JPS64336B2 - - Google Patents

Info

Publication number
JPS64336B2
JPS64336B2 JP58026407A JP2640783A JPS64336B2 JP S64336 B2 JPS64336 B2 JP S64336B2 JP 58026407 A JP58026407 A JP 58026407A JP 2640783 A JP2640783 A JP 2640783A JP S64336 B2 JPS64336 B2 JP S64336B2
Authority
JP
Japan
Prior art keywords
resin
coating
glass fiber
stress
absorbing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58026407A
Other languages
Japanese (ja)
Other versions
JPS59156941A (en
Inventor
Juji Kameo
Tooru Yamanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58026407A priority Critical patent/JPS59156941A/en
Publication of JPS59156941A publication Critical patent/JPS59156941A/en
Publication of JPS64336B2 publication Critical patent/JPS64336B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 技術分野 本発明は光伝送用ガラスフアイバ(以下、光フ
アイバと略す)のプラスチツク被覆による補強方
法に関するものであり、光伝送特性に優れ、かつ
十分な強度と耐候性を有する被覆フアイバを提供
することを目的とするものである。
[Detailed Description of the Invention] (a) Technical Field The present invention relates to a method for reinforcing a glass fiber for optical transmission (hereinafter abbreviated as optical fiber) with plastic coating, which has excellent optical transmission characteristics and sufficient strength. The object is to provide a coated fiber that is weather resistant.

(ロ) 背景技術 光フアイバは可とう性の保持等の理由から直径
が200μmないしはそれ以下と細く、かつ材質的
に非常に脆いものであるため、これをそのまま伝
送線路として使用することは機械的強度の面から
みて、不可能に近い。又、ガラス固有の性質とし
て水分等の影響によつて強度が経時的に低下する
ことも知られている。
(b) Background technology Optical fibers have a diameter of 200 μm or less in order to maintain flexibility, and are extremely fragile materials. Therefore, it is mechanically difficult to use optical fibers as they are as transmission lines. From a strength standpoint, it's almost impossible. It is also known that the strength of glass decreases over time due to the influence of moisture, etc., which is an inherent property of glass.

このため、ガラスフアイバの表面にプラスチツ
クあるいは金属等の保護被覆を施こすことによつ
て初期強度および長期的な使用に耐える強度を有
するガラスフアイバを製造する方法が提案されて
いる。
For this reason, a method has been proposed for producing a glass fiber having initial strength and strength for long-term use by applying a protective coating of plastic or metal to the surface of the glass fiber.

例えば、分子中に極性基を有し、ガラスとの接
着性に優れたポリアミド、ポリエステル、エポキ
シ樹脂、シリコン樹脂、ポリウレタン等の樹脂組
成物をガラスフアイバ上に被覆することによつ
て、かかる構造の被覆フアイバの破断荷重および
伸び率は被覆なしのフアイバに比較して著しく向
上し、中でもエポキシ樹脂、シリコン樹脂、ポリ
ウレタン等の樹脂組成物を薄く塗布、焼付けし、
更にその上に熱可塑性樹脂を溶融押出被覆して得
られる構造の被覆フアイバは、該被覆フアイバを
複数本集合してケーブル化する際、あるいは管路
等に布設する際に受ける外力に十分抗し得る強度
を有する。
For example, by coating a glass fiber with a resin composition such as polyamide, polyester, epoxy resin, silicone resin, or polyurethane, which has a polar group in its molecule and has excellent adhesion to glass, such a structure can be created. The breaking load and elongation rate of coated fibers are significantly improved compared to uncoated fibers, especially when a resin composition such as epoxy resin, silicone resin, or polyurethane is thinly coated and baked.
Furthermore, the coated fibers obtained by melt-extrusion coating a thermoplastic resin on top of the coated fibers have sufficient resistance to external forces applied when a plurality of coated fibers are assembled into a cable or when laid in a conduit, etc. With the strength you get.

しかし、かかる構造の被覆フアイバも温度変化
等による熱応力や曲げによる応力が加わつた場
合、ガラスフアイバが非常に小さな周期で曲げら
れる、いわゆるマイクロベンデイングを生じ、伝
送損失が増大するという欠点を有している。この
ため、ガラスフアイバとプラスチツク被覆層の間
に加えられた応力を吸収し得る発泡プラスチツ
ク、油、シリコン樹脂あるいはエチレン−酢酸ビ
ニル共重合体等のヤング率の低い樹脂を介在させ
る方法が提案されている。
However, when coated fibers with such a structure are subjected to thermal stress due to temperature changes or stress due to bending, so-called microbending occurs, in which the glass fibers are bent at very small intervals, which increases transmission loss. are doing. For this reason, methods have been proposed in which a resin with a low Young's modulus such as foamed plastic, oil, silicone resin, or ethylene-vinyl acetate copolymer is interposed between the glass fiber and the plastic coating layer to absorb the applied stress. There is.

これらの中、熱硬化性のシリコン樹脂の応力吸
収層を形成する方法では、ガラスフアイバの紡糸
後、他の固形物に触れる前に(いわゆる紡糸とタ
ンデムに)、エポキシ樹脂、フツ素樹脂、ウレタ
ン樹脂等の樹脂組成物を塗布・焼付けし、その上
に、上記の工程とタンデムにあるいは一度ボビン
等に巻取つた後、ヤング率の低いシリコン樹脂を
塗布・焼付けするか又は、ガラスフアイバの紡糸
後、直接ヤング率の低いシリコン樹脂を塗布・焼
付けし、こうして得られたシリコン樹脂の応力吸
収層を有する光フアイバにポリアミド、ポリエチ
レン、ポリカーボネート、フツ素樹脂等の熱可塑
性樹脂を溶融押出被覆する方法がとられていた。
しかし、上記の方法は以下に掲げる欠点を有して
いた。
Among these methods, in the method of forming a stress-absorbing layer of thermosetting silicone resin, after spinning the glass fiber and before contacting other solid materials (in tandem with spinning), epoxy resin, fluororesin, urethane resin, etc. A resin composition such as a resin is applied and baked, and then a silicone resin with a low Young's modulus is applied and baked, either in tandem with the above process or once wound onto a bobbin, etc., or a glass fiber is spun. After that, a silicone resin with a low Young's modulus is directly coated and baked, and the thus obtained optical fiber having a stress-absorbing layer of silicone resin is coated with a thermoplastic resin such as polyamide, polyethylene, polycarbonate, or fluorine resin by melt extrusion. was taken.
However, the above method had the following drawbacks.

ヤング率の低いシリコン樹脂の応力吸収層が
熱可塑性樹脂の押出被覆の際、ローラー等によ
り機械的な損傷を受け、それが原因で強度の低
下あるいは伝送損失の増加を生じる。
A stress absorbing layer made of a silicone resin with a low Young's modulus is mechanically damaged by a roller or the like during extrusion coating with a thermoplastic resin, resulting in a decrease in strength or an increase in transmission loss.

押出被覆する際の熱可塑性樹脂の残留歪によ
つてシリコン樹脂の応力吸収層が既に大きな応
力を受けてしまい、温度変化による熱応力ある
いは曲げ等による応力を吸収しえなくなる。
The silicone resin stress absorbing layer already receives a large stress due to residual strain in the thermoplastic resin during extrusion coating, and is no longer able to absorb thermal stress due to temperature changes or stress due to bending or the like.

これらの欠点を改善する試みとして、ガラスフ
アイバまたはエポキシ樹脂、ウレタン樹脂等によ
り一次被覆の施こされたガラスフアイバに熱硬化
性のシリコン樹脂を被覆する際、該シリコン樹脂
をダイスあるいは塗布槽等により塗布し、該シリ
コン樹脂を硬化させる前にポリアミド、ポリエチ
レン等の熱可塑性樹脂を被覆し、冷却等により熱
可塑性樹脂が成形された後に該シリコン樹脂を熱
硬化させる方法が、特開昭54−13352号公報に開
示されている。この方法を第1図のフローシート
で説明する。光フアイバ用ガラス母材1を線引炉
2中で線引した後、プライマリーコーテイング用
塗布装置3でエポキシ樹脂、ウレタン樹脂等を塗
布、硬化炉4で熱硬化させ、応力吸収層用樹脂塗
布装置5でシリコン樹脂を塗布、続いて二次被覆
用押出機クロスヘツド6で熱可塑性樹脂を塗布し
た後、二次被覆冷却槽7で冷却し二次被覆層を成
形する。その後、応力吸収層硬化炉8で応力吸収
層を熱硬化させ、キヤプスタン9により巻取ダン
サーローラ10を経て巻取機11に巻取るという
ものである。
In an attempt to improve these drawbacks, when coating thermosetting silicone resin on glass fiber or glass fiber that has been primarily coated with epoxy resin, urethane resin, etc., the silicone resin is coated with a die or a coating bath. JP-A No. 54-13352 discloses a method in which the silicone resin is coated with a thermoplastic resin such as polyamide or polyethylene before being applied and cured, and the thermoplastic resin is molded by cooling or the like, and then the silicone resin is thermoset. It is disclosed in the publication No. This method will be explained using the flow sheet shown in FIG. After the optical fiber glass base material 1 is drawn in a drawing furnace 2, epoxy resin, urethane resin, etc. are applied in a primary coating coating device 3, and thermally cured in a curing furnace 4, followed by a stress-absorbing layer resin coating device. A silicone resin is applied in step 5, and then a thermoplastic resin is applied in a crosshead 6 of an extruder for secondary coating, followed by cooling in a secondary coating cooling tank 7 to form a secondary coating layer. Thereafter, the stress-absorbing layer is thermally cured in a stress-absorbing layer curing furnace 8, and then wound onto a winding machine 11 via a winding dancer roller 10 by a capstan 9.

しかしながら、この方法においても以下に示す
ような問題点を内包していることが判明した。
However, it has been found that this method also has the following problems.

二次被覆材たる熱可塑性樹脂は通常、加熱溶
融による押出加工により光フアイバに被覆され
るが、このとき光フアイバに塗布された応力吸
収層たる熱硬化性樹脂を、押出時の熱から隔離
して硬化させないようにして、上記二次被覆を
施すことが非常に困難である。すなわち第1図
において、応力吸収層用樹脂塗布装置5で光フ
アイバに塗布された熱硬化性樹脂の一部が押出
機のクロスヘツド6内の光フアイバが通過する
部分で硬化し始め、熱硬化性樹脂の塗布量が均
一でなくなり、被覆された光フアイバとしての
長尺品を得ることができない。
The thermoplastic resin that serves as the secondary coating material is usually coated onto the optical fiber by extrusion processing by heating and melting. It is very difficult to apply the above-mentioned secondary coating without curing. That is, in FIG. 1, a part of the thermosetting resin applied to the optical fiber by the stress-absorbing layer resin coating device 5 begins to harden in the crosshead 6 of the extruder at the part through which the optical fiber passes, and becomes thermosetting. The amount of resin applied becomes non-uniform, making it impossible to obtain a long coated optical fiber.

二次被覆を施した後、内部の熱硬化性樹脂組
成物を硬化させるための硬化炉8の硬化温度を
高くすると、二次被覆を溶融させてしまうため
温度を高くできない。したがつて硬化に時間が
かかるため線速が上らず生産性がよくないし、
また加熱による被覆材の伸びを0にできない。
If the curing temperature of the curing furnace 8 for curing the internal thermosetting resin composition is increased after the secondary coating is applied, the temperature cannot be increased because the secondary coating will be melted. Therefore, it takes a long time to cure, so the line speed does not increase and productivity is poor.
Furthermore, the elongation of the coating material due to heating cannot be reduced to zero.

(ハ) 発明の開示 本発明は上記のような従来技術の問題点を解決
する目的で為されたものであり、応力吸収層とし
て加熱硬化のない紫外線硬化型樹脂を用いること
を特徴としており、紫外線硬化型樹脂を用いるこ
とにより二次被覆材の被覆工程での高温による応
力吸収層の硬化が発生しないため、応力吸収層未
硬化の状態で二次被覆を施すことが容易となると
いうものである。
(C) Disclosure of the Invention The present invention has been made for the purpose of solving the problems of the prior art as described above, and is characterized by using an ultraviolet curable resin that does not heat cure as a stress absorbing layer. By using an ultraviolet curable resin, the stress-absorbing layer does not harden due to high temperatures during the coating process of the secondary coating material, making it easier to apply the secondary coating while the stress-absorbing layer is uncured. be.

すなわち本発明は光伝送用ガラスフアイバと熱
可塑性樹脂被覆層との間に応力吸収層として反応
硬化性樹脂を介在させる該光伝送用ガラスフアイ
バの補強方法において、反応硬化性樹脂として紫
外線硬化型樹脂を用い、該紫外線硬化型樹脂と熱
可塑性樹脂を同時に押出被覆し、熱可塑性樹脂を
冷却成形した後に、紫外線硬化型樹脂を硬化させ
ることを特徴とする、光伝送用ガラスフアイバの
補強方法、及び応力吸収層の紫外線硬化型樹脂が
シリコン樹脂、ブタジエン樹脂、またはウレタン
樹脂である上記補強方法に関するものである。
That is, the present invention provides a method for reinforcing a light transmission glass fiber in which a reaction curable resin is interposed as a stress absorbing layer between the light transmission glass fiber and a thermoplastic resin coating layer, in which an ultraviolet curable resin is used as the reaction curable resin. A method for reinforcing a glass fiber for optical transmission, comprising simultaneously extrusion coating the ultraviolet curable resin and a thermoplastic resin, cooling and molding the thermoplastic resin, and then curing the ultraviolet curable resin; The present invention relates to the reinforcing method described above, wherein the ultraviolet curable resin of the stress absorbing layer is a silicone resin, a butadiene resin, or a urethane resin.

実際、第1図の如く塗布部5とクロスヘツド6
を分離する方法とは別に、熱硬化性樹脂をクロス
ヘツド内で圧入しようとすると、二次被覆を施す
ときに押出機クロスヘツドの構造を特殊なものと
し、熱硬化性樹脂の流れる部分を断熱し、押出機
の熱が伝わらないようにする必要があつた。しか
しながら、二次被覆材が溶融押出され熱硬化性樹
脂に接する点では完全に断熱することができな
い。ここでの熱による硬化を防ぐために樹脂の硬
化温度を低くして硬化速度を遅くすると今度は被
覆後の加熱硬化に更に時間がかかるという欠点が
出てくる。
In fact, as shown in Fig. 1, the application section 5 and the crosshead 6
Apart from separating the thermosetting resin, when trying to press-fit the thermosetting resin into the crosshead, it is necessary to use a special structure of the extruder crosshead to insulate the part where the thermosetting resin flows when applying the secondary coating. It was necessary to prevent heat from the extruder from being transmitted. However, complete insulation cannot be achieved at the point where the secondary coating material is melt-extruded and contacts the thermosetting resin. If the curing temperature of the resin is lowered to slow down the curing speed in order to prevent curing due to heat, the disadvantage arises that it takes more time to heat cure the resin after coating.

一方、本発明のように紫外線硬化型樹脂を用い
ると上記のような断熱構造に工夫をこらすことな
く、後記第3図に示すように光フアイバがクロス
ヘツド内を通過する部分に紫外線硬化型樹脂を圧
入できるようにするだけでよく、応力吸収層が熱
硬化を生じないため押出長に制限を受けないし、
紫外線による硬化のため、二次被覆材が溶融伸長
したり変形したりすることなく硬化させることが
できる。
On the other hand, if an ultraviolet curable resin is used as in the present invention, it is possible to apply an ultraviolet curable resin to the part where the optical fiber passes inside the crosshead, as shown in Figure 3 below, without devising the heat insulation structure as described above. It is only necessary to make it press-fittable, and since the stress-absorbing layer does not undergo thermosetting, there is no limit to the extrusion length.
Because it is cured by ultraviolet rays, the secondary coating material can be cured without melting, elongating, or deforming.

第2図および第2図のクロスヘツド部拡大図た
る第3図を用いて本発明方法を更に説明する。第
1図の場合同様、光フアイバ用ガラス母材を線引
後、プライマリーコーデイングBを行つた光フア
イバAを、サプライ装置12から二次被覆D用押
出機クロスヘツド14に送るが、このクロスヘツ
ド14には樹脂供給装置13から紫外線硬化型樹
脂Cが供給されている。この部分の拡大図を第3
図に示す。第3図中15が押出ダイス、16がニ
ツプル、17がニツプルホルダーである。このよ
うにしてプライマリーコーテイング層Bの外周に
紫外線硬化型樹脂C、更に外周に二次被覆材Dを
塗布した光フアイバAは冷却トラフ18に入つて
二次被覆材層Dを冷却、成形、次いで紫外線硬化
装置19で紫外線硬化型樹脂層Cの硬化を行い、
キヤプスタン20を用いダンサー21を経て巻取
機22にて巻取るものである。
The method of the present invention will be further explained with reference to FIG. 2 and FIG. 3, which is an enlarged view of the crosshead portion of FIG. As in the case of FIG. 1, after drawing the optical fiber glass base material, the optical fiber A that has been subjected to the primary coding B is sent from the supply device 12 to the extruder crosshead 14 for the secondary coating D. An ultraviolet curing resin C is supplied from a resin supply device 13. The enlarged view of this part is shown in the 3rd page.
As shown in the figure. In FIG. 3, 15 is an extrusion die, 16 is a nipple, and 17 is a nipple holder. The optical fiber A having the primary coating layer B coated with the ultraviolet curable resin C on the outer periphery and the secondary coating material D on the outer periphery in this way enters the cooling trough 18 where the secondary coating material layer D is cooled, shaped, and then Curing the ultraviolet curable resin layer C with an ultraviolet curing device 19,
A capstan 20 is used, a dancer 21 is used, and a winder 22 winds up the film.

このようにして第4図に示すようなプライマリ
ーコーテイングB、紫外線硬化型樹脂からなる応
力吸収層C、二次被覆層Dをその外周に順次、設
けた光フアイバAが得られる。
In this way, an optical fiber A as shown in FIG. 4 is obtained which has a primary coating B, a stress absorbing layer C made of an ultraviolet curable resin, and a secondary coating layer D sequentially provided on its outer periphery.

本発明方法で用いられるプライマリーコーテイ
ング層は常法のエポキシ樹脂、ウレタン樹脂でよ
くその厚さは100μm以下が一般的である。紫外
線硬化型樹脂としてはシリコン樹脂、ブタジエン
樹脂、またはウレタン樹脂等があり、このものか
らなる応力吸収層厚は100μm〜500μmが一般的
である。熱硬化性樹脂としてはポリアミド、ポリ
エチレン等が用いられ、その厚さは50μm〜400μ
mが一般的である。
The primary coating layer used in the method of the present invention may be made of a conventional epoxy resin or urethane resin, and its thickness is generally 100 μm or less. Examples of ultraviolet curable resins include silicone resins, butadiene resins, and urethane resins, and the stress absorbing layer made of these resins generally has a thickness of 100 μm to 500 μm. Polyamide, polyethylene, etc. are used as the thermosetting resin, and the thickness is 50 μm to 400 μm.
m is common.

以上のように本発明方法では熱の影響を無視で
きることから次のような効果が奏せられる。
As described above, in the method of the present invention, the effects of heat can be ignored, so the following effects can be achieved.

1 二次被覆時の押出機クロスヘツドの構造が簡
略化できる。
1. The structure of the extruder crosshead during secondary coating can be simplified.

2 任意の長さの被覆を施すことができ、長尺化
が可能である。
2. Covering can be applied to any length and can be made longer.

3 後硬化工程で二次被覆材が加熱変形を受けな
いため後硬化は簡単で、しかも短時間に完了で
きる。
3. Post-curing is simple and can be completed in a short time because the secondary coating material does not undergo heat deformation during the post-curing process.

4 後硬化用紫外線炉を冷却水中に設けることに
より、二次被覆材の再加熱過程が全く入らない
ことから、二次被覆材の伸び歪を零にできる。
4. By providing the post-curing ultraviolet oven in the cooling water, there is no reheating process for the secondary coating material, so the elongation strain of the secondary coating material can be reduced to zero.

(ニ) 発明を実施するための最良の形態 実施例 1 シリコン樹脂のプライマリーコーテイングを施
工した、外径250μmの光フアイバ(ガラス径
125μm)に、紫外線硬化型シリコン樹脂を、押
出機クロスヘツドで圧入塗布し、その上にナイロ
ンを押出し被覆した。ナイロン被覆の内径で
400μm、外径で900μmに仕上げた後、オンライ
ンで80W/cmの出力の紫外線ランプを通して、硬
化させた。押出線速100m/分でシリコン樹脂の
硬化を完全に行なうことが出来た。押出長に特に
制限を受けず、5Km以上の単長の光フアイバ心
線が得られた。
(d) Best Mode for Carrying Out the Invention Example 1 Optical fiber with an outer diameter of 250 μm (glass diameter
125 μm), an ultraviolet curable silicone resin was press-fitted using an extruder crosshead, and nylon was extruded and coated on top. With inner diameter of nylon coating
After finishing it to 400 μm and 900 μm in outer diameter, it was cured online through an ultraviolet lamp with an output of 80 W/cm. The silicone resin could be completely cured at an extrusion line speed of 100 m/min. There was no particular restriction on the extrusion length, and a single-length optical fiber core of 5 km or more was obtained.

比較例 1 同じく、外径250μmのプライマリーコーテイ
ングを施工した光フアイバに、熱硬化型シリコン
樹脂を塗布し、押出機クロスヘツド内でニツプ
ル、ダイス等にふれないように送り込み、ナイロ
ンを押出し被覆をした。
Comparative Example 1 Similarly, an optical fiber coated with a primary coating having an outer diameter of 250 μm was coated with thermosetting silicone resin, fed into the crosshead of an extruder so as not to touch nipples, dies, etc., and coated with nylon by extrusion.

その結果、安定に製造出来たのは約500mであ
り、樹脂との接触を避けるためナイロン押出の引
落しを大きくとつたため、シリコン樹脂とナイロ
ンとの界面に気泡が入り易い結果となつた。単長
が500mと短かくなつたのは、フアイバの微少な
振動により、塗布したシリコン樹脂がニツプル内
に触れ、硬化したためであつた。また、製造した
光フアイバ心線は、オフラインで熱硬化させた
が、120℃、30分を要した。
As a result, stable production was possible for about 500 m, and because the nylon extrusion was withdrawn largely to avoid contact with the resin, air bubbles were likely to form at the interface between the silicone resin and nylon. The reason why the single length was shortened to 500 m was because the applied silicone resin came into contact with the inside of the nipple due to the slight vibration of the fiber and hardened. In addition, the manufactured optical fiber core wire was thermally cured off-line, which required 30 minutes at 120°C.

比較例 2 押出機クロスヘツドを改造し、熱硬化性シリコ
ン樹脂を圧入する部分を水冷、断熱して上記2例
と同じ断面構造の光フアイバ心線を試作した。安
定製造長は、約1000mとなつたが、やはりニツプ
ル先端での樹脂硬化づまりにより外径変動となつ
た。樹脂の硬化はオフラインで120℃、2時間を
要した。
Comparative Example 2 An optical fiber core wire having the same cross-sectional structure as the above two examples was produced by modifying the extruder crosshead and water-cooling and insulating the part where the thermosetting silicone resin was press-fitted. The stable production length was approximately 1000 m, but the outside diameter fluctuated due to resin clogging at the tip of the nipple. Curing of the resin took 2 hours offline at 120°C.

実施例 2 エポキシ樹脂のプライマリーコーテイングを施
工した外径250μmの光フアイバ(ガラス径125μ
m)に、紫外線硬化型シリコン樹脂を押出機クロ
スヘツドで圧入塗布し、その上にナイロンを押出
被覆した。構造は実施例1と同様であり、製造性
もなんら問題がなかつた。
Example 2 Optical fiber with an outer diameter of 250 μm (glass diameter 125 μm) with a primary coating of epoxy resin
On (m), an ultraviolet curable silicone resin was press-fitted using the crosshead of an extruder, and nylon was extrusion coated thereon. The structure was the same as in Example 1, and there were no problems in manufacturability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の先行技術たる光フアイバー補
強方法の流れを示すフローシートであり、第2図
は本発明方法の流れを示すフローシートであり、
第3図は第2図の二次被覆用押出機クロスヘツド
部分の拡大断面図であり、第4図は本発明方法で
得られる光フアイバの構造を示す横断面図であ
る。
FIG. 1 is a flow sheet showing the flow of the optical fiber reinforcing method as a prior art of the present invention, and FIG. 2 is a flow sheet showing the flow of the method of the present invention.
FIG. 3 is an enlarged cross-sectional view of the crosshead portion of the extruder for secondary coating shown in FIG. 2, and FIG. 4 is a cross-sectional view showing the structure of the optical fiber obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 光伝送用ガラスフアイバと熱可塑性樹脂被覆
層との間に応力吸収層として反応硬化性樹脂を介
在させる該光伝送用ガラスフアイバの補強方法に
おいて、反応硬化性樹脂として紫外線硬化型樹脂
を用い、該紫外線硬化型樹脂と熱可塑性樹脂を同
時に押出被覆し、熱可塑性樹脂を冷却成形した後
に、紫外線硬化型樹脂を硬化させることを特徴と
する、光伝送用ガラスフアイバの補強方法。 2 応力吸収層の紫外線硬化型樹脂がシリコン樹
脂、ブタジエン樹脂、またはウレタン樹脂であ
る、特許請求の範囲第1項記載の光伝送用ガラス
フアイバの補強方法。
[Scope of Claims] 1. A method for reinforcing a glass fiber for optical transmission, in which a reactive hardening resin is interposed as a stress absorbing layer between the glass fiber for optical transmission and a thermoplastic resin coating layer, wherein ultraviolet rays are used as the reactive hardening resin. Reinforcement of glass fiber for optical transmission, characterized by using a curable resin, simultaneously extruding the ultraviolet curable resin and a thermoplastic resin, cooling and molding the thermoplastic resin, and then curing the ultraviolet curable resin. Method. 2. The method for reinforcing a glass fiber for optical transmission according to claim 1, wherein the ultraviolet curable resin of the stress absorbing layer is a silicone resin, a butadiene resin, or a urethane resin.
JP58026407A 1983-02-21 1983-02-21 Method for reinforcing glass fiber for optical transmission Granted JPS59156941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026407A JPS59156941A (en) 1983-02-21 1983-02-21 Method for reinforcing glass fiber for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026407A JPS59156941A (en) 1983-02-21 1983-02-21 Method for reinforcing glass fiber for optical transmission

Publications (2)

Publication Number Publication Date
JPS59156941A JPS59156941A (en) 1984-09-06
JPS64336B2 true JPS64336B2 (en) 1989-01-06

Family

ID=12192696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026407A Granted JPS59156941A (en) 1983-02-21 1983-02-21 Method for reinforcing glass fiber for optical transmission

Country Status (1)

Country Link
JP (1) JPS59156941A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413352A (en) * 1977-07-01 1979-01-31 Nippon Telegr & Teleph Corp <Ntt> Reiforcement of optical transmission glass fiber
JPS5442496A (en) * 1977-09-08 1979-04-04 Nippon Telegraph & Telephone Production of optical wave guide glass fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413352A (en) * 1977-07-01 1979-01-31 Nippon Telegr & Teleph Corp <Ntt> Reiforcement of optical transmission glass fiber
JPS5442496A (en) * 1977-09-08 1979-04-04 Nippon Telegraph & Telephone Production of optical wave guide glass fiber

Also Published As

Publication number Publication date
JPS59156941A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
KR910005200B1 (en) Method for continuous molding of a rod-like product
US4814133A (en) Method of forming the spacer of an optical fiber cable
GB2078599A (en) Fabrication of Fiber Reinforced Resin Structures
US4781434A (en) Spacer of optical fiber cable and method for forming the same
GB2296575A (en) Fibre optic cable ,manufacturing process and plant
CA1171659A (en) Method for preparing optical fibers
EP0842033B1 (en) Optical fibre cable and method of manufacture
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPS64336B2 (en)
JPH05213636A (en) Method for coating optical fiber
JPH02233537A (en) Production of optical fiber core
JPH0140962B2 (en)
JPS61127641A (en) Production of optical fiber cable
JP2001526404A (en) Method of manufacturing optical core for telecommunication cable
JPH042165B2 (en)
JP3554190B2 (en) Manufacturing method of spacer for optical cable
JPH0954232A (en) Production of optical cable and apparatus for production therefor
JPH0688311B2 (en) Method for producing fiber-reinforced composite molded body
JPH11352369A (en) Reinforced optical fiber cord and its production
EP0926524A1 (en) Optical-fiber cable and manufacturing method thereof
JPS6318311A (en) Manufacture of spacer for carrying optical fiber
JPS6144825B2 (en)
JPH09161552A (en) Laminate sheath cable and its manufacture
JPH07121819B2 (en) Optical fiber coating method and coating apparatus
JPH0251856B2 (en)