JPH08187793A - Plastic optical member and production thereof - Google Patents

Plastic optical member and production thereof

Info

Publication number
JPH08187793A
JPH08187793A JP7017536A JP1753695A JPH08187793A JP H08187793 A JPH08187793 A JP H08187793A JP 7017536 A JP7017536 A JP 7017536A JP 1753695 A JP1753695 A JP 1753695A JP H08187793 A JPH08187793 A JP H08187793A
Authority
JP
Japan
Prior art keywords
core
synthetic resin
core member
molding
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7017536A
Other languages
Japanese (ja)
Inventor
Tadamasa Fuchida
忠正 渕田
Kazuhiro Yanagidaira
和寛 柳平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Texeng Co Ltd
Original Assignee
Nisshin Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Koki Co Ltd filed Critical Nisshin Koki Co Ltd
Priority to JP7017536A priority Critical patent/JPH08187793A/en
Publication of JPH08187793A publication Critical patent/JPH08187793A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To produce a plastic optical member inexpensively with high accuracy. CONSTITUTION: A core lens element 1 is molded from a synthetic resin and used as an insert to mold resin films 2, 3 composed of the same material quality on the upper and rear surfaces of the core lens element 1. A convex lens part 10 and an outer flange part 11 are provided to the core lens element 1 and the resin films are molded in such a state that the core lens element 1 is suspended by bringing support pins into contact with the outer flange part 11. By this structure, since wall thickness at the time of molding becomes thin, the internal stress of the resin films is reduced and the generation of strain, warpage and internal bubbles is suppressed and a highly accurate refraction surface can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラスチック光学部材及
びその製造方法に係り、特に合成樹脂を用いたプラスチ
ックレンズを高精度に形成する場合に好適な技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic optical member and a manufacturing method thereof, and more particularly to a technique suitable for forming a plastic lens using a synthetic resin with high precision.

【0002】[0002]

【従来の技術】従来から、その加工の容易性及び軽量等
の利点により、プラスチック製の光学部材、すなわちレ
ンズ、プリズム等を射出成形により製造する場合が増加
してきている。射出成形は、成形機シリンダ内で可塑化
された樹脂を金型内に注入し、所定の保圧をかけなが
ら、キャビティ内面より熱を奪い取って樹脂を冷却して
固化させ、金型を開いて成形品を取り出すという通常の
手段により行われる。
2. Description of the Related Art Conventionally, the number of cases in which an optical member made of plastic, that is, a lens, a prism, etc., is manufactured by injection molding has been increasing due to its advantages such as ease of processing and light weight. Injection molding is performed by injecting the plasticized resin in the molding machine cylinder into the mold and applying a predetermined holding pressure to remove heat from the inner surface of the cavity to cool and solidify the resin and open the mold. This is carried out by the usual means of taking out the molded product.

【0003】[0003]

【発明が解決しようとする課題】上記射出成形によるプ
ラスチック製光学部材においては、任意の形状に容易に
成形でき、製造時間も短く、大量生産に適している等の
利点がある。しかし、一方で、成形品の形状精度をある
程度以上高めようとすると、金型のキャビティ形状の細
かな補正が必要になり、製造コストが増大するととも
に、この補正は加工上や作業上の困難性により極めて実
現性に乏しいものであるため、光学部材の光学寸法、例
えば屈折面の充分な高精度化ができないという問題点が
ある。これはキャビティ内で樹脂が硬化する際の硬化収
縮によって成形品にヒケやソリが発生するからである。
The above-mentioned injection-molded plastic optical member has advantages that it can be easily molded into an arbitrary shape, the manufacturing time is short, and it is suitable for mass production. However, on the other hand, if it is attempted to improve the shape accuracy of the molded product to a certain extent or more, fine correction of the cavity shape of the mold is required, which increases the manufacturing cost and this correction is difficult in processing and work. Therefore, there is a problem in that the optical dimensions of the optical member, for example, the refraction surface cannot be sufficiently highly accurate because it is extremely unrealizable. This is because the shrinkage of the resin when it cures in the cavity causes sink marks and warpage in the molded product.

【0004】特に近年、大型又は肉厚の光学部品を上記
樹脂成形により製造する需要が高まっているが、成形品
の厚さが増加するに伴って先に硬化する樹脂表面部と遅
れて硬化する樹脂内部との間に硬化収縮による応力が発
生し、樹脂内部に真空泡(ボイド)が発生したり、成形
品に内部応力が残留したりするという問題点がある。そ
して、このような肉厚の光学部材については、金型内に
おける冷却時間が厚さの増加により急激に長くなるた
め、成形サイクルが著しく増大するという問題点もあ
る。
In recent years, in particular, the demand for producing large or thick optical parts by the resin molding has increased, but as the thickness of the molded product increases, the resin surface portion which is cured first and the resin surface portion are cured later. There is a problem that stress due to curing shrinkage occurs between the inside of the resin, vacuum bubbles (voids) occur inside the resin, and internal stress remains in the molded product. Further, for such a thick optical member, there is also a problem that the cooling cycle in the mold is drastically lengthened due to the increase of the thickness, so that the molding cycle is significantly increased.

【0005】そこで本発明は上記問題点を解決するもの
であり、その課題は、肉厚の大きい光学部材であっても
高精度かつ迅速に、しかも低コストに成形することので
きる光学部材の構造、及びその製造方法を確立すること
にある。
Therefore, the present invention is to solve the above-mentioned problems, and the problem thereof is the structure of an optical member which can be molded with high accuracy and speed and at low cost even if the optical member has a large thickness. , And to establish a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明のプラスチック光学部材は、合成樹脂製の芯部
材が内部に収容され、該芯部材の少なくとも厚さ方向
に、該芯部材と同材質の合成樹脂を被覆した状態に成形
してなるものである。
In order to solve the above-mentioned problems, a plastic optical member of the present invention has a core member made of synthetic resin housed therein, and at least in the thickness direction of the core member. It is formed by covering with a synthetic resin of the same material.

【0007】この場合において、前記芯部材の形状を、
少なくとも光学的有効範囲において合成樹脂被覆後の光
学部材と相似形状とすることが好ましい。
In this case, the shape of the core member is
At least in an optically effective range, it is preferable to make the shape similar to that of the optical member coated with the synthetic resin.

【0008】また、前記芯部材の厚さと、前記芯部材を
被覆する合成樹脂の厚さとをほぼ同厚とすることが好ま
しい。
Further, it is preferable that the thickness of the core member and the thickness of the synthetic resin coating the core member are substantially the same.

【0009】さらに、前記芯部材を被覆する合成樹脂の
厚さが前記芯部材の厚さよりも薄いことが望ましい。
Further, it is desirable that the thickness of the synthetic resin coating the core member is thinner than the thickness of the core member.

【0010】また、前記芯部材と前記合成樹脂層とを噛
合するように形成することが好ましい。
Further, it is preferable that the core member and the synthetic resin layer are formed so as to mesh with each other.

【0011】そして、前記芯部材の表裏にそれぞれ被覆
された合成樹脂層を相互に接続された状態に形成するこ
とが好ましい。
It is preferable that the synthetic resin layers coated on the front and back of the core member are formed in a mutually connected state.

【0012】プラスチック光学部材の製造方法として
は、合成樹脂製の芯部材を形成した後に、該芯部材を金
型のキャビティ内に導入し、前記芯部材と同材質の合成
樹脂を前記キャビティ内に注入して前記芯部材を前記合
成樹脂により被覆するものである。
As a method of manufacturing a plastic optical member, after a core member made of synthetic resin is formed, the core member is introduced into a cavity of a mold, and a synthetic resin of the same material as the core member is introduced into the cavity. It is injected to cover the core member with the synthetic resin.

【0013】この場合において、前記金型には、前記芯
部材を前記キャビティ内において支持する支持部材を出
没可能に設け、該支持部材により前記芯部材を支持した
状態で前記合成樹脂を注入し、前記合成樹脂の注入後で
前記合成樹脂の硬化前に、前記支持部材をキャビティ内
から退避させることが好ましい。
In this case, a support member for supporting the core member in the cavity is provided in the mold so as to be retractable, and the synthetic resin is injected while the core member is supported by the support member. It is preferable that the support member be retracted from the cavity after the injection of the synthetic resin and before the curing of the synthetic resin.

【0014】[0014]

【作用】請求項1によれば、芯部材をその厚さ方向に同
材質の合成樹脂で被覆したことにより、成形時の肉厚が
従来よりも薄くなり、成形時の内部応力の発生、歪みや
反り等の変形、内部泡の形成等の恐れが低減されるの
で、高精度なプラスチック光学部材とすることができる
とともに、成形時の冷却時間が短くなるので、成形サイ
クルを短縮することができる。
According to the present invention, by covering the core member in its thickness direction with the synthetic resin of the same material, the wall thickness at the time of molding becomes thinner than before, and internal stress and strain at the time of molding occur. Since the risk of deformation such as warpage and warp, formation of internal bubbles, etc. is reduced, a highly accurate plastic optical member can be obtained, and the cooling time at the time of molding is shortened, so that the molding cycle can be shortened. .

【0015】請求項2によれば、光学的有効範囲内にお
いて芯部材の形状を光学部材の相似形にすることによ
り、被覆される合成樹脂層の厚さがほぼ均一になるた
め、成形時の内部応力の発生、歪みや反り等の変形、内
部泡の形成等の恐れをさらに低減することができ、高精
度の光学表面を得ることができる。
According to the second aspect, by making the shape of the core member similar to that of the optical member within the optically effective range, the thickness of the synthetic resin layer to be coated becomes substantially uniform. The risk of generation of internal stress, deformation such as distortion and warpage, formation of internal bubbles, etc. can be further reduced, and a highly accurate optical surface can be obtained.

【0016】請求項3によれば、芯部材の厚さと、これ
を被覆する合成樹脂の厚さとをほぼ等しくすることによ
り、芯部材の成形工程、合成樹脂被覆工程共に肉厚を薄
くすることができるので、成形時の冷却時間の総和を最
小限にとどめることができ、効率的に製造することがで
きる。
According to the third aspect of the present invention, the thickness of the core member and the thickness of the synthetic resin coating the core member are made substantially equal to each other, whereby the thickness of the core member can be reduced in both the molding process and the synthetic resin coating process. Therefore, the total cooling time at the time of molding can be minimized, and efficient manufacturing can be achieved.

【0017】請求項4によれば、芯部材の厚さよりもこ
れを被覆する合成樹脂の厚さを薄くすることにより、芯
部材の成形時間は多少長くなるものの、被覆する合成樹
脂層が薄いために型の転写性が向上し、極めて高精度な
光学部材を製造できる。
According to the present invention, by making the thickness of the synthetic resin covering the core member smaller than that of the core member, the molding time of the core member is somewhat increased, but the synthetic resin layer covering the core member is thin. The transferability of the mold is improved and an extremely accurate optical member can be manufactured.

【0018】請求項5によれば、芯部材と合成樹脂層と
が噛合するように形成することにより、離型時若しくは
熱や衝撃を受けた際の合成樹脂層の剥離を防止すること
ができる。
According to the fifth aspect, by forming the core member and the synthetic resin layer so as to mesh with each other, it is possible to prevent the synthetic resin layer from peeling off at the time of mold release or upon receiving heat or impact. .

【0019】請求項6によれば、芯部材の表裏に形成さ
れた合成樹脂層が相互に接続されるように成形すること
により、離型時若しくは熱や衝撃を受けた際の合成樹脂
層の剥離を防止することができる。
According to the sixth aspect, by molding the synthetic resin layers formed on the front and back surfaces of the core member so as to be connected to each other, the synthetic resin layers at the time of mold release or when subjected to heat or impact are formed. Peeling can be prevented.

【0020】請求項7によれば、芯部材をその厚さ方向
に同材質の合成樹脂で被覆したことにより、成形時の肉
厚が従来よりも薄くなり、成形時の内部応力の発生、歪
みや反り等の変形、内部泡の形成等の恐れが低減される
ので、高精度なプラスチック光学部材とすることができ
るとともに、成形時の冷却時間が短くなるので、成形サ
イクルを短縮することができる。
According to the seventh aspect, by covering the core member in its thickness direction with the synthetic resin of the same material, the wall thickness at the time of molding becomes thinner than before, and the generation of internal stress and strain at the time of molding. Since the risk of deformation such as warpage and warp, formation of internal bubbles, etc. is reduced, a highly accurate plastic optical member can be obtained, and the cooling time at the time of molding is shortened, so that the molding cycle can be shortened. .

【0021】請求項8によれば、芯部材を支持するため
の支持部材を出没自在に設け、樹脂の注入後に支持部材
をキャビティ内から退避させることにより、周囲に支持
部材の痕跡のない成形品を製造でき、光学部材に予め支
持のための部位を設ける必要もなくなる。
According to the present invention, a support member for supporting the core member is provided so as to be retractable, and the support member is retracted from the inside of the cavity after the injection of the resin. Can be manufactured, and it is not necessary to previously provide a portion for supporting the optical member.

【0022】[0022]

【実施例】次に、図面を参照して、本発明に係るプラス
チック光学部材の実施例を説明する。以下に説明する複
数の実施例は凸レンズ又は凹レンズを例として構成され
ているが、本発明は上記レンズに限定されることなく、
凸メニスカスレンズ、凹メニスカスレンズ、シリンドリ
カルレンズ、fθレンズ、フレネルレンズ等の各種レン
ズ、プリズム、グレーティング等の他の光学部材にも広
く適用できるものである。
Embodiments of the plastic optical member according to the present invention will now be described with reference to the drawings. Although a plurality of examples described below are configured by taking a convex lens or a concave lens as an example, the present invention is not limited to the above lens,
It can be widely applied to various optical members such as various lenses such as a convex meniscus lens, a concave meniscus lens, a cylindrical lens, an fθ lens and a Fresnel lens, a prism and a grating.

【0023】〔実施例1〕図1は本発明に係る実施例1
として形成した凸レンズを示すものである。この凸レン
ズにおいて、芯レンズ体1は、PMMA等のメタクリル
樹脂、ポリカーボネート、ポリスチレン等の透明樹脂で
射出成形により形成したものである。芯レンズ体1に
は、中央部に形成された表裏を球面とした凸レンズ部1
0と、凸レンズ部10の周囲に形成された平板状の外鍔
部11とが設けられている。
[First Embodiment] FIG. 1 shows a first embodiment according to the present invention.
It shows a convex lens formed as. In this convex lens, the core lens body 1 is formed by injection molding with a methacrylic resin such as PMMA, a transparent resin such as polycarbonate or polystyrene. The core lens body 1 has a convex lens portion 1 having spherical surfaces on the front and back formed in the central portion.
0, and a flat plate-like outer collar portion 11 formed around the convex lens portion 10 are provided.

【0024】次に、この芯レンズ体1を射出成形機の金
型内に収容して、芯レンズ体1をインサートとし、芯レ
ンズ体1の構成樹脂と同じ樹脂を用いてインサート成形
を行い、芯レンズ体1の表裏に樹脂皮膜2,3を形成す
る。この樹脂皮膜2,3も同様に球面で構成された凸レ
ンズ部20,30と、平板状の外鍔部21,31とを備
えている。上記凸レンズ部10、20、30は一体の凸
レンズ形状を構成し、光学的有効径OPを備えている。
Next, the core lens body 1 is housed in a mold of an injection molding machine, the core lens body 1 is used as an insert, and insert molding is performed using the same resin as the core lens body 1 resin. Resin coatings 2 and 3 are formed on the front and back surfaces of the core lens body 1. The resin coatings 2 and 3 are similarly provided with convex lens portions 20 and 30 each formed of a spherical surface and flat outer flange portions 21 and 31. The convex lens portions 10, 20, 30 form an integral convex lens shape and have an optically effective diameter OP.

【0025】このようにして形成された本実施例では、
芯レンズ体1の厚さの最大値d1、樹脂皮膜2の厚さの
最大値d2、及び樹脂皮膜3の厚さの最大値d3を予め
設定して2段階の樹脂成形、すなわち、芯レンズ体1の
成形工程と、芯レンズ体1をインサートとして行う樹脂
皮膜2,3の成形工程とにより製造される。
In this embodiment thus formed,
Two-step resin molding by presetting the maximum value d1 of the thickness of the core lens body 1, the maximum value d2 of the thickness of the resin film 2, and the maximum value d3 of the thickness of the resin film 3, that is, the core lens body It is manufactured by the molding process of No. 1 and the molding process of the resin coatings 2 and 3 using the core lens body 1 as an insert.

【0026】芯レンズ体1の成形工程においては、凸レ
ンズ全体を1段階で成形する場合の厚さD=d1+d2
+d3と比べて厚さがd1と薄くなるため、成形時の内
部応力の発生が抑制され、樹脂の冷却時間も大幅に短縮
される。また、この工程においては、芯レンズ体1の凸
レンズ部10の表面D1は、最終的に形成される凸レン
ズの屈折面D2,D3にほぼ沿った凸面に成形されてい
ればよいため、芯レンズ体1に関しては精度が不要故に
容易に成形できる。
In the molding process of the core lens body 1, the thickness D = d1 + d2 when the entire convex lens is molded in one step
Since the thickness is as thin as d1 as compared with + d3, generation of internal stress at the time of molding is suppressed, and the cooling time of the resin is significantly shortened. Further, in this step, the surface D1 of the convex lens portion 10 of the core lens body 1 may be formed into a convex surface that is substantially along the refracting surfaces D2 and D3 of the finally formed convex lens. No. 1 requires no precision and can be easily molded.

【0027】また、樹脂皮膜2,3の成形工程において
は、樹脂皮膜2,3の表面で構成される屈折面D2,D
3の精度が要求されるが、樹脂皮膜2,3の成形は、芯
レンズ体1の表面D1が屈折面D2,D3にほぼ沿った
相似形状に構成されていることから、全表面的にほぼ同
じ厚さに形成されるので、厚さの変化が殆どないために
キャビティの転写性が向上し、寸法・形状精度が向上す
る。
In the step of molding the resin coatings 2 and 3, the refracting surfaces D2 and D formed by the surfaces of the resin coatings 2 and 3 are formed.
Although the accuracy of 3 is required, the molding of the resin coatings 2 and 3 is almost the same on the entire surface because the surface D1 of the core lens body 1 is formed in a similar shape along the refracting surfaces D2 and D3. Since they are formed to have the same thickness, there is almost no change in thickness, so the transferability of the cavity is improved, and the dimensional and shape accuracy is improved.

【0028】上記後段の成形工程においては、芯レンズ
体1の表裏に同時に樹脂皮膜を形成するために、芯レン
ズ体1をキャビティ内に宙吊り状態に支持して樹脂成形
が行われる。このとき通常、キャビティ内に突出する複
数の支持ピンが芯レンズ体1の外鍔部11の表面に当接
して支持するようになっている。
In the latter molding step, in order to simultaneously form a resin film on the front and back surfaces of the core lens body 1, the core lens body 1 is supported in a suspended state in the cavity for resin molding. At this time, usually, a plurality of support pins projecting into the cavity come into contact with and support the surface of the outer flange portion 11 of the core lens body 1.

【0029】ここで、上記芯レンズ体1の成形工程と、
樹脂皮膜2,3の成形工程との時間を足し合わせても、
単一工程で成形する場合に比べてかなり工程時間が短縮
される。また、上記2工程によって成形すると、1回の
成形厚さを低減することができるので、樹脂の硬化収縮
に起因する内部応力を大幅に低減することができ、問題
となる内部泡や内部応力の残留は殆ど発生しない。
Here, the molding step of the core lens body 1 and
Even if you add the time with the molding process of resin coatings 2 and 3,
The process time is considerably shortened as compared with the case of molding in a single process. Further, when the molding is performed by the above-mentioned two steps, the molding thickness of one time can be reduced, so that the internal stress caused by the curing shrinkage of the resin can be significantly reduced, and the problem of internal bubbles and internal stress Almost no residue occurs.

【0030】〔実施例2〕次に、本発明に係る実施例2
を説明する。この実施例では、芯レンズ体1の外鍔部1
1の表裏に3か所ずつ凹部12,13を形成し、この凹
部12,13上に樹脂皮膜2,3を成形している。樹脂
皮膜2,3の外鍔部21,31には、上記凹部12,1
3に対応して凸部22,32が形成される。他の部分
は、上記実施例1と同様であり、同一部分には同一符号
を付し、その説明は省略する。
[Second Embodiment] Next, a second embodiment according to the present invention.
Will be explained. In this embodiment, the outer collar portion 1 of the core lens body 1 is
Recesses 12 and 13 are formed in three places on the front and back sides of 1, and resin coatings 2 and 3 are formed on the recesses 12 and 13. The outer flanges 21 and 31 of the resin coatings 2 and 3 have the above-mentioned recesses 12 and 1, respectively.
The convex portions 22 and 32 are formed in correspondence with No. 3. The other parts are the same as those in the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted.

【0031】上記凹部12,13は基部が先端部よりも
窄まった形状になっており、樹脂皮膜2,3の成形時に
アンダーカット部が形成される。この形状により芯レン
ズ体1と樹脂皮膜2,3とが相互に噛合するように形成
されるので、両者の密着力が高められている。したがっ
て、樹脂皮膜を成形する後段の成形工程において、その
離型時に芯レンズ体1から樹脂皮膜2,3が剥離するこ
とが防止されるとともに、製造後において熱や衝撃が加
わっても芯レンズ体1と樹脂皮膜2,3とが分離しな
い。
The bases of the recesses 12 and 13 are narrower than the tips, and undercut portions are formed when the resin coatings 2 and 3 are molded. With this shape, the core lens body 1 and the resin coatings 2 and 3 are formed so as to mesh with each other, so that the adhesion force between them is enhanced. Therefore, in the subsequent molding step of molding the resin film, the resin films 2 and 3 are prevented from peeling off from the core lens body 1 at the time of releasing the core film, and the core lens body is not affected by heat or impact after manufacturing. 1 and the resin coatings 2 and 3 are not separated.

【0032】〔実施例3〕図3は本発明に係る実施例3
を示すものである。この実施例3においては、芯レンズ
体1の外鍔部11の3箇所に貫通孔14を形成し、後段
の成形工程において、樹脂皮膜2,3をこの貫通孔14
を通して連通させるものである。樹脂皮膜2,3が相互
に接続されていることにより、成形の離型時に樹脂皮膜
2,3が芯レンズ体1から剥離することが防止され、さ
らに製造後に熱や衝撃によって剥離することも防止され
る。
[Third Embodiment] FIG. 3 shows a third embodiment according to the present invention.
Is shown. In the third embodiment, the through holes 14 are formed at three locations on the outer flange portion 11 of the core lens body 1, and the resin coatings 2 and 3 are formed on the through holes 14 in the subsequent molding process.
To communicate through. By connecting the resin coatings 2 and 3 to each other, it is possible to prevent the resin coatings 2 and 3 from peeling off from the core lens body 1 at the time of mold release, and also to prevent peeling due to heat or impact after manufacturing. To be done.

【0033】〔実施例4〕図4は本発明の実施例4を示
すものであり、芯レンズ体4には外鍔部を形成せず、そ
の表面全体を樹脂皮膜5で被覆している。この実施例で
は芯レンズ体4の外周縁を樹脂皮膜5の周縁部5aによ
り被覆しているので、芯レンズ体4から樹脂皮膜5が剥
離する恐れを完全に無くすることができる。また、芯レ
ンズ体4には外鍔部を設けず、しかも外周縁の全てが被
覆されるので、芯レンズ体4の外径寸法の精度を確保す
る必要が全くなく、容易に成形することができる。
[Fourth Embodiment] FIG. 4 shows a fourth embodiment of the present invention, in which the core lens body 4 is not provided with an outer flange portion, and the entire surface thereof is covered with a resin film 5. In this embodiment, since the outer peripheral edge of the core lens body 4 is covered with the peripheral edge portion 5a of the resin coating 5, the risk of the resin coating 5 peeling from the core lens body 4 can be completely eliminated. Further, since the core lens body 4 is not provided with an outer flange portion and the entire outer peripheral edge is covered, there is no need to secure the accuracy of the outer diameter dimension of the core lens body 4, and the core lens body 4 can be easily molded. it can.

【0034】この場合、インサート成形時には、支持ピ
ンを光学的有効径OPの範囲外に当接させることによ
り、屈折面に影響を与えずに成形することができる。こ
こで、芯レンズ体4の外周縁に部分的に外鍔部を設け、
この外鍔部の表面上には樹脂皮膜を形成せず、外鍔部の
ない部分のみ表裏の樹脂皮膜が接続するように形成して
もよい。また、後述する金型構造によれば、支持ピンを
光学的有効径OPの範囲内に当接させても、屈折面に影
響を与えずに製作できる。
In this case, at the time of insert molding, by bringing the support pin into contact with the outside of the range of the optically effective diameter OP, molding can be performed without affecting the refracting surface. Here, an outer collar portion is partially provided on the outer peripheral edge of the core lens body 4,
The resin film may not be formed on the surface of the outer flange portion, and the resin films on the front and back sides may be formed to be connected only to the portion without the outer flange portion. Further, according to the mold structure described later, even if the support pin is brought into contact with the support within the range of the optically effective diameter OP, it can be manufactured without affecting the refracting surface.

【0035】〔実施例5〕図5は、本発明に係る実施例
5の形状を示すものである。この実施例では、芯レンズ
体6には外鍔部61が形成され、樹脂皮膜7は、その外
鍔部61をも含めて表面上を完全に被覆している。芯レ
ンズ体6の外鍔部61には支持ピンが当接され、この支
持ピンの支持により樹脂皮膜7が成形される。
[Fifth Embodiment] FIG. 5 shows the shape of a fifth embodiment according to the present invention. In this embodiment, an outer flange portion 61 is formed on the core lens body 6, and the resin film 7 completely covers the surface including the outer flange portion 61. A support pin is brought into contact with the outer flange portion 61 of the core lens body 6, and the resin film 7 is formed by the support of the support pin.

【0036】上記各実施例においては、芯レンズ体と樹
脂皮膜との厚さをほぼ同様にする(実施例1においてd
1=〜d2=〜d3)ことにより、成形時の厚さを最小
にすることができ、内部応力、全体的な歪みやソリ量の
低減を図ることができるとともに、成形時の冷却時間を
最小限にして成形サイクルを早めることができる。
In each of the above embodiments, the thickness of the core lens body and the resin coating are substantially the same (d in Embodiment 1).
1 = ~ d2 = ~ d3), the thickness at the time of molding can be minimized, the internal stress, the overall strain and the amount of warp can be reduced, and the cooling time at the time of molding can be minimized. The molding cycle can be shortened.

【0037】〔実施例6〕図6は本発明に係る実施例6
の構造を示すものである。この実施例は、芯レンズ体8
を最終的な凸レンズの厚さより僅かに足りない程度に厚
く形成して、この芯レンズ体8の上に樹脂皮膜9を薄く
形成したものである。この実施例においては、芯レンズ
体8の最大厚さd8と樹脂皮膜9の厚さd9との関係を
d8>>d9としたので、樹脂皮膜9の硬化収縮量が極
めて少ないため、キャビティ面の形状転写性が著しく向
上し、高精度の屈折面が得られる。また、この実施例で
は必然的に樹脂皮膜9の厚さがほぼ均一になるため、さ
らに成形品位を高めることが容易にできる。
[Sixth Embodiment] FIG. 6 shows a sixth embodiment according to the present invention.
It shows the structure of. In this embodiment, the core lens body 8
Is formed thick enough to be slightly smaller than the final thickness of the convex lens, and the resin film 9 is thinly formed on the core lens body 8. In this embodiment, the relationship between the maximum thickness d8 of the core lens body 8 and the thickness d9 of the resin coating 9 is d8 >> d9. Therefore, the curing shrinkage amount of the resin coating 9 is extremely small. The shape transfer property is remarkably improved, and a highly accurate refracting surface can be obtained. Further, in this embodiment, since the thickness of the resin film 9 is inevitably almost uniform, the molding quality can be further improved easily.

【0038】この場合、芯レンズ体8の方は逆に厚さd
9が増大しているので、成形時の冷却時間が増大すると
もに形状精度も低下する。しかし、芯レンズ体8に関し
ては形状精度は不要であり、成形品位のみ考慮すれば最
終製品の品質は上記実施例よりも良好になる。成形時間
が問題になる程長くなる場合には、芯レンズ体8を上記
各実施例と同様に複数の成形工程で形成すれば、成形時
間の短縮を図ることも可能である。
In this case, on the contrary, the core lens body 8 has a thickness d
9 increases, the cooling time at the time of molding increases and the shape accuracy decreases. However, the core lens body 8 does not require shape accuracy, and if only the molding quality is taken into consideration, the quality of the final product will be better than that of the above embodiment. If the molding time becomes long enough to cause a problem, it is possible to shorten the molding time by forming the core lens body 8 in a plurality of molding steps as in the above-described embodiments.

【0039】上記実施例1乃至実施例6においては、例
えば、最終製品の凸レンズの屈折面を非球面に形成した
い場合、芯レンズ体の凸面を球面とし、樹脂皮膜の表面
のみを非球面とすることにより、最終製品の品位を落と
さずに芯レンズ体の金型製作を容易かつ低コストにする
ことができる。しかし、芯レンズ体の凸面を樹脂皮膜の
表面とほぼ同じ形状にすることによって、より寸法精度
を上げることができ、特に実施例6においては、樹脂皮
膜9の厚さが極めて薄いことから、芯レンズ体8の形状
を、少なくともその光学的有効径の範囲内においては最
終製品の相似形にすることが最終的な屈折面の面精度を
向上させる点で望ましい。
In Examples 1 to 6 described above, for example, when it is desired to form the refracting surface of the convex lens of the final product to be an aspherical surface, the convex surface of the core lens body is a spherical surface and only the surface of the resin film is an aspherical surface. As a result, the core lens body can be easily manufactured at low cost without degrading the quality of the final product. However, by making the convex surface of the core lens body to have substantially the same shape as the surface of the resin coating, the dimensional accuracy can be further improved. In particular, in Example 6, the thickness of the resin coating 9 is extremely thin. It is desirable that the shape of the lens body 8 be similar to that of the final product, at least within the range of the optically effective diameter, in order to improve the surface accuracy of the final refracting surface.

【0040】〔実施例7〕図7は本発明に係る実施例7
の構造を示すものであり、その構造は、凹面15aを備
えた芯レンズ体15と、凹面16aを備えた樹脂皮膜1
6とを有するものである。この実施例は凹レンズである
点を除いて上記実施例4と同様である。
[Seventh Embodiment] FIG. 7 shows a seventh embodiment according to the present invention.
The core lens body 15 having the concave surface 15a and the resin film 1 having the concave surface 16a are shown in FIG.
6 and. This embodiment is the same as the above-mentioned fourth embodiment except that it is a concave lens.

【0041】次に、上記各実施例に示したプラスチック
レンズの製造方法を説明するために芯レンズ体をインサ
ートとしてインサート成形する後段の成形工程の成形金
型の構造例を説明する。図8に示すように、成形機の固
定側ダイプレート101に固定側型板102が取付けら
れ、この固定側型板102内に固定側コア103が固定
されている。固定側コア103内には、取付板104及
び駆動板105が型開き方向に摺動自在に収容され、取
付板104と駆動板105とは、その間に複数の支持ピ
ン107及び受圧ピン108を挟持した状態で、相互に
固着されている。駆動板105と固定側ダイプレート1
01との間には弾性バネ106が圧縮状態で保持されて
いる。
Next, in order to explain the method of manufacturing the plastic lens shown in each of the above embodiments, an example of the structure of the molding die in the subsequent molding step of insert molding the core lens body as an insert will be described. As shown in FIG. 8, a fixed die plate 102 is attached to a fixed die plate 101 of the molding machine, and a fixed core 103 is fixed in the fixed die plate 102. A mounting plate 104 and a driving plate 105 are slidably housed in the fixed core 103 in a mold opening direction, and the mounting plate 104 and the driving plate 105 sandwich a plurality of support pins 107 and pressure receiving pins 108 therebetween. They are fixed to each other in the state of Drive plate 105 and fixed die plate 1
The elastic spring 106 is held between 01 and 01 in a compressed state.

【0042】また、可動側ダイプレート201には可動
側型板202が取付けられ、可動側型板202の内部に
可動側コア203が固定されている。可動側コア203
の内部には取付板204及び駆動板205が型開き方向
に摺動自在に収容され、取付板204と駆動板205と
は、その間に複数の支持ピン207及び受圧ピン208
を挟持した状態で、相互に固着されている。駆動板20
5と可動側ダイプレート201との間には弾性バネ20
6が圧縮状態で保持されている。可動側ダイプレート2
01に穿設された貫通孔を通して、突出ロッド209が
出没自在に形成されており、突出ロッド209の先端は
駆動板205を押圧可能に配置されている。
A movable die plate 202 is attached to the movable die plate 201, and a movable core 203 is fixed inside the movable die plate 202. Movable core 203
A mounting plate 204 and a drive plate 205 are slidably housed inside the mold, and a plurality of support pins 207 and pressure receiving pins 208 are provided between the mounting plate 204 and the drive plate 205.
Are clamped to each other and fixed to each other. Drive plate 20
5 between the movable die plate 201 and the movable die plate 20.
6 is held in a compressed state. Movable die plate 2
A projecting rod 209 is formed so as to be retractable through a through hole provided at 01, and the tip of the projecting rod 209 is arranged so as to be able to press the drive plate 205.

【0043】図示しない射出ノズルから供給される樹脂
は、導入孔301,302を介してゲート303から、
固定側コア103及び可動側コア203の当接面により
形成されるキャビティ304に注入される。導入孔30
1には、上記受圧ピン108,208の先端に形成され
た受圧面が臨んでいる。通常は、弾性バネ106,20
6の弾性力によりキャビティ304内に支持ピン10
7,207が突出しており、インサートである芯レンズ
体6を支持ピン107に支持させた状態に導入して型閉
めを行うと、図8に示すように、より大きく設定された
弾性バネ106の弾性係数により支持ピン107の位置
は保持されるとともに、弾性バネ106よりも小さな弾
性係数をもつ弾性バネ206は若干圧縮されて支持ピン
207は多少引き込まれる。このようにして、芯レンズ
体6は支持ピン107,207により弾性力で挟持され
た状態になる。
Resin supplied from an injection nozzle (not shown) is introduced from the gate 303 through the introduction holes 301 and 302,
It is injected into the cavity 304 formed by the contact surfaces of the fixed core 103 and the movable core 203. Introduction hole 30
The pressure receiving surface formed at the tip of the pressure receiving pins 108 and 208 faces 1. Usually, the elastic springs 106, 20
By the elastic force of 6, the support pin 10 is inserted in the cavity 304.
When the core lens body 6, which is an insert, is introduced into a state where it is supported by the support pin 107 and mold closing is performed, as shown in FIG. The position of the support pin 107 is held by the elastic coefficient, and the elastic spring 206 having an elastic coefficient smaller than that of the elastic spring 106 is slightly compressed and the support pin 207 is retracted to some extent. In this way, the core lens body 6 is sandwiched by the support pins 107 and 207 by the elastic force.

【0044】この状態で導入孔301から樹脂を導入す
ると、図9に示すように、樹脂はゲート303からキャ
ビティ304内に注入されて芯レンズ体6の周囲に充満
するとともに、導入された樹脂の射出圧力により導入孔
301に臨む受圧面が押圧されることにより受圧ピン1
08,208が後退し、駆動板105,205を弾性バ
ネ106,206の弾性に抗して後退させるため、支持
ピン107,207はキャビティ304内から退避す
る。このようにして、キャビティ304内には、中央に
芯レンズ体6が浮いている状態で樹脂が硬化し、上記実
施例5のような凸レンズが形成される。
When the resin is introduced from the introduction hole 301 in this state, as shown in FIG. 9, the resin is injected from the gate 303 into the cavity 304 to fill the periphery of the core lens body 6, and The pressure receiving surface facing the introduction hole 301 is pressed by the injection pressure, so that the pressure receiving pin 1
The support pins 107 and 207 retreat from the inside of the cavity 304 because the drive plates 105 and 205 retreat against the elasticity of the elastic springs 106 and 206 by retracting the drive plates 08 and 208. In this way, the resin is cured in the cavity 304 with the core lens body 6 floating in the center, and a convex lens as in the fifth embodiment is formed.

【0045】通常、樹脂の注入圧力はキャビティ304
内に樹脂が注入されていくに従って上昇するので、芯レ
ンズ体6の周囲の殆どに樹脂が充填された時点で支持ピ
ンが退避するように、受圧ピン108,208の受圧面
積、樹脂の最大圧力、及び弾性バネ106,206の弾
性係数を相互に勘案して設計される。
Generally, the resin injection pressure is the cavity 304.
Since the temperature rises as the resin is injected into the inside, the pressure receiving areas of the pressure receiving pins 108 and 208 and the maximum pressure of the resin are set so that the support pins retract when almost all of the periphery of the core lens body 6 is filled with the resin. , And the elastic coefficients of the elastic springs 106 and 206 are mutually considered and designed.

【0046】最後に、キャビティ304内の樹脂が硬化
すると、固定側型板102と可動側型板202とが開
き、さらに突出ロッド209が駆動板205を突き出す
ことにより、支持ピンと受圧ピンが成形品を突き出す。
ここで、成形品の突き出しは、別途設けた駆動板及び突
出ピンにより行ってもよい。
Finally, when the resin in the cavity 304 is cured, the fixed side mold plate 102 and the movable side mold plate 202 are opened, and the projecting rod 209 projects the drive plate 205 to form the support pin and the pressure receiving pin. Stick out.
Here, the protrusion of the molded product may be performed by a drive plate and a protrusion pin which are separately provided.

【0047】上記のように支持ピンは樹脂圧力により自
動的に出没するため、支持ピンの先端形状を成形品に残
すことなく、周囲全てを被覆できる。ただし、通常、上
記実施例に示したように、支持ピンは芯レンズ体の外鍔
部に当接するように配置されるので、支持ピンを出没さ
せずに突き出した状態のまま成形しても構わない。な
お、上記のように外鍔部のような平板状の部分に支持ピ
ンを当接させる場合は支持ピンの先端面は平面でよい
が、凸面部のように芯レンズ体の曲面上に当接させる場
合には、支持ピンの先端面も曲面に形成することが望ま
しい。特に、成形品の外表面に合致した先端面を形成す
ることにより、退避した支持ピンの先端面がキャビティ
304の内面に対して連続するように構成することもで
きるから、芯レンズ体に外鍔部を設けなくても、支持ピ
ンの痕跡を殆ど残らないように成形することができる。
As described above, since the support pin automatically projects and retracts due to the resin pressure, the entire periphery can be covered without leaving the tip shape of the support pin in the molded product. However, as shown in the above-mentioned embodiment, the support pin is usually arranged so as to abut the outer flange portion of the core lens body, so that the support pin may be molded in the protruding state without protruding and retracting. Absent. When the support pin is brought into contact with a flat plate-like portion such as the outer flange portion as described above, the tip end surface of the support pin may be a flat surface, but like the convex portion, it is brought into contact with the curved surface of the core lens body. In this case, it is desirable to form the tip end surface of the support pin into a curved surface. In particular, by forming a front end surface that matches the outer surface of the molded product, the front end surface of the retracted support pin can be configured to be continuous with the inner surface of the cavity 304. Even if the portion is not provided, it can be molded so that the trace of the support pin is hardly left.

【0048】[0048]

【発明の効果】以上説明したように、本発明は以下の効
果を奏する。請求項1によれば、芯部材をその厚さ方向
に同材質の合成樹脂で被覆したことにより、成形時の肉
厚が従来よりも薄くなり、成形時の内部応力の発生、歪
みや反り等の変形、内部泡の形成等の恐れが低減される
ので、高精度なプラスチック光学部材とすることができ
るとともに、成形時の冷却時間が短くなるので、成形サ
イクルを短縮することができる。
As described above, the present invention has the following effects. According to claim 1, since the core member is covered with the synthetic resin of the same material in its thickness direction, the wall thickness at the time of molding becomes thinner than before, and the generation of internal stress at the time of molding, distortion, warpage, etc. Since it is possible to obtain a plastic optical member with high precision because the risk of deformation, formation of internal bubbles and the like can be reduced, the cooling time at the time of molding can be shortened, so that the molding cycle can be shortened.

【0049】請求項2によれば、光学的有効範囲内にお
いて芯部材の形状を光学部材の相似形にすることによ
り、被覆される合成樹脂層の厚さがほぼ均一になるた
め、成形時の内部応力の発生、歪みや反り等の変形、内
部泡の形成等の恐れをさらに低減することができ、高精
度の光学表面を得ることができる。
According to the second aspect, by making the shape of the core member similar to that of the optical member within the optically effective range, the thickness of the synthetic resin layer to be coated becomes substantially uniform. The risk of generation of internal stress, deformation such as distortion and warpage, formation of internal bubbles, etc. can be further reduced, and a highly accurate optical surface can be obtained.

【0050】請求項3によれば、芯部材の厚さと、これ
を被覆する合成樹脂の厚さとをほぼ等しくすることによ
り、芯部材の成形工程、合成樹脂被覆工程共に肉厚を薄
くすることができるので、成形時の冷却時間の総和を最
小限にとどめることができ、効率的に製造することがで
きる。
According to the third aspect, by making the thickness of the core member substantially equal to the thickness of the synthetic resin coating the core member, it is possible to reduce the wall thickness in both the molding process of the core member and the synthetic resin coating process. Therefore, the total cooling time at the time of molding can be minimized, and efficient manufacturing can be achieved.

【0051】請求項4によれば、芯部材の厚さよりもこ
れを被覆する合成樹脂の厚さを薄くすることにより、芯
部材の成形時間は多少長くなるものの、被覆する合成樹
脂層が薄いために型の転写性が向上し、極めて高精度な
光学部材を製造できる。
According to the fourth aspect, by making the thickness of the synthetic resin covering the core member smaller than the thickness of the core member, the molding time of the core member becomes somewhat longer, but the synthetic resin layer covering the core member is thin. The transferability of the mold is improved and an extremely accurate optical member can be manufactured.

【0052】請求項5によれば、芯部材と合成樹脂層と
が噛合するように形成することにより、離型時若しくは
熱や衝撃を受けた際の合成樹脂層の剥離を防止すること
ができる。
According to the fifth aspect, by forming the core member and the synthetic resin layer so as to mesh with each other, it is possible to prevent the synthetic resin layer from peeling off at the time of mold release or upon receiving heat or impact. .

【0053】請求項6によれば、芯部材の表裏に形成さ
れた合成樹脂層が相互に接続されるように成形すること
により、離型時若しくは熱や衝撃を受けた際の合成樹脂
層の剥離を防止することができる。
According to the sixth aspect, by molding the synthetic resin layers formed on the front and back surfaces of the core member so as to be connected to each other, the synthetic resin layers can be formed at the time of mold release or when subjected to heat or impact. Peeling can be prevented.

【0054】請求項7によれば、芯部材をその厚さ方向
に同材質の合成樹脂で被覆したことにより、成形時の肉
厚が従来よりも薄くなり、成形時の内部応力の発生、歪
みや反り等の変形、内部泡の形成等の恐れが低減される
ので、高精度なプラスチック光学部材とすることができ
るとともに、成形時の冷却時間が短くなるので、成形サ
イクルを短縮することができる。
According to the seventh aspect, by covering the core member in its thickness direction with the synthetic resin of the same material, the thickness at the time of molding becomes thinner than before, and the generation of internal stress and distortion at the time of molding. Since the risk of deformation such as warpage and warp, formation of internal bubbles, etc. is reduced, a highly accurate plastic optical member can be obtained, and the cooling time at the time of molding is shortened, so that the molding cycle can be shortened. .

【0055】請求項8によれば、芯部材を支持するため
の支持部材を出没自在に設け、樹脂の注入後に支持部材
をキャビティ内から退避させることにより、周囲に支持
部材の痕跡のない成形品を製造でき、光学部材に予め支
持のための部位を設ける必要もなくなる。
According to the eighth aspect, a support member for supporting the core member is provided so as to be retractable, and the support member is retracted from the inside of the cavity after the resin is injected, so that there is no trace of the support member on the periphery. Can be manufactured, and it is not necessary to previously provide a portion for supporting the optical member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るプラスチック光学部材の実施例1
の構造を示す断面図である。
FIG. 1 is a first embodiment of a plastic optical member according to the present invention.
FIG. 3 is a cross-sectional view showing the structure of FIG.

【図2】本発明に係るプラスチック光学部材の実施例2
の構造を示す断面図(a)及び平面図(b)である。
FIG. 2 is a second example of the plastic optical member according to the present invention.
FIG. 3 is a cross-sectional view (a) and a plan view (b) showing the structure of FIG.

【図3】本発明に係るプラスチック光学部材の実施例3
の構造を示す断面図(a)及び平面図(b)である。
FIG. 3 is a third example of the plastic optical member according to the present invention.
FIG. 3 is a cross-sectional view (a) and a plan view (b) showing the structure of FIG.

【図4】本発明に係るプラスチック光学部材の実施例4
の構造を示す断面図である。
FIG. 4 is a fourth example of the plastic optical member according to the present invention.
FIG. 3 is a cross-sectional view showing the structure of FIG.

【図5】本発明に係るプラスチック光学部材の実施例5
の構造を示す断面図である。
FIG. 5 is a fifth embodiment of the plastic optical member according to the present invention.
FIG. 3 is a cross-sectional view showing the structure of FIG.

【図6】本発明に係るプラスチック光学部材の実施例6
の構造を示す断面図である。
FIG. 6 is a sixth embodiment of the plastic optical member according to the present invention.
FIG. 3 is a cross-sectional view showing the structure of FIG.

【図7】本発明に係るプラスチック光学部材の実施例7
の構造を示す断面図である。
FIG. 7 is a seventh embodiment of the plastic optical member according to the present invention.
FIG. 3 is a cross-sectional view showing the structure of FIG.

【図8】上記実施例5のプラスチック光学部材を製造す
る場合に適したインサート成形用の金型構造を示す断面
図である。
FIG. 8 is a cross-sectional view showing a mold structure for insert molding suitable for manufacturing the plastic optical member of Example 5;

【図9】同金型構造における樹脂注入時の様子を示す断
面図である。
FIG. 9 is a cross-sectional view showing a state of resin injection in the mold structure.

【符号の説明】[Explanation of symbols]

1 芯レンズ体 2,3 樹脂皮膜 11 外鍔部 OP 光学的有効径 D2,D3 屈折面 12,13 凹部 14 貫通孔 1 Core Lens Body 2, 3 Resin Coating 11 Outer Collar Part OP Optical Effective Diameter D2, D3 Refractive Surface 12, 13 Recess 14 Through Hole

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂製の芯部材が内部に収容され、
該芯部材の少なくとも厚さ方向に、該芯部材と同材質の
合成樹脂を被覆した状態に成形してなるプラスチック光
学部材。
1. A synthetic resin core member is housed inside,
A plastic optical member formed by molding a synthetic resin of the same material as that of the core member in at least a thickness direction of the core member.
【請求項2】 請求項1において、前記芯部材の形状
は、少なくとも光学的有効範囲において合成樹脂被覆後
の光学部材と相似形状であることを特徴とするプラスチ
ック光学部材。
2. The plastic optical member according to claim 1, wherein the shape of the core member is similar to that of the optical member coated with the synthetic resin at least in an optically effective range.
【請求項3】 請求項1又は請求項2において、前記芯
部材の厚さと、前記芯部材を被覆する合成樹脂の厚さと
がほぼ同厚であることを特徴とするプラスチック製光学
部材。
3. The plastic optical member according to claim 1, wherein the core member and the synthetic resin coating the core member have substantially the same thickness.
【請求項4】 請求項1又は請求項2において、前記芯
部材を被覆する合成樹脂の厚さが前記芯部材の厚さより
も薄いことを特徴とするプラスチック光学部材。
4. The plastic optical member according to claim 1, wherein the thickness of the synthetic resin coating the core member is smaller than the thickness of the core member.
【請求項5】 請求項1において、前記芯部材と前記合
成樹脂層とが噛合するように形成されていることを特徴
とするプラスチック光学部材。
5. The plastic optical member according to claim 1, wherein the core member and the synthetic resin layer are formed so as to mesh with each other.
【請求項6】 請求項1において、前記芯部材の表裏に
それぞれ被覆された合成樹脂層が相互に接続された状態
で形成されていることを特徴とするプラスチック光学部
材。
6. The plastic optical member according to claim 1, wherein synthetic resin layers respectively covering the front and back surfaces of the core member are formed in a state of being connected to each other.
【請求項7】 合成樹脂製の芯部材を形成した後に、該
芯部材を金型のキャビティ内に導入し、前記芯部材と同
材質の合成樹脂を前記キャビティ内に注入して前記芯部
材を前記合成樹脂により被覆することを特徴とするプラ
スチック光学部材の製造方法。
7. After forming a synthetic resin core member, the core member is introduced into a cavity of a mold, and a synthetic resin of the same material as the core member is injected into the cavity to form the core member. A method for manufacturing a plastic optical member, which comprises coating with the synthetic resin.
【請求項8】 請求項7において、前記金型には、前記
芯部材を前記キャビティ内において支持する支持部材を
出没可能に設け、該支持部材により前記芯部材を支持し
た状態で前記合成樹脂を注入し、前記合成樹脂の注入後
で前記合成樹脂の硬化前に、前記支持部材をキャビティ
内から退避させることを特徴とするプラスチック光学部
材の製造方法。
8. The mold according to claim 7, wherein a support member that supports the core member in the cavity is provided in the mold so as to be retractable, and the synthetic resin is supported in a state where the support member supports the core member. A method for manufacturing a plastic optical member, characterized in that the support member is retracted from the inside of the cavity after the injection and after the injection of the synthetic resin and before the curing of the synthetic resin.
JP7017536A 1995-01-09 1995-01-09 Plastic optical member and production thereof Pending JPH08187793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7017536A JPH08187793A (en) 1995-01-09 1995-01-09 Plastic optical member and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7017536A JPH08187793A (en) 1995-01-09 1995-01-09 Plastic optical member and production thereof

Publications (1)

Publication Number Publication Date
JPH08187793A true JPH08187793A (en) 1996-07-23

Family

ID=11946648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7017536A Pending JPH08187793A (en) 1995-01-09 1995-01-09 Plastic optical member and production thereof

Country Status (1)

Country Link
JP (1) JPH08187793A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105328A (en) * 2006-10-27 2008-05-08 Matsushita Electric Ind Co Ltd Method of manufacturing composite optical part and composite optical part obtained thereby
WO2012070456A1 (en) 2010-11-24 2012-05-31 Canon Kabushiki Kaisha Plastic optical element and method of making the same
EP2495096A2 (en) 2011-03-04 2012-09-05 Canon Kabushiki Kaisha Optical component and method of making the same
EP2666619A1 (en) * 2012-05-23 2013-11-27 Canon Kabushiki Kaisha Plastic optical element and method of manufacturing the same
EP2666620A1 (en) 2012-05-23 2013-11-27 Canon Kabushiki Kaisha Plastics optical component and method for manufacturing the same
EP2867004A1 (en) * 2012-06-29 2015-05-06 Johnson & Johnson Vision Care, Inc. Lens precursor with features for the fabrication of an ophthalmic lens
JP2016505906A (en) * 2013-01-28 2016-02-25 ワンフォーカス テクノロジー, エルエルシー Adjustable soft contact lens
EP3000588A1 (en) 2014-09-24 2016-03-30 Canon Kabushiki Kaisha Plastic optical component and method for producing the same
CN106393573A (en) * 2016-08-31 2017-02-15 台州市点睛模业有限公司 Manufacturing method and injection mold for multi-layer lens
US10302968B2 (en) 2013-01-28 2019-05-28 Onefocus Vision, Inc. Fluidic module for accommodating soft contact lens
JP2019130832A (en) * 2018-01-31 2019-08-08 住友重機械工業株式会社 Injection molding method and molding device
WO2019219445A1 (en) * 2018-05-15 2019-11-21 HELLA GmbH & Co. KGaA Method for producing an optical lens and optical lens produced by said method
US11143887B2 (en) 2013-12-20 2021-10-12 Onefocus Vision, Inc. Fluidic module for accommodating soft contact lens

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105328A (en) * 2006-10-27 2008-05-08 Matsushita Electric Ind Co Ltd Method of manufacturing composite optical part and composite optical part obtained thereby
US8964313B2 (en) 2010-11-24 2015-02-24 Canon Kabushiki Kaisha Plastic optical element and method of making the same
WO2012070456A1 (en) 2010-11-24 2012-05-31 Canon Kabushiki Kaisha Plastic optical element and method of making the same
EP2495096A2 (en) 2011-03-04 2012-09-05 Canon Kabushiki Kaisha Optical component and method of making the same
CN102654587A (en) * 2011-03-04 2012-09-05 佳能株式会社 Optical component and method of making the same
JP2012183703A (en) * 2011-03-04 2012-09-27 Canon Inc Plastic optical element and method for manufacturing the same
EP2495096A3 (en) * 2011-03-04 2016-09-21 Canon Kabushiki Kaisha Optical component and method of making the same
US9283719B2 (en) 2011-03-04 2016-03-15 Canon Kabushiki Kaisha Optical component and method of making the same
US9360666B2 (en) 2012-05-23 2016-06-07 Canon Kabushiki Kaisha Plastics optical component and method for manufacturing the same
JP2014002362A (en) * 2012-05-23 2014-01-09 Canon Inc Plastic optical member and method for manufacturing the same
US8947795B2 (en) 2012-05-23 2015-02-03 Canon Kabushiki Kaisha Plastic optical element and method of manufacturing the same
JP2013246207A (en) * 2012-05-23 2013-12-09 Canon Inc Plastic optical member and method for manufacturing the same
EP2666620B1 (en) * 2012-05-23 2019-09-18 Canon Kabushiki Kaisha Plastics optical component and method for manufacturing the same
CN103424785A (en) * 2012-05-23 2013-12-04 佳能株式会社 Plastic optical element and method of manufacturing the same
US9989674B2 (en) 2012-05-23 2018-06-05 Canon Kabushiki Kaisha Plastics optical component and method for manufacturing the same
EP2666620A1 (en) 2012-05-23 2013-11-27 Canon Kabushiki Kaisha Plastics optical component and method for manufacturing the same
EP2666619A1 (en) * 2012-05-23 2013-11-27 Canon Kabushiki Kaisha Plastic optical element and method of manufacturing the same
CN103424785B (en) * 2012-05-23 2016-12-28 佳能株式会社 Plastic optical element and manufacture method thereof
EP2867004A1 (en) * 2012-06-29 2015-05-06 Johnson & Johnson Vision Care, Inc. Lens precursor with features for the fabrication of an ophthalmic lens
JP2016505906A (en) * 2013-01-28 2016-02-25 ワンフォーカス テクノロジー, エルエルシー Adjustable soft contact lens
US10018855B2 (en) 2013-01-28 2018-07-10 Onefocus Technology, Llc Accommodating soft contact lens
US10302968B2 (en) 2013-01-28 2019-05-28 Onefocus Vision, Inc. Fluidic module for accommodating soft contact lens
US10338411B2 (en) 2013-01-28 2019-07-02 Onefocus Technology, Llc Accommodating soft contact lens
US11874531B2 (en) 2013-01-28 2024-01-16 Onefocus Technology, Llc Accommodating soft contact lens
US10754176B2 (en) 2013-01-28 2020-08-25 Onefocus Technology, Llc Accommodating soft contact lens
US11143887B2 (en) 2013-12-20 2021-10-12 Onefocus Vision, Inc. Fluidic module for accommodating soft contact lens
US11774781B2 (en) 2013-12-20 2023-10-03 Onefocus Vision, Inc. Fluidic module for accommodating soft contact lens
EP3000588A1 (en) 2014-09-24 2016-03-30 Canon Kabushiki Kaisha Plastic optical component and method for producing the same
CN106393573A (en) * 2016-08-31 2017-02-15 台州市点睛模业有限公司 Manufacturing method and injection mold for multi-layer lens
JP2019130832A (en) * 2018-01-31 2019-08-08 住友重機械工業株式会社 Injection molding method and molding device
CN112118954A (en) * 2018-05-15 2020-12-22 海拉有限双合股份公司 Method for manufacturing optical lens and optical lens manufactured by the method
WO2019219445A1 (en) * 2018-05-15 2019-11-21 HELLA GmbH & Co. KGaA Method for producing an optical lens and optical lens produced by said method

Similar Documents

Publication Publication Date Title
JPH08187793A (en) Plastic optical member and production thereof
JPS6156090B2 (en)
US5067800A (en) Composite optical article and method of manufacture thereof
JPS6097301A (en) Resin optical element and method for producing said element
JP5479704B2 (en) Two-color molded product and its manufacturing method
JPH08201672A (en) Fixing structure of optical member
US11801626B2 (en) Resin part and its manufacturing method
JP2002316339A (en) Method for manufacturing polarizing optical member
JP2774472B2 (en) Optical reflection mirror and its manufacturing method
JP3131620B2 (en) Injection compression molding method
JP3810456B2 (en) Mold for eyeglass lenses
JP2825725B2 (en) Method for manufacturing plastic mirror, apparatus for manufacturing the same, and method for manufacturing plastic molded product
JPH0552481B2 (en)
JPH09300371A (en) Mold for optical element
JP3728119B2 (en) Optical element mold and molding method
JP3580560B2 (en) Elastic compression molding method and elastic compression mold
JP2000084950A (en) Mold for molding optical element, molding method, and optical element
JPS61272116A (en) Molding of thermoplastic
JP3327799B2 (en) Molding method and mold for long optical element
JPH03128218A (en) Manufacture of optical reflecting mirror and molding die
CN116038958A (en) Device manufacturing method, device and device manufacturing equipment
JPH05254862A (en) Production of resin-bonded aspherical lens
JPH08190007A (en) Optical reflection mirror and its production
JPH07266391A (en) Manufacture and manufacturing device of plastic lens
JPH0139337B2 (en)