JP3131620B2 - Injection compression molding method - Google Patents

Injection compression molding method

Info

Publication number
JP3131620B2
JP3131620B2 JP02305370A JP30537090A JP3131620B2 JP 3131620 B2 JP3131620 B2 JP 3131620B2 JP 02305370 A JP02305370 A JP 02305370A JP 30537090 A JP30537090 A JP 30537090A JP 3131620 B2 JP3131620 B2 JP 3131620B2
Authority
JP
Japan
Prior art keywords
injection
molding
molding method
filling
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02305370A
Other languages
Japanese (ja)
Other versions
JPH04176623A (en
Inventor
晃 四ッ辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO MANUFACTURING CO., LTD.
Nachi Fujikoshi Corp
Japan Steel Works Ltd
Original Assignee
TAIYO MANUFACTURING CO., LTD.
Nachi Fujikoshi Corp
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO MANUFACTURING CO., LTD., Nachi Fujikoshi Corp, Japan Steel Works Ltd filed Critical TAIYO MANUFACTURING CO., LTD.
Priority to JP02305370A priority Critical patent/JP3131620B2/en
Publication of JPH04176623A publication Critical patent/JPH04176623A/en
Application granted granted Critical
Publication of JP3131620B2 publication Critical patent/JP3131620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/568Applying vibrations to the mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は射出圧縮成形法に関するもので、特に熱可塑
性樹脂、あるいは複合材料を用いて、光学レンズ、プリ
ズム、反射鏡、各種精密機械部品等の精密成形品を成形
し得る射出圧縮成形法に関する。
Description: TECHNICAL FIELD The present invention relates to an injection compression molding method. In particular, the present invention relates to an optical lens, a prism, a reflecting mirror, various precision machine parts, and the like using a thermoplastic resin or a composite material. And an injection compression molding method capable of molding a precision molded product.

(従来の技術) 最近、プラスチック材料を使用して、レンズ、プリズ
ム、ポリゴンミラー、回折格子、カメラ部品、機械部品
等の超精密部品を、ミクロンあるいはサブミクロンの精
度で成形することが市場の要求として急速に高まりつつ
ある。
(Prior Art) Recently, there is a demand in the market for molding ultra-precision parts such as lenses, prisms, polygon mirrors, diffraction gratings, camera parts, and mechanical parts with a precision of micron or submicron using plastic materials. Is growing rapidly.

このような超精密部品は高精度な金型、射出成形機、
高品質な成形材料を使用して成形することが必然である
が、いかにそのような機器や材料を用いても、成形品に
要求される精度を、射出成形で達成することは非常に難
しいとされている。
Such ultra-precision parts are high-precision molds, injection molding machines,
It is necessary to mold using high-quality molding materials, but it is extremely difficult to achieve the precision required for molded products by injection molding, no matter how such equipment and materials are used. Have been.

一般に行われている精密射出成形で用いる金型を、第
1図及び第2図で示す。
FIGS. 1 and 2 show a mold used in precision injection molding that is generally performed.

第1図は最も標準的な射出成形方法で、射出成形機か
らの溶融材料はスプル2より充填され、ランナ3、ゲー
ト4を通ってキャビティ(成形品形成部)5に充填され
る構造となっている。なお同図において、1はノズルタ
ッチ部、6はスプルロックピン、7はエジェクタプレー
トをそれぞれ示している。
FIG. 1 shows a most standard injection molding method, in which a molten material from an injection molding machine is filled from a sprue 2, passed through a runner 3 and a gate 4, and filled into a cavity (molded product forming section) 5. ing. In FIG. 1, reference numeral 1 denotes a nozzle touch portion, 6 denotes a sprue lock pin, and 7 denotes an ejector plate.

このとき充填される材料の充填速度(射出速度ともい
う)及び充填圧力を、射出成形機で制御することが重要
で、通常は速度を4段あるいは10段階で制御し、また材
料の収縮を防止するために圧力も多段で制御することが
行われている。
At this time, it is important to control the filling speed (also called injection speed) and filling pressure of the material to be filled by an injection molding machine. Usually, the speed is controlled in 4 steps or 10 steps, and the material is prevented from shrinking. For this purpose, the pressure is also controlled in multiple stages.

また最近では射出圧縮成形といわれる成形法も盛んに
行われるようになってきている。
Recently, a molding method called injection compression molding has also been actively performed.

この方法の原理を第2図に示す。この方法は金型が高
圧で閉じられた段階で可動部10を後退させ、射出成形機
からスプル12、ランナ13、ゲート14を通過させてキャビ
ティ15内に材料を充填し、充填終了後、又は充填終了直
前に可動部10を前進させてキャビティ15内の充填材料を
加圧して行う成形方法である。なお同図において、11は
ノズルタッチ部、16はスプルロックピン、17はエジェク
タプレート、18は押圧部材、19はプッシュロッドをそれ
ぞれ示している。
The principle of this method is shown in FIG. This method retracts the movable part 10 at the stage when the mold is closed at a high pressure, fills the cavity 15 with the material by passing the sprue 12, the runner 13, and the gate 14 from the injection molding machine, and after the filling is completed, or This is a molding method in which the movable part 10 is advanced immediately before the end of the filling to pressurize the filling material in the cavity 15. In the figure, reference numeral 11 denotes a nozzle touch portion, 16 denotes a sprue lock pin, 17 denotes an ejector plate, 18 denotes a pressing member, and 19 denotes a push rod.

第1図の成形方法では、充填材料にかけられる圧力
が、ゲート4から遠地点になるにしたがって大幅に低下
してしまうのに対して、第2図の成形方法は、材料に均
一な圧力をかけることができる長所がある。
In the molding method shown in FIG. 1, the pressure applied to the filling material is greatly reduced as the distance from the gate 4 increases, whereas in the molding method shown in FIG. 2, a uniform pressure is applied to the material. There is an advantage that can be.

通常、射出成形品は充填圧力によってその成形収縮率
が変化するといわれているが、第1図の方法で成形され
た成形品は、当然のことながらゲート部4の近傍とその
遠地点とでは寸法及び密度が異なることになる。
In general, it is said that the molding shrinkage of an injection-molded product changes depending on the filling pressure, but the molded product formed by the method of FIG. The densities will be different.

しかし第2図の成形方法では、そのような短所が大幅
に改善される。すなわちこの方法では、ゲート14から圧
力をかけるのではなく、可動部10によって成形品全体に
圧力をかけるので、前記成形法の不均等圧力と成形品の
寸法バラツキといった問題点は大幅に改善される。
However, the disadvantages of the molding method of FIG. 2 are greatly improved. That is, in this method, the pressure is not applied from the gate 14 but is applied to the entire molded product by the movable portion 10. Therefore, the problems such as the uneven pressure of the molding method and the dimensional variation of the molded product are greatly improved. .

(発明が解決しようとする課題) しかしこの方法でもさらに、以下のような問題点が存
在する。それは可動部10で成形材料を加圧しても、その
圧力の伝播効率が悪いといった欠点を有することであ
る。すなわち肉厚の成形品では、可動部10による加圧面
と非加圧面とに圧力勾配が生じ、成形品にその影響が現
れ、結果として、超精密部品に要求される精度が得られ
難いといえる。
(Problems to be Solved by the Invention) However, this method also has the following problems. That is, even if the molding material is pressurized by the movable portion 10, there is a disadvantage that the pressure transmission efficiency is poor. That is, in a molded product having a large thickness, a pressure gradient is generated between the pressurized surface and the non-pressurized surface by the movable portion 10, and the influence appears on the molded product, and as a result, it can be said that it is difficult to obtain the accuracy required for an ultra-precision part. .

この発明は上記従来の欠点を解決するためになされた
ものであって、その目的は、超精密部品を高品質に成形
可能な射出圧縮成形法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional drawbacks, and an object of the present invention is to provide an injection compression molding method capable of molding ultra-precision parts with high quality.

(課題を解決するための手段) そこで第1請求項記載の射出圧縮成形法は、金型の一
部が射出成形機と自在に連動する可動部を有する射出成
形機を用い、キャビティ内に射出された成形材料を上記
可動部でもって振動加圧する射出圧縮成形法において、
上記可動部がキャビティ内の成形品の肉厚を減少させる
状態において成形材料を射出し、次に可動部を後退さ
せ、可動部後退分の成形材料を追加充填することを特徴
としている。
(Means for Solving the Problems) Accordingly, the injection compression molding method according to the first aspect uses an injection molding machine having a movable part in which a part of a mold is freely linked to the injection molding machine, and the injection molding is performed into a cavity. In the injection compression molding method in which the formed molding material is vibrated and pressed by the movable portion,
The method is characterized in that the movable section injects molding material in a state where the thickness of the molded article in the cavity is reduced, then retracts the movable section, and additionally fills the molding material with the retracted movable section.

さらに第2請求項記載の射出圧縮成形法は、上記可動
部の後退時に、上記可動部を出退方向に振動させること
を特徴としている。
Further, the injection compression molding method according to the second aspect is characterized in that when the movable portion is retracted, the movable portion is vibrated in a retracting direction.

(作用) 上記第1請求項記載の射出圧縮成形法では、溶融材料
に均一で、しかも自在な圧力を作用させることが可能で
ある。
(Operation) In the injection compression molding method according to the first aspect, it is possible to apply a uniform and free pressure to the molten material.

また上記射出圧縮成形法では、広い空間(キャビテ
ィ)内に、小さなゲートから高速で材料充填する場合に
生ずる不具合、例えばウエルドやジェティングの発生を
防止し得る。
In addition, in the above-mentioned injection compression molding method, it is possible to prevent a problem that occurs when material is filled into a large space (cavity) from a small gate at a high speed, for example, generation of weld and jetting.

さらに第2請求項記載の射出圧縮成形法では、溶融分
子の整列効果に起因して、充填材料のキャビティへの充
填が一段と行い易くなると共に、複合材料等では繊維、
フィラー等の配向性の制御をも行うことが可能になる。
Furthermore, in the injection compression molding method according to the second aspect, the filling of the filling material into the cavity becomes easier due to the alignment effect of the molten molecules, and in the case of a composite material or the like, fibers,
It is also possible to control the orientation of the filler and the like.

(実施例) 次にこの発明の射出圧縮成形法の具体的な実施例につ
いて、図面を参照しつつ詳細に説明する。
(Example) Next, a specific example of the injection compression molding method of the present invention will be described in detail with reference to the drawings.

第3図において、31は射出成形機のノズルタッチ部、
32はスプル、33はランナ、34はゲート、35はキャビテ
ィ、36はパーティングライン、37は振動コア(可動
部)、38は油圧ピストン、39は油圧シリンダ筒、40はエ
ジェクタプレート、41、42は油流入口をそれぞれ示して
いる。
In FIG. 3, reference numeral 31 denotes a nozzle touch portion of the injection molding machine;
32 is a sprue, 33 is a runner, 34 is a gate, 35 is a cavity, 36 is a parting line, 37 is a vibrating core (movable part), 38 is a hydraulic piston, 39 is a hydraulic cylinder, 40 is an ejector plate, 41, 42 Indicates oil inlets, respectively.

そして射出成形機に取付けられた金型を高圧型締し、
ピストン38を適切な位置まで上昇させておく。次に射出
成形機から溶融材料をスプル32、ランナ33、ゲート34を
経てキャビティ35内に充填する。その後ピストン38を後
退させ、さらに溶融材料をピストン後退分だけ充填し、
適切な保圧をかける。
And the high pressure mold clamping of the mold attached to the injection molding machine,
The piston 38 is raised to an appropriate position. Next, the molten material is filled into the cavity 35 from the injection molding machine through the sprue 32, the runner 33, and the gate 34. Thereafter, the piston 38 is retracted, and the molten material is further filled by the amount of the piston retracted,
Apply appropriate packing pressure.

この際、油流入口41、42に作用する送油圧力を継続的
に変化させることによってピストン38を振動させながら
キャビティ35内の材料を加圧する。
At this time, the material in the cavity 35 is pressurized while vibrating the piston 38 by continuously changing the oil feed pressure acting on the oil inlets 41 and 42.

つまり材料の充填制御を行うため、振動コア37をキャ
ビティ35内に適切な空間が形成できるような状態にまで
上昇させ、射出成形機から材料を充填し、次に振動コア
37を後退させ、さらに材料を充填する。充填が終了した
段階で直ちに振動コア37を振動させるといった工程で射
出成形を行う(材料を充填させる過程で振動を付加して
もよい)のであり、このような工程を採用すれば、溶融
材料にかける圧力の厚さ方向の均等性を大幅に改善でき
ることになるのである。
In other words, in order to control the filling of the material, the vibrating core 37 is raised to a state where an appropriate space can be formed in the cavity 35, and the material is filled from the injection molding machine.
37 is retracted and further filled with material. Injection molding is performed in such a step as to vibrate the vibrating core 37 immediately after the filling is completed (vibration may be added in the process of filling the material). The uniformity of the applied pressure in the thickness direction can be greatly improved.

振動コア37は、単純に振動させるのではなく、可動さ
せる過程で振動させることが最も効果的である。その理
由は、プラスチック材料が充填される過程で、広い空間
(キャビティ)35に、小さなゲート34より材料を高速で
充填すると、ウエルドやジェティングといった製品の不
良現象を発生するが、キャビティ35の肉厚が薄いとそれ
らの不良現象が発生しないこと、振動コア37が可動する
ことによって、溶融材料に均一でしかも自在な圧力がか
けられること、さらにはこれらの工程が振動によってよ
り効果を発揮することになる。
It is most effective not to simply vibrate the vibrating core 37 but to vibrate it in the process of moving it. The reason is that if a large space (cavity) 35 is filled with material at a high speed from a small gate 34 in the process of filling with a plastic material, defective products such as welding and jetting will occur. If the thickness is thin, those failure phenomena will not occur, and the movable core 37 can apply a uniform and free pressure to the molten material.Moreover, these processes will be more effective due to vibration. become.

振動の周波数や加圧力、加圧時間等は成形品の形状や
材料の種類によって最適条件が決定される。また振動コ
ア37にかける振動は材料充填初期からかけても良く、そ
の場合は充填材料のキャビティ35への充填をよりたやす
くする効果があり、また複合材料等では繊維、フィラー
等の配向性の制御をも行うことができる。
Optimum conditions for the vibration frequency, pressure, pressurization time, and the like are determined depending on the shape of the molded product and the type of material. The vibration applied to the vibrating core 37 may be applied from the initial stage of material filling. In that case, the filling material has an effect of facilitating the filling of the cavity 35. Control can also be performed.

なお上記では、ピストン38を振動させ、振動コア37を
経て溶融材料を振動加圧するのに油圧シリンダを用いて
いるが、他にこの部分に圧電素子やバイブレータを用い
てもその目的は達成される。
In the above description, the hydraulic cylinder is used to vibrate the piston 38 and vibrate pressurize the molten material via the vibrating core 37. However, even if a piezoelectric element or a vibrator is used in this part, the object is achieved. .

以下にさらに具体的な実施例について説明する。 Hereinafter, more specific examples will be described.

まず直径30mmの凸レンズが成形できる金型を、第3図
の原理に基づいて製作し、種々な熱可塑性樹脂を用いて
成形した。
First, a mold capable of molding a convex lens having a diameter of 30 mm was manufactured based on the principle of FIG. 3, and was molded using various thermoplastic resins.

金型を高圧で型締したのち、第3図の一方の油流入口
42に油圧をかけ、振動コア37を前進させた状態で溶融材
料を400kg/cm2で充填し、直ちに油流入口42の油圧を減
少させてピストン38を後退させ、振動コア37を後退させ
ながらさらに溶融材料を追加充填した。充填が終了した
後、油流入口42、41の圧力を増減させピストン38に適切
な時間振動を付加した。
After clamping the mold at high pressure, one of the oil inlets in Fig. 3
While applying hydraulic pressure to 42 and filling the molten material at 400 kg / cm 2 with the vibrating core 37 advanced, immediately reducing the oil pressure at the oil inlet 42 to retract the piston 38, while retracting the vibrating core 37 Further, the molten material was additionally charged. After the filling was completed, the pressure at the oil inlets 42 and 41 was increased or decreased to apply vibration to the piston 38 for an appropriate time.

溶融材料が冷却された後、金型を開いて成形品を取出
した。
After the molten material was cooled, the mold was opened and the molded product was removed.

実施例1 使用成形機:型締力 50トン 射出容量 8オンス 使用成形材料:ポリカーボネート 金型温度 :100℃ 振動数 :20ヘルツ 振動加圧タイミング:完全充填後 加圧時間 :30秒 冷却時間 :120秒 実施例2 使用成形機:型締力 50トン 射出容量 8オンス 使用成形材料:ポリメチルメタクリレート 金型温度 :90℃ 振動数 :15ヘルツ 振動加圧タイミング:材料充填初期より 加圧時間 :30秒 冷却時間 :120秒 実施例3 使用成形機:型締力 50トン 射出容量 8オンス 使用成形材料:ガラス繊維30%入り ポリカーボネート 金型温度 :90℃ 振動数 :15ヘルツ 振動加圧タイミング:材料充填初期より 加圧時間 :30秒 冷却時間 :120秒 比較例1 使用成形機:型締力 50トン 射出容量 8オンス 使用成形材料:ポリメチルメタクリレート 金型温度 :90℃ 振動数 :なし 冷却時間 :120秒 その他 :標準的成形方法 実施例1〜3及び比較例で得られた成形品について寸
法精度、残留応力の大小等を試験した。その結果は、次
の通りである。
Example 1 Molding machine used: mold clamping force 50 tons Injection capacity 8 oz. Molding material used: polycarbonate Mold temperature: 100 ° C Frequency: 20 Hz Vibration pressurization timing: Pressurization time after complete filling: 30 seconds Cooling time: 120 Second Example 2 Molding machine used: mold clamping force 50 tons Injection capacity 8 oz. Molding material used: polymethyl methacrylate Mold temperature: 90 ° C Frequency: 15 Hz Vibration pressurization timing: pressurization time from the beginning of material filling: 30 seconds Cooling time: 120 seconds Example 3 Molding machine used: mold clamping force 50 tons Injection capacity 8 oz. Molding material used: 30% glass fiber filled polycarbonate Mold temperature: 90 ° C Frequency: 15 Hz Vibration pressure timing: Initial material filling Pressing time: 30 seconds Cooling time: 120 seconds Comparative Example 1 Molding machine used: mold clamping force 50 tons Injection capacity 8 oz Molding material used: polymethyl methacrylate Mold temperature: 90 ° C Frequency: None Cooling time : 120 seconds Others: Standard molding method The molded articles obtained in Examples 1 to 3 and Comparative Example were tested for dimensional accuracy, residual stress and the like. The results are as follows.

(1)成形品の寸法精度(形状精度) 実施例1 0.3 ミクロン以内 実施例2 0.2 ミクロン以内 実施例3 0.2 ミクロン以内 比較例1 3〜5ミクロン以内 (2)成形品中の残留応力(偏光による定性目視) 実施例1 ○ 実施例2 ◎ 実施例3 測定できず 比較例1 × 〔○:良好 ◎:極て良好 ×:残留応力多い〕 (3)成形品の外観 実施例1 良好(高速充填でも) 実施例2 良好 〃 実施例3 良好 〃 比較例1 フローマーク発生 実施例及び比較例の結果をみても明らかなように、金
型の可動部品を振動させながら自在に可動させることは
プラスチックの超精密成形では多大な効果を発揮する。
(1) Dimensional accuracy (shape accuracy) of molded product Example 1 Within 0.3 micron Example 2 Within 0.2 micron Example 3 Within 0.2 micron Comparative example 1 Within 3 to 5 micron (2) Residual stress in molded product (depending on polarization) (Qualitative visual inspection) Example 1 ○ Example 2 ◎ Example 3 Measurement was not possible. Comparative example 1 × [○: good ◎: extremely good ×: large residual stress] (3) Appearance of molded product Example 1 good (high-speed filling) Example 2 Good 〃 Example 3 Good 比較 Comparative Example 1 Flow mark generation As is clear from the results of the examples and comparative examples, it is possible to move the movable part of the mold freely while vibrating the plastic part. It has a great effect in ultra-precision molding.

また材料の充填も容易となるため、成形条件幅が大幅
に広くなり、成形不良の発生も激減している。
In addition, since the material can be easily filled, the range of molding conditions is greatly widened, and the occurrence of molding defects is drastically reduced.

また成形品の残留応力が大幅に低下していることから
推定して、本発明による成形品は、実用に際し耐久性に
も優れているといえる。さらに溶融材料に掛けられる圧
力も振動を併用して加圧することによって必要圧力も低
くとも良いという結果となっている。
In addition, it can be said that the molded article according to the present invention has excellent durability in practical use, as estimated from the fact that the residual stress of the molded article is greatly reduced. Furthermore, the pressure applied to the molten material is also increased by using vibration, and the required pressure may be reduced.

(発明の効果) 以上のように第1請求項記載の射出圧縮成形法では、
溶融材料に均一で、しかも自在な圧力を作用させること
が可能であるので、成形品の精度向上、残留応力の大幅
低減という利点が生じる。また振動加圧に起因して、必
要圧力が低くてもよいという効果も生じる。
(Effect of the Invention) As described above, in the injection compression molding method according to the first aspect,
Since a uniform and free pressure can be applied to the molten material, there is an advantage that the precision of the molded product is improved and the residual stress is significantly reduced. Further, there is an effect that the required pressure may be low due to the vibration pressurization.

また上記射出圧縮成形法では、広い空間(キャビテ
ィ)内に、小さなゲートから高速で材料充填する場合に
生ずる不具合、例えばウエルドやジェティングの発生を
防止することが可能であり、これにより成形品の品質を
一段と向上し得る。
In addition, in the above-mentioned injection compression molding method, it is possible to prevent problems, such as the occurrence of welds and jetting, which occur when a large space (cavity) is filled at a high speed from a small gate with a material. Quality can be further improved.

さらに第2請求項記載の射出圧縮成形法では、溶融分
子の整列効果に起因して、充填材料のキャビティへの充
填が一段と行い易くなると共に、複合材料等では、繊
維、フィラー等の配向性の制御をも行うことが可能にな
るという効果が生じる。
Furthermore, in the injection compression molding method according to the second aspect, the filling of the filling material into the cavity becomes easier due to the alignment effect of the molten molecules, and the orientation of fibers, fillers and the like in the composite material and the like is improved. There is an effect that control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は標準的な従来の射出成形金型の横断面図、第2
図はさらに他の従来金型の横断面図、第3図は本発明で
使用する振動−加圧ができる金型の横断面図である。 35……キャビティ、37……振動コア(可動部)。
FIG. 1 is a cross-sectional view of a standard conventional injection mold, and FIG.
FIG. 3 is a cross-sectional view of another conventional mold, and FIG. 3 is a cross-sectional view of a vibration-pressurizable mold used in the present invention. 35: cavity, 37: vibrating core (movable part).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 四ッ辻 晃 大阪府大阪市中央区内平野町2丁目3番 11―1101号 有限会社コーキエンジニ アリング内 (56)参考文献 特開 平2−80220(JP,A) 特開 平3−161317(JP,A) 特開 昭63−95920(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 45/00 - 45/84 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Yotsuji 2-3-11-1, Uchihirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Kochi Engineering Co., Ltd. (56) References JP-A-2-80220 (JP, A) JP-A-3-161317 (JP, A) JP-A-63-95920 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 45/00-45 / 84

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金型の一部が射出成形機と自在に連動する
可動部を有する射出成形機を用い、キャビティ内に射出
された成形材料を上記可動部でもって振動加圧する射出
圧縮成形法において、上記可動部がキャビティ内の成形
品の肉厚を減少させる状態において成形材料を射出し、
次に可動部を後退させ、可動部後退分の成形材料を追加
充填することを特徴とする射出圧縮成形法。
An injection compression molding method using an injection molding machine having a movable part in which a part of a mold is freely linked to an injection molding machine, and vibrating and pressurizing a molding material injected into a cavity by the movable part. In the injection of the molding material in a state where the movable portion reduces the thickness of the molded product in the cavity,
Next, the movable portion is retracted, and an additional molding material for the retracted movable portion is additionally filled.
【請求項2】上記可動部の後退時に、上記可動部を出退
方向に振動させることを特徴とする第1請求項記載の射
出圧縮成形法。
2. The injection compression molding method according to claim 1, wherein said movable portion is vibrated in a retracting direction when said movable portion is retracted.
JP02305370A 1990-11-12 1990-11-12 Injection compression molding method Expired - Fee Related JP3131620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02305370A JP3131620B2 (en) 1990-11-12 1990-11-12 Injection compression molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02305370A JP3131620B2 (en) 1990-11-12 1990-11-12 Injection compression molding method

Publications (2)

Publication Number Publication Date
JPH04176623A JPH04176623A (en) 1992-06-24
JP3131620B2 true JP3131620B2 (en) 2001-02-05

Family

ID=17944297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02305370A Expired - Fee Related JP3131620B2 (en) 1990-11-12 1990-11-12 Injection compression molding method

Country Status (1)

Country Link
JP (1) JP3131620B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328489A (en) * 1993-05-24 1994-11-29 Japan Steel Works Ltd:The Method and apparatus for injection press molding
JP2736752B2 (en) * 1994-11-28 1998-04-02 日精樹脂工業株式会社 Injection compression molding method
AU2005314151B2 (en) 2004-12-07 2011-09-08 3M Innovative Properties Company Method of molding a microneedle
JP4495585B2 (en) * 2004-12-27 2010-07-07 Hoya株式会社 Resin lens mold
CN107310092B (en) * 2017-05-26 2020-05-08 天津大学 Precision injection molding method and device for optical device with polymer complex surface
CN109785727B (en) * 2019-01-07 2021-01-15 金华职业技术学院 Universal quick-exchange teaching mould frame with push plate ejection

Also Published As

Publication number Publication date
JPH04176623A (en) 1992-06-24

Similar Documents

Publication Publication Date Title
US5044925A (en) Injection-compression mold
JP3131620B2 (en) Injection compression molding method
EP0272138B1 (en) Method of molding plastic and injection compression molding apparatus using the method
US6645417B1 (en) Gateless molding
JP3385491B2 (en) Injection molding method
JP2002316347A (en) Mold assembly and injection molding method
JPH08187793A (en) Plastic optical member and production thereof
JPH0331124B2 (en)
JP2013503060A (en) Injection molding of parts with non-uniform thickness
JP3130099B2 (en) Manufacturing method of plastic molded products
JPH03138121A (en) Gate cutting method
JP3350581B2 (en) In-mold vibration processing method and apparatus
JP3347839B2 (en) Manufacturing method of optical parts
JP3580560B2 (en) Elastic compression molding method and elastic compression mold
JP3140486B2 (en) Injection molding method for thick products
JPH0354608B2 (en)
JPH07148795A (en) Plastic part and molding thereof
JPH07186291A (en) Method and mold for molding square plastic lens
JPS615913A (en) Mold assembly of discoid recording medium base
KR910007452B1 (en) Method of molding plastic and injection compression molding apparatus using the method
JPS61100420A (en) Manufacture of plastic lens
Fitzpatrick et al. Controlled Viscosity Injection Molding of Plastic Optics
JP3343370B2 (en) Injection compression device
JPH02147225A (en) Method for molding plastics
JP2002187177A (en) Method for manufacturing injection compression molded article

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees