JPH02233537A - Production of optical fiber core - Google Patents

Production of optical fiber core

Info

Publication number
JPH02233537A
JPH02233537A JP1054091A JP5409189A JPH02233537A JP H02233537 A JPH02233537 A JP H02233537A JP 1054091 A JP1054091 A JP 1054091A JP 5409189 A JP5409189 A JP 5409189A JP H02233537 A JPH02233537 A JP H02233537A
Authority
JP
Japan
Prior art keywords
optical fiber
coating
type silicone
silicone resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1054091A
Other languages
Japanese (ja)
Inventor
Takeshi Shimomichi
毅 下道
Kazunaga Kobayashi
和永 小林
Shinji Araki
荒木 真治
Hideo Suzuki
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1054091A priority Critical patent/JPH02233537A/en
Publication of JPH02233537A publication Critical patent/JPH02233537A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings

Abstract

PURPOSE:To continuously and effectively provide an optical fiber core having a sufficient strength and a small diameter by disposing the coating film of a rudder type silicone resin on a melt-spun optical fiber core and subsequently coating the treated core with an extruded thermoplastic resin. CONSTITUTION:An optical fiber bare core 3 melt-spun (spinning oven 3) is coated with a rudder type silicone resin 4a (coating tank 4) and subsequently coated with an extruded thermoplastic resin (extruder 7) to provide the objective optical fiber core. The rudder type silicone resin is e.g. a thermosetting resin having a chemical structure of formula 1. The thermoplastic resin includes nylon 11, nylon 6-10, polyphenylene oxide and polybutylene terephthalate as well as the conventional nylon 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、通信用光ケーブル、光コード、光テープ心線
等に用いられる光ファイバ心線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing optical fibers used for communication optical cables, optical cords, optical tapes, etc.

〔従来の技術〕[Conventional technology]

従来、光ファイバ心線は紡糸工程で得られた光ファイバ
裸線に、紫外線硬化樹脂(UV樹脂)或は熱硬化性シリ
コーン樹脂などからなる一次被覆を設けて光ファイバ素
線をつ《り、次に、この素線に、押出機によってナイロ
ン12などの熱可塑性樹脂からなる二次1kmを設けて
製造されている。
Conventionally, optical fiber cores are produced by applying a primary coating made of ultraviolet curable resin (UV resin) or thermosetting silicone resin to bare optical fibers obtained in a spinning process, and then forming optical fibers. Next, this strand is manufactured by providing a 1 km secondary layer made of a thermoplastic resin such as nylon 12 using an extruder.

これは、光ファイバ課線上に直接押出被lによって二次
被覆を設けようとすると、光ファイバ裸線が押出機のニ
ップルに接触し、この接触によって光ファイバ課線表面
に微少な傷が生じ、光ファイバ強度の低下を招《ためで
あり、紫外線硬化樹脂や熱硬化性シリコーン樹脂からな
る一次肢覆はこのような傷の発生を防止するための保護
用被覆として機能するものである。このため、従来は通
常径125μmの光ファイバ裸線に厚さ約62μmの上
記一次被覆を設けて、外径250μmとし、この上に上
記二次被覆を設けて仕上径0.9mmの光ファイバ心線
としている。
This is because when attempting to provide a secondary coating on the optical fiber section by direct extrusion, the bare optical fiber comes into contact with the nipple of the extruder, and this contact causes minute scratches on the surface of the optical fiber section. This is to reduce the strength of the optical fiber, and the primary cover made of ultraviolet curing resin or thermosetting silicone resin functions as a protective coating to prevent the occurrence of such scratches. For this reason, conventionally, a bare optical fiber with a diameter of 125 μm is coated with the above-mentioned primary coating with a thickness of about 62 μm to give an outer diameter of 250 μm, and then the above-mentioned secondary coating is provided on top of this to create an optical fiber core with a finished diameter of 0.9 mm. It is a line.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、近時光ケーブルなどにおいては、大容量化、
細径化の要望があり、光ファイバ心線自体を細径化する
必要が生じてきている。
By the way, in recent years optical cables have increased in capacity,
There is a demand for a smaller diameter, and it has become necessary to reduce the diameter of the optical fiber itself.

このためには、上述の一次被覆および二次被覆の厚さを
薄くせねばならないが、一次彼覆の厚さを薄くすると二
次被覆時の押出機のニップルでの擦過傷の発生を十分に
防止することが困難となり、光ファイバ心線としての機
械的強度が低下する恐れがある。
To achieve this, it is necessary to reduce the thickness of the primary coating and secondary coating described above, but reducing the thickness of the primary coating sufficiently prevents scratches from occurring at the nipple of the extruder during the secondary coating. It becomes difficult to do so, and there is a possibility that the mechanical strength of the coated optical fiber may decrease.

一方、光ファイバ母材の溶融紡糸から二次被覆形成まで
の一連の工程を連続化(タンデム化)し、製造効率を高
める必要もある。
On the other hand, it is also necessary to increase manufacturing efficiency by making the series of steps from melt spinning of the optical fiber preform to forming the secondary coating continuous (tandem).

〔課題を解決するための手段〕[Means to solve the problem]

この発明では、溶融紡糸された光ファイバ裸線にラダー
型シリコーン樹脂からなる被覆を設けたのち、引き続い
て熱可塑性樹脂の押出しによる被覆を行うことにより、
上記課題を解決するようにした。
In this invention, a coating made of ladder-type silicone resin is provided on a melt-spun bare optical fiber, and then a coating is performed by extrusion of a thermoplastic resin.
I tried to solve the above problem.

第1図は、本発明の光ファイバ心線の製造方法に用いる
装置の一例を示す概略図で、図中符号lは、光ファイバ
母材である。この母材lは、紡糸炉.2において、先フ
ァイバ裸線3に紡糸される。
FIG. 1 is a schematic diagram showing an example of an apparatus used in the method for producing a coated optical fiber according to the present invention, and reference numeral l in the figure represents an optical fiber preform. This base material l was prepared in a spinning furnace. 2, the tip fiber is spun into a bare wire 3.

この紡糸炉2より引出された裸線3は、ただちに未硬化
の液状のラダー型シリコーン樹脂4aが満たされたコー
ティングポット4に導入され、その表面に該樹脂液が塗
布された状態で、架橋筒5に導かれ、架橋され、ラダー
型シリコーン樹脂が肢覆されて光ファイバ素線6となる
。このラダー型シリコーン樹脂からなる一次被覆の厚さ
は、通常1〜10μmの範囲とされる。
The bare wire 3 drawn out from the spinning furnace 2 is immediately introduced into a coating pot 4 filled with an uncured liquid ladder-type silicone resin 4a, and with the resin liquid applied to the surface of the coating pot 4, a cross-linked tube is coated. 5, is crosslinked, and the ladder-type silicone resin is turned over to form an optical fiber 6. The thickness of this primary coating made of ladder-type silicone resin is usually in the range of 1 to 10 μm.

ここでのラダー型シリコーン樹脂とは、例えば次の([
)式に示したような化学構造を有する熱硬化型樹脂であ
る。
Here, the ladder-type silicone resin is, for example, the following ([
) It is a thermosetting resin having the chemical structure shown in the formula.

このラダー型シリコーン樹脂は、オルガノシルセスキオ
キサンオリゴマーを加熱縮合して各ラダー(梯子)端お
よびラダー間を橋かけし、SO−Si結合を成長させて
得られたポリオルガノシルセスキオキサンである。なお
、ラダー型シリコーン樹脂には、上記(1)式に示した
構造の池、側鎖のメチル基とフェニル基のモル比を種々
変えた構造を有するものを使用してもよく、これによつ
て縮合硬化したラダー型シリコーン樹脂の硬度や耐熱性
を適宜調節することが可能である。
This ladder-type silicone resin is a polyorganosilsesquioxane obtained by heating and condensing organosilsesquioxane oligomers to bridge each ladder end and between the ladders and grow SO-Si bonds. be. Note that the ladder-type silicone resin may have the structure shown in formula (1) above, and a structure in which the molar ratio of the methyl group to the phenyl group in the side chain is varied. It is possible to adjust the hardness and heat resistance of the ladder type silicone resin which is condensed and cured.

この素線6は、引き続いて熱可塑性樹脂からなる被覆を
行う押出機7に導かれ、溶融した熱可塑性樹脂により二
次被覆された後冷却筒8によって冷却され、光ファイバ
心線9が得られる。ここでの熱可塑性樹脂としては、従
来のナイロンl2の他にナイロン11ナイロン6−10
、ポリフェニレンオキサイト、ポリブチレンテレフタレ
ート、ポリサルホン、PEEKなどのエンジニアリング
プラスチックが用いられる。
This strand 6 is then led to an extruder 7 that coats it with a thermoplastic resin, and after being secondly coated with a molten thermoplastic resin, it is cooled by a cooling tube 8 to obtain an optical fiber core 9. . In addition to the conventional nylon 12, the thermoplastic resin used here includes nylon 11, nylon 6-10,
, polyphenylene oxide, polybutylene terephthalate, polysulfone, PEEK, and other engineering plastics are used.

このように光ファイバ心線9は、タンデムに配置されて
いる紡糸炉2、ラダー型シリコーン樹脂コーティングポ
ット4および押出機7を通って連続的に製造され、中間
ロールlOを通って巻取ロール1lに巻取られる。なお
、第2図(a)(b)(C)はそれぞれ、上記説明にお
ける光ファイバの裸線3、素線6、心線9の横断面を示
す図である。
In this way, the optical fiber core 9 is continuously manufactured through the spinning furnace 2, the ladder-type silicone resin coating pot 4, and the extruder 7, which are arranged in tandem, and then passes through the intermediate roll 1O to the take-up roll 1L. It is wound up. Note that FIGS. 2(a), 2(b), and 2(C) are diagrams showing cross sections of the bare wire 3, the strand 6, and the core wire 9 of the optical fiber in the above description, respectively.

上記光ファイバ心線の製造方法においては、光ファイバ
裸線上に耐擦傷性の極めて高いラダー型シリコーン樹脂
が彼覆されるため、次工程の押出機7の二ノブルに接触
しても、光ファイバ裸線が損傷を受けることなく、強度
の高い光ファイバ心線が効率よく得られる。
In the above-mentioned method for producing coated optical fiber, since the ladder-type silicone resin with extremely high scratch resistance is covered over the bare optical fiber, even if it comes into contact with the second knob of the extruder 7 in the next step, the optical fiber A strong optical fiber core can be efficiently obtained without damaging the bare wire.

また、ラダー型シリコーン樹脂が耐擦傷性に富んでいる
ので、この一次被覆の厚さを薄くしてもニップルによる
傷の発生がな《、通常2〜4μm程度の被覆厚さで、十
分この上に二次被覆を押出被覆することができ、細径化
が可能となる。また、被覆厚さを薄くできるので、架橋
(硬化)時間を短縮化でき、また架橋筒5の長さも短縮
化できることになって、第1図に示すように溶融紡糸か
ら二次被覆の押出被覆までを連続化(タンデム化)が可
能となり製造効率を高めることができる。
In addition, since the ladder-type silicone resin has high scratch resistance, even if the thickness of this primary coating is made thinner, there will be no scratches caused by nipples. A secondary coating can be applied by extrusion to make the diameter smaller. In addition, since the coating thickness can be reduced, the crosslinking (curing) time can be shortened, and the length of the crosslinking tube 5 can also be shortened. As shown in FIG. This makes it possible to continuously (tandemize) up to 100 parts, increasing manufacturing efficiency.

さらに、上記ラダー型シリコーン樹脂は、優れた撥水性
、耐熱性(分解開始温度250゜C以上)を看するため
、例えば透湿性の高い熱可塑性樹脂であっても、他に優
れた特性を有すれば、その特性を活用出来る等、二次破
覆として使用される熱可塑性樹脂の選択範囲を大幅に広
げることが出来る。
Furthermore, the ladder-type silicone resin has excellent water repellency and heat resistance (decomposition start temperature of 250°C or higher), so even if it is a thermoplastic resin with high moisture permeability, it may not have other excellent properties. By doing so, the selection range of thermoplastic resins used as secondary breakage can be greatly expanded, such as by making use of its properties.

また、上記ラダー型シリコーン樹脂被覆の厚さは数μm
で充分であるので、光ファイバ裸線の外径をほとんど変
えることがな《、寸法的{こは光ファイバ裸線に直接熱
可塑性樹脂を被覆したものと同等と見做すことができる
In addition, the thickness of the ladder type silicone resin coating is several μm.
Since this is sufficient, the outer diameter of the bare optical fiber is hardly changed (dimensionally, it can be considered to be equivalent to a bare optical fiber directly coated with a thermoplastic resin).

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の光ファイバ心線の製造方去
は、一次被覆に耐擦傷性、耐熱性、撥水性を有するラダ
ー型シリコーン樹脂を用いているため、この一次破覆の
厚さを十分薄くしても押出機により熱可塑性樹脂を披覆
する際、二ノプルと接触しても損傷して強度が低するこ
とがなく、細径の心線を得ることができる。また、紡糸
から熱可塑性樹脂被覆までをタンデム化することができ
、連続して光ファイバ心線を効率よ《つ《ることかでき
る。さらに、透湿性の熱可塑性樹脂も使用出来る等、熱
可塑性樹脂の選択範囲が広がり、その特性を発揮させる
ことにより従来にない特性の光ファイバ心線が得られる
等、優れた光ファイバ心線が効率よく、安価に製造出来
る方法である。
As described above, the manufacturing method of the optical fiber core of the present invention uses a ladder-type silicone resin having scratch resistance, heat resistance, and water repellency for the primary coating, so that the thickness of the primary coating is Even if it is made sufficiently thin, it will not be damaged and its strength will not decrease even if it comes into contact with the two nozzles when it is coated with thermoplastic resin using an extruder, and a core wire with a small diameter can be obtained. Furthermore, the processes from spinning to thermoplastic resin coating can be performed in tandem, and optical fiber cores can be produced continuously and efficiently. Furthermore, the selection range of thermoplastic resins has expanded, such as the ability to use moisture-permeable thermoplastic resins, and by leveraging the properties of these resins, it is possible to obtain optical fiber cores with unprecedented characteristics, resulting in excellent optical fiber cores. This is an efficient and inexpensive manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の一例を示す概略
図、第2図(a)(b)(c)はそれぞれ上記装置によ
ってつくられる光ファイバ裸線、素線、心線の晴断面図
である。 ■・・・・・・先ファイバ裸線の母材(母材)、紡糸炉
、3・・・・・光ファイバ裸1iI<裸線)、ラダー型
シリコーン樹脂コーティングポット、 4a・・・・・・ラダー型シリコーン、5・・・・・・
架橋筒、6・・・・・・先ファイバ素線(素線)、7・
・・・・・熱可塑性樹脂押出機、 8・・・・・・冷却筒、9・・・・・・光ファイバ心線
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention, and FIGS. 2(a), (b), and (c) are views of bare, stranded, and cored optical fibers produced by the above-mentioned apparatus, respectively. FIG. ■・・・Base material (base material) for bare end fiber, spinning furnace, 3... Bare optical fiber 1iI<bare wire), ladder type silicone resin coating pot, 4a...・Ladder type silicone, 5...
Bridging cylinder, 6...Fiber end wire (strand), 7.
... Thermoplastic resin extruder, 8 ... Cooling cylinder, 9 ... Optical fiber core wire.

Claims (1)

【特許請求の範囲】[Claims] 溶融紡糸された光ファイバ裸線にラダー型シリコーン樹
脂からなる被覆を設けたのち、引き続いて熱可塑性樹脂
の押出しによる被覆を行うことを特徴とする光ファイバ
心線の製造方法。
1. A method for manufacturing an optical fiber core, which comprises providing a coating made of a ladder-type silicone resin to a melt-spun bare optical fiber, and then subsequently coating the coating by extruding a thermoplastic resin.
JP1054091A 1989-03-07 1989-03-07 Production of optical fiber core Pending JPH02233537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054091A JPH02233537A (en) 1989-03-07 1989-03-07 Production of optical fiber core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054091A JPH02233537A (en) 1989-03-07 1989-03-07 Production of optical fiber core

Publications (1)

Publication Number Publication Date
JPH02233537A true JPH02233537A (en) 1990-09-17

Family

ID=12960949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054091A Pending JPH02233537A (en) 1989-03-07 1989-03-07 Production of optical fiber core

Country Status (1)

Country Link
JP (1) JPH02233537A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523397A (en) * 2008-05-29 2011-08-11 コーニング インコーポレイテッド System and method for producing an optical fiber with a thermoplastic coating
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523397A (en) * 2008-05-29 2011-08-11 コーニング インコーポレイテッド System and method for producing an optical fiber with a thermoplastic coating
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups

Similar Documents

Publication Publication Date Title
JPH02233537A (en) Production of optical fiber core
JPS58178302A (en) Optical fiber of heat resistant plastic
JP2635475B2 (en) Optical fiber coating forming method
JPH04108132A (en) Production filament material made of fiber-reinforced thermoset resin
JP2003183056A (en) Die for spinning optical fiber, device and method for spinning optical fiber
JPS59217653A (en) Preparation of coated optical fiber
JPH0140962B2 (en)
JPS61127641A (en) Production of optical fiber cable
JPH04161909A (en) Manufacture of fine-diameter optical fiber core wire
JPH0438226B2 (en)
JPS58223636A (en) Preparation of core wire of optical fiber
JPS5898704A (en) Optical fiber core
JPH1096840A (en) Plastic optical fiber code and its production
JPH07234322A (en) Method for drawing plastic optical fiber
JPH04124602A (en) Manufacture of plastic optical fiber
JP2006321687A (en) Method and apparatus for manufacturing optical fiber wire
JPH0549613B2 (en)
JPH0251856B2 (en)
JPS64336B2 (en)
JPH0713684B2 (en) Method for manufacturing plastic optical fiber with excellent flex resistance
JPH04124603A (en) Manufacture of low-loss plastic optical fiber
JPS61132543A (en) Production of optical fiber
JPS593412B2 (en) Method for manufacturing optical fiber coating dies
JPS6337046B2 (en)
JPS60205517A (en) Optical fiber core and its production