the compression pressure 10 is directly reflected as the pressure of the cavity. In the compression step, the resin pressure 13 is set lower than the compression pressure 10 to compress the cavity. Then, after the representative thickness of the cavity reaches the predetermined thickness of the optical molded product, the resin thickness and the compression pressure are adjusted or changed to set the representative thickness of the cavity, and finally the standard of the predetermined thickness of the optical molded product. To control within. According to the present invention, it is possible to control the pressure in the cavity 3 by the compression pressure 10 during the pressure holding process, which was not possible with the conventional technology, and it is possible to secure a sufficient compression pressure.

【0033】ここで述べる圧縮工程とは、拡大されたキ
ャビティーの代表厚みが所定の厚みまでもしくはその厚
みより更に200μm小さい厚みまで、好ましくは20
〜200μm、さらに好ましくは20〜180μm少な
い厚みまで圧縮されるまでの工程を指す。ここで述べる
保圧工程とは、圧縮工程完了してから射出成型機が計量
にはいるまでの工程を指す。
The compression step described here means that the representative thickness of the enlarged cavity is up to a predetermined thickness or to a thickness smaller by 200 μm, preferably 20 μm.
Refers to a process up to compression to a thickness of less than 200 μm, more preferably 20 to 180 μm. The pressure-holding step described here refers to a step from the completion of the compression step to the time when the injection molding machine starts measuring.

【0034】また圧縮工程および保圧工程において従来
の技術では光学成形品の種類、大きさ、1ショットあた
りの取り数によるが数十〜数百トンに及ぶ圧縮力を圧縮
量調整ロッドで支えなければならない。そのため圧縮量
調整ロッド4は充分な座屈強度を持たなければならな
い。また、圧縮量調整ロッド4とダイセット5の接触す
る部分は、充分な塑性変形に対する強度が必要である。
エジェクタープレートは十分な曲げ応力に対する強度が
必要となる。そのため、金型部品が大きくなり、また強
度の強い高価な素材が必要となる。そのため、金型が大
きくなり、金型が高価になる。金型が大きくなるに伴
い、大型の成型機が必要となり更にコストがかかる。本
発明の成形方法では、圧縮力10に対する反力を樹脂圧
13により発生するため、可動側鏡面2、台座8、エジ
ェクタープレレート7、圧縮プレート9の圧縮応力に耐
えるだけの強度を考慮すればよい。そのため、過大な強
度を必要とせず、金型を小型化できる。また、金型の強
度計算も容易である。
In the compression step and the dwelling step, in the prior art, a compression force ranging from tens to hundreds of tons depending on the type and size of the optical molded product and the number of shots per shot must be supported by the compression amount adjusting rod. Must. Therefore, the compression amount adjusting rod 4 must have sufficient buckling strength. In addition, a portion where the compression amount adjusting rod 4 and the die set 5 are in contact with each other needs to have sufficient strength against plastic deformation.
The ejector plate needs to have sufficient strength against bending stress. Therefore, the size of the mold component is increased, and an expensive and strong material is required. Therefore, the mold becomes large and the mold becomes expensive. As the mold becomes larger, a large-sized molding machine is required, which further increases the cost. In the molding method of the present invention, since a reaction force against the compressive force 10 is generated by the resin pressure 13, the strength of the movable mirror surface 2, the pedestal 8, the ejector plate 7, and the compressive plate 9 enough to withstand the compressive stress is considered. Good. Therefore, the mold can be reduced in size without requiring excessive strength. Also, calculation of the strength of the mold is easy.

【0035】本発明の成形方法において従来技術と根本
的に異なる点は圧縮量調整ロッドの空間を従来法では圧
縮量と等しくしていたが本発明の成形方法では圧縮量よ
りは余分にセットする。これによって所定量圧縮しても
調整ロッドと固定側ダイセットが接触しない状態で樹脂
圧力13をかけて圧縮圧力10とバランスをとり圧縮量
を制御し、光学成形品の代表厚みを制御する。
The fundamental difference of the molding method of the present invention from the prior art is that the space of the compression amount adjusting rod is equal to the compression amount in the conventional method, but is set to be more than the compression amount in the molding method of the present invention. . As a result, the resin pressure 13 is applied in a state where the adjustment rod and the fixed die set do not come into contact with each other even when the adjustment rod is compressed by a predetermined amount to balance the compression pressure 10 and control the compression amount, thereby controlling the representative thickness of the optical molded product.

【0036】ここで述べる規定の厚さとは、光学成形品
の品質管理上代表される厚みの規格範囲内にある厚みの
ことを指す。例えばレンズ中心部の厚み、ミラー面にお
ける平均厚み等である。
The specified thickness mentioned here means a thickness within a standard range of a thickness represented by quality control of an optical molded product. For example, the thickness at the center of the lens, the average thickness at the mirror surface, and the like.

【0037】ここで述べる圧縮量とは、圧縮前のキャビ
ティーの代表厚みと圧縮中もしくは圧縮後のキャビティ
ーの代表厚みの差を指す。
The amount of compression described here refers to the difference between the representative thickness of the cavity before compression and the representative thickness of the cavity during or after compression.

【0038】ここで述べる圧縮圧とは、成型機もしくは
金型の圧縮機構より発生する最大圧縮力に最大値を1と
した設定値を乗じ、その値を圧縮時に可動する部分でな
おかつ樹脂と接触する部分のプラテン方向への投影面積
で除した値である。最大圧縮力は成型機および金型の圧
縮機構の設計により決定される。圧縮時に可動する部分
でなおかつ樹脂と接触する部分の投影面積は、例えばコ
ア圧縮法の場合光学成形品のプラテン方向への投影面
積、型締め圧縮法では前記面積にランナーのプラテン方
向への投影面積を加算した値となる。
The compression pressure described here is a value obtained by multiplying the maximum compression force generated by a molding machine or a compression mechanism of a mold by a set value with a maximum value of 1, and that value is a portion movable at the time of compression and in contact with the resin. This is a value obtained by dividing the projected area of the portion to be projected in the platen direction. The maximum compression force is determined by the design of the molding machine and the compression mechanism of the mold. The projected area of the part movable in compression and in contact with the resin is, for example, the projected area of the optical molded product in the platen direction in the case of the core compression method, and the projected area of the runner in the platen direction in the mold clamping compression method. Is added.

【0039】ここで述べる樹脂圧とは、射出シリンダー
の油圧を油圧射出シリンダー径とスクリュー径の二乗の
比より換算した樹脂圧もしくは圧力センサーにより測定
された樹脂圧を指す。この値は、成型機の設計により異
なる。
The resin pressure mentioned here indicates a resin pressure obtained by converting the hydraulic pressure of the injection cylinder from the ratio of the square of the diameter of the hydraulic injection cylinder to the square of the screw diameter, or a resin pressure measured by a pressure sensor. This value depends on the design of the molding machine.

【0040】ここで述べている樹脂圧と圧縮圧をバラン
スさせるとは、(3)圧縮工程の後(4)保圧工程にお
いて、キャビティーの代表厚みが所定の厚みの規格内に
収まるよう樹脂圧と圧縮圧を調整(または変動)するこ
とを指す。具体的には、実施例の場合樹脂圧63.3M
Paに対し圧縮圧64.1MPaとした。圧縮圧が樹脂
圧に比べて0.8MPa大きくなっている。これは、金
型、成型機での抵抗、および成型機での油圧測定の精度
やそのほかの誤差に原因がある。樹脂圧と圧縮圧を同じ
にする必要はなく、キャビティーの代表厚み(光学成形
品の代表厚み)を所定の厚みの規格内になるようにすれ
ばよい。また、このバランスさせるときの樹脂圧および
圧縮圧は金型設計、光学成形品の形状大きさ、成型機の
種類、樹脂の種類により異なる。
The balance between the resin pressure and the compression pressure described herein means that (3) after the compression step, and (4) in the dwelling step, the resin thickness is adjusted so that the representative thickness of the cavity falls within a predetermined thickness standard. Adjusting (or fluctuating) pressure and compression pressure. Specifically, in the case of the embodiment, the resin pressure is 63.3M.
The compression pressure was 64.1 MPa with respect to Pa. The compression pressure is 0.8 MPa higher than the resin pressure. This is due to the accuracy of the mold, the resistance of the molding machine, and the accuracy of the oil pressure measurement at the molding machine and other errors. It is not necessary to make the resin pressure and the compression pressure the same, and the representative thickness of the cavity (the representative thickness of the optical molded product) may be set within a standard of a predetermined thickness. Further, the resin pressure and the compression pressure at the time of this balance differ depending on the mold design, the shape and size of the optical molded product, the type of the molding machine, and the type of the resin.

【0041】具体的に図2を用いて詳細に説明する。図
2の構造は圧縮量を調整するため、エジェクタープレー
トに圧縮量測定用のマグネットスケール12が取り付け
られている他は基本的に図1と同一の構造である。
This will be described in detail with reference to FIG. The structure of FIG. 2 is basically the same as that of FIG. 1 except that a magnet scale 12 for measuring the amount of compression is attached to the ejector plate for adjusting the amount of compression.

【0042】マグネットスケールはエジェクタープレー
トの移動量を測定するように設置されているが圧縮シリ
ンダー等に設置してもい。またマグネットスケールの他
にもロータリーエンコーダー、リニアスケール、マイク
ロメーター、ダイヤルゲージ、レーザー変位計、赤外線
変位計、リミットスイッチ等によって測定してもよく、
要は可動側金型鏡面の移動量(圧縮量)を何らかの手段
で検出するものであればよい。
The magnet scale is installed to measure the amount of movement of the ejector plate, but may be installed on a compression cylinder or the like. In addition to the magnet scale, it may be measured by a rotary encoder, linear scale, micrometer, dial gauge, laser displacement meter, infrared displacement meter, limit switch, etc.
In short, any method may be used as long as the amount of movement (the amount of compression) of the movable mold mirror surface is detected by some means.

【0043】まず、得ようとする光学部品の容積よりキ
ャビティーを拡大する。キャビティーを拡大する場合
は、光学部品容積に対して、射出時の拡大されたキャビ
ティ容積のパーセントは光学部品の面精度(面の変形
等)、光学特性(焦点距離、収差等)、成形の容易さより
下記式で計算された容積率110〜500%の範囲が好
ましい。より好ましくは120〜400%の範囲であ
り、特に好ましくは150〜350%の範囲である。5
00%を越えると排出する樹脂量が多いので必要とする
圧縮圧力が高くなったり、溶融樹脂の耐熱性が悪化した
り、成形不良を誘発することがある。この圧縮によって
起こる圧縮量とは圧縮前の光学部品と圧縮後の光学部の
品代表厚みの差を指す。 拡大容積率(%)=100×(拡大されたキャビティ量
/圧縮後のキャビティ量) ここで、拡大されたキャビティ量および圧縮後のキャビ
ティ量の単位はmlで表わす。
First, the cavity is enlarged from the volume of the optical component to be obtained. When expanding the cavity, the percentage of the expanded cavity volume at the time of injection with respect to the optical component volume depends on the surface accuracy (surface deformation, etc.), optical characteristics (focal length, aberration, etc.) The range of the volume ratio of 110 to 500% calculated by the following formula is preferable from the viewpoint of easiness. It is more preferably in the range of 120 to 400%, and particularly preferably in the range of 150 to 350%. 5
If it exceeds 00%, a large amount of resin is discharged, so that the required compression pressure may be increased, the heat resistance of the molten resin may be deteriorated, and molding failure may be induced. The amount of compression caused by this compression refers to the difference between the product representative thickness of the optical part before compression and the optical part after compression. Expanded volume ratio (%) = 100 × (expanded cavity amount / cavity amount after compression) Here, the units of the expanded cavity amount and the cavity amount after compression are expressed in ml.

【0044】前記拡大容積率の好ましい範囲は、凹レン
ズを成形する場合、前記肉厚の比によって左右される。
例えば、拡大容積率は、肉厚比が小さい場合(例えば3
00%以下の場合)は110〜200%の範囲が望まし
く、一方肉厚比がそれより大きい場合は200〜500
%の範囲が有利である。
The preferable range of the enlarged volume ratio depends on the ratio of the wall thickness when a concave lens is formed.
For example, the enlarged volume ratio is determined when the thickness ratio is small (for example, 3
(In the case of 00% or less) is preferably in the range of 110 to 200%, while when the wall thickness ratio is larger than that, 200 to 500%.
% Is preferred.

【0045】本発明の成形方法において、ウエルドライ
ンや光学歪、面不良の発生しないか又は許容できる限度
までキャビティを拡大させることは大事である。圧縮前
に一旦発生したウエルドラインや光学歪、面不良はいか
なる手段を用いても完全解消することは困難である。
In the molding method of the present invention, it is important to prevent the occurrence of weld lines, optical distortion and surface defects or to enlarge the cavity to an acceptable limit. It is difficult to completely eliminate weld lines, optical distortion, and surface defects once generated before compression by any means.

【0046】射出工程で樹脂をキャビティー内に射出し
た後、圧縮工程に移る。図3に示すように、圧縮行程1
9では圧縮圧21より樹脂圧20を小さく設定すること
によって所定の厚みまで圧縮する。この圧縮工程の時間
および樹脂圧、圧縮圧によりキャビティーの代表厚み
(光学成形品の代表厚み)を所定の厚みまで圧縮する。圧
縮工程の時間は充填樹脂の種類および成形条件にもよる
が5秒以内が好ましい。この時間が5秒以上経過すると
溶融樹脂が冷却され粘度上昇によって非常に高い圧縮圧
が必要となる。この高い圧縮圧により、光学成形品の薄
肉部に歪みが残ることがある。
After the resin is injected into the cavity in the injection step, the process proceeds to the compression step. As shown in FIG.
In step 9, the resin pressure 20 is set smaller than the compression pressure 21 to compress the resin to a predetermined thickness. The typical thickness of the cavity depends on the time of this compression process and the resin pressure and compression pressure.
(Representative thickness of optical molded product) is compressed to a predetermined thickness. The time for the compression step depends on the type of the filling resin and the molding conditions, but is preferably within 5 seconds. When this time elapses for 5 seconds or more, the molten resin is cooled and a very high compression pressure is required due to an increase in viscosity. Due to this high compression pressure, distortion may remain in the thin portion of the optical molded product.

【0047】その後、樹脂圧22と圧縮圧23をバラン
スさせ、保圧工程37に移行する。この時、樹脂圧2
2、圧縮圧23、圧縮工程時間19の関係で可動側鏡面
2が固定側鏡面1に接触することがある。例えば、圧縮
工程時間19が長すぎた場合や、圧縮圧21が大きい場
合がこれにあたる。鏡面同士が接触すると、鏡面が破損
し鏡面が使用不可になる。この様な鏡面同志を接触する
事態を回避するため、圧縮量調整用ロッドとの空間6を
製品厚の0.2〜0.6mm小さめに設定することが望
ましい。
Thereafter, the resin pressure 22 and the compression pressure 23 are balanced, and the process proceeds to the pressure maintaining step 37. At this time, the resin pressure 2
The movable mirror surface 2 may come into contact with the fixed mirror surface 1 due to the relationship between 2, the compression pressure 23 and the compression process time 19. For example, this corresponds to a case where the compression step time 19 is too long or a case where the compression pressure 21 is large. When the mirror surfaces come into contact with each other, the mirror surface is broken and the mirror surface becomes unusable. In order to avoid such a situation where mirror surfaces come into contact with each other, it is desirable to set the space 6 with the compression amount adjusting rod to be smaller by 0.2 to 0.6 mm of the product thickness.

【0048】圧縮行程19においては、図4の如く規定
の厚みよりも200μmの範囲内(好ましくは20〜2
00、より好ましくは20〜180μm)で過剰に圧縮
し、樹脂圧20、圧縮工程での樹脂圧時間18、圧縮圧
21、圧縮工程での圧縮圧時間17をコントロールし所
定厚みまで押し戻すことが望ましい。具体的な設定の例
は、圧縮圧を下げる時間17より樹脂圧を上げる時間1
8より遅らせることによっても可能となる。この様に押
し返すことにより、成形品の薄肉部にかかる過剰な圧力
が解放され、成形品全体で均一な圧力となる。圧縮量の
押し返し量25が、200μm以下の範囲にあると面精
度が向上し、光学歪みが低減する。200μmを超える
とレンズ度数の安定性等の成形安定性が悪くなる。
In the compression step 19, as shown in FIG. 4, the thickness is within a range of 200 μm (preferably 20 to 2) from the specified thickness.
(More preferably, 20 to 180 μm), and it is desirable to control the resin pressure 20, the resin pressure time 18 in the compression step, the compression pressure 21, and the compression pressure time 17 in the compression step and push it back to a predetermined thickness. . An example of a specific setting is a time 1 for increasing the resin pressure from a time 17 for decreasing the compression pressure.
It is also possible by delaying from eight. By pushing back in this manner, excessive pressure applied to the thin portion of the molded product is released, and the pressure becomes uniform throughout the molded product. If the compression amount 25 is within 200 μm or less, the surface accuracy is improved and the optical distortion is reduced. If it exceeds 200 μm, the molding stability such as the stability of the lens power will deteriorate.

【0049】前述の通り、本発明の成形方法では保圧工
程においても圧縮圧のコントロールができる。図3、図
4においては保圧工程において樹脂圧22は、冷却の進
行とともにスプルー、ゲートが徐々に固化するため、キ
ャビティー内に伝わりにくくなり、圧縮圧23が樹脂圧
22に勝り圧縮量が徐々に増加24する。また、樹脂の
収縮によっても圧縮量が徐々に増加24する。圧縮量が
時系的に変化することはすでに固化している薄肉部と固
化しつつある厚肉部で曲率半径の変化が生じる。
As described above, in the molding method of the present invention, the compression pressure can be controlled even in the pressure holding step. 3 and 4, in the pressure-holding step, the resin pressure 22 is hardly transmitted to the cavity because the sprue and the gate gradually solidify as the cooling progresses, and the compression pressure 23 exceeds the resin pressure 22 and the compression amount is increased. It gradually increases 24. Also, the compression amount gradually increases 24 due to the contraction of the resin. A change in the amount of compression over time causes a change in the radius of curvature between a thinned portion that is already solidified and a thickened portion that is solidifying.

【0050】図5の様に冷却の進行と共に多段階的に樹
脂圧27と圧縮圧28のバランスを取り、キャビティー
の代表厚みの変動量、即ち圧縮量の変動幅24(以下、
キャビティーの代表厚みの変動量を圧縮量の変動幅と称
す。)を100μm以下、望ましくは50μm以下に制
御する。この様にすることにより、中心部から周辺部ま
で均一な曲率半径となる。具体的にどの様に設定するか
を説明すると、キャビティーの代表厚みが所定の厚みに
達した時点の圧縮量測定装置の測定値を0とする。圧縮
量が増加しキャビティーの代表厚みが減少する方向に変
動した場合、樹脂圧を大きくするもしくは圧縮圧を小さ
くするように設定する。圧縮量が減少しキャビティーの
代表厚みが増加する方向に変動した場合は、樹脂圧を小
さくするもしくは圧縮圧を大きくなるよう設定する。圧
縮量の測定は前述のマグネットスケール等の圧縮量測定
装置において行われる。設定を簡素化するために、マグ
ネットスケール等の変位量を成形機の樹脂圧および圧縮
圧の設定にループ回路を用いてフィードバックすること
が好ましい。
As shown in FIG. 5, the resin pressure 27 and the compression pressure 28 are balanced in multiple stages with the progress of the cooling, and the variation in the representative thickness of the cavity, that is, the variation in the compression amount 24 (hereinafter, referred to as the variation 24)
The amount of change in the representative thickness of the cavity is referred to as the amount of change in the amount of compression. ) Is controlled to 100 μm or less, preferably 50 μm or less. By doing so, a uniform radius of curvature is obtained from the central portion to the peripheral portion. Explaining specifically how to set it, the measured value of the compression amount measuring device when the representative thickness of the cavity reaches a predetermined thickness is set to 0. When the amount of compression increases and the representative thickness of the cavity fluctuates, the resin pressure is increased or the compression pressure is decreased. If the amount of compression decreases and the representative thickness of the cavity fluctuates, the resin pressure is reduced or the compression pressure is increased. The measurement of the compression amount is performed by a compression amount measuring device such as the above-described magnet scale. In order to simplify the setting, it is preferable to feed back the displacement of the magnet scale or the like to the setting of the resin pressure and the compression pressure of the molding machine by using a loop circuit.

【0051】[0051]

【実施例】以下、実施例により本発明を詳細に説明す
る。なお実施例および比較例において光学成形品の評価
項目および評価方法について以下に説明する。
The present invention will be described below in detail with reference to examples. In the examples and comparative examples, evaluation items and evaluation methods for optical molded products will be described below.

【0052】(1)屈折力および曲率半径 ロトレックス社製モアレ式レーザー干渉計OMS−40
1を使用し曲率半径の測定を評価した。屈折力は使用し
た金型鏡面および光学成形品(この場合レンズ)の曲率半
径を下記式により、屈折率1.586で屈折力Diop
terに換算し評価した。鏡面と光学成形品の屈折力の
差が少ないほど良好である。 屈折力=586/(曲率半径) ここで、曲率半径の単位はmmである。
(1) Refractive power and radius of curvature Moire type laser interferometer OMS-40 manufactured by Rotorex Co., Ltd.
1 was used to evaluate the measurement of the radius of curvature. The refractive power is calculated by using the following equation to calculate the radius of curvature of the mirror surface of the mold used and the optical molded product (in this case, the lens) at a refractive index of 1.586 and a refractive power of
It was converted to ter and evaluated. The smaller the difference in refractive power between the mirror surface and the optical molded product, the better. Refractive power = 586 / (radius of curvature) Here, the unit of the radius of curvature is mm.

【0053】(2)面精度 ロトレックス社製モアレ式レーザー干渉計OMS−40
1を使用し面精度を評価した。この面精度の評価は以下
の5段階判定をした。 5 モアレ干渉縞のずれが確認されない。 4 モアレ干渉縞のずれが干渉縞間隔の25%以下であ
る。 3 モアレ干渉縞のずれが干渉縞間隔の50%以下であ
る。 2 モアレ干渉縞のずれが干渉縞間隔の100%以下で
ある。 1 モアレ干渉縞のずれが干渉縞間隔の100%以上で
ある。
(2) Surface accuracy Moire type laser interferometer OMS-40 manufactured by Rotorex Co., Ltd.
1 was used to evaluate the surface accuracy. The evaluation of the surface accuracy was determined by the following five steps. 5 Moire interference fringes are not displaced. 4 Moire interference fringes are less than 25% of the fringe interval. 3 The displacement of the moire interference fringes is 50% or less of the fringe interval. 2 Moire interference fringes are less than 100% of the interference fringe interval. 1 Moire interference fringes are shifted by 100% or more of the interference fringe interval.

【0054】(3)蛍光灯観察 蛍光灯観察は、図6の様にレンズを目より下方29にお
よそ30cmはなし、レンズの上方でおおむね目の高さ
で目よりおよそ15cm離れた位置にある直管状の30
W蛍光灯30の反射した像を観察することにより行っ
た。評価は以下の5段階判定をした。 5 蛍光灯の像が滑らかで均一な曲線になっている。 4 蛍光灯の像が滑らかであるが、2カ所以内で曲率半
径が変化している。 3 蛍光灯の像が滑らかであるが、4カ所以内で曲率半
径が変化している。 2 蛍光灯の像が2カ所以内で折れ曲がっている。 1 蛍光灯の像が2カ所以上で折れ曲がっている。
(3) Fluorescent Light Observation In fluorescent light observation, as shown in FIG. 6, the lens is formed about 30 cm below the eye 29 and approximately 15 cm above the lens at approximately the eye level and about 15 cm away from the eye. Tubular 30
This was performed by observing the reflected image of the W fluorescent lamp 30. The evaluation was made in the following five steps. 5. The image of the fluorescent lamp has a smooth and uniform curve. 4 The image of the fluorescent lamp is smooth, but the radius of curvature changes within two places. 3 The image of the fluorescent lamp is smooth, but the radius of curvature changes within four places. 2 The image of the fluorescent lamp is bent within two places. 1 The image of the fluorescent lamp is bent at two or more places.

【0055】(4)偏光板観察(光学歪およびウエルド
ライン) 光学歪とウエルドラインを偏光歪み計(理研計器社製P
Sー5)を使用してそれぞれ評価および長さを測定し
た。偏光歪み計による測定とは、図7のごとく蛍光灯3
4(30W環状蛍光灯)を光源として、磨りガラス33
により拡散された光を、間隔がおよそ15cm程度の偏
光面が互いにほぼ直行する2枚の偏光板31の間に光学
成形品32をおき評価した。評価は以下のような基準で
行った。 5 レンズ使用部分に、干渉縞がない。 4 レンズ使用部分に、0.5波長ずれた干渉縞が観察
される。 3 レンズ使用部分に、1波長ずれた干渉縞が1本観察
される。 2 レンズ使用部分に、1波長ずれた干渉縞が2本確認
される。 1 レンズ仕様部分に、1波長ずれた干渉縞が2本以上
確認される。
(4) Observation of Polarizing Plate (Optical Distortion and Weld Line) The optical distortion and the weld line were measured by using a polarization distortion meter (manufactured by Riken Keiki Co., Ltd.).
Evaluation and length were measured using S-5), respectively. As shown in FIG.
4 (30W annular fluorescent lamp) as a light source, frosted glass 33
The optical diffused article was evaluated by placing an optical molded product 32 between two polarizing plates 31 whose polarization planes having an interval of about 15 cm are substantially perpendicular to each other. The evaluation was performed based on the following criteria. 5 There are no interference fringes in the part where the lens is used. 4 Interference fringes shifted by 0.5 wavelength are observed in the portion where the lens is used. 3 One interference fringe shifted by one wavelength is observed in the portion where the lens is used. 2 Two interference fringes shifted by one wavelength are confirmed in the portion where the lens is used. 1 Two or more interference fringes shifted by one wavelength are confirmed in the lens specification portion.

【0056】ここで述べる、レンズ使用部分は本実施例
の場合レンズ外径77.5mmに対し、レンズ中心より
70mm範囲を指す。ウエルドライン長さ36の測定は
ノギス(ミツトヨ製 CS−S15M)を使用し図8の
ウエルドライン長さを測定した。
In the present embodiment, the portion using the lens described here indicates a range of 70 mm from the lens center with respect to the lens outer diameter of 77.5 mm. The weld line length 36 was measured using a caliper (CS-S15M manufactured by Mitutoyo) and the weld line length in FIG. 8 was measured.

【0057】(5)圧縮量 圧縮量の測定は、成形圧縮シリンダーに設置したマグネ
ットスケール(LH−20B SONY製)にて測定し
た。
(5) Amount of Compression The amount of compression was measured using a magnet scale (manufactured by LH-20B SONY) installed in a molding compression cylinder.

【0058】[実施例1]ビスフェノールAとホスゲン
から合成された粘度平均分子量22500のポリカーボ
ネート樹脂100重量部に紫外線吸収剤2−(2’−ヒ
ドロキシ−5’−t−オクチル)−ベンゾトリアゾール
0.3重量部、熱安定剤トリス(ノニルフェニル)ホス
ファイト0.03重量部および離型剤ステアリン酸モノ
グリセライド0.2重量部を配合し、住友重機(株)製
の射出成形機(SYCAPSG220)にコア圧縮金型
を用いて下記仕様の眼鏡用凹レンズの射出圧縮成形を行
った。 前面曲率半径 293.00mm 後面曲率半径 −73.25mm 中心厚み 1.5 mm コバ厚み 10.0 mm レンズ外径 77.5 mm 後面頂点焦点距離 −166.67mm この時の主要な成形条件は、下記の通りであった。 シリンダー温度 280℃〜300℃ 金型温度 125℃ 成形サイクル 240秒
Example 1 An ultraviolet absorber 2- (2'-hydroxy-5'-t-octyl) -benzotriazole was added to 100 parts by weight of a polycarbonate resin having a viscosity average molecular weight of 22500 synthesized from bisphenol A and phosgene. 3 parts by weight, tris (nonylphenyl) phosphite 0.03 part by weight of heat stabilizer and 0.2 part by weight of monoglyceride stearate were mixed together, and the core was added to an injection molding machine (SYCAPSG220) manufactured by Sumitomo Heavy Industries, Ltd. Injection compression molding of a spectacle concave lens having the following specifications was performed using a compression mold. Front curvature radius 293.00mm Rear curvature radius -73.25mm Center thickness 1.5mm Edge thickness 10.0mm Lens outer diameter 77.5mm Rear vertex focal length -166.67mm The main molding conditions at this time are as follows. It was as follows. Cylinder temperature 280 to 300 ° C Mold temperature 125 ° C Molding cycle 240 seconds

【0059】可動側レンズモールドを後退させ、射出前
にキャビティをレンズ中心厚み7.6mm(拡大容積率
約215%)まで拡大し、次いでキャビティに樹脂を充
填したのち、樹脂圧が56.8MPaになった時、図3
に示す方法によって成形した。圧縮工程では、可動側レ
ンズモールドをレンズ中心厚1.5mmになるまで圧縮
し、余剰の樹脂は射出シリンダーに返した。この時、圧
縮量調整ロッドとダイセットは接触していない。このこ
とは、圧縮ロッド先端に赤色のチョークをつけ、ダイセ
ットに赤色のチョークが付着していないことにより確認
した。余剰の樹脂がシリンダーに戻ったことは、射出ス
トローク測定機器の測定値が射出時と反対方向に増加す
ることにより確認した。圧縮工程における樹脂圧は1
2.4MPaで掛けた時間は2.14秒、圧縮圧は10
2.56MPaで掛けた時間は2.14秒とした。その
後保圧工程では樹脂圧を63.3MPa、圧縮圧を6
4.1MPaに設定しバランスを取った。圧縮量が保圧
工程で165μm(圧縮量の変動幅)光学成形品が薄く
なる方向に変動した。この後、冷却が完了後にポリカー
ボネート樹脂製のマイナス眼鏡レンズ(凹レンズ)を取り
出した。得られたポリカーボネート樹脂製のマイナス眼
鏡レンズの評価結果を表1に示す。
The movable lens mold is retracted, and the cavity is expanded to a lens center thickness of 7.6 mm (expansion volume ratio of about 215%) before injection, and then the resin is filled into the cavity, and the resin pressure is increased to 56.8 MPa. Figure 3
The molding was carried out by the method shown in FIG. In the compression step, the movable lens mold was compressed until the lens center thickness became 1.5 mm, and excess resin was returned to the injection cylinder. At this time, the compression amount adjusting rod and the die set are not in contact with each other. This was confirmed by attaching red chalk to the tip of the compression rod and not attaching red chalk to the die set. The return of the surplus resin to the cylinder was confirmed by the fact that the value measured by the injection stroke measuring device increased in the direction opposite to that at the time of injection. The resin pressure in the compression process is 1
The time applied at 2.4 MPa is 2.14 seconds, and the compression pressure is 10
The time applied at 2.56 MPa was 2.14 seconds. Thereafter, in the pressure holding step, the resin pressure is 63.3 MPa, and the compression pressure is 6
The balance was set at 4.1 MPa. The compression amount fluctuated in the direction of thinning the optical molded product by 165 μm (a fluctuation range of the compression amount) in the pressure holding step. Thereafter, after cooling was completed, a minus spectacle lens (concave lens) made of a polycarbonate resin was taken out. Table 1 shows the evaluation results of the obtained minus spectacle lenses made of polycarbonate resin.

【0060】[比較例1]実施例1の金型を用い圧縮量
調整空間を1mmとして、可動側モールドを射出前に所
定のレンズ中心厚1.5mmより1mm余分に開き2.
5mmとした。射出工程では、ほぼキャビティー容積の
100〜105%の樹脂を射出した。この場合、樹脂の
シリンダーへの戻りはなかった。このことは、射出スト
ローク測定機器の測定値が射出時と反対方向に増加しな
かったことにより確認した。その後、102.56MP
aの圧縮力をかけ、圧縮量調整ロッドが固定側ダイセッ
トと接触することにより、圧縮した。圧縮量調整ロッド
がダイセットと接触したことは、圧縮ロッド先端につけ
た赤色のチョークがダイセットに付着していることによ
り確認した。得られたポリカーボネート樹脂製のマイナ
ス眼鏡レンズの評価結果を表1に示す。
[Comparative Example 1] Using the mold of Example 1, the compression amount adjustment space was set to 1 mm, and the movable mold was opened by 1 mm more than a predetermined lens center thickness of 1.5 mm before injection.
5 mm. In the injection step, a resin of approximately 100 to 105% of the cavity volume was injected. In this case, there was no return of the resin to the cylinder. This was confirmed by the fact that the value measured by the injection stroke measuring device did not increase in the direction opposite to that at the time of injection. Then, 102.56MP
The compression force of a was applied, and the compression amount adjusting rod was compressed by coming into contact with the fixed-side die set. The contact of the compression amount adjusting rod with the die set was confirmed by the fact that the red chalk attached to the tip of the compression rod adhered to the die set. Table 1 shows the evaluation results of the obtained minus spectacle lenses made of polycarbonate resin.

【0061】[実施例2]実施例1において、圧縮工程
では、可動側レンズモールドをレンズ中心厚1.5mm
より更に100μm余分(圧縮押し返し量)に圧縮し、
余剰の樹脂は射出シリンダーに返した。この時、圧縮量
調整ロッドとダイセットは接触していない。圧縮工程に
おける樹脂圧は12.4MPaで掛けた時間は2.10
秒、圧縮圧は102.56MPaで掛けた時間は2.1
6秒とした。その後保圧工程では樹脂圧を63.3MP
a、圧縮圧を64.1MPaに設定しバランスを取っ
た。圧縮量が保圧工程で155μm(圧縮量の変動幅)
光学成形品が薄くなる方向に変動した。この後、冷却が
完了後にポリカーボネート樹脂製のマイナスを取り出し
た。得られたポリカーボネート樹脂製のマイナス眼鏡レ
ンズの評価結果を表1に示す。
[Embodiment 2] In Embodiment 1, in the compression step, the movable side lens mold is set to a lens center thickness of 1.5 mm.
Compress to an additional 100 μm (compression pushback amount)
Excess resin was returned to the injection cylinder. At this time, the compression amount adjusting rod and the die set are not in contact with each other. The resin pressure in the compression step was 12.4 MPa and the time taken was 2.10.
Seconds, the compression pressure is 102.56 MPa and the time applied is 2.1.
6 seconds. After that, in the pressure holding step, the resin pressure was set to 63.3MP.
a, The compression pressure was set to 64.1 MPa to balance. The amount of compression is 155 μm in the dwelling process (the fluctuation range of the amount of compression)
The optical molded product fluctuated in a direction to become thinner. Then, after cooling was completed, a polycarbonate resin minus was taken out. Table 1 shows the evaluation results of the obtained minus spectacle lenses made of polycarbonate resin.

【0062】[実施例3]実施例1において、圧縮工程
では、可動側レンズモールドをレンズ中心厚1.5mm
より更に100μm(圧縮押し返し量)余分に圧縮し、
余剰の樹脂は射出シリンダーに返した。この時、圧縮量
調整ロッドとダイセットは接触していない。圧縮工程に
おける樹脂圧は12.4MPaで掛けた時間は2.10
秒、圧縮圧は102.56MPaで掛けた時間は2.1
6秒とした。その後保圧工程では樹脂圧を63.3MP
a、圧縮圧を64.1MPaに設定しバランスを取っ
た。この後、樹脂圧を63.3MPaより2秒から90
秒の間隔で段階的に徐々に68.7MPa増加させた。
また、圧縮圧もバランスを取った後64.1MPaより
2〜60秒間隔で段階的に徐々に42.5MPaまで減
少させた。圧縮量が保圧工程で35μm(圧縮量の変動
幅)変動した。冷却が完了後に凹レンズ(マイナスレン
ズ)成形品を取り出した。得られたポリカーボネート樹
脂製のマイナス眼鏡レンズの評価結果を表1に示す。
Example 3 In Example 1, in the compression step, the movable-side lens mold was set to a lens center thickness of 1.5 mm.
Compress further by 100μm (compression return amount)
Excess resin was returned to the injection cylinder. At this time, the compression amount adjusting rod and the die set are not in contact with each other. The resin pressure in the compression step was 12.4 MPa and the time taken was 2.10.
Seconds, the compression pressure is 102.56 MPa and the time applied is 2.1.
6 seconds. After that, in the pressure holding step, the resin pressure was set to 63.3MP.
a, The compression pressure was set to 64.1 MPa to balance. Thereafter, the resin pressure was increased from 63.3 MPa to 90 seconds for 2 seconds.
It was gradually increased by 68.7 MPa at intervals of seconds.
After the balance of the compression pressure, the compression pressure was gradually decreased from 64.1 MPa to 42.5 MPa at intervals of 2 to 60 seconds. The compression amount fluctuated by 35 μm (a fluctuation width of the compression amount) in the pressure holding step. After the cooling was completed, the concave lens (minus lens) molded product was taken out. Table 1 shows the evaluation results of the obtained minus spectacle lenses made of polycarbonate resin.

【0063】[実施例4]ビスフェノールAとホスゲン
から合成された粘度平均分子量22500のポリカーボ
ネート樹脂100重量部に紫外線吸収剤2−(2’−ヒ
ドロキシ−5’−t−オクチル)−ベンゾトリアゾール
0.3重量部、熱安定剤トリス(ノニルフェニル)ホス
ファイト0.03重量部および離型剤ステアリン酸モノ
グリセライド0.2重量部を配合し、住友重機(株)製
の射出成形機(SYCAPSG220)にコア圧縮金型
を用いて下記仕様の眼鏡用凸レンズの射出圧縮成形を行
った。 前面曲率半径 97.67mm 後面曲率半径 −146.50mm 中心厚み 3.7mm コバ厚み 1.0mm レンズ外径 77.5mm 後面頂点焦点距離 500.0mm 圧縮前射出樹脂圧 56.8MPa
Example 4 100 parts by weight of a polycarbonate resin having a viscosity average molecular weight of 22500 synthesized from bisphenol A and phosgene was added to 100 parts by weight of an ultraviolet absorbent 2- (2'-hydroxy-5'-t-octyl) -benzotriazole. 3 parts by weight, tris (nonylphenyl) phosphite 0.03 part by weight of heat stabilizer and 0.2 part by weight of monoglyceride stearate were mixed together, and the core was added to an injection molding machine (SYCAPSG220) manufactured by Sumitomo Heavy Industries, Ltd. Injection compression molding of a convex lens for spectacles having the following specifications was performed using a compression mold. Front curvature radius 97.67 mm Rear curvature radius -146.50 mm Center thickness 3.7 mm Edge thickness 1.0 mm Lens outer diameter 77.5 mm Rear vertex focal length 500.0 mm Injection resin pressure before compression 56.8 MPa

【0064】可動側レンズモールドを後退させ、射出前
にキャビティをレンズ中心厚み5.1mm(拡大容積率
約160%)まで拡大し、次いでキャビティに樹脂を充
填したのち、樹脂圧が56.8MPaになった時、図3
に示す方法によって成形した。圧縮工程では、可動側レ
ンズモールドをレンズ中心厚3.7mmになるまで圧縮
し、余剰の樹脂は射出シリンダーに返した。この時、圧
縮量調整ロッドとダイセットは接触していない。このこ
とは、圧縮ロッド先端に赤色のチョークをつけ、ダイセ
ットに赤色のチョークが付着していないことにより確認
した。余剰の樹脂がシリンダーに戻ったことは、射出ス
トローク測定機器の測定値が射出時と反対方向に増加す
ることにより確認した。圧縮工程における樹脂圧は1
8.6MPaで掛けた時間は0.42秒、圧縮圧は10
2.56MPaで掛けた時間は0.42秒とした。その
後保圧工程では樹脂圧を63.3MPa、圧縮圧を6
4.1MPaに設定しバランスを取った。この後、冷却
が完了後にポリカーボネート樹脂製のプラス眼鏡レンズ
(凸レンズ)を取り出した。圧縮量が保圧工程で135μ
m(圧縮量の変動幅)光学成形品が薄くなる方向に変動
した。得られたポリカーボネート樹脂製のプラス眼鏡レ
ンズの評価結果を表1に示す。
The movable lens mold is retracted, and the cavity is expanded to a center thickness of the lens of 5.1 mm (expansion volume ratio of about 160%) before injection, and then the resin is filled in the cavity, and the resin pressure is increased to 56.8 MPa. Figure 3
The molding was carried out by the method shown in FIG. In the compression step, the movable lens mold was compressed until the lens center thickness became 3.7 mm, and excess resin was returned to the injection cylinder. At this time, the compression amount adjusting rod and the die set are not in contact with each other. This was confirmed by attaching red chalk to the tip of the compression rod and not attaching red chalk to the die set. The return of the surplus resin to the cylinder was confirmed by the fact that the value measured by the injection stroke measuring device increased in the direction opposite to that at the time of injection. The resin pressure in the compression process is 1
The time applied at 8.6 MPa is 0.42 seconds, and the compression pressure is 10
The time applied at 2.56 MPa was 0.42 seconds. Thereafter, in the pressure holding step, the resin pressure is 63.3 MPa, and the compression pressure is 6
The balance was set at 4.1 MPa. After this, after the cooling is completed, a plus spectacle lens made of polycarbonate resin
(Convex lens) was taken out. The amount of compression is 135μ in the holding process
m (fluctuation width of the amount of compression) The optical molded product fluctuated in a direction to become thinner. Table 1 shows the evaluation results of the obtained polycarbonate resin plus spectacle lenses.

【0065】[比較例2]実施例4の金型を用い圧縮量
調整空間を1mmとして、可動側モールドを射出前に所
定のレンズ中心厚3.7mmより1mm余分に開き4.
7mmとした。射出工程では、ほぼキャビティー容積の
100〜105%の樹脂を射出した。この場合、樹脂の
シリンダーへの戻りはなかった。このことは、射出スト
ローク測定機器の測定値が射出時と反対方向に増加しな
かったことにより確認した。その後、102.56MP
aの圧縮力をかけ、圧縮量調整ロッドが固定側ダイセッ
トと接触することにより、圧縮した。圧縮量調整ロッド
がダイセットと接触したことは、圧縮ロッド先端につけ
た赤色のチョークがダイセットに付着していることによ
り確認した。上記事項以外は、実施例4と同様な条件で
同品種のポリカーボネート樹脂製のプラス眼鏡レンズを
圧縮成形した。得られたポリカーボネート樹脂製のプラ
ス眼鏡レンズの評価結果を表1に示す。
[Comparative Example 2] Using the mold of Example 4, the compression amount adjustment space was set to 1 mm, and the movable mold was opened 1 mm more than a predetermined lens center thickness of 3.7 mm before injection.
7 mm. In the injection step, a resin of approximately 100 to 105% of the cavity volume was injected. In this case, there was no return of the resin to the cylinder. This was confirmed by the fact that the value measured by the injection stroke measuring device did not increase in the direction opposite to that at the time of injection. Then, 102.56MP
The compression force of a was applied, and the compression amount adjusting rod was compressed by coming into contact with the fixed-side die set. The contact of the compression amount adjusting rod with the die set was confirmed by the fact that the red chalk attached to the tip of the compression rod adhered to the die set. Except for the above, under the same conditions as in Example 4, a positive spectacle lens made of the same kind of polycarbonate resin was compression molded. Table 1 shows the evaluation results of the obtained polycarbonate resin plus spectacle lenses.

【0066】[実施例5]実施例4において、圧縮工程
では、可動側レンズモールドをレンズ中心厚3.7mm
より更に100μm余分(圧縮押し返し量)に圧縮し、
余剰の樹脂は射出シリンダーに返した。この時、圧縮量
調整ロッドとダイセットは接触していない。圧縮工程に
おける樹脂圧は18.6MPaで掛けた時間は0.39
秒、圧縮圧は102.56MPaで掛けた時間は0.4
4秒とした。その後保圧工程では樹脂圧を63.3MP
a、圧縮圧を64.1MPaに設定しバランスを取っ
た。圧縮量が保圧工程で145μm(圧縮量の変動幅)
光学成形品が薄くなる方向に変動した。この後、冷却が
完了後にポリカーボネート樹脂製のプラス眼鏡レンズを
取り出した。得られたポリカーボネート樹脂製のプラス
眼鏡レンズの評価結果を表1に示す。
[Embodiment 5] In Embodiment 4, in the compression step, the movable lens mold is set to a lens center thickness of 3.7 mm.
Compress to an additional 100 μm (compression pushback amount)
Excess resin was returned to the injection cylinder. At this time, the compression amount adjusting rod and the die set are not in contact with each other. The resin pressure in the compression step was 18.6 MPa and the time applied was 0.39.
Seconds, the compression pressure is 102.56MPa and the time applied is 0.4
4 seconds. After that, in the pressure holding step, the resin pressure was set to 63.3MP.
a, The compression pressure was set to 64.1 MPa to balance. The amount of compression is 145 μm in the holding process (the fluctuation width of the amount of compression)
The optical molded product fluctuated in a direction to become thinner. Thereafter, after the cooling was completed, the plus spectacle lens made of polycarbonate resin was taken out. Table 1 shows the evaluation results of the obtained polycarbonate resin plus spectacle lenses.

【0067】[実施例6]実施例4において、圧縮工程
では、可動側レンズモールドをレンズ中心厚3.7mm
より更に100μm余分(圧縮押し返し量)に圧縮し、
余剰の樹脂は射出シリンダーに返した。この時、圧縮量
調整ロッドとダイセットは接触していない。圧縮工程に
おける樹脂圧は18.6MPaで掛けた時間は0.39
秒、圧縮圧は102.56MPaで掛けた時間は0.4
4秒とした。その後保圧工程では樹脂圧を63.3MP
a、圧縮圧を64.1MPaに設定しバランスを取っ
た。この後、樹脂圧を63.3MPaより2秒から90
秒の間隔で段階的に徐々に68.7MPa増加させた。
また、圧縮圧もバランスを取った後64.1MPaより
2〜60秒間隔で段階的に徐々に42.5MPaまで減
少させた。圧縮量が保圧工程で35μm(圧縮量の変動
幅)光学成形品が薄くなる方向に変動した。冷却が完了
後にポリカーボネート樹脂製のプラス眼鏡レンズを取り
出した。得られたポリカーボネート樹脂製のプラス眼鏡
レンズの評価結果を表1に示す。
[Embodiment 6] In Embodiment 4, in the compression step, the movable side lens mold is set to a lens center thickness of 3.7 mm.
Compress to an additional 100 μm (compression pushback amount)
Excess resin was returned to the injection cylinder. At this time, the compression amount adjusting rod and the die set are not in contact with each other. The resin pressure in the compression step was 18.6 MPa and the time applied was 0.39.
Seconds, the compression pressure is 102.56MPa and the time applied is 0.4
4 seconds. After that, in the pressure holding step, the resin pressure was set to 63.3MP.
a, The compression pressure was set to 64.1 MPa to balance. Thereafter, the resin pressure was increased from 63.3 MPa to 90 for 2 seconds.
It was gradually increased by 68.7 MPa at intervals of seconds.
The compression pressure was also gradually reduced from 64.1 MPa to 42.5 MPa at intervals of 2 to 60 seconds after balancing. The amount of compression fluctuated in the direction of decreasing the thickness of the optical molded product by 35 μm (the fluctuation width of the amount of compression) in the pressure holding step. After the cooling was completed, the plus spectacle lens made of polycarbonate resin was taken out. Table 1 shows the evaluation results of the obtained polycarbonate resin plus spectacle lenses.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【発明の効果】上記、発明の詳細な説明および実施例、
比較例等で明らかなように本発明の射出圧縮成形方法は
極めて簡単な金型構造および成形方法で転写性に極めて
優れた光学成形品を製造することができるので、光学成
形品、特に眼鏡レンズの射出圧縮成形に好適に使用され
るものである。
As described above, the detailed description and examples of the present invention,
As is clear from the comparative examples and the like, the injection compression molding method of the present invention can produce an optical molded product having extremely excellent transferability with a very simple mold structure and molding method. It is preferably used for injection compression molding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の射出圧縮成形法の概念図。FIG. 1 is a conceptual diagram of a conventional injection compression molding method.

【図2】本発明の射出圧縮成形法の概念図。FIG. 2 is a conceptual diagram of the injection compression molding method of the present invention.

【図3】圧縮量と圧縮圧、樹脂圧の関係図。FIG. 3 is a diagram showing a relationship between a compression amount, a compression pressure, and a resin pressure.

【図4】規定の厚みよりも20〜200μm過剰に一気
に圧縮し、樹脂圧と圧縮圧との調整で所定厚みまで押し
戻した時の圧縮量と圧縮圧、樹脂圧の関係図。
FIG. 4 is a diagram showing the relationship between the compression amount, the compression pressure, and the resin pressure when the resin is compressed at a stretch by 20 to 200 μm beyond a specified thickness and pushed back to a predetermined thickness by adjusting the resin pressure and the compression pressure.

【図5】冷却過程と共に多段階的に樹脂圧を上げ、圧縮
圧を下げる調節を行った時の圧縮量と圧縮圧、樹脂圧の
関係図。
FIG. 5 is a diagram showing the relationship between the amount of compression, the compression pressure, and the resin pressure when the resin pressure is increased and the compression pressure is adjusted to decrease in multiple stages during the cooling process.

【図6】蛍光灯評価時の目、試料および蛍光灯の位置関
係概略図。
FIG. 6 is a schematic diagram of the positional relationship between eyes, a sample, and a fluorescent lamp during fluorescent lamp evaluation.

【図7】歪み検査機の構造および試料の位置関係概略
図。
FIG. 7 is a schematic diagram of a structure of a strain inspection machine and a positional relationship of a sample.

【図8】ウエルドラインの発生したレンズの模式図。FIG. 8 is a schematic view of a lens in which a weld line has occurred.

【符号の説明】[Explanation of symbols]

1.固定側鏡面 2.可動側鏡面 3.キャビティ 4.圧縮量調整ロッド 5.固定側ダイセット 6.圧縮量と等しい幅の空間 7.エジェクタープレート 8.台座 9.圧縮プレート 10.圧縮力 11.反力 12.マグネットスケール 13.樹脂圧力 14.圧縮量 15.圧縮圧 16.樹脂圧 17.圧縮工程での圧縮圧の時間 18.圧縮工程での樹脂圧の時間 19.圧縮工程の時間 20.圧縮工程での樹脂圧 21.圧縮工程での圧縮圧 22.保圧工程での樹脂圧 23.保圧工程での圧縮圧 24.所定の厚さに圧縮した後の圧縮量の変動幅 25.圧縮押し返し量 26.押し返し工程 27.樹脂圧多段制御部 28.射出圧多段制御部 29.蛍光灯評価での目と試料の位置関係 30.蛍光灯 31.互いに偏光面が直交した偏光板 32.試料(光学成形品) 33.磨りガラス 34.蛍光灯 35.試料(マイナスレンズ) 36.ウエルドライン長さ 37.保圧工程の時間 1. 1. Fixed side mirror surface Movable mirror surface 3. Cavity 4. 4. Compression amount adjustment rod 5. Fixed side die set 6. Space with width equal to compression amount Ejector plate 8. Pedestal 9. Compression plate 10. Compressive force 11. Reaction force 12. Magnet scale 13. Resin pressure 14. Compression amount 15. Compression pressure 16. Resin pressure 17. 17. Time of compression pressure in compression step 18. Time of resin pressure in compression step Compression process time 20. 21. Resin pressure in compression process Compression pressure in compression step 22. 23. Resin pressure in pressure holding process Compression pressure in the pressure holding process 24. 25. Fluctuation width of the compression amount after compression to a predetermined thickness Compression pushback amount 26. Pushing back step 27. Resin pressure multi-stage control unit 28. Injection pressure multi-stage control unit 29. 30. Positional relationship between eye and sample in fluorescent lamp evaluation Fluorescent light 31. Polarization plates whose polarization planes are orthogonal to each other 32. Sample (optical molded product) 33. Frosted glass 34. Fluorescent light 35. Sample (minus lens) 36. Weld line length 37. Packing time

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂からなる光学成形品を射出
圧縮成形する方法において、(1)目的とする光学成形
品の容積よりもキャビティの容積を拡大させ、(2)そ
のキャビティ内に溶融熱可塑性樹脂を射出シリンダーを
通じて射出させ、(3)次いで拡大されたキャビティを
成形品の規定の厚み、またはその厚みより200μm小
さい厚みまで圧縮させ、(4)射出シリンダーにおける
樹脂圧とキャビティにおける圧縮圧とを、最終的に成形
品の規定の厚みとなるように、成形品の規定の厚みより
も変動幅が100μmを越えない範囲で調整するか変動
させ、(5)溶融熱可塑性樹脂がキャビティ内で目的と
する成形品が形成するまで保持し、次いで、(6)得ら
れた成形品をキャビティから取り出す、ことを特徴とす
る光学成形品の射出圧縮成形方法。
In a method of injection-compression molding an optical molded product made of a thermoplastic resin, (1) the volume of a cavity is larger than the volume of a target optical molded product, and (2) the heat of melting is formed in the cavity. The plastic resin is injected through an injection cylinder, (3) the enlarged cavity is then compressed to a specified thickness of the molded article or 200 μm less than the thickness, (4) the resin pressure in the injection cylinder and the compression pressure in the cavity. Is adjusted or varied so that the variation width does not exceed 100 μm from the prescribed thickness of the molded article so that the prescribed thickness of the molded article is finally obtained. Injection of an optical molded product characterized by holding until a target molded product is formed, and then (6) taking out the obtained molded product from the cavity. Shrinkage molding method.
【請求項2】 前記工程(3)において、拡大されたキ
ャビティを成形品の規定の厚みよりも20〜180μm
小さい厚みまで圧縮させる請求項1記載の光学成形品の
射出圧縮成形方法。
2. In the step (3), the enlarged cavity is set to have a thickness of 20 to 180 μm more than a specified thickness of a molded article.
The injection compression molding method for an optical molded product according to claim 1, wherein the molding is performed to a small thickness.
【請求項3】 前記工程(4)において、射出シリンダ
ーにおける樹脂圧とキャビティにおける圧縮圧とを、最
終的に成形品の規定の厚みとなるように、成形品の規定
の厚みよりも変動幅が100μmを越えない範囲で変動
させる請求項1又は請求項2記載の光学成形品の射出圧
縮成形方法。
3. In the step (4), the resin pressure in the injection cylinder and the compression pressure in the cavity are varied more than the specified thickness of the molded product so that the final thickness of the molded product becomes the specified thickness. The injection compression molding method for an optical molded product according to claim 1 or 2, wherein the method is varied within a range not exceeding 100 µm.
【請求項4】 光学成形品がレンズである請求項1〜3
のいずれか1項記載の光学成形品の射出圧縮成形方法。
4. The optical molded product is a lens.
The injection compression molding method for an optical molded product according to any one of the above.
【請求項5】 光学成形品がポリカーボネート製の眼鏡
レンズである請求項1〜4のいずれか1項記載の光学成
形品の射出圧縮成形方法。
5. The injection compression molding method for an optical molded product according to claim 1, wherein the optical molded product is a spectacle lens made of polycarbonate.
JP10964099A 1998-04-22 1999-04-16 Injection molding method for optical molded products Expired - Fee Related JP3650540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10964099A JP3650540B2 (en) 1998-04-22 1999-04-16 Injection molding method for optical molded products

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-111886 1998-04-22
JP11188698 1998-04-22
JP10964099A JP3650540B2 (en) 1998-04-22 1999-04-16 Injection molding method for optical molded products

Publications (2)

Publication Number Publication Date
JP2000006216A true JP2000006216A (en) 2000-01-11
JP3650540B2 JP3650540B2 (en) 2005-05-18

Family

ID=26449377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10964099A Expired - Fee Related JP3650540B2 (en) 1998-04-22 1999-04-16 Injection molding method for optical molded products

Country Status (1)

Country Link
JP (1) JP3650540B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325511A (en) * 2003-04-21 2004-11-18 Sumitomo Dow Ltd Spectacle lens
JP2009150720A (en) * 2007-12-19 2009-07-09 Casio Comput Co Ltd Weldline inspection device, weldline inspection method and manufacturing method of resin-molded product
WO2011052177A1 (en) * 2009-10-28 2011-05-05 Hoya株式会社 Method for producing plastic lens and injection compression molding apparatus
JP2011093151A (en) * 2009-10-28 2011-05-12 Hoya Corp Method for manufacturing plastic lens and injection compression molding machine
JP2012139868A (en) * 2010-12-28 2012-07-26 Hoya Corp Method of manufacturing plastic lens and injection molding device
JP2016112867A (en) * 2014-12-18 2016-06-23 日本ゼオン株式会社 Producing method of resin forming product
JP2021109402A (en) * 2020-01-14 2021-08-02 株式会社小糸製作所 Injection molded product and molding method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325511A (en) * 2003-04-21 2004-11-18 Sumitomo Dow Ltd Spectacle lens
JP2009150720A (en) * 2007-12-19 2009-07-09 Casio Comput Co Ltd Weldline inspection device, weldline inspection method and manufacturing method of resin-molded product
WO2011052177A1 (en) * 2009-10-28 2011-05-05 Hoya株式会社 Method for producing plastic lens and injection compression molding apparatus
JP2011093151A (en) * 2009-10-28 2011-05-12 Hoya Corp Method for manufacturing plastic lens and injection compression molding machine
JP2011093150A (en) * 2009-10-28 2011-05-12 Hoya Corp Method for manufacturing plastic lens and injection compression molding machine
TWI551427B (en) * 2009-10-28 2016-10-01 Hoya Corp A manufacturing method of a plastic lens, and an injection compression molding device
JP2012139868A (en) * 2010-12-28 2012-07-26 Hoya Corp Method of manufacturing plastic lens and injection molding device
JP2016112867A (en) * 2014-12-18 2016-06-23 日本ゼオン株式会社 Producing method of resin forming product
JP2021109402A (en) * 2020-01-14 2021-08-02 株式会社小糸製作所 Injection molded product and molding method thereof
JP7399718B2 (en) 2020-01-14 2023-12-18 株式会社小糸製作所 Injection molded products and their molding methods

Also Published As

Publication number Publication date
JP3650540B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
EP1106326B1 (en) Injection compression molding method for optically formed product
US9989674B2 (en) Plastics optical component and method for manufacturing the same
US7794643B2 (en) Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
US20060220268A1 (en) Method and mold for injection molding optical article with increased surface accuracy
US8936363B2 (en) Polarizing lens made of aromatic polycarbonate
JP2000006216A (en) Injection and compression molding method of optical molding
US20190283290A1 (en) Optical element and method for manufacturing optical element
US20080152886A1 (en) High-pressure injection moulding process for the production of optical components
JP2000006215A (en) Injection and compression molding method of optical molding
US11801626B2 (en) Resin part and its manufacturing method
JP3262987B2 (en) Optical component molding method
JP2006284993A (en) Plastic optical component and method for molding plastic optical component
US11654644B2 (en) Method for injection molding plus power lens elements
JP2000006214A (en) Injection and compression molding method of optical molding
EP3354439B1 (en) Method for injection molding weld line free minus power lens elements
JP5795175B2 (en) Manufacturing method of plastic lens for spectacles
JP2024054649A (en) Manufacturing method for optical components and optical components
JP2023145995A (en) Manufacturing method for optical component
WO2020137378A1 (en) Resin component and method for manufacturing same
Schaub Plastic Optics
JP2024060687A (en) Optical component, mold of optical component, and manufacturing method of optical component
JPH07266391A (en) Manufacture and manufacturing device of plastic lens
Marshall Molded plastic lens design
Goev et al. Modern trends in industrial technology of production of optical polymeric components for night vision devices

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050218

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees