JP3074213B2 - Method for producing thermoplastic resin molded article for optical use - Google Patents

Method for producing thermoplastic resin molded article for optical use

Info

Publication number
JP3074213B2
JP3074213B2 JP04045469A JP4546992A JP3074213B2 JP 3074213 B2 JP3074213 B2 JP 3074213B2 JP 04045469 A JP04045469 A JP 04045469A JP 4546992 A JP4546992 A JP 4546992A JP 3074213 B2 JP3074213 B2 JP 3074213B2
Authority
JP
Japan
Prior art keywords
optical
molding
pressure
mold
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04045469A
Other languages
Japanese (ja)
Other versions
JPH05245839A (en
Inventor
雅己 西口
義昭 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP04045469A priority Critical patent/JP3074213B2/en
Publication of JPH05245839A publication Critical patent/JPH05245839A/en
Application granted granted Critical
Publication of JP3074213B2 publication Critical patent/JP3074213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00721Production of light guides involving preforms for the manufacture of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • B29C2043/522Heating or cooling selectively heating a part of the mould to achieve partial heating, differential heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • B29C2043/527Heating or cooling selectively cooling, e.g. locally, on the surface of the material

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、光学部品、プ
ラスチック光ファイバのプリフォーム、光導波路のよう
な光学用熱可塑性樹脂成形体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical thermoplastic resin molded article such as an optical component, a preform of a plastic optical fiber, and an optical waveguide.

【0002】[0002]

【従来の技術】光学部品、プラスチック光ファイバのプ
リフォーム、光導波路等の光学用熱可塑性樹脂成形体
は、成形体の種類に応じて押出成形法や射出成形法によ
って製造されている。
2. Description of the Related Art Optical thermoplastic resin molded articles such as optical parts, plastic optical fiber preforms, and optical waveguides are produced by extrusion molding or injection molding depending on the type of molded article.

【0003】しかし、これらの従来技術の光学用熱可塑
性樹脂成形体の製造方法では、以下に示す種々の欠点を
有していた。
However, these conventional methods for producing optical thermoplastic resin molded articles have various disadvantages as described below.

【0004】まず、光学用成形体を押出成形法によって
製造する場合、通常押出機の樹脂通路には樹脂が溜り易
い多数の溝がある。これは、押出機のスクリューの可動
によって形成される。このため、ホッパーから押出機に
同時に供給された樹脂は、同時に押し出されるわけでは
なく、一部は対流を引き起こすためスクリューに付着し
て残る。このスクリューに付着した樹脂は、成形温度が
高い場合にはスクリューの熱によって劣化し、着色を生
じる。このため、この着色が生じた樹脂は、後続の成形
に供される樹脂と混合されて押し出され、これにより成
形体に着色を生ずる。
First, when an optical molding is manufactured by an extrusion molding method, a resin passage of an extruder usually has a large number of grooves in which resin easily accumulates. It is formed by the movement of the extruder screw. For this reason, the resin simultaneously supplied from the hopper to the extruder is not simultaneously extruded, but a part of the resin is left on the screw due to convection. When the molding temperature is high, the resin adhering to the screw is deteriorated by the heat of the screw and causes coloring. For this reason, the colored resin is mixed with the resin to be subjected to the subsequent molding and extruded, whereby the molded body is colored.

【0005】また、光学用成形体を射出成形法によって
製造する場合、樹脂が成形型内で固化する際に樹脂内部
に歪みが発生する。この内部歪みは、得られる成形体を
割れ易くさせる。このため、内部歪みを有する成形体
は、光学製品には不適当である。また、射出成形法は、
細長い成形体や特殊な形状を有する樹脂成形体の製造に
は不適当である。
When an optical molded article is manufactured by an injection molding method, distortion occurs in the resin when the resin is solidified in a molding die. This internal strain makes the obtained molded body easily cracked. For this reason, molded articles having internal distortion are unsuitable for optical products. In addition, the injection molding method
It is unsuitable for the production of an elongated molded article or a resin molded article having a special shape.

【0006】このような問題を解決するために、本発明
者らは特願平3−203754号において、加熱下で真
空脱泡成形する方法を提案している。しかしながら、こ
の方法を成形温度において気体、例えばモノマー等を発
生するような樹脂に適用した場合、樹脂成形体内に気泡
が発生するという問題が生じる。
In order to solve such a problem, the present inventors have proposed in Japanese Patent Application No. 3-203754 a method of vacuum defoaming molding under heating. However, when this method is applied to a resin that generates a gas, for example, a monomer at the molding temperature, there is a problem that bubbles are generated in the resin molded body.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる点に鑑
みてなされたものであり、成形温度において揮発物質を
生じるような樹脂に適用しても、内部に歪みを生ずるこ
となく、かつ高い成形温度でも着色を起こすことなく樹
脂成形体を製造することができる光学用熱可塑性樹脂成
形体の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. Even when the present invention is applied to a resin which generates a volatile substance at a molding temperature, it does not cause internal distortion and has a high molding property. An object of the present invention is to provide a method for producing a thermoplastic resin molded article for optical use, which can produce a resin molded article without coloring even at a temperature.

【0008】[0008]

【課題を解決するための手段】本発明は、成形型内に熱
可塑性樹脂を供給する工程、前記熱可塑性樹脂が流動性
を有する温度において、不活性ガスを用いて前記成形型
内の前記熱可塑性樹脂の溶融面を第1の圧力で加圧する
工程、不活性ガスを用いて前記溶融面を前記第1の圧力
以上である第2の圧力で加圧しながら前記成形型の下部
から徐々に冷却して成形体を得る工程とを具備すること
を特徴とする光学用熱可塑性樹脂成形体の製造方法を提
供する。
According to the present invention, there is provided a process for supplying a thermoplastic resin into a molding die, wherein the thermoplastic resin is heated at a temperature at which the thermoplastic resin has fluidity by using an inert gas. Pressurizing the molten surface of the plastic resin at a first pressure, gradually cooling the molten surface from a lower portion of the mold while pressurizing the molten surface with an inert gas at a second pressure that is equal to or higher than the first pressure. And obtaining a molded article by subjecting the molded article to a thermoplastic resin molded article for optical use.

【0009】ここで、成形型の材料としては、ガラス、
金属、石英等が用いられる。
Here, the material of the molding die is glass,
Metal, quartz, etc. are used.

【0010】使用される熱可塑性樹脂としては、ポリメ
チルペンテン、フッ素樹脂等の結晶性樹脂、ポリカーボ
ネート、ポリアリレート、ポリサルホン等の非結晶性樹
脂のいずれをも用いることができる。本発明の方法にお
いては、通常の成形方法では酸化劣化しやすい成形温度
が約200℃以上であるものが特に好適である。なお、
本発明において使用する熱可塑性樹脂には、揮発成分を
含んだものであってもよい。
As the thermoplastic resin to be used, any of crystalline resins such as polymethylpentene and fluororesin, and non-crystalline resins such as polycarbonate, polyarylate and polysulfone can be used. In the method of the present invention, it is particularly preferable that the molding temperature, which is liable to be oxidatively degraded by the ordinary molding method, is about 200 ° C. or more. In addition,
The thermoplastic resin used in the present invention may contain a volatile component.

【0011】成形型に熱可塑性樹脂を投入する場合、常
温でペレット状、粉末状またはフレーク状の熱可塑性樹
脂を充填してもよいし、成形温度またはそれより低い温
度でこれらの熱可塑性樹脂をあらかじめ溶融させてお
き、流動状態で流し込んで充填してもよい。
When a thermoplastic resin is charged into a molding die, it may be filled with a thermoplastic resin in the form of pellets, powders or flakes at room temperature, or may be filled at a molding temperature or a lower temperature. It may be previously melted and poured in a fluidized state for filling.

【0012】加圧用の不活性ガスとしては、アルゴンガ
ス、ヘリウムガス、窒素ガス等を用いることができる。
また、第1の圧力は、5〜70kgf/cm2 であることが好
ましい。これは、第1の圧力が5kgf/cm2 未満であると
得られる成形体の内部に空隙が発生し、第1の圧力が7
0kgf/cm2 を超えるとガスが材料内部からガスを追い出
すのに時間がかかるからである。なお、この圧力は、従
来の射出成形法において加えられる数100kgf/cm2
比べて著しく低いので、比較的脆い樹脂を用いて成形す
る場合や細長い成形体を成形する場合に、成形体に割れ
が発生することを防止できる。
As an inert gas for pressurization, argon gas, helium gas, nitrogen gas or the like can be used.
Further, the first pressure is preferably 5 to 70 kgf / cm 2 . This is because if the first pressure is less than 5 kgf / cm 2 , voids are generated inside the obtained molded body, and the first pressure is 7 kgf / cm 2.
If the pressure exceeds 0 kgf / cm 2 , it takes time for the gas to expel the gas from the inside of the material. Since this pressure is significantly lower than the several hundred kgf / cm 2 applied in the conventional injection molding method, when a relatively brittle resin is used for molding or when an elongated molded article is molded, the molded article is cracked. Can be prevented from occurring.

【0013】また、第2の圧力は、大きいほど成形体内
の空隙を除去する効果が大きいが、10〜150kgf/cm
2 であることが好ましい。これは、第2の圧力が10kg
f/cm2 未満であると揮発物により成形体が発泡する可能
性が大きくなり、第2の圧力が150kgf/cm2 を超える
と成形後に成形体から脱ガスすることが困難となるから
である。なお、第1の圧力と第2の圧力との関係は、第
2の圧力が第1の圧力よりも小さくなければよい。これ
は、第1の圧力が第2の圧力よりも低いと、成形温度状
態で溶け込んでいたガスが外部に出ようとして発泡が起
こってしまうためである。したがって、第1の圧力と第
2の圧力とが同じであってもよい。樹脂の溶融面に第2
の圧力をかけた後、樹脂内の揮発成分による発泡を抑え
るために、温度を下げることが好ましい。
The effect of removing voids in the molded body is greater as the second pressure is higher, but it is 10 to 150 kgf / cm.
It is preferably 2 . This means that the second pressure is 10 kg
If the f / cm 2 is less than f / cm 2 , the possibility of foaming of the molded article due to volatile matter increases, and if the second pressure exceeds 150 kgf / cm 2 , it becomes difficult to degas the molded article after molding. . Note that the relationship between the first pressure and the second pressure may be such that the second pressure is not smaller than the first pressure. This is because if the first pressure is lower than the second pressure, the gas that has been melted at the molding temperature state tends to go outside and foaming occurs. Therefore, the first pressure and the second pressure may be the same. Second on the molten surface of the resin
After applying the pressure, it is preferable to lower the temperature in order to suppress foaming due to volatile components in the resin.

【0014】得られた樹脂成形体を後工程において加熱
紡糸加工する場合には、紡糸加工前に、あらかじめその
樹脂成形体材料のガラス転移点以下の温度に樹脂成形体
を維持し、真空下で充分に乾燥することが好ましい。こ
れにより、仮に成形体内に溶けていたガスがあったとし
ても、これを充分に外部に除去することができる。この
ため、紡糸加工時の発泡が防止され、良質の樹脂成形体
を得ることができる。これは、樹脂成形体が光学製品で
ある場合に特に有用である。
When the obtained resin molded body is subjected to heat spinning in a subsequent step, the resin molded body is previously maintained at a temperature equal to or lower than the glass transition point of the resin molded body material before spinning, and is then subjected to vacuum. It is preferable to dry sufficiently. As a result, even if there is gas dissolved in the molded body, it can be sufficiently removed to the outside. For this reason, foaming during spinning is prevented, and a high-quality resin molded product can be obtained. This is particularly useful when the resin molded product is an optical product.

【0015】成形型内表面には、冷却後の成形体を容易
に剥離することができるように離型剤を塗布することが
好ましい。この離型剤の材料としては、フッ素樹脂、セ
ラミック粉末等を用いることができる。この中で平滑性
が良い、すなわち均一に成形型内表面に塗布することが
できることおよび得られる樹脂成形体に光学的な悪影響
を及ぼすことがないこと等を考慮すると、炭化フッ素溶
媒に可溶なフッ素樹脂、例えば主鎖にフッ素置換の脂環
式基または複素環基を有するフッ素樹脂が好ましい。ま
た、離型剤の材料としては、成形に供される熱可塑性樹
脂の軟化点より高いガラス転移点を有するものが好まし
い。
It is preferable to apply a release agent to the inner surface of the mold so that the molded body after cooling can be easily peeled off. As a material of the release agent, a fluororesin, a ceramic powder or the like can be used. Among these, good smoothness, that is, considering that it can be uniformly applied to the inner surface of the molding die and that there is no adverse optical effect on the obtained resin molded product, it is soluble in a fluorocarbon solvent. Fluororesins, such as fluororesins having a fluorine-substituted alicyclic or heterocyclic group in the main chain, are preferred. As the material of the release agent, a material having a glass transition point higher than the softening point of the thermoplastic resin used for molding is preferable.

【0016】これらのフッ素樹脂は、通常、フッ素置換
型炭化水素、いわゆる炭化フッ素に溶解する。このた
め、このフッ素樹脂をこれらの溶剤に溶解させ、これを
成形型の内表面に塗布し、溶剤を除去して成形型の内表
面に被覆する。
These fluororesins are usually dissolved in fluorine-substituted hydrocarbons, so-called fluorocarbons. For this reason, this fluororesin is dissolved in these solvents, applied to the inner surface of the mold, and the solvent is removed to cover the inner surface of the mold.

【0017】この離型剤は液状で被覆することができる
ので、微粒子の離型剤を用いた場合のように成形体の表
面に粗れを生じることがない。したがって、例えば成形
体が光ファイバのプリフォームである場合、伝送損失を
低く抑えることができる。また、成形型の内表面に均一
に被覆することができるので、成形型の内表面が鏡面で
あれば、離型剤の膜面も鏡面となり、このため、得られ
る成形体の表面も鏡面となる。さらに、成形体の成形
後、成形型の表面に被覆されているフッ素樹脂を炭化フ
ッ素溶媒を用いて容易に除去することができる。なお、
このフッ素樹脂は優れた耐熱性を有しているので、高温
に晒されても良好な離型効果を発揮する。このため、高
温で成形される樹脂にも使用することができる。また、
このような離型剤を用いることにより、成形型からの不
純物を成形材料である樹脂に移行することを防止する。
このため、成形体が光学製品である場合、製品の品質に
悪影響を及ぼすことがない。
Since the release agent can be coated in a liquid state, the surface of the molded article is not roughened unlike the case where a fine particle release agent is used. Therefore, for example, when the molded body is a preform of an optical fiber, transmission loss can be suppressed low. In addition, since the inner surface of the mold can be uniformly coated, if the inner surface of the mold is a mirror surface, the film surface of the release agent also becomes a mirror surface, and therefore, the surface of the obtained molded body also has a mirror surface. Become. Further, after the molding of the molded article, the fluororesin coated on the surface of the molding die can be easily removed using a fluorocarbon solvent. In addition,
Since this fluororesin has excellent heat resistance, it exhibits a good releasing effect even when exposed to high temperatures. Therefore, it can be used for a resin molded at a high temperature. Also,
By using such a release agent, it is possible to prevent impurities from the mold from migrating to the resin as the molding material.
Therefore, when the molded product is an optical product, the quality of the product is not adversely affected.

【0018】[0018]

【作用】本発明の光学用熱可塑性樹脂成形体の製造方法
は、熱可塑性樹脂が流動性を有する温度において、不活
性ガスを用いて熱可塑性樹脂の溶融面を第1の圧力で加
圧し、さらに第1の圧力よりも高い第2の圧力で加圧し
ながら成形型の下部から徐々に冷却することを特徴とし
ている。
The method for producing an optical thermoplastic resin molded article according to the present invention comprises the steps of: pressing a molten surface of a thermoplastic resin with an inert gas at a first pressure at a temperature at which the thermoplastic resin has fluidity; Further, it is characterized in that cooling is gradually performed from the lower part of the mold while pressurizing at a second pressure higher than the first pressure.

【0019】第1の圧力で加圧することにより、樹脂内
の揮発成分による揮発物の発生を抑制する。さらに、第
2の圧力で加圧することにより、成形体内の気泡を拡散
させて微小にし、成形体内部に疎な部分を形成すること
なく、すなわち成形体内部に空隙を作らずに成形でき
る。
By applying pressure at the first pressure, generation of volatiles due to volatile components in the resin is suppressed. Further, by applying the pressure at the second pressure, the bubbles in the molded body can be diffused and made minute, and the molding can be performed without forming a sparse portion inside the molded body, that is, without forming a void inside the molded body.

【0020】また、成形型の下部から徐々に冷却するこ
とにより、成形体内部の歪みが下部から上部に向けて解
放される。
Also, by gradually cooling from the lower part of the mold, the strain inside the molded body is released from the lower part to the upper part.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照して具体
的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings.

【0022】実施例1 図1に示すような一方の端部が閉塞されている円筒形の
成形型10の内表面に離型剤を塗布し、常温で乾燥した
後、120℃の恒温槽内で充分乾燥して離型剤を均一に
被覆した。このとき、離型剤としてはテフロンAF24
00(デュポン社製、商品名)を溶媒としてフロリナー
トFC−72(住友スリーエム社製、商品名)に溶解さ
せてなる1%溶液を用いた。
Example 1 A release agent was applied to the inner surface of a cylindrical mold 10 having one end closed as shown in FIG. 1, dried at room temperature, and then placed in a thermostat at 120 ° C. And dried sufficiently to uniformly coat the release agent. At this time, Teflon AF24 was used as a release agent.
A 1% solution obtained by dissolving Fluorinert FC-72 (trade name, manufactured by Sumitomo 3M) as a solvent using 00 (trade name, manufactured by DuPont) was used.

【0023】この成形型10内に成形材料であるZEO
NEX280(日本ゼオン社製、商品名)を充填し、こ
れをヒータH1 〜H5 により280℃に加熱された図2
に示す恒温槽20に入れた。なお、この材料は、あらか
じめ120℃で120時間真空乾燥したものである。
In this mold 10, ZEO as a molding material is used.
NEX280 (trade name, manufactured by Zeon Corporation) was filled and heated to 280 ° C. by heaters H 1 to H 5 .
Was placed in a thermostat 20 shown in FIG. This material was previously vacuum dried at 120 ° C. for 120 hours.

【0024】恒温槽20は、槽本体21、槽本体内部の
成形型収容部22、成形型収容部22を気密に密閉する
ことができる蓋材23、および加熱・冷却領域24から
構成されている。この加熱・冷却領域は、5つのゾーン
24a〜eに分割されている。これらのゾーンにはそれ
ぞれヒータH1ないしH5と冷却ファンF1ないしF5
とが設置されている。蓋材23には導管が接続されてお
り、切替えバルブKを介して真空手段Iおよび不活性ガ
ス源V(いずれも図示せず)と成形型収容部22が連通
するようになっている。なお、図2において符号Mは圧
力計、Cは恒温槽の側壁に取り付けられた水冷管、Lは
リークバルブをそれぞれ示す。
The thermostat 20 comprises a bath main body 21, a mold receiving section 22 inside the tank main body, a lid 23 capable of hermetically sealing the mold receiving section 22, and a heating / cooling area 24. . This heating / cooling area is divided into five zones 24a to 24e. These zones have heaters H1 to H5 and cooling fans F1 to F5, respectively.
And is installed. A conduit is connected to the lid member 23, and the vacuum means I and the inert gas source V (both not shown) are communicated with the mold housing 22 via the switching valve K. In FIG. 2, reference symbol M denotes a pressure gauge, C denotes a water-cooled pipe attached to a side wall of a thermostat, and L denotes a leak valve.

【0025】次に、切替えバルブBを不活性ガス源側に
切替えてアルゴンガスを恒温槽20内に導入し、成形型
10内の樹脂溶融面を10kgf/cm2 の第1の圧力で1時
間加圧した。その後、さらにアルゴンガスを恒温槽20
内に導入し、成形型10内の樹脂溶融面を70kgf/cm2
の第2の圧力で約10分間加圧した。これにより成形型
10内の成形材料が光学用成形体に成形された。
Next, the switching valve B is switched to the inert gas source side, argon gas is introduced into the thermostat 20, and the molten resin surface in the mold 10 is heated at a first pressure of 10 kgf / cm 2 for 1 hour. Pressurized. Thereafter, an argon gas is further supplied to the thermostat 20.
And the molten resin surface in the mold 10 is reduced to 70 kgf / cm 2.
For about 10 minutes. As a result, the molding material in the molding die 10 was molded into an optical molding.

【0026】その後、まず最も下位にあるヒータH1の
通電を停止し、これと同時にファンF1を駆動させた。
10分後その上のヒータH2の通電を停止してファンF
2を駆動させた。同様にして順次ヒータの通電の停止と
ファンの駆動とを行って成形型10を順次下方から冷却
した。
Thereafter, the energization of the lowest heater H1 was stopped, and at the same time the fan F1 was driven.
After 10 minutes, the energization of the heater H2 thereon is stopped and the fan F
2 was driven. Similarly, the energization of the heater and the driving of the fan were sequentially performed to cool the mold 10 sequentially from below.

【0027】このようにして、90分後にリークバルブ
Lを開いて恒温槽20の成形型収容部22を大気圧と
し、その後成形型10を取り出した。さらに成形型10
から図3に示す光学用成形体1を取り出した。
In this way, after 90 minutes, the leak valve L was opened to bring the mold housing portion 22 of the thermostat 20 to atmospheric pressure, and then the mold 10 was taken out. Further mold 10
3 was taken out from FIG.

【0028】このようにして得られた光学用成形体1の
透過率を測定した。なお、透過率は、図4に示すよう
に、光学用成形体を10cmの長さに切り取り試験片2を
作製し、その端面をホットプレート処理して測定した。
その結果、波長660nmにおける光透過率は86%であ
り、良好であった。
The transmittance of the optical molded article 1 thus obtained was measured. As shown in FIG. 4, the transmittance was measured by cutting a molded article for optical use to a length of 10 cm to prepare a test piece 2 and subjecting the end face to a hot plate treatment.
As a result, the light transmittance at a wavelength of 660 nm was 86%, which was good.

【0029】また、得られた光学用成形体を図5に示す
装置を用いてプラスチック光ファイバに加工した。すな
わち、まず、前記光学成形体1から切り出した光学用成
形体50を120℃×120時間真空乾燥し、これを線
引炉51内に載置する。ここで、光学用成形体50は、
線引炉51で溶融され、線引炉51の下方に設置した熱
硬化性シリコーン用割りダイス52を通って熱硬化性シ
リコーンが塗布され、その後シリコーン硬化炉53を通
ってこれが硬化され、続いてシリコーン硬化炉53の下
方に設置した引取機54で引き取られ、図示しない巻取
機でプラスチック光ファイバとして巻き取られる。得ら
れたプラスチック光ファイバを5m−1mカットバック
で光学的特性を測定した。その結果、900dB/kmで
あり、良い結果が得られた。
The obtained optical molded article was processed into a plastic optical fiber using the apparatus shown in FIG. That is, first, the optical molded body 50 cut out from the optical molded body 1 is vacuum-dried at 120 ° C. for 120 hours, and is placed in a drawing furnace 51. Here, the optical molding 50 is
The thermosetting silicone is melted in the drawing furnace 51, the thermosetting silicone is applied through a thermosetting silicone splitting die 52 installed below the drawing furnace 51, and then the silicone is hardened through a silicone curing furnace 53. It is taken up by a take-up machine 54 installed below the silicone curing furnace 53, and is taken up as a plastic optical fiber by a take-up machine (not shown). The optical characteristics of the obtained plastic optical fiber were measured with a 5 m-1 m cut back. As a result, it was 900 dB / km, and a good result was obtained.

【0030】実施例2 第1の圧力を10kgf/cm2 とすること以外は実施例1と
同様にして光学用成形体を作製した。
Example 2 An optical molded article was produced in the same manner as in Example 1 except that the first pressure was 10 kgf / cm 2 .

【0031】得られた光学用成形体1の透過率を実施例
1と同様にして測定した。その結果、波長660nmの光
透過率は86%であり、良好であった。
The transmittance of the obtained optical molded article 1 was measured in the same manner as in Example 1. As a result, the light transmittance at a wavelength of 660 nm was 86%, which was good.

【0032】比較例1 図1に示すような一方の端部が閉塞されている円筒形の
成形型10の内表面に離型剤を実施例1と同様にして塗
布し、この成形型10内に成形材料を充填し、これを図
2に示す恒温槽20に入れた。なお、離型剤および成形
材料は、実施例1と同様のものを使用した。
Comparative Example 1 A release agent was applied to the inner surface of a cylindrical mold 10 having one end closed as shown in FIG. Was filled with a molding material, and this was put into a thermostat 20 shown in FIG. The same release agent and molding material as those used in Example 1 were used.

【0033】次いで、恒温槽20の切替えバルブKを真
空手段側に切り替えて真空引きした。この状態を約1時
間保持して成形材料を脱泡した。
Next, the switching valve K of the thermostatic bath 20 was switched to the vacuum means side to evacuate. This state was maintained for about 1 hour to defoam the molding material.

【0034】次に、切替えバルブKを不活性ガス源側に
切り替えてアルゴンガスを恒温槽20内に導入し、成形
型10内の樹脂溶融面を約10分間70kgf/cm2 の圧力
で加圧した。これにより成形型10内の成形材料が光学
用成形体に成形された。その後、実施例1と同様にして
冷却した。恒温槽20から成形型10を取り出して、成
形型10から光学用成形体を取り出したところ、成形の
際に成形材料中の揮発成分が揮発物質として生じたため
に、光学用成形体は膨れあがっていた。
Next, the switching valve K is switched to the inert gas source side, argon gas is introduced into the thermostat 20, and the molten resin surface in the mold 10 is pressurized at a pressure of 70 kgf / cm 2 for about 10 minutes. did. As a result, the molding material in the molding die 10 was molded into an optical molding. Thereafter, cooling was performed in the same manner as in Example 1. When the molding die 10 was taken out from the thermostat 20 and the optical molded body was taken out from the molding die 10, the volatile component in the molding material was generated as a volatile substance during molding, and the optical molded body was swollen. Was.

【0035】比較例2 成形材料としてZEONEX280(日本ゼオン社製、
商品名)を用い、内径65mmの射出成形機で図6に示す
ようなキャビティー60を有する金型61に射出して成
形した。なお、金型61の内表面には、あらかじめ離型
剤としてシリコンオイルが塗布され、金型61の温度は
270℃とした。成形後、金型を冷却し、光学用成形体
を取り出した。
Comparative Example 2 As a molding material, ZEONEX280 (manufactured by Zeon Corporation,
The product was injected into a mold 61 having a cavity 60 as shown in FIG. Silicone oil was previously applied to the inner surface of the mold 61 as a release agent, and the temperature of the mold 61 was 270 ° C. After the molding, the mold was cooled, and the optical molded body was taken out.

【0036】得られた光学的成形体の透過率を実施例1
と同様にして測定したところ、波長660nmの光透過率
は58%と低かった。また、この方法により4つの光学
用成形体を製造したところ、1つに割れが入っていたこ
とが確認された。
The transmittance of the obtained optical molded product was measured in Example 1.
As a result, the light transmittance at a wavelength of 660 nm was as low as 58%. Further, when four optical molded products were produced by this method, it was confirmed that one of them had a crack.

【0037】[0037]

【発明の効果】以上説明した如く本発明の光学用熱可塑
性樹脂成形体の製造方法は、成形温度において揮発物質
を生じるような樹脂に適用しても、内部に歪みを生ずる
ことなく、かつ高い成形温度でも着色を起こすことなく
樹脂成形体を製造することができるものである。
As described above, the method for producing an optical thermoplastic resin molded article of the present invention can be applied to a resin that generates volatile substances at the molding temperature without causing internal distortion and having a high level. The resin molded article can be produced without coloring even at the molding temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において使用される成形型の一例を示す
正面図。
FIG. 1 is a front view showing an example of a mold used in the present invention.

【図2】本発明において使用される恒温槽の一例を示す
概略図。
FIG. 2 is a schematic diagram showing an example of a thermostat used in the present invention.

【図3】図1に示す成形型を用いて得られた光学用樹脂
成形体を示す概略図。
FIG. 3 is a schematic view showing an optical resin molded product obtained by using the molding die shown in FIG. 1;

【図4】図3に示す光学用樹脂成形体を試験用に切断し
てなる試験片を示す概略図。
FIG. 4 is a schematic view showing a test piece obtained by cutting the optical resin molded product shown in FIG. 3 for testing.

【図5】光学用樹脂成形体をプラスチック光ファイバに
紡糸するための装置を示す概略図。
FIG. 5 is a schematic view showing an apparatus for spinning an optical resin molded body into a plastic optical fiber.

【図6】従来の方法に使用される成形金型を説明するた
めの概略図。
FIG. 6 is a schematic diagram for explaining a molding die used in a conventional method.

【符号の説明】[Explanation of symbols]

1,50…光学用成形体、2…試験片、10…成形型、
20…恒温槽、21…槽本体、22…成形型収容部、2
3…蓋材、24…加熱・冷却領域、51…線引炉、52
…熱硬化性シリコーン用割りダイス、53…シリコーン
硬化炉、54…引取機、60…キャビティー、61…金
型。
1, 50: Optical molded article, 2: Test piece, 10: Mold,
Reference numeral 20: constant temperature bath, 21: bath main body, 22: mold receiving section, 2
3 Lid material, 24 Heating / cooling area, 51 Drawing furnace, 52
... a splitting die for thermosetting silicone, 53 ... a silicone curing furnace, 54 ... a take-off machine, 60 ... a cavity, 61 ... a mold.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B29L 11:00 (56)参考文献 特開 昭54−90356(JP,A) 特開 昭52−9065(JP,A) 特開 昭55−53520(JP,A) 特開 平5−24050(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29B 11/00 - 11/12 B29B 13/00 - 13/04 B29C 43/00 - 43/58 G02B 6/00 G02B 6/10 - 6/12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI // B29L 11:00 (56) References JP-A-54-90356 (JP, A) JP-A-52-9065 (JP, A JP-A-55-53520 (JP, A) JP-A-5-24050 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B29B 11/00-11/12 B29B 13 / 00-13/04 B29C 43/00-43/58 G02B 6/00 G02B 6/10-6/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成形型内に熱可塑性樹脂を供給する工
程、前記熱可塑性樹脂が流動性を有する温度において、
不活性ガスを用いて前記成形型内の前記熱可塑性樹脂の
溶融面を第1の圧力で加圧する工程、不活性ガスを用い
て前記溶融面を前記第1の圧力以上である第2の圧力で
加圧しながら前記成形型の下部から徐々に冷却して成形
体を得る工程とを具備することを特徴とする光学用熱可
塑性樹脂成形体の製造方法。
A step of supplying a thermoplastic resin into a mold, wherein at a temperature at which the thermoplastic resin has fluidity,
A step of pressurizing the molten surface of the thermoplastic resin in the mold with a first pressure using an inert gas, and a second pressure that is equal to or higher than the first pressure using the inert gas. And gradually cooling from below the mold while obtaining pressure to obtain a molded article.
JP04045469A 1992-03-03 1992-03-03 Method for producing thermoplastic resin molded article for optical use Expired - Fee Related JP3074213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04045469A JP3074213B2 (en) 1992-03-03 1992-03-03 Method for producing thermoplastic resin molded article for optical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04045469A JP3074213B2 (en) 1992-03-03 1992-03-03 Method for producing thermoplastic resin molded article for optical use

Publications (2)

Publication Number Publication Date
JPH05245839A JPH05245839A (en) 1993-09-24
JP3074213B2 true JP3074213B2 (en) 2000-08-07

Family

ID=12720248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04045469A Expired - Fee Related JP3074213B2 (en) 1992-03-03 1992-03-03 Method for producing thermoplastic resin molded article for optical use

Country Status (1)

Country Link
JP (1) JP3074213B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427731A (en) * 1993-01-28 1995-06-27 E. I. Du Pont De Nemours And Company Compression molding of structures

Also Published As

Publication number Publication date
JPH05245839A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
EP0696955B1 (en) Moulded photochromic lens and method of making same
US4897228A (en) Method for producing optical disk base
AU633093B2 (en) Controlled casting of shrinkable material
JP2002501844A (en) Extrusion pressure molding of optical products
EP1719612A1 (en) Method of and apparatus for moulding optical components
US5230840A (en) Method of manufacturing thermoplastic/resin molded optical member
JP3074213B2 (en) Method for producing thermoplastic resin molded article for optical use
JP3124324B2 (en) Method for producing thermoplastic resin molded article for optical use
JPH0667040A (en) Hollow plastic optical fiber and its production
JP5298749B2 (en) Molding method
JPS61100420A (en) Manufacture of plastic lens
JPS6362373B2 (en)
JPH05124077A (en) Manufacture of plastic molding
JPS6119327A (en) Injection compression molding method and device thereof
JP3116388B2 (en) Plastic lens manufacturing method
EP0846542B1 (en) Method of and apparatus for injection moulding a plastic substrate using a plurality of separate temperature adjusting means
JPS5856511B2 (en) Molding method for thermosetting materials
JPS6442217A (en) Method and apparatus for heating mold surface
JPH0626830B2 (en) Molding method for thermoplastic plastics
JPH07205239A (en) Manufacture of plastic lens
JPH06320568A (en) Molding apparatus and injection molding method
JP2003322743A (en) Optical waveguide and manufacturing method thereof
JP2000098143A (en) Production of plastic optical fiber
JP2790586B2 (en) Manufacturing method of molded products
JPH0651332B2 (en) Injection compression molding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees