JP2000098143A - Production of plastic optical fiber - Google Patents

Production of plastic optical fiber

Info

Publication number
JP2000098143A
JP2000098143A JP10285928A JP28592898A JP2000098143A JP 2000098143 A JP2000098143 A JP 2000098143A JP 10285928 A JP10285928 A JP 10285928A JP 28592898 A JP28592898 A JP 28592898A JP 2000098143 A JP2000098143 A JP 2000098143A
Authority
JP
Japan
Prior art keywords
optical fiber
plastic optical
thermoplastic resin
base material
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10285928A
Other languages
Japanese (ja)
Inventor
Yasuhiro Koike
康博 小池
Eiji Ito
英治 伊藤
Masaki Takahashi
正樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP10285928A priority Critical patent/JP2000098143A/en
Publication of JP2000098143A publication Critical patent/JP2000098143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of an optical fiber by which a plastic optical fiber of a large diameter with small bending loss can be produced at a low cost. SOLUTION: In this producing method of a plastic optical fiber, a noncrystalline thermoplastic resin compsn. is formed while polymerized around a preform having specified distribution of refractive index which is disposed in the center. Then the preform with the resin together is drawn into a fiber to obtain the plastic optical fiber having a coating made of the noncrystalline thermoplastic resin compsn. which does not contribute to transmission of light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面に非晶質熱可
塑性樹脂組成物からなる被覆を備えた多モード屈折率分
布型プラスチック光ファイバの製造方法に係り、特に、
曲げ損失が小さく、且つ大口径なプラスチック光ファイ
バを低コストで得ることが可能な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multimode gradient index plastic optical fiber having a coating on its surface made of an amorphous thermoplastic resin composition.
The present invention relates to a method for manufacturing a plastic optical fiber having a small bending loss and a large diameter at a low cost.

【0002】[0002]

【従来の技術】コア及びクラッドがともにプラスチック
材料で構成されたプラスチック光ファイバは、石英系光
ファイバに比べて可とう性に優れ、かつ大口径であるた
め端面処理や接続処理が容易であり、更に低価格である
ことから近年、LAN、ISDN等の光信号媒体として
の応用が種々検討されている。これらの中でも、例え
ば、特開平5−241036号公報に開示されているよ
うな、コアの中心から屈折率が徐々に減少するような屈
折率分布を有する多モード屈折率分布型プラスチック光
ファイバ(以下、「GI型プラスチック光ファイバ」と
略記する)は、伝送容量が多いことから次世代通信網構
想における光信号媒体として重要視されている。
2. Description of the Related Art A plastic optical fiber in which both a core and a clad are made of a plastic material has excellent flexibility as compared with a silica-based optical fiber and has a large diameter, so that end face processing and connection processing are easy. In recent years, various applications for optical signal media such as LAN and ISDN have been studied because of their low cost. Among these, for example, a multimode refractive index distribution type plastic optical fiber having a refractive index distribution such that the refractive index gradually decreases from the center of the core as disclosed in Japanese Patent Application Laid-Open No. 5-21036 (hereinafter, referred to as Japanese Patent Application Laid-Open No. H5-241036) , "GI plastic optical fiber") is regarded as important as an optical signal medium in a next-generation communication network concept because of its large transmission capacity.

【0003】一般的に、この種のGI型プラスチック光
ファイバは、例えば、特開平5−241036号公報に
開示されているように、まず、クラッド材からなる円筒
状重合容器内にコア液を充填し、該重合容器を回転装置
によって適当な速度で回転させながら周辺から重合反応
を進行させて所定の屈折率分布を有する母材を作製し、
次いで、これらを熱延伸装置(線引き装置)に設けられ
た加熱炉内に一定の速度で連続的に導入して加熱し、軟
化、溶融した母材を一定の速度で線引き紡糸することに
よって製造されている。
Generally, a GI type plastic optical fiber of this kind is prepared by first filling a core liquid in a cylindrical polymerization vessel made of a clad material, as disclosed in Japanese Patent Application Laid-Open No. H5-241036. Then, while the polymerization vessel is rotated at an appropriate speed by a rotating device, a polymerization reaction proceeds from the periphery to produce a base material having a predetermined refractive index distribution,
Then, these are continuously introduced into a heating furnace provided in a hot drawing device (drawing device) at a constant speed and heated, and the softened and molten base material is drawn and spun at a constant speed. ing.

【0004】さて、このようなプラスチック光ファイバ
は、実使用時に、その布設状態によっては、曲げによる
伝送損失(以下、「曲げ損失」と略記する)が発生する
ことがある。一般的に、曲げ損失を低減する必要がある
場合は、外径を細く線引き紡糸したコア径の細いプラス
チック光ファイバを利用することが有効であるとされて
いるが、コア径の細いプラスチック光ファイバは、耐熱
性に劣るとともに、プラスチック光ファイバの利点であ
る大口径による作業の容易さが失われてしまうという問
題がある。従って、プラスチック光ファイバの曲げ損失
を、その作業性を犠牲にせずに軽減するためには、外径
は変えずにコア径のみを細くする必要がある。
In such a plastic optical fiber, a transmission loss due to bending (hereinafter, abbreviated as "bending loss") may occur during actual use depending on the laying state. Generally, when it is necessary to reduce bending loss, it is effective to use a plastic optical fiber with a small core diameter drawn and spun with a small outer diameter, but a plastic optical fiber with a small core diameter is effective. However, there is a problem that the heat resistance is inferior and the ease of work due to the large diameter, which is an advantage of the plastic optical fiber, is lost. Therefore, in order to reduce the bending loss of the plastic optical fiber without sacrificing its workability, it is necessary to reduce only the core diameter without changing the outer diameter.

【0005】コア径のみを細くする手段としては、例え
ば、(1)外径を細く線引き紡糸したプラスチック光フ
ァイバの表面に熱可塑性樹脂組成物を押出被覆する方
法、(2)外径を細く線引き紡糸したプラスチック光フ
ァイバの表面に紫外線硬化樹脂を塗布した後、紫外線硬
化させる方法、(3)熱可塑性樹脂組成物の被覆等によ
り肉厚のクラッド材を成形した後、該クラッド材内にコ
ア液を充填し重合反応を進行させることによって母材を
作製し、これを線引き紡糸する方法、(4)母材を熱可
塑性樹脂組成物からなる円筒体内に配置した後、これら
を同時に線引き紡糸する方法、などがある。
[0005] Means for reducing the core diameter alone include, for example, (1) a method of extrusion-coating a thermoplastic resin composition on the surface of a drawn and spun plastic optical fiber having a small outer diameter, and (2) a method of drawing a thinner outer diameter. A method of applying an ultraviolet curable resin to the surface of the spun plastic optical fiber and then curing the ultraviolet curable resin; (3) forming a thick clad material by coating with a thermoplastic resin composition or the like; To prepare a base material by allowing the polymerization reaction to proceed and draw and spin the base material. (4) A method in which the base material is placed in a cylinder made of a thermoplastic resin composition, and then these are simultaneously drawn and spun. ,and so on.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、まず、
プラスチック光ファイバの表面に熱可塑性樹脂組成物を
押出被覆する方法の場合には、押出被覆時の熱の影響に
よってマイクロベンディングによる伝送損失が増加する
という問題や、押出被覆時の偏肉によりコアが偏心して
しまうという問題がある。
However, first of all,
In the case of the method of extrusion-coating a thermoplastic resin composition on the surface of a plastic optical fiber, the transmission loss due to microbending increases due to the effect of heat at the time of extrusion coating, and the core becomes uneven due to uneven thickness at the time of extrusion coating. There is a problem of eccentricity.

【0007】又、外径を細く線引きしたプラスチック光
ファイバの表面に紫外線硬化樹脂を塗布、硬化させる方
法の場合には、曲げ損失の低減効果を発現させるために
は50〜100μm程度の厚さの樹脂層が必要になるの
であるが、そのような厚い樹脂層を形成するためには、
複数回繰り返して塗布硬化させる必要があるため生産性
が著しく低下してしまう。更に、上記の押出被覆による
方法の場合と同様にコアの偏心も予想される。
In the case of applying and curing an ultraviolet curable resin on the surface of a plastic optical fiber having a thin outer diameter, a thickness of about 50 to 100 μm is required in order to exhibit an effect of reducing bending loss. A resin layer is required, but in order to form such a thick resin layer,
Since it is necessary to apply and cure the coating several times, productivity is significantly reduced. In addition, eccentricity of the core is also expected as in the case of the extrusion coating method described above.

【0008】又、肉厚のクラッド材を使用することによ
って得られた母材を線引き紡糸する方法の場合には、ク
ラッド材の肉厚が厚くなると熱伝導が悪くなり、重合反
応の制御が困難になってしまうため、量産性を高めるた
めに母材の径を太くするほど、より厳密な反応の制御が
必要になり、製造コストが高くなってしまう。
In the case of a method of drawing and spinning a base material obtained by using a thick clad material, if the thickness of the clad material is large, heat conduction becomes poor, and it is difficult to control a polymerization reaction. Therefore, as the diameter of the base material is increased in order to enhance mass productivity, more strict control of the reaction is required, and the production cost is increased.

【0009】又、熱可塑性樹脂組成物からなる円筒体内
に母材を配置し、それらを同時に線引き紡糸する方法の
場合には、線引き条件(線引き温度、線引き速度、母材
の径と円筒体の厚さの比率など)の設定を精密に行わな
いと、特に、円筒体が成形収縮率の大きい結晶性の熱可
塑性樹脂組成物から構成されていた場合など、収縮率の
違いから光ファイバに不必要な応力がかかってしまい、
伝送損失を増加させてしまう恐れがある。又、円筒体が
クラッド材と密着性の高い熱可塑性樹脂組成物から構成
されていた場合は、線引き紡糸する際に母材と円筒体の
界面に双方の分解ガス等による発泡が起こる恐れがあ
る。
In the case of a method in which a base material is placed in a cylindrical body made of a thermoplastic resin composition and they are simultaneously drawn and spun, the drawing conditions (drawing temperature, drawing speed, diameter of the base material and the size of the cylindrical body) are set. If the setting of the thickness ratio, etc.) is not performed precisely, the optical fiber may not be able to be applied to the optical fiber due to the difference in the shrinkage, especially when the cylindrical body is made of a crystalline thermoplastic resin composition having a high molding shrinkage. The necessary stress is applied,
There is a risk that transmission loss will increase. Further, when the cylindrical body is composed of a thermoplastic resin composition having high adhesion to the clad material, foaming may occur at the interface between the base material and the cylindrical body during drawing and spinning due to both decomposition gases and the like. .

【0010】本発明はこのような点に基づいてなされた
もので、その目的とするところは、曲げ損失が小さく、
且つ大口径なプラスチック光ファイバを低コストで得る
ことが可能な製造方法を提供することにある。
[0010] The present invention has been made based on such a point, and an object of the present invention is to reduce bending loss,
Another object of the present invention is to provide a manufacturing method capable of obtaining a large-diameter plastic optical fiber at low cost.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するべ
く本発明によるプラスチック光ファイバの製造方法は、
中央に配置した所定の屈折率分布を有する母材の周囲に
非晶質熱可塑性樹脂組成物を重合させながら成型した
後、これらを同時に線引き紡糸することによって、周囲
に光伝送にかかわらなくても良い非晶質熱可塑性樹脂組
成物を備えたプラスチック光ファイバを得ることを特徴
とするものである。
In order to achieve the above object, a method for manufacturing a plastic optical fiber according to the present invention comprises:
After being molded while polymerizing the amorphous thermoplastic resin composition around the base material having a predetermined refractive index distribution arranged in the center, by simultaneously drawing and spinning these, even if not involved in light transmission around, The present invention is characterized in that a plastic optical fiber having a good amorphous thermoplastic resin composition is obtained.

【0012】[0012]

【発明の実施の形態】本発明において使用される母材
は、GI型の屈折率分布を有するものであれば、その構
成材料、長さ、外径等は特に限定されない。構成材料と
しては、従来より様々な種類のものが公知となっている
ので、それらを適宜に選択して使用しても良い。一例と
して、特開平5−241036号公報、国際公開番号W
O93/08488号などに開示されているような、ポ
リメチルメタクリレートを主体とした樹脂に屈折率制御
用の高屈折率の化合物をドープしたものなどを挙げるこ
とができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The constituent material, length, outer diameter and the like of the base material used in the present invention are not particularly limited as long as the base material has a GI type refractive index distribution. Since various kinds of constituent materials have been known in the art, they may be appropriately selected and used. For example, Japanese Patent Application Laid-Open No. H5-241036, International Publication No. W
As disclosed in O93 / 08488 and the like, a resin obtained by doping a resin mainly composed of polymethyl methacrylate with a compound having a high refractive index for controlling a refractive index can be used.

【0013】本発明においては、まず、上記母材の周囲
に非晶質熱可塑性樹脂組成物を重合させながら成型す
る。成型方法としては、例えば、(1)母材を所定の内
径を持つ円筒状の重合容器の中央に配置した後、母材と
重合容器の間に反応液を充填し、次いで、周辺から加
熱、又はエネルギー線(紫外線、赤外線等)を照射して
重合反応を進行させる方法、(2)母材を所定の内径を
持つ円筒状の重合容器の中央に配置した後、重合容器内
に反応液を充填し、次いで、重合容器のどちらか一端か
ら加熱、又はエネルギー線(紫外線、赤外線等)を照射
して重合反応を進行させる方法、(3)母材を所定の内
径を持つ円筒状の重合容器の中央に配置した後、重合容
器内に底部から徐々に反応液を供給し、同時に加熱、又
はエネルギー線(紫外線、赤外線等)を照射して重合反
応を進行させる方法、などが挙げられる。
In the present invention, first, an amorphous thermoplastic resin composition is molded around the base material while being polymerized. As a molding method, for example, (1) after disposing a base material in the center of a cylindrical polymerization container having a predetermined inner diameter, filling a reaction liquid between the base material and the polymerization container, and then heating from the periphery, Alternatively, a method of irradiating energy rays (ultraviolet rays, infrared rays, etc.) to cause the polymerization reaction to proceed, (2) after disposing the base material at the center of a cylindrical polymerization vessel having a predetermined inner diameter, Filling, and then heating from one end of the polymerization vessel or irradiating with energy rays (ultraviolet rays, infrared rays, etc.) to allow the polymerization reaction to proceed. After that, the reaction liquid is gradually supplied from the bottom into the polymerization vessel and heated, or at the same time, the polymerization reaction is advanced by irradiating energy rays (such as ultraviolet rays and infrared rays).

【0014】使用する反応液は、熱又はエネルギー線
(紫外線、赤外線等)の照射によって重合して非晶質の
熱可塑性樹脂組成物となるものであれば何でも良い。例
えば、メチルメタクリート、スチレン、酢酸ビニル等に
熱開始剤、連鎖移動剤等を添加したもの、ウレタンアク
リレート等に紫外線硬化剤等を添加したものなどが挙げ
られる。
The reaction solution to be used may be any as long as it is polymerized by irradiation of heat or energy rays (such as ultraviolet rays and infrared rays) to form an amorphous thermoplastic resin composition. Examples thereof include those obtained by adding a thermal initiator and a chain transfer agent to methyl methacrylate, styrene, vinyl acetate, and the like, and those obtained by adding an ultraviolet curing agent to urethane acrylate and the like.

【0015】従来、熱可塑性樹脂組成物からなる円筒体
内に母材を配置し、それらを同時に線引き紡糸する方法
の場合には、円筒体がクラッド材と密着性の高い熱可塑
性樹脂組成物から構成されていた場合は、線引き紡糸す
る際に母材と円筒体の界面に双方の分解ガス等による発
泡が起こる恐れがあったが、本発明の場合には、そのよ
うな材料を使用した場合にも、上記した反応液を重合さ
せながら成型しているため、母材と樹脂組成物の界面が
消失し発泡が抑制される。
Conventionally, in the case of a method in which a base material is placed in a cylinder made of a thermoplastic resin composition and they are simultaneously drawn and spun, the cylinder is made of a thermoplastic resin composition having high adhesion to a clad material. If it had been, when drawing and spinning, there was a risk that foaming due to both decomposed gas and the like at the interface between the base material and the cylindrical body, but in the case of the present invention, when such a material is used Also, since the above reaction solution is molded while being polymerized, the interface between the base material and the resin composition disappears, and foaming is suppressed.

【0016】次に、この母材を、従来公知の熱延伸装置
(線引き装置)に連続的に導入し、母材と非晶質熱可塑
性樹脂組成物を同時に線引き紡糸することにより、所定
の外径を有し、表面に光伝送にかかわらなくても良い非
晶質熱可塑性樹脂組成物からなる被覆を備えたプラスチ
ック光ファイバが完成する。
Next, the base material is continuously introduced into a conventionally known hot drawing apparatus (drawing apparatus), and the base material and the amorphous thermoplastic resin composition are simultaneously drawn and spun to obtain a predetermined outer shape. A plastic optical fiber having a diameter and having on its surface a coating made of an amorphous thermoplastic resin composition which may not be involved in light transmission is completed.

【0017】[0017]

【実施例】以下に本発明の実施例を比較例と併せて説明
する。尚、以下の実施例は、最終的な仕上外径が0.7
5mmとなるようにプラスチック光ファイバを製造した
場合の例を示したものである。又、母材の構成材料とし
ては、ポリメチルメタクリレートを主体とした樹脂に、
屈折率制御用の高屈折率の化合物をドープしたものを使
用した。又、母材の周囲に成型する非晶質熱可塑性樹脂
組成物を構成する反応液としては、メチルメタクリレー
トに熱開始剤及び連鎖移動剤を添加したものを使用し
た。
EXAMPLES Examples of the present invention will be described below together with comparative examples. In the following examples, the final finish outer diameter was 0.7
This is an example in which a plastic optical fiber is manufactured to have a length of 5 mm. Further, as a constituent material of the base material, a resin mainly composed of polymethyl methacrylate,
A material doped with a compound having a high refractive index for controlling the refractive index was used. Further, as a reaction liquid constituting the amorphous thermoplastic resin composition molded around the base material, a reaction liquid obtained by adding a thermal initiator and a chain transfer agent to methyl methacrylate was used.

【0018】実施例 まず、GI型の屈折率分布を有する外径22mm、コア
径13.2mm、長さ500mmの母材を、内径50m
m、長さ450mmの円筒状の重合容器の中央に固定配
置した。次に、母材と重合容器との隙間に少量ずつ反応
液〔メチルメタクリレート:過酸化ラウロイル:1−ド
デカンチオール=100:0.2:1.5(重量比)〕
を3ml/分の速度で供給し、同時に重合容器を70℃
のシリコンオイルバス中に、0.2mm/分の速度で沈
降させながら重合させた。次いで、これを200℃に保
持された線引き炉本体に0.45mm/分の速度で導入
し、2.0m/分の速度で線引き紡糸して、表面にポリ
メチルメタクリレートからなる被覆を備えた外径0.7
5mm、コア径0.20mmのプラスチック光ファイバ
を製造した。このようにして、得られたプラスチック光
ファイバの曲げ損失は、半径25mm、180゜曲げに
て増加損失0.2dB、半径15mm、180゜曲げに
て増加損失0.4dBであった。
[0018] Example First, an outer diameter 22mm having a refractive index profile of the GI-type, core diameter 13.2 mm, the base material of length 500 mm, internal diameter 50m
m, fixed at the center of a cylindrical polymerization vessel having a length of 450 mm. Next, a reaction liquid [methyl methacrylate: lauroyl peroxide: 1-dodecanethiol = 100: 0.2: 1.5 (weight ratio)] was added little by little to the gap between the base material and the polymerization vessel.
Is supplied at a rate of 3 ml / min.
In a silicone oil bath at a rate of 0.2 mm / min. Next, this was introduced into a drawing furnace main body maintained at 200 ° C. at a speed of 0.45 mm / min, and drawn and spun at a speed of 2.0 m / min to form an outer surface provided with a coating of polymethyl methacrylate on the surface. 0.7 diameter
A plastic optical fiber having a diameter of 5 mm and a core diameter of 0.20 mm was manufactured. The bending loss of the obtained plastic optical fiber was 0.2 dB at a radius of 25 mm and bending at 180 °, and 0.4 dB at a radius of 15 mm and bending at 180 °.

【0019】比較例 GI型の屈折率分布を有する外径22mm、コア径1
3.2mm、長さ500mmの母材を線引き紡糸して外
径0.75mm、コア径0.45mmのプラスチック光
ファイバを製造した。このようにして、得られたプラス
チック光ファイバの曲げ損失は、半径25mm、180
゜曲げにて増加損失0.7dB、半径15mm、180
゜曲げにて増加損失1.2dBであった。
COMPARATIVE EXAMPLE A GI type refractive index distribution having an outer diameter of 22 mm and a core diameter of 1
A base material having a length of 3.2 mm and a length of 500 mm was drawn and spun to produce a plastic optical fiber having an outer diameter of 0.75 mm and a core diameter of 0.45 mm. The bending loss of the obtained plastic optical fiber was 25 mm in radius, 180 mm in this way.
増 加 Increase in bending 0.7dB, radius 15mm, 180
増 加 The increase loss was 1.2 dB in bending.

【0020】[0020]

【発明の効果】以上詳述したように本発明の製造方法に
よれば、線引き紡糸する前の母材に、予め非晶質の熱可
塑性樹脂組成物を重合させながら成型しておき、これら
を同時に線引き紡糸することにより、精密な重合条件の
制御などを必要とすることなく簡単な方法でコア径のみ
を細くしたプラスチック光ファイバを得ることができ
る。従って、曲げ損失が小さく、且つ大口径なプラスチ
ック光ファイバを低コストで得ることが可能になる。
As described above in detail, according to the production method of the present invention, an amorphous thermoplastic resin composition is preliminarily molded on a base material before drawing and spinning, and these are formed. By simultaneously drawing and spinning, a plastic optical fiber having only a small core diameter can be obtained by a simple method without requiring precise control of polymerization conditions. Therefore, a plastic optical fiber having a small bending loss and a large diameter can be obtained at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 正樹 静岡県浜松市高塚町4830番地 株式会社ク ラベ内 Fターム(参考) 2H050 AA17 AB43Z AC05 BA01 BA14 BB07Q BB14Q BB15Q BB17Q BB33Q  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masaki Takahashi 4830 Takatsuka-cho, Hamamatsu-shi, Shizuoka Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中央に配置した所定の屈折率分布を有す
る母材の周囲に非晶質熱可塑性樹脂組成物を重合させな
がら成型した後、これらを同時に線引き紡糸することに
よって、周囲に光伝送にかかわらなくても良い非晶質熱
可塑性樹脂組成物からなる被覆を備えたプラスチック光
ファイバを得ることを特徴とするプラスチック光ファイ
バの製造方法。
The present invention relates to a method of forming an amorphous thermoplastic resin composition around a base material having a predetermined refractive index distribution arranged in the center while polymerizing the amorphous thermoplastic resin composition. A method for producing a plastic optical fiber, characterized by obtaining a plastic optical fiber provided with a coating made of an amorphous thermoplastic resin composition, which does not have to be concerned.
JP10285928A 1998-09-22 1998-09-22 Production of plastic optical fiber Pending JP2000098143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10285928A JP2000098143A (en) 1998-09-22 1998-09-22 Production of plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10285928A JP2000098143A (en) 1998-09-22 1998-09-22 Production of plastic optical fiber

Publications (1)

Publication Number Publication Date
JP2000098143A true JP2000098143A (en) 2000-04-07

Family

ID=17697825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10285928A Pending JP2000098143A (en) 1998-09-22 1998-09-22 Production of plastic optical fiber

Country Status (1)

Country Link
JP (1) JP2000098143A (en)

Similar Documents

Publication Publication Date Title
JP2001260143A (en) Method for manufacturing matrix for plastic optical fiber, and matrix for plastic optical fiber
JPS60119510A (en) Manufacture of preform for plastic optical fiber
JP2000098143A (en) Production of plastic optical fiber
JP2000098144A (en) Production of plastic optical fiber
KR100387096B1 (en) Process for the preparation and apparatus of plastic optical fiber preform having refractive index grade and optical fiber preform and optical fiber obtained therefrom
JP2005526278A (en) Manufacturing method of plastic optical fiber preform
JPH0727928A (en) Production of plastic optical transmission body
JPH08227019A (en) Production of plastic optical fiber preform
JPH1096825A (en) Production of preform for plastic optical fiber
JPH075329A (en) Production of plastic optical fiber preform and device therefor
JPH0713029A (en) Method and apparatus for producing plastic optical fiber preform
JPH08110419A (en) Production of plastic optical fiber preform
JPH10239534A (en) Manufacture of base material for plastic optical fiber
JPH09138313A (en) Production of distributed refractive index plastic optical fiber
JPS61236636A (en) Coating method for jacket of optical fiber
JPH11174242A (en) Plastic optical fiber
JP3124324B2 (en) Method for producing thermoplastic resin molded article for optical use
JP3074213B2 (en) Method for producing thermoplastic resin molded article for optical use
KR100498189B1 (en) Method for producing a preform for a graded-index plastic optical fiber by high speed revolution
JPS61130905A (en) Plastic optical fiber and its production
JPH09133820A (en) Manufacture of preform for gradient index plastic optical fiber
JP3675884B2 (en) Optical fiber manufacturing method
JPH09178959A (en) Production of preform for distributed refractive index plastic optical fiber
JPH09178961A (en) Production of plastic optical fiber
JPS6016837A (en) Optical fiber coated with plastic