JPS60205517A - Optical fiber core and its production - Google Patents

Optical fiber core and its production

Info

Publication number
JPS60205517A
JPS60205517A JP59062443A JP6244384A JPS60205517A JP S60205517 A JPS60205517 A JP S60205517A JP 59062443 A JP59062443 A JP 59062443A JP 6244384 A JP6244384 A JP 6244384A JP S60205517 A JPS60205517 A JP S60205517A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
coating layer
layer
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59062443A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Takeru Fukuda
福田 長
Taiji Murakami
村上 泰司
Hiroshi Ishihara
石原 浩志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP59062443A priority Critical patent/JPS60205517A/en
Publication of JPS60205517A publication Critical patent/JPS60205517A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To decrease the rate of elongation or contraction of a partial resin coating layer and to suppress the increase in transmission loss by providing the discontinuous or partial resin coating layer between a primary coat and a secondary coating layer. CONSTITUTION:A primary coat 12 consisting of a silicone resin or Al, etc. is continuously provided over the entire surface of a bare optical fiber 11. A cylindrical partial resin coating layer 13 is provided partially and intermittently on the fiber 11 in the axial direction thereof. The layer 13 is provided to 100- 500mum thickness and 5-300mm. length in the longitudinal direction thereof and at specified or random intervals. The resin constituting the layer 13 may be either thermoplastic or thermosetting resin. A secondary coating layer 14 is provided on the layer 13. The layer 14 consists of a resin or metal, is provided continuously over the entire length of the core wire and is formed intermittently with a gap layer 15.

Description

【発明の詳細な説明】 この発明は、温度特性の良好な光フアイバ心線およびそ
の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cored optical fiber having good temperature characteristics and a method for producing the same.

光フアイバ心線の構造には充実型とルーズ型の2種があ
る。充実型は第1図に示すように光フアイバ裸線1上に
シリコーンゴムなどからなるプライマリーコー)21に
設け、さらにこの上にナイロン樹脂などからなる二次被
覆層3を設けた構造である。また、ルーズ型は第2図に
示すように光ファイバ褌線1を、これよシも大径の金属
パイプなどのパイプ4内に空隙(空気層)5を介してル
ーズに収容し九構造である。
There are two types of optical fiber structures: solid type and loose type. As shown in FIG. 1, the solid type has a structure in which a primary coat 21 made of silicone rubber or the like is provided on a bare optical fiber 1, and a secondary coating layer 3 made of nylon resin or the like is further provided thereon. In addition, the loose type has a structure in which the optical fiber loincloth wire 1 is loosely accommodated in a pipe 4 such as a metal pipe with a larger diameter via a gap (air layer) 5, as shown in Fig. 2. be.

ところで、上記充実型の光フアイバ心線は、その温度特
性は必ずしも良好とは言えない。プライマリーコー)2
や二次被覆層31に構成するシリコーンゴムやナイロン
樹脂の脆化温度の約−60℃以下の低温あるいはこれら
樹脂のガラス転移点の約80〜100℃以上の高温では
、樹脂の低温収縮や高温軟化によって、伝送損失は0〜
20℃の時に比べて2〜3倍に増加するウ 一方、ルーズ低の光フアイバ心線では充実型に見られる
低温および高温域での伝送損失の増加は見られないもの
の、これをケーブル化したりあるいは布設したシした場
合屈曲等により、構造が崩れ、これに起因して伝送損失
が増大することもある。
By the way, the temperature characteristics of the above-mentioned solid type optical fiber core wire are not necessarily good. primary code) 2
At low temperatures below about -60°C, which is the embrittlement temperature of the silicone rubber or nylon resin that constitutes the secondary coating layer 31, or at high temperatures above about 80 to 100°C, which is the glass transition point of these resins, the resin may shrink at low temperatures or Due to softening, transmission loss is reduced to 0~
The increase in transmission loss is 2 to 3 times that at 20℃.On the other hand, with loose low-core optical fibers, there is no increase in transmission loss in the low and high temperature ranges that is seen in solid type fibers, but if this is made into a cable, Alternatively, if the cable is installed, the structure may collapse due to bending or the like, which may increase transmission loss.

この発明は上記事情に鑑みてなさt’L fcもので。This invention was made in view of the above circumstances.

温度特性が良好でかつ屈曲等を受けても構造の崩れのな
い光フアイバ心線およびその製法を提供することを目的
とするものである。
The object of the present invention is to provide an optical fiber core wire that has good temperature characteristics and whose structure does not collapse even when subjected to bending, etc., and a method for manufacturing the same.

以下、図面を参照してこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第3因はこの発明の光ファイバ6祿の一例を示すもので
1図中符号11は光ファイバ裸線である。
The third factor shows an example of the optical fiber 6 of the present invention, and reference numeral 11 in the figure is a bare optical fiber.

この光フアイバ裸線11上全面には、通常の変性シリコ
ーン樹脂、ウレタン樹脂などのauiもしくはアルミニ
ウム、インジワム、ケイ素などの金属などからなるプラ
イマリ−コート12が連続して設けられている。そして
、プライマリ−コート12上に(−t、光ファイバ裸線
11の長手(軸)方向に部分的に断続して円筒状の部分
樹脂被覆層13・・・が設けられている。この部分樹脂
被覆層13はその厚みが100〜500μmとされ、そ
の長手方向の長さは5〜300msとされ、R間の間隔
は20〜15001+Llとされ、この間隔は一定もし
くはランダムとされる。、また、部分樹脂被覆層13を
構成する樹脂としては熱可塑性%熱硬化性樹脂のいずれ
でもよい。熱可塑性樹脂で構成するには、樹脂を断続的
に押出被覆する方法や予め押出成形した円筒体°を所定
の間隔で挿通固定する方法によって部分樹脂被覆層13
を設けることができる。
A primary coat 12 made of ordinary modified silicone resin, urethane resin, etc., or metal such as aluminum, indium wax, silicon, etc. is continuously provided on the entire surface of the bare optical fiber 11. A cylindrical partial resin coating layer 13 is provided on the primary coat 12 (-t, partially interrupted in the longitudinal (axial) direction of the bare optical fiber 11. The coating layer 13 has a thickness of 100 to 500 μm, a length in the longitudinal direction of 5 to 300 ms, and an interval between R of 20 to 15001+Ll, which is constant or random. The resin constituting the partial resin coating layer 13 may be either a thermoplastic resin or a thermosetting resin.In order to construct the partial resin coating layer 13, a thermoplastic resin can be used. The partial resin coating layer 13 is inserted and fixed at predetermined intervals.
can be provided.

また、熱硬化性W脂で構成するには、特に紫外練製「ヒ
狐樹脂を用いることが望ましい。これは紫外線硬化型a
胆液を予めプライマリーコー)12を形成−した元ファ
イバa線11全体に塗布し、これを走行させつつ紫外線
ランプを点滅して断続的に紫外線を照射し1部分的に硬
化せしめ、ついで未硬化部分を有機溶剤で溶解除去する
ことによって、連続的かつ効率よく部分樹脂被(ilE
層13を設けることができるからであるつ そして、この部分樹脂被覆層13・・・の上には二次被
覆114が設けられている。この二次被覆層14は樹脂
もしくは金属からなり、心線の全長にわたって速続して
設けられており、これによってプライマリーコー)12
と二次被■層14との間には断続的に空隙!1115・
・・が形成されることになる。二次被訛層141に樹脂
で構成する時にはルーズの押出W5法が用いられ、また
金属で構成する時には金属テープの巻回や金属テープの
縦添えなどの方法が用いられる。
In addition, in order to construct the thermosetting W resin, it is particularly desirable to use ultraviolet curable resin.
Bile fluid is applied to the entire original fiber A-line 11 in which a primary coat 12 has been formed in advance, and while running it, an ultraviolet lamp is flashed to intermittently irradiate ultraviolet rays to partially cure the fiber, and then uncure it. By dissolving and removing the parts with an organic solvent, the partial resin coating (ilE
This is because the layer 13 can be provided, and the secondary coating 114 is provided on this partial resin coating layer 13 . This secondary coating layer 14 is made of resin or metal, and is provided in rapid succession over the entire length of the core wire, so that the primary coat 12
There are intermittent gaps between the and the secondary covering layer 14! 1115・
... will be formed. When the secondary covering layer 141 is made of resin, a loose extrusion W5 method is used, and when it is made of metal, a method such as winding a metal tape or vertically attaching a metal tape is used.

このような構造の元ファイバ心線は、言わば充実型とル
ーズ型との折喪型となるので、低温下においても部分樹
脂被覆層13・・・が連続しておらず収縮量が少なく伝
送損失の増大は微かなものと)る。また、この心線を屈
曲しても、a所々に部分樹脂被覆層13・・・があるの
でその構造が乱れることなく、光ファイバ裸fli91
11は常に心線の中心軸線上に正しく位置することにな
り、伝送損失が増加することがない。
The original fiber core wire with such a structure has a broken type between a solid type and a loose type, so that the partial resin coating layer 13 is not continuous even at low temperatures, resulting in less shrinkage and transmission loss. The increase in In addition, even if this core wire is bent, the structure is not disturbed because there are partial resin coating layers 13 in some places, and the bare optical fiber fli91
11 is always correctly positioned on the central axis of the core wire, and transmission loss does not increase.

第4図はこの発明の光フアイバ心線の製法に用いられる
製造装置の例を示すものである。
FIG. 4 shows an example of a manufacturing apparatus used in the method of manufacturing a coated optical fiber according to the present invention.

VAD法、MCVD 法などによって得らまた光フアイ
バ母材16が紡糸炉17内に置かれ、ヒータ17aでそ
の下端部が加熱されて溶融紡糸され、光ファイバ裸線1
1が得られる。この光ファイバ裸線11Viついで連続
的に一次アプリケータ18に導かれ、ここでプライマリ
ーコー)12用の樹脂液が塗布され、つづいて焼付炉1
9に導かれ上記樹脂液が加熱固化せしめられ、プライマ
リーコー)12が形成される。このプライマリーコ−1
12が設けられた光ファイバ裸線11はつづいて部分樹
脂被覆層13となる紫外線硬化型411@液を塗布する
二次アプリケータ2oに導かれ、プライマリーコー)1
2上全体に紫外線硬化減樹@液が塗布される。ここで用
いられる紫外線硬化壁樹脂液としては1例えば無水マレ
イン酸、フマール酸などからなる不飽和ポリエステル樹
脂とスチレンそツマーと光増感剤とからなるものやポリ
イソシアネー1と水酸基分有するアクリルモノマーとの
付加重合物(フレタンアクリル)とアクリル系モノマー
と光増感剤とからなるものなどの無溶剤タイ゛プのもの
で、硬化時間が数〜数十秒のものが好ましい。
An optical fiber base material 16 obtained by VAD method, MCVD method, etc. is placed in a spinning furnace 17, and its lower end is heated by a heater 17a to melt and spin the bare optical fiber 1.
1 is obtained. The bare optical fiber 11Vi is then continuously guided to the primary applicator 18, where a resin liquid for the primary coat 12 is applied, and then the baking furnace 1
9, the resin liquid is heated and solidified to form a primary coat 12. This primary code-1
The bare optical fiber 11 provided with 12 is then guided to a secondary applicator 2o that applies an ultraviolet curing type 411@ liquid that will become the partial resin coating layer 13, and is then guided to a secondary applicator 2o that applies an ultraviolet curing type 411 @ liquid that will become the partial resin coating layer 13, and is applied to the primary coat 1.
2. UV curing resin reducing solution is applied to the entire top. The ultraviolet curing wall resin liquid used here is, for example, one consisting of an unsaturated polyester resin made of maleic anhydride, fumaric acid, etc., a styrene compound, and a photosensitizer, or one made of polyisocyanate 1 and an acrylic monomer having a hydroxyl group content. It is preferable to use a solvent-free type, such as one consisting of an addition polymer (frethane acrylic), an acrylic monomer, and a photosensitizer, and a curing time of several to several tens of seconds.

そして、未硬化状態の紫外線硬化型樹脂液が塗布された
光ファイバi腺11は、つづいて紫外線硬化炉21に導
入される。この紫外線硬化炉21は、螢光ケミカルラン
プ、ひ圧水銀打などの紫外線源21aを円周状に配置し
、その中心部に上記光ファイバ株線11ft走行させる
ようにしたもので、上記紫外線源21aを所定のインタ
ーバルで点滅するようになっている。
The optical fiber 11 coated with the uncured ultraviolet curable resin liquid is then introduced into the ultraviolet curing furnace 21. This ultraviolet curing furnace 21 has ultraviolet light sources 21a such as fluorescent chemical lamps and high-pressure mercury lamps arranged in a circumferential manner, and the above-mentioned optical fiber stock line 11 feet is run through the center of the ultraviolet light sources 21a. 21a blinks at predetermined intervals.

紫外線硬化型m指腹を塗布した光ファイバ裸線11を所
定速度で走行させつつ紫外線源21aを所定のインター
バルで点滅させれば1元ファイバ棟線11の長手方向に
紫外線硬化型樹脂液が硬化した部分と硬化しない部分と
が所定の間隔で父互に生じることになる。つい工、r−
の状態の光フアイバTi線11は未硬化樹脂溶解除去槽
22に送られる。この未硬化樹脂溶解除去槽22には、
未硬化状態の紫外線硬化性樹@を溶解する有機溶剤や酸
水溶液が満され1元ファイバ裸線11を有機溶剤あるい
は酸水溶液中に浸漬さ゛せつつ走行させれば、上記未硬
化部分は溶解除去され1部分樹脂被覆1113・・・が
プライマリ−コート12上に設けられた光ファイバ探線
11が得られる。この状態の光゛ファイバ探線11は1
巻叡機23によって一旦巻き取られたのち、さらに図示
しないクロスへラドダイを装備した押出磯によって、ナ
イロン樹脂など?ルーズに押出被覆したり、あるいはア
ルミニウムなどの金属テープを巻回し、たり、縦添えし
たりして二次被覆層14が設けられ、目的とする)Y:
、ファイバ心線が得られる、 このような光フアイバ心線の製法によれば1部分樹脂被
覆層13の形成を、紫外線硬化型樹脂液を塗布し、これ
を走行させつつ紫外線源を点滅させて部分的に硬化せし
め未硬化部分を溶解除去することによって行うものであ
るので、非常に簡便に部分樹脂vtQ層13を形成でき
、特別の製造装置を必要とせず、安価に行うことができ
る。また。
By running the bare optical fiber 11 coated with the ultraviolet curable m finger pad at a predetermined speed and blinking the ultraviolet light source 21a at a predetermined interval, the ultraviolet curable resin liquid is cured in the longitudinal direction of the single fiber ridge line 11. The hardened portions and the unhardened portions occur at predetermined intervals. Tsuiku, r-
The optical fiber Ti wire 11 in this state is sent to an uncured resin melting and removal tank 22. In this uncured resin dissolution and removal tank 22,
It is filled with an organic solvent or acid aqueous solution that dissolves the uncured ultraviolet curable resin @, and if the bare uni-fiber wire 11 is run while being immersed in the organic solvent or acid aqueous solution, the uncured portion is dissolved and removed. An optical fiber probe 11 is obtained in which a one-part resin coating 1113... is provided on the primary coat 12. The optical fiber probe 11 in this state is 1
After it is once wound up by the winding machine 23, it is further moved to a cloth (not shown) by an extrusion mill equipped with a rad die, such as nylon resin, etc. A secondary coating layer 14 is provided by loosely extruding coating, or by winding or vertically attaching a metal tape such as aluminum, and the objective is Y:
According to this method of producing a coated optical fiber, the resin coating layer 13 is partially formed by applying an ultraviolet curable resin liquid and flashing an ultraviolet light source while running the coated resin. Since this is carried out by partially curing and dissolving and removing the uncured portion, the partial resin VtQ layer 13 can be formed very easily, and can be done at low cost without requiring any special manufacturing equipment. Also.

紫外線硬化型樹脂液は一般に速硬化性でかつ無溶剤型で
あるので1作業速度を早めることができるとともに作業
謬囲気を汚染することがない。
Since ultraviolet curable resin liquids are generally fast-curing and solvent-free, they can speed up the work and do not contaminate the working atmosphere.

以下、実施例を示して具体的に説明する。Hereinafter, a specific explanation will be given by showing examples.

〔実施例1〕 径125μmのシングルモード光7742株線にウレタ
ンfi!脂を2μm11の厚さに塗付、焼付を行い、ブ
ライマリーコー)を形成した。このものに紫外線硬化性
のエポキシアクリレ−)樹脂を厚さ300μmに相当す
るように塗布した。このものを線速20痛/分で紫外線
硬化炉内で走行させつつ、長さ30 twrの高圧水銀
灯を1秒点灯し、5秒消灯するインターバルで点滅させ
て部分的に硬化させた。これによって30t*の長さの
硬化部と160cmの長さの未硬化部ができた。未硬化
部を溶解除去したのち、ルーズの押出被覆法によって内
径300μm、外径700μmのナイロン樹脂よりなる
二次被a層を設けた− この元ファイバ心線の一60℃〜+100℃での伝送損
失を測定し7’Cところ、第5図中、Aで示す結果を得
た。回図中BIIi、通常のシリコーン樹脂よりなるプ
ライマリーコー[とナイロン樹脂よりなる二次神覆層を
備えた充実狐の心線についての結果を示す。第5図のグ
ラフから明らfJllなようにこの発明の)tファイI
(心線は低温および高温域で従来のものに比べて低損失
であることがわ力亀る。
[Example 1] Urethane fi! single mode light 7742 wire with a diameter of 125 μm! Grease was applied to a thickness of 2 μm and baked to form a briny coating. This material was coated with ultraviolet curable epoxy acrylic resin to a thickness of 300 μm. While running this material in an ultraviolet curing furnace at a linear speed of 20 twr/min, a high-pressure mercury lamp with a length of 30 twr was turned on for 1 second and then turned off for 5 seconds to partially cure it. This resulted in a cured part with a length of 30 t* and an uncured part with a length of 160 cm. After dissolving and removing the uncured portion, a secondary coating layer made of nylon resin with an inner diameter of 300 μm and an outer diameter of 700 μm was provided using a loose extrusion coating method. The loss was measured at 7'C, and the results indicated by A in FIG. 5 were obtained. The results are shown for BIIi in the figure, a full-length core wire with a primary coat made of ordinary silicone resin and a secondary coated layer made of nylon resin. From the graph of FIG. 5, it is clear that fJll of this invention)
(It is important to note that core wires have lower loss than conventional wires in low and high temperature ranges.

〔実施例2〕 径125μmの光ファイ/<裸線にシ1】コーン樹脂を
仕上り径230μmで塗布し、ブライマリーコ−[を設
ける。次に別工程で紫外線架橋性のシリコーン樹@を仕
上り径420μmとなるように塗布し、これを線速30
鶏/分で走行させつつ長さ5−の紫外線ランプを1秒点
灯し、1秒消灯するインターバルで点滅させて部分的に
硬化させた。
[Example 2] Optical fiber with a diameter of 125 μm/<C1> Cone resin was applied to the bare wire to a finished diameter of 230 μm, and a briny coat was provided. Next, in a separate process, UV crosslinkable silicone resin was applied to a finished diameter of 420 μm, and this was applied at a linear speed of 30 μm.
Partial curing was carried out by turning on an ultraviolet lamp with a length of 5 mm for 1 second and turning it off for 1 second while running at a speed of about 100 mm/min.

これによって、長さ50柳毎に5crnの硬化部分−6
s形成された。未硬化部分を溶解除去したのち、ルーズ
の押出被覆法によって内径420μm、外径900μm
のナイロン66樹脂よりなる二次被覆層を設けて、心線
とした。この心線の温度特性は、実施例1で得られたも
のと同様に優れていた。
This results in 5 crn of hardened portion-6 for every 50 willow lengths.
s formed. After dissolving and removing the uncured portion, the inner diameter is 420 μm and the outer diameter is 900 μm using a loose extrusion coating method.
A secondary coating layer made of nylon 66 resin was provided to form a core wire. The temperature characteristics of this core were as excellent as those obtained in Example 1.

〔実施例8〕 径125μmの光フアイバ裸線上にアルミニウムをCV
D法でコートし、径160μmのプライY 17−コー
トとした。このものに紫外線架橋性のシリコ−y樹脂を
仕上り径880μmとなるように塗布したのち、実施例
2と同様の条件にて部分的硬化せしめた。ついで、実鴇
例2と同様にしてナイロン12N#を脂よりなる二次被
覆層を設けた。
[Example 8] CV coating of aluminum on bare optical fiber with a diameter of 125 μm
It was coated by method D to form a ply Y 17-coat with a diameter of 160 μm. After applying ultraviolet crosslinkable silico-y resin to this material so as to have a finished diameter of 880 μm, it was partially cured under the same conditions as in Example 2. Then, in the same manner as in Example 2, a secondary coating layer made of nylon 12N# was provided.

この光フアイバ心線の伝送損失を第61苗中Cに示す。The transmission loss of this optical fiber core wire is shown in C in the 61st Nae.

同図中りは同一のアルミニウムコート光ファイバにナイ
ロン12樹脂を直接被覆してなる心線の伝送損失を示す
ものである。
The middle part of the figure shows the transmission loss of a core wire made by directly coating the same aluminum coated optical fiber with nylon 12 resin.

第6図から明らかなように、本発明の金属コー 4゜ト
光ファイバは、従来の充実型の金属コート光フアイバ心
線に比べて広い波長域にわたって低伝送損失であること
がわかる。
As is clear from FIG. 6, the metal coated 4° optical fiber of the present invention has lower transmission loss over a wider wavelength range than the conventional solid metal coated optical fiber.

以上説明したように、この発明の光フアイバ心線は、プ
ライマリ−コートと二次被覆層と°の1Jflに連続し
ない部分樹脂被覆層を設けたものであるので、低温下お
よび高温下においても部分樹脂被覆層が連続しておらな
いため、伸縮針が少なく、伝送損失の増大は微かなもの
となる。また、この心線を屈曲しても要所々に部分樹脂
被覆層があるので、そのm造が乱れたり、崩れたりする
ことがなく、これによっても伝送損失が増加することも
ない。また、こ6フアイバ心線の製法は、上記部分樹脂
波mWIの形成を紫外線硬化型樹脂液を塗布し、これ7
部分的に紫外線硬化せしめ、未硬化部分を溶解除去する
ものであるので、極めて簡はにかつ特別の製造装置を必
要とせず、安価に上記構造の光フアイバ心線を得ること
が可能となる。
As explained above, since the optical fiber core of the present invention is provided with a partial resin coating layer that is not continuous with the primary coat and the secondary coating layer at 1 Jfl, the optical fiber core wire of the present invention has a partial resin coating layer that is not continuous with the primary coat and the secondary coating layer. Since the resin coating layer is not continuous, there are fewer telescopic needles and the increase in transmission loss is slight. Furthermore, even if this core wire is bent, since there are partial resin coating layers at key points, the structure will not be disturbed or collapsed, and transmission loss will not increase as a result. In addition, in the manufacturing method of this six-fiber core wire, the above-mentioned partial resin wave mWI is formed by applying an ultraviolet curable resin liquid, and this
Since it is partially cured with ultraviolet light and the uncured portion is dissolved and removed, it is possible to obtain the optical fiber core wire having the above structure very easily and at low cost without requiring any special manufacturing equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の充実型の光フアイバ心線を示す概略断r
M図、第2図は同じくルーズ型のものン示す概略断面図
、第S図はこの発明の光フアイバ心線の一例を示す心線
長手方向に沿って切断した断面図、第4ryJはこの発
明の光7アイパ心線の製法に用いられる製造装置の−f
Il金示す概略構成図。 第5図はこの発明の元ファイバ心線と従来の充実型光フ
ァイバ心dとの伝送損失の温度依存性を示すグラフ、第
6図は、この発明の金属コート光フアイバ心線と従来の
充実型金3コート)tファイバ心線との伝送損失の波長
依存性を示すグラフである。 11・・・・・・ン°0ファイバ保線、12・・・・・
・ブライマリーコーt113・・・・・・部分樹脂被覆
層、14・・・・・・二次被覆層、15・・・・・・空
隙層、16・・・・・・光フアイバ母材、17・・・・
・・紡糸炉、18・・・・・・−次アプリケータ。 19・・・・・・焼付炉、20・・・・・・二次アプリ
ケータ。 21・・・・・・紫外線硬化炉、21a・・・・・・紫
外線源。 22・・・・・・未硬化樹脂溶解除去槽。 出願人 藤倉tυ株式会社 日本亀(i!電話公社 rw −+ −−−−* −、、、−y J”:’、)
′、″・・′>1第4図 第5図 ε \ の ど −60−40−20020406080to。 □l攻 υ
Figure 1 is a schematic cross-section showing a conventional solid-type optical fiber.
Fig. M and Fig. 2 are schematic sectional views showing the same loose type, Fig. S is a sectional view cut along the longitudinal direction of the optical fiber showing an example of the optical fiber core of the present invention, and Fig. 4J is a schematic cross-sectional view showing an example of the optical fiber core of the present invention. -f of the manufacturing equipment used in the manufacturing method of Hikari 7 IPA core wire
A schematic configuration diagram showing Il gold. FIG. 5 is a graph showing the temperature dependence of transmission loss between the original fiber core of the present invention and the conventional solid-type optical fiber core d. 3 is a graph showing the wavelength dependence of transmission loss with the T-fiber core wire (3 coats of mold). 11......n°0 fiber maintenance, 12...
- Brimary coat t113...Partial resin coating layer, 14...Secondary coating layer, 15...Void layer, 16...Optical fiber base material, 17...
...Spinning furnace, 18...-Next applicator. 19... Baking furnace, 20... Secondary applicator. 21... Ultraviolet curing furnace, 21a... Ultraviolet source. 22...Uncured resin dissolution and removal tank. Applicant Fujikura tυ Nihon Kame Co., Ltd. (i! Telephone Public Corporation rw −+ −−−−* −,,, −y J”:',)
',''...'>1 Figure 4 Figure 5 ε \ Throat-60-40-20020406080to. □l attack υ

Claims (2)

【特許請求の範囲】[Claims] (1)光フアイバ裸線上に、プライマリーコーtと、光
フアイバ保線長手方向にX!I!続しない部分樹脂被覆
層と、光フアイバ裸線長手方向に連続した樹脂または金
属からなる二次被覆l−とを順次設けてなる光7アイパ
心線。
(1) Put a primary coat t on the bare optical fiber and X in the longitudinal direction of the optical fiber maintenance! I! An optical 7-iper core wire comprising a partial resin coating layer that is not continuous and a secondary coating l- made of resin or metal that is continuous in the longitudinal direction of the bare optical fiber.
(2)上記部分樹脂被覆層が紫外線硬化匿樹脂で形成さ
れたものである特許請求の範囲第1項記載の光ファイバ
心m7 (3] 光ファ、イバ裸線にプライマリーコー)を形成
し、ついで、このプライマリ−ニー1上全体に連続して
紫外°線硬化性樹脂液を塗布し、これを光フアイバ保線
長手方向に部分的に紫外線硬化せしめ、上記樹脂液の紫
外線硬化していない部分t−溶解除去し、ついで光ファ
イバ裸線長手方向に連続した樹脂または金属よシなる二
次被覆層を形成することを特徴とする光フアイバ心線の
製法。
(2) The optical fiber core m7 according to claim 1, wherein the partial resin coating layer is formed of an ultraviolet curable hardening resin (3) Forming a primary core on the optical fiber and fiber bare wire, Next, an ultraviolet curable resin liquid is continuously applied to the entire surface of the primary knee 1, and is partially cured with ultraviolet light in the longitudinal direction of the optical fiber. - A method for producing an optical fiber core, which comprises dissolving and removing the bare optical fiber, and then forming a secondary coating layer made of resin or metal that is continuous in the longitudinal direction of the bare optical fiber.
JP59062443A 1984-03-30 1984-03-30 Optical fiber core and its production Pending JPS60205517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062443A JPS60205517A (en) 1984-03-30 1984-03-30 Optical fiber core and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062443A JPS60205517A (en) 1984-03-30 1984-03-30 Optical fiber core and its production

Publications (1)

Publication Number Publication Date
JPS60205517A true JPS60205517A (en) 1985-10-17

Family

ID=13200351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062443A Pending JPS60205517A (en) 1984-03-30 1984-03-30 Optical fiber core and its production

Country Status (1)

Country Link
JP (1) JPS60205517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210164A (en) * 2018-05-31 2019-12-12 三菱電線工業株式会社 Optical fiber production and processing apparatus and optical fiber production process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421265A (en) * 1977-07-19 1979-02-17 Mitsubishi Electric Corp Forming method of semiconductor oxide film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421265A (en) * 1977-07-19 1979-02-17 Mitsubishi Electric Corp Forming method of semiconductor oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210164A (en) * 2018-05-31 2019-12-12 三菱電線工業株式会社 Optical fiber production and processing apparatus and optical fiber production process

Similar Documents

Publication Publication Date Title
KR870002463A (en) Low loss fiber optical coupler and method of manufacturing the same
JPS6198305A (en) Manufacture of optical fiber having synthetic resin coating and optical fiber having synthetic resin coating produced thereby
CN108349797A (en) The manufacturing method of optical fiber, the manufacturing device of optical fiber and optical fiber
JPS60205517A (en) Optical fiber core and its production
JP2003183056A (en) Die for spinning optical fiber, device and method for spinning optical fiber
US3141052A (en) Method of forming seamless hollow plastic shapes
JPH02233537A (en) Production of optical fiber core
JPS59217653A (en) Preparation of coated optical fiber
CN111362572A (en) Optical fiber preparation method and optical fiber
JP2583996B2 (en) Optical fiber coating equipment
JP3303460B2 (en) Glass fiber for optical transmission and method of manufacturing the same
JPH07277775A (en) Production of optical fiber
JP2006321687A (en) Method and apparatus for manufacturing optical fiber wire
Hart et al. An improved fabrication technique for applying coatings to optical fiber waveguides
JPS5898704A (en) Optical fiber core
JPH04357137A (en) Coating formation on optical fiber
JPH07267669A (en) Production of multiple structure material
JPH01167264A (en) Method for coating optical fiber
JP3691795B2 (en) Optical fiber manufacturing method
JPH07168068A (en) Optical fiber unit and manufacture thereof
JPS6016837A (en) Optical fiber coated with plastic
JPH03208839A (en) Production of coated optical fiber
JPH09278475A (en) Production of multiple glass body
JPH11116283A (en) Production of coated optical fiber
JP2002365451A (en) Method for manufacturing coated optical fiber