JP3554190B2 - Manufacturing method of spacer for optical cable - Google Patents

Manufacturing method of spacer for optical cable Download PDF

Info

Publication number
JP3554190B2
JP3554190B2 JP12203198A JP12203198A JP3554190B2 JP 3554190 B2 JP3554190 B2 JP 3554190B2 JP 12203198 A JP12203198 A JP 12203198A JP 12203198 A JP12203198 A JP 12203198A JP 3554190 B2 JP3554190 B2 JP 3554190B2
Authority
JP
Japan
Prior art keywords
spacer
optical cable
optical
optical fiber
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12203198A
Other languages
Japanese (ja)
Other versions
JPH11316326A (en
Inventor
和憲 渡辺
憲治 伊藤
徳 石井
章 佐野
伸 斎藤
末廣 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Ube-Nitto Kasei Co Ltd
Original Assignee
Fujikura Ltd
Ube-Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Ube-Nitto Kasei Co Ltd filed Critical Fujikura Ltd
Priority to JP12203198A priority Critical patent/JP3554190B2/en
Publication of JPH11316326A publication Critical patent/JPH11316326A/en
Application granted granted Critical
Publication of JP3554190B2 publication Critical patent/JP3554190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光ケーブル用スペーサの製造方法に関し、特に、この種のスペーサが光ケーブルに使用される際に、環境温度変化に対するスペーサの寸法変化が少なく、光ケーブルの伝送性能を安定させることができる光ケーブル用スペーサの製造方法に関するものである。
【0002】
【従来の技術】
中央に配置された抗張力体と、前記抗張力体の外周に熱可塑性樹脂の押出成形により形成され、長手方向に沿って延びる光ファイバ収納溝を備えたスペーサ本体とを有する光ケーブル用スペーサを用い、光ファイバ収納溝内に多数の光ファイバを担持させた光ケーブルが知られている。
【0003】
このようなケーブルに用いるスペーサ本体は、主として結晶性の熱可塑性樹脂で構成され、中央に配置された抗張力体は、単鋼線,鋼撚線、ガラス繊維強化プラスチック(以下GFRPという),アラミド繊維強化プラスチック(以下KFRPという)およびそのそれらの撚線などが用いられている。
【0004】
なおこの場合、スペーサ本体である熱可塑性樹脂と中央に配置された抗張力体は、スペーサ本体の長手方向収縮による光伝送性能の低下を防止するため、接着性樹脂等の接着層を介して、もしくはアンカー効果等により、相互に接合していることが肝要とされている。
【0005】
しかしながら、このような構成の従来の光ケーブル用スペーサには、以下に説明する技術的な課題があった。
【0006】
【発明が解決しようとする課題】
すなわち、前述したGFRP,KFRPおよびそのFRP撚線などの高強力繊維強化プラスチックを用いた抗張力体は、引張方向に対する伸びを抑制する効果には優れるものの、長手方向の圧縮に対する弾性率は、引張方向に対するそれの数分の1以下となっているという問題があった。
【0007】
また、最近、所内配線用光ケーブルなど引張性能よりも可撓性が重要視される光ケーブルでは、細径(φ2.5mm以下)の高強力有機繊維強化プラスチックを抗張力体に用いる場合が増えて来ている。
【0008】
このような光ケーブルにおいても、−30〜+70℃の温度範囲で光伝送性能に変化が生じないことが必要とされているが、抗張力体に細径の高強力繊維強化プラスチックを用いたスペーサを採用した光ケーブルをこのような環境下に敷設すると、光伝送性能が低下するという問題があった。
【0009】
この原因としては、スペーサ本体を構成する結晶性熱可塑性樹脂において、温度変化により結晶化が進行し、抗張力体を含むスペーサ全体に長手方向の収縮が生じることが挙げられる。
【0010】
つまり、結晶化の進行に伴って発生する熱可塑性樹脂の収縮に対して、本来、中央に配置された抗張力体により、この収縮が抑制されるはずであるが、抗張力体に高強力繊維強化プラスチックを用いた場合、長手方向の圧縮に対する抗止力が劣っているためこれが抑制されず、FRPごと収縮して、光ファイバに歪みが発生し、光伝送性能が低下するものと理解できる。
【0011】
そこで、本発明では、このような問題点を解決するために鋭意検討し、光ケーブルとして使用する際に、長手方向の収縮が環境温度の変化に抗して生じることがない光ケーブル用スペーサの製造方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明は、溶融押出機のクロスヘッドダイに高強力繊維強化プラスチックからなる抗張力体を供給し、その外周に所定形状のダイから溶融した熱可塑性樹脂を押出し、次いで、これを冷却固化して、中央に配置された抗張力体と、この抗張力体の外周に長手方向に沿って延びる光ファイバ収納溝を備えたスペーサ本体とを有する光ケーブル用スペーサを成形した後に、得られたスペーサにテンションをかけつつ60℃以上、融点以下の温度で熱処理を行うようにした。
以上のように構成した光ケーブル用スペーサの製造方法によれば、70℃で1時間以上熱処理した際の長手方向熱収縮率が0.1%以下になるので、−30〜+70℃の温度範囲で使用しても光伝送性能に変化が生じない。
【0013】
【発明の実施の形態】
以下に本発明の好適な実施の形態について添付図面を参照にして説明するが、これらは、本発明の範囲を限定するものではない。図1は、本発明にかかる製造方法で得られる光ケーブル用スペーサを示している。
同図に示した光ケーブル用スペーサ10は、中央に配置された高強力繊維強化プラスチックからなる抗張力体12と、抗張力体12の外周に熱可塑性樹脂の押出成形により被覆形成されたスペーサ本体14とを備えている。
【0014】
スペーサ本体14には、長手方向に沿って延びる光ファイバ収納溝16が、周方向に所定の間隔を隔てて複数設けられている。
【0015】
抗張力体12は、高強度、高弾性率、低伸度で、スペーサ本体14を構成する熱可塑性樹脂の溶融押出時の接触で熱収縮し難い有機繊維(例えば、芳香族ポリアミド繊維、芳香族ポリエステル繊維、ポリアリレート繊維、ビニロン繊維など)や、無機繊維(ガラス繊維、炭素繊維、セラミック繊維など)およびこれらを組合せた繊維にビニルエステル樹脂、不飽和ポリエステル樹脂などの硬化性樹脂を含浸して硬化させた細径のFRP線等から選択される。
【0016】
スペーサ本体14を形成する熱可塑性樹脂は、圧縮弾性率が500kg/mm以下のポリエチレンからなり、70℃で1時間以上熱処理した際の、長手方向の熱収縮率が0.1%以下になっている。
70℃で1時間経過後における熱収縮率を0.1%以下に抑えるための熱処理は、光ケーブル用スペーサ10を製造したのち、連続してスペーサ本体14を60℃以上、融点以下の温度に設定された加熱槽中に挿通して、緊張下に所定時間滞在させて熱処理を施せば良い。
【0017】
加熱手段は、熱風、遠赤外線ヒーター等の乾熱、あるいは熱湯、液状熱媒体を用いた湿熱、あるいは、接触式の加熱ローラー等であっても良いが、後で乾燥、熱媒体の除去処理等を要しない乾熱がより好ましい。
【0018】
熱処理における光ケーブル用スペーサ10に対する緊張力は、抗張力体12が熱により収縮するのを抑止できる程度が好ましく、無緊張では、抗張力体12自体が熱収縮して、光ケーブルとしての使用時に張力が負荷されても抗しきれない事象が生じる。
【0019】
本発明の光ケーブル用スペーサ10を用いた場合において、伝送損失の増加が抑制されるのは、概ね次の理由が推測される。
【0020】
一般に、結晶性熱可塑性樹脂を溶融成形した場合、結晶化は完全に行われず、時間をかけて、もしくは熱処理等により進行する。ところが結晶化に際して熱可塑性樹脂の収縮現象が生じるため、特に細径(Φ2.5mm以下)のFRP(特に、芳香族ポリアミド繊維である東レデュポン製:商品名「ケブラー」を補強繊維とするKFRP)に多量(Φ10.0mm以上)の結晶性熱可塑性樹脂を押出被覆したスペーサを用いた光ファイバケーブルの場合、結晶性熱可塑性樹脂の長手方向の収縮に抗しきれず、FRPも収縮する現象が顕著に現れる。
【0021】
つまり、光ファイバを収納した状態でスペーサ全体が収縮するために、光ファイバに歪みが生じ、伝送損失の増化が生じていた。
また、スペーサ本体樹脂の結晶化を促進するための熱処理を、テンションを負荷しないで行うと、先に述べたようにFRPを含めたスペーサ全体の長手方向の収縮が生じるため、抗張力体の性能が生かせないという問題が生じる。
【0022】
本発明によれば、スペーサにテンションをかけた状態で熱処理することにより、予め、スペーサ構成樹脂の結晶化を進行させているので、ケーブル化後の温度変化による収縮を抑制でき、スペーサ実装光ファイバの伝送損失の増加を防止できる。
【0023】
[実施例]
以下、本発明を好適な実施例により詳細に説明するが、本発明の範囲は、以下の実施例に限定されるものでない。
【0024】
実施例1
アラミド繊維(東レデュポン製 ケブラー2840デニール8本)を補強繊維とし、これにビニルエステル樹脂(三井化学製 H2000)を含浸して外径2.0mmに絞り成形し、これを溶融押出機のクロスヘッドに挿通し、L−LDPE(日本ユニカー製NUCG5350)を押出被覆し、表面の被覆樹脂を冷却した後、145℃の蒸気硬化槽中で内部のビニルエステル樹脂を硬化して外径Φ3.2mmの丸棒状成形体を得た後、これを再度溶融押出機のクロスヘッドに挿通し、L−LDPE(日本ユニカー製 NUCG5350)を押出被覆して外径Φ6.0mmの丸棒状成形体を得た。
【0025】
この丸棒状成形体を回転ダイスに通して、リブが螺旋状になるようにL−LDPEを、丸棒状成形体の外周に押出被覆することで、5個の溝を有し、外径Φ13.5mm,溝外巾2.5mm,溝内巾2.5mm,溝深さ3.5mmの光ケーブル用スペーサ10を得た。
【0026】
次に、図2に示すように、ドラム20に巻き取ったスペーサ10に、ダンサーローラ21を介して、1Kgのテンションをかけながら、5m/minの速度で、長さが4mで、250℃の乾燥エアーが流れている温風加熱機25に導入して熱処理を行い、冷却槽26内に導入して冷却した後に巻取ドラム27に巻き取った。
【0027】
温風加熱機25の加熱源24は、乾燥エアーの温度設定が任意に行えるものであり、加熱機25から出た直後のスペーサ10の表面温度は、70℃に達していたが、巻き取られたスペーサ10には、外観・横断面形状に問題となる変化は認められなかった。
【0028】
このスペーサ10を、正確に1m長に切断し、70℃のギヤオーブンで1時間熱処理した後、30分間室内放置することで冷却し、スペーサ10の長さを測定したところ999.0mmであり、熱処理による長手方向の収縮率は、
【数1】

Figure 0003554190
となっていた。
【0029】
次に、このスペーサ10の収納溝16内にリボン状光ファイバを集合させ、外周を吸水テープで押さえ巻きを行った後、ポリエチレンシースを押出被覆して、外径Φ18mmの400心光ファイバケーブルを得た。
【0030】
この光ファイバケーブルについて、光ファイバの波長1.55μmでの伝送損失を、ドラム巻き状態で測定したところ、光ファイバの全てが、0.21〜0.27dB/kmの範囲に納まっていた。
【0031】
その後この光ファイバケーブルをドラム巻き状態でヒートサイクル試験室に入れ、
−30℃から+70℃の温度範囲でヒートサイクルを5サイクル繰り返した後に伝送性能を再測定したところ、伝送損失値は、0.24〜0.32dB/kmであり、問題となる大きな変化は認められなかった。
【0032】
実施例2
スペーサ10にテンションをかけた状態で行う温風加熱による熱処理において、乾燥エアー温度を300℃としたこと以外は、実施例1と同様の条件で200m長さの光ファイバ用スペーサ10を得た。
【0033】
なお、その際、加熱機25から出た直後のスペーサ10の表面温度は、90℃に達していたが、実施例1と同様、スペーサ10の外観や横断面形状に問題となる変化は認められなかった。
【0034】
また、1m長さのスペーサ10を70℃のギヤオーブンで1時間熱処理した後の収縮率は、0.05%であった。以下の表にヒートサイクル試験前後のスペーサ実装光ファイバの光伝送性能測定値をまとめて示している。
【0035】
比較例1
スペーサにテンションをかけた状態で行う温風加熱による熱処理工程を除いた以外は、実施例1と同様の条件で200m長さの光ファイバケーブルを得た。このスペーサの1mサンプルにおける70℃1時間熱処理後の収縮率は、0.5%であった。
【0036】
以下の表にヒートサイクル試験前後のスペーサ実装光ファイバの光伝送性能測定値をまとめて示している。
【0037】
比較例2
作製したスペーサをテンションが全くかからない状態で、温風加熱機により熱処理した以外は、実施例1と同様の条件で200m長さの光ファイバケーブルを得たが、光ファイバの波長1.55μmでの伝送損失をドラム巻き状態で測定したところ、断裂している光ファイバが確認された。
【0038】
集合前のスペーサを調べてみたところ、熱処理により、抗張力体を含むスペーサ全体に長手方向の収縮が生じており、光ファイバ集合時に、抗張力体の伸び抑制効果が充分に発現しなかったため、光ファイバに設計値以上の引張応力がかかったためであると判明した。
【0039】
比較例3
実施例1と同様の方法で作成したスペーサに、1kgのテンションをかけながら3m/minの速度で、300℃乾燥エアーを流した長さ4mの温風加熱機に導入して熱処理を行い、冷却後巻き取った。
【0040】
この時、加熱機直後のスペーサ表面温度は、135℃に達しており、巻き取られたスペーサの横断面形状は外径Φ13.4mm,溝外巾2.7mm,溝内巾2.3mm,溝深さ3.3mmと変化が認められた。
【0041】
なお、このスペーサの70℃1時間熱処理後の収縮率は、0.01%であった。
このスペーサを実施例1と同様の条件で光ファイバケーブル化し、200m長さの光ファイバケーブルを得たが、光ファイバの波長1.55μmでの伝送損失をドラム巻き状態で測定したところ、伝送損失値は0.25〜1.42dB/kmと複数の光ファイバに明確な伝送損失の増加が認められた。
【0042】
【表1】
Figure 0003554190
なお、上記実施例では、スペーサ10の熱処理工程をオフライン処理としているが、オンライン処理であってもよい。また、熱処理方法の加熱方式自体も、温風加熱以外、例えば、遠赤外線加熱,熱媒加熱方式等であってもよい。
【0043】
【発明の効果】
以上、実施例で詳細に説明したように、本発明によれば、スペーサにテンションをかけた状態で熱処理することにより、予め、スペーサ構成樹脂の結晶化を進行させているので、ケーブル化後の温度変化による収縮を抑制でき、スペーサに実装した光ファイバの伝送損失の増加を防止できる。
【図面の簡単な説明】
【図1】本発明にかかる製造方法で得られる光ケーブル用スペーサの一例を示す横断面図である。
【図2】本発明にかかる光ケーブル用スペーサの熱処理方法の一例の説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a spacer for an optical cable, and more particularly to a method for manufacturing an optical cable in which when this type of spacer is used for an optical cable, the dimensional change of the spacer with respect to environmental temperature changes is small and the transmission performance of the optical cable can be stabilized. The present invention relates to a method for manufacturing a spacer .
[0002]
[Prior art]
Using an optical cable spacer having a tensile strength member disposed at the center and a spacer body formed by extrusion molding of a thermoplastic resin on the outer periphery of the tensile strength member and having an optical fiber housing groove extending along the longitudinal direction, 2. Description of the Related Art An optical cable in which a large number of optical fibers are carried in a fiber housing groove is known.
[0003]
The spacer body used for such a cable is mainly composed of a crystalline thermoplastic resin, and the tensile members disposed in the center are a single steel wire, a steel stranded wire, a glass fiber reinforced plastic (hereinafter referred to as GFRP), an aramid fiber. Reinforced plastics (hereinafter referred to as KFRP) and their stranded wires are used.
[0004]
In this case, the thermoplastic resin serving as the spacer body and the tensile member disposed at the center are interposed through an adhesive layer such as an adhesive resin or the like, in order to prevent a decrease in light transmission performance due to the longitudinal contraction of the spacer body. It is important that they are joined to each other by an anchor effect or the like.
[0005]
However, the conventional optical cable spacer having such a configuration has a technical problem described below.
[0006]
[Problems to be solved by the invention]
That is, the tensile strength member using the high-strength fiber-reinforced plastic such as the GFRP, KFRP and the FRP stranded wire described above is excellent in the effect of suppressing the elongation in the tensile direction, but the elastic modulus against the compression in the longitudinal direction is in the tensile direction. There was a problem that it was less than a fraction of that of
[0007]
Recently, in the case of optical cables for which flexibility is more important than tensile performance, such as optical cables for in-house wiring, the use of high-strength organic fiber reinforced plastics having a small diameter (2.5 mm or less) as a tensile strength material has been increasing. I have.
[0008]
Even in such an optical cable, it is required that the optical transmission performance does not change in a temperature range of -30 to + 70 ° C. However, a spacer using a small-diameter high-strength fiber-reinforced plastic as a tensile strength member is employed. When such an optical cable is laid in such an environment, there is a problem that optical transmission performance is reduced.
[0009]
This is because, in the crystalline thermoplastic resin constituting the spacer body, crystallization proceeds due to a temperature change, and the entire spacer including the tensile strength member contracts in the longitudinal direction.
[0010]
In other words, the shrinkage of the thermoplastic resin that occurs with the progress of crystallization should be suppressed by the tensile strength member located at the center, but the high-strength fiber-reinforced plastic In the case where is used, it can be understood that since the resistance to compression in the longitudinal direction is inferior, this is not suppressed, and the FRP shrinks, causing distortion in the optical fiber and deteriorating the optical transmission performance.
[0011]
Therefore, in the present invention, a method for manufacturing an optical cable spacer in which longitudinal contraction does not occur against a change in environmental temperature when used as an optical cable has been studied diligently to solve such a problem. It is intended to provide.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a tensile strength body made of a high-strength fiber-reinforced plastic to a crosshead die of a melt extruder , extrudes a molten thermoplastic resin from a die of a predetermined shape on the outer periphery thereof, This is cooled and solidified to obtain an optical cable spacer having a strength member disposed at the center and a spacer body having an optical fiber housing groove extending along the longitudinal direction on the outer periphery of the strength member, and then obtained. The heat treatment is performed at a temperature of 60 ° C. or more and a melting point or less while applying tension to the spacer.
According to the manufacturing method of the optical cable spacer configured as described above, the heat shrinkage in the longitudinal direction when heat-treated at 70 ° C. for 1 hour or more becomes 0.1% or less, so that the temperature range of −30 to + 70 ° C. There is no change in optical transmission performance when used.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings, but they do not limit the scope of the present invention. FIG. 1 shows an optical cable spacer obtained by the manufacturing method according to the present invention.
The optical cable spacer 10 shown in FIG. 1 includes a strength member 12 made of a high-strength fiber-reinforced plastic disposed in the center and a spacer body 14 formed by coating the outer periphery of the strength member 12 by extrusion molding of a thermoplastic resin. Have.
[0014]
The spacer main body 14 is provided with a plurality of optical fiber housing grooves 16 extending along the longitudinal direction at predetermined intervals in the circumferential direction.
[0015]
The tensile strength member 12 is made of an organic fiber (for example, an aromatic polyamide fiber or an aromatic polyester) that has high strength, high elastic modulus, and low elongation, and does not easily shrink due to contact during the melt extrusion of the thermoplastic resin constituting the spacer body 14. Fibers, polyarylate fibers, vinylon fibers, etc.), inorganic fibers (glass fibers, carbon fibers, ceramic fibers, etc.) and their combined fibers are impregnated with curable resins such as vinyl ester resins and unsaturated polyester resins and cured. It is selected from the reduced diameter FRP wire or the like.
[0016]
The thermoplastic resin forming the spacer body 14 is made of polyethylene having a compression elastic modulus of 500 kg / mm 2 or less, and has a longitudinal heat shrinkage of 0.1% or less when heat-treated at 70 ° C. for 1 hour or more. ing.
In the heat treatment for suppressing the heat shrinkage after 0.1 hour at 70 ° C. to 0.1% or less, the spacer body 14 is continuously set to a temperature of 60 ° C. or more and the melting point or less after manufacturing the optical cable spacer 10. What is necessary is just to pass through the heated tank and let it stay under tension for a predetermined time to perform the heat treatment.
[0017]
The heating means may be hot air, dry heat such as a far infrared heater, or hot water, wet heat using a liquid heat medium, or a contact-type heating roller. Is more preferable.
[0018]
The tension applied to the optical cable spacer 10 in the heat treatment is preferably such that the tensile member 12 can be prevented from contracting due to heat. In the case of no tension, the tensile member 12 itself thermally contracts and a tension is applied during use as an optical cable. However, there are events that cannot be overcome.
[0019]
The reason why the increase in transmission loss is suppressed when the optical cable spacer 10 of the present invention is used is generally presumed to be as follows.
[0020]
In general, when a crystalline thermoplastic resin is melt-molded, crystallization is not completely performed, but progresses over time or by heat treatment or the like. However, because of the shrinkage phenomenon of the thermoplastic resin during crystallization, FRP having a particularly small diameter (φ2.5 mm or less) (particularly, aromatic polyamide fiber manufactured by Toray DuPont: KFRP having a product name “Kevlar” as a reinforcing fiber) In the case of an optical fiber cable using a spacer in which a large amount (φ10.0 mm or more) of a crystalline thermoplastic resin is extruded and coated, the phenomenon of not being able to withstand the longitudinal shrinkage of the crystalline thermoplastic resin and shrinking the FRP is remarkable. Appears in
[0021]
That is, since the entire spacer shrinks in a state where the optical fiber is housed, the optical fiber is distorted and the transmission loss is increased.
Also, if the heat treatment for promoting the crystallization of the spacer main body resin is performed without applying a tension, as described above, the entire spacer including the FRP contracts in the longitudinal direction, so that the performance of the tensile strength member is reduced. There is a problem that it cannot be used.
[0022]
According to the present invention, heat treatment is performed in a state where tension is applied to the spacer, so that crystallization of the resin constituting the spacer is advanced in advance. Can be prevented from increasing transmission loss.
[0023]
[Example]
Hereinafter, the present invention will be described in detail with reference to preferred examples, but the scope of the present invention is not limited to the following examples.
[0024]
Example 1
Aramid fiber (Kevlar 2840 denier made by Toray DuPont 8) is used as reinforcing fiber, impregnated with vinyl ester resin (H2000 made by Mitsui Chemicals), drawn and formed to an outer diameter of 2.0 mm, and this is cross-headed by a melt extruder. , And extrusion-coated with L-LDPE (NUCG5350 manufactured by Nippon Unicar). After cooling the coating resin on the surface, the internal vinyl ester resin was cured in a steam curing tank at 145 ° C. to obtain an outer diameter of 3.2 mm. After obtaining the round bar-shaped molded product, it was again inserted into the crosshead of the melt extruder, and L-LDPE (NUCG5350 manufactured by Nippon Unicar) was extrusion-coated to obtain a round bar-shaped molded product having an outer diameter of 6.0 mm.
[0025]
This round bar-shaped molded product is passed through a rotary die, and L-LDPE is extruded and coated on the outer periphery of the round bar-shaped molded product so that the rib has a spiral shape. An optical cable spacer 10 having a width of 5 mm, an outer groove width of 2.5 mm, an inner groove width of 2.5 mm, and a groove depth of 3.5 mm was obtained.
[0026]
Next, as shown in FIG. 2, the spacer 10 wound around the drum 20 is tensioned at 1 kg via the dancer roller 21 at a speed of 5 m / min, at a speed of 5 m / min, at a length of 4 m, and at 250 ° C. It was introduced into a warm air heater 25 in which dry air was flowing to perform heat treatment, introduced into a cooling tank 26 and cooled, and then wound around a winding drum 27.
[0027]
The heating source 24 of the hot air heater 25 is capable of arbitrarily setting the temperature of the dry air. The surface temperature of the spacer 10 immediately after leaving the heater 25 has reached 70 ° C. The spacer 10 did not show any problematic changes in appearance and cross-sectional shape.
[0028]
This spacer 10 was cut into a length of exactly 1 m, heat-treated in a gear oven at 70 ° C. for 1 hour, cooled by leaving it indoors for 30 minutes, and the length of the spacer 10 was measured to be 999.0 mm. The longitudinal shrinkage due to heat treatment is
(Equation 1)
Figure 0003554190
It was.
[0029]
Next, a ribbon-shaped optical fiber is assembled in the storage groove 16 of the spacer 10, and the outer periphery is pressed and wound with a water-absorbing tape, and then a polyethylene sheath is extruded and coated to form a 400-core optical fiber cable having an outer diameter of 18 mm. Obtained.
[0030]
With respect to this optical fiber cable, when the transmission loss of the optical fiber at a wavelength of 1.55 μm was measured in a drum-wound state, all the optical fibers were within the range of 0.21 to 0.27 dB / km.
[0031]
After that, put this optical fiber cable in a heat cycle test room in a drum wound state,
When the transmission performance was re-measured after repeating five heat cycles in the temperature range of -30 ° C to + 70 ° C, the transmission loss was 0.24 to 0.32 dB / km, and a significant problematic change was recognized. I couldn't.
[0032]
Example 2
An optical fiber spacer 10 having a length of 200 m was obtained under the same conditions as in Example 1 except that the dry air temperature was set to 300 ° C. in the heat treatment by hot air heating performed with the spacer 10 being tensioned.
[0033]
At this time, the surface temperature of the spacer 10 immediately after coming out of the heater 25 reached 90 ° C. However, as in the first embodiment, a problematic change in the appearance and cross-sectional shape of the spacer 10 was observed. Did not.
[0034]
Further, the shrinkage after heat treatment of the 1 m long spacer 10 in a 70 ° C. gear oven for 1 hour was 0.05%. The following table summarizes the measured optical transmission performance of the spacer-mounted optical fiber before and after the heat cycle test.
[0035]
Comparative Example 1
An optical fiber cable having a length of 200 m was obtained under the same conditions as in Example 1 except that a heat treatment step by hot air heating performed in a state where tension was applied to the spacer was omitted. The shrinkage of the 1 m sample of this spacer after heat treatment at 70 ° C. for 1 hour was 0.5%.
[0036]
The following table summarizes the measured optical transmission performance of the spacer-mounted optical fiber before and after the heat cycle test.
[0037]
Comparative Example 2
An optical fiber cable having a length of 200 m was obtained under the same conditions as in Example 1 except that the produced spacer was heat-treated with a hot air heater in a state where no tension was applied. When the transmission loss was measured with the drum wound, a broken optical fiber was confirmed.
[0038]
When the spacers before assembly were examined, the heat treatment showed that the entire spacer including the tensile strength member contracted in the longitudinal direction, and the effect of suppressing the elongation of the tensile strength member during optical fiber assembly was not sufficiently exhibited. It was found that this was because a tensile stress higher than the design value was applied to the.
[0039]
Comparative Example 3
The spacer prepared in the same manner as in Example 1 was heated at a speed of 3 m / min while applying a 1 kg tension to a 4 m-long hot air heater through which dry air was flowed at 300 ° C., and cooled. After winding.
[0040]
At this time, the surface temperature of the spacer immediately after the heater reached 135 ° C., and the cross-sectional shape of the wound spacer had an outer diameter of Φ13.4 mm, an outer groove width of 2.7 mm, an inner groove width of 2.3 mm, and a groove. A change of 3.3 mm in depth was observed.
[0041]
The shrinkage of this spacer after heat treatment at 70 ° C. for 1 hour was 0.01%.
This spacer was converted into an optical fiber cable under the same conditions as in Example 1 to obtain an optical fiber cable having a length of 200 m. The transmission loss of the optical fiber at a wavelength of 1.55 μm was measured in a drum-wound state. The value was 0.25 to 1.42 dB / km, and a clear increase in transmission loss was observed in the plurality of optical fibers.
[0042]
[Table 1]
Figure 0003554190
In the above embodiment, the heat treatment process of the spacer 10 is an off-line process, but may be an on-line process. Also, the heating method itself of the heat treatment method may be a method other than warm air heating, such as far-infrared heating or a heating medium heating method.
[0043]
【The invention's effect】
As described above in detail in the examples, according to the present invention, the crystallization of the spacer constituent resin is advanced in advance by performing the heat treatment with tension applied to the spacer. Shrinkage due to temperature change can be suppressed, and an increase in transmission loss of the optical fiber mounted on the spacer can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an optical cable spacer obtained by a manufacturing method according to the present invention.
FIG. 2 is an explanatory view of one example of a method for heat treating an optical cable spacer according to the present invention.

Claims (1)

溶融押出機のクロスヘッドダイに高強力繊維強化プラスチックからなる抗張力体を供給し、Supply a tensile strength body made of high-strength fiber reinforced plastic to the crosshead die of the melt extruder,
その外周に所定形状のダイから溶融した熱可塑性樹脂を押出し、  Extruded molten thermoplastic resin from the die of a predetermined shape on its outer periphery,
次いで、これを冷却固化して、中央に配置された抗張力体と、この抗張力体の外周に長手方向に沿って延びる光ファイバ収納溝を備えたスペーサ本体とを有する光ケーブル用スペーサを成形した後に、  Next, this is cooled and solidified to form an optical cable spacer having a strength member disposed in the center and a spacer body having an optical fiber housing groove extending along the longitudinal direction on the outer periphery of the strength member,
得られたスペーサにテンションをかけつつ60℃以上、融点以下の温度で熱処理を行うことを特徴とする光ケーブル用スペーサの製造方法。  A method for producing an optical cable spacer, wherein a heat treatment is performed at a temperature of 60 ° C. or more and a melting point or less while applying tension to the obtained spacer.
JP12203198A 1998-05-01 1998-05-01 Manufacturing method of spacer for optical cable Expired - Fee Related JP3554190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12203198A JP3554190B2 (en) 1998-05-01 1998-05-01 Manufacturing method of spacer for optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12203198A JP3554190B2 (en) 1998-05-01 1998-05-01 Manufacturing method of spacer for optical cable

Publications (2)

Publication Number Publication Date
JPH11316326A JPH11316326A (en) 1999-11-16
JP3554190B2 true JP3554190B2 (en) 2004-08-18

Family

ID=14825889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12203198A Expired - Fee Related JP3554190B2 (en) 1998-05-01 1998-05-01 Manufacturing method of spacer for optical cable

Country Status (1)

Country Link
JP (1) JP3554190B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10153821A1 (en) * 2001-11-05 2003-06-05 Hauni Maschinenbau Ag Multi-segment filter of the tobacco processing industry and method for producing the same
JP5038223B2 (en) * 2007-05-09 2012-10-03 宇部日東化成株式会社 Optical cable spacer winding method and winding device
KR102182862B1 (en) * 2018-07-31 2020-11-25 한국전력공사 Space damper

Also Published As

Publication number Publication date
JPH11316326A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
JP3176390B2 (en) Method of manufacturing reinforced plastic armored cable
JPS6128092A (en) Composite wire body and its production
GB2262996A (en) Optical waveguide cable having reinforced covering formed by coextrusion
US4814133A (en) Method of forming the spacer of an optical fiber cable
JP2003033984A (en) Composite structural member and its production method
US4781434A (en) Spacer of optical fiber cable and method for forming the same
KR100387154B1 (en) Spacer for optical fiber cable, manufacturing method of the same and optical fiber cable using the spacer
CZ155995A3 (en) Process and apparatus for producing a core element exhibiting tensile strength for a cable
JP3554190B2 (en) Manufacturing method of spacer for optical cable
CN107533203A (en) SAP coatings and related system and method for cable assemblies
JP4149716B2 (en) Optical fiber cord manufacturing method and apparatus
JP2004163501A (en) Drop optical fiber cable
JPH042165B2 (en)
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPH03249287A (en) Twisted structure made of fiber-reinforced thermosetting resin and its production
AU2050399A (en) Process for the manufacture of an optical core for a telecommunications cable
JP3940500B2 (en) Reinforced optical fiber cord and manufacturing method thereof
JPH045165B2 (en)
JPS6033520A (en) Fiber-reinforced optical fiber and its manufacture
JP2996481B2 (en) Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber
RU2359353C1 (en) Coil windings with resin insulation, not involving moulding
JP3103658B2 (en) Manufacturing method of straight single groove slot
JP2004122683A (en) Manufacturing method of fiber reinforced thermoplastic resin ring
JPH0251856B2 (en)
JPH0445914A (en) Manufacture of reinforced plastic armored cable

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees