JP2996481B2 - Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber - Google Patents
Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiberInfo
- Publication number
- JP2996481B2 JP2996481B2 JP2068230A JP6823090A JP2996481B2 JP 2996481 B2 JP2996481 B2 JP 2996481B2 JP 2068230 A JP2068230 A JP 2068230A JP 6823090 A JP6823090 A JP 6823090A JP 2996481 B2 JP2996481 B2 JP 2996481B2
- Authority
- JP
- Japan
- Prior art keywords
- spacer
- curable resin
- active energy
- energy ray
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Moulding By Coating Moulds (AREA)
Description
【発明の詳細な説明】 《産業上の利用分野》 本発明は光ファイバを外力から保護するために使用さ
れる光ファイバ担持用スペーサ及びその製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION << Industrial Application >> The present invention relates to an optical fiber supporting spacer used for protecting an optical fiber from an external force and a method of manufacturing the spacer.
《従来の技術》 光ファイバは外力に対して弱いので、外力から保護す
るため外周に複数の溝を有するスペーサが光ケーブルの
要素として使用される。<< Conventional Technology >> Since an optical fiber is weak against an external force, a spacer having a plurality of grooves on the outer periphery is used as an element of the optical cable to protect the optical fiber from the external force.
この種のスペーサとして、中央に抗張力線を配し、そ
の外周に熱可塑性樹脂によって螺旋状溝を形成したもの
が一般的に用いられている。As this type of spacer, a spacer in which a tensile line is arranged at the center and a spiral groove is formed on the outer periphery thereof by a thermoplastic resin is generally used.
しかしながら、この種のスペーサは、全体の外径が小
さい場合には、リブを形成している熱可塑性樹脂が引張
強度に寄与しないので耐抗張力が不足し、光ファイバを
有効に保護できない場合がある。However, when the overall outer diameter of this type of spacer is small, the thermoplastic resin forming the rib does not contribute to the tensile strength, so the tensile strength is insufficient, and the optical fiber may not be effectively protected. .
また、熱可塑性樹脂は線膨脹係数が大きく、例えばス
ペーサに多用されている高密度ポリエチレンでは10-4の
オーダーであり、仮に抗張力線に線膨脹係数が比較的小
さいガラス繊維強化熱硬化性樹脂(以下GFRPと称す)製
のものを使用したとしても熱膨脹係数が大きな熱可塑性
樹脂に相殺されて、全体として熱膨脹係数が高くなる。In addition, thermoplastic resins have a large linear expansion coefficient, for example, high-density polyethylene, which is frequently used for spacers, is on the order of 10 -4. Even if a product made of GFRP) is used, the thermal expansion coefficient is offset by the large thermoplastic resin, and the thermal expansion coefficient becomes high as a whole.
さらに、熱可塑性樹脂によるリブは圧縮に対する変形
も大きく、このため光ファイバの収納溝を大きくする必
要があって、スペーサの外径が大きくなる傾向があると
もに、耐熱性にも劣り、光ファイバ架空地線(OPGW)等
の耐熱性が要求される用途には、不向きであるなどの問
題点があった。Furthermore, the ribs made of thermoplastic resin undergo a large deformation with respect to compression, so that it is necessary to make the groove for the optical fiber large, and the outer diameter of the spacer tends to be large, the heat resistance is poor, and the optical fiber overhead It is not suitable for applications requiring heat resistance, such as the ground wire (OPGW).
一方、前記熱可塑性樹脂によるスペーサの物性上の不
利を克服するため、繊維強化熱硬化性樹脂によるスペー
サを製造しようとする、従来公知の方法、例えば金型内
での引抜成形法等では、型内での引取抵抗が大になると
いう問題が生ずるし、螺旋状溝を形成しようとすると、
螺旋溝を有する型内で引抜成形する必要が生じ、一層引
取抵抗が増大するなどの問題があった。On the other hand, in order to overcome the disadvantages of the physical properties of the spacer due to the thermoplastic resin, in order to manufacture a spacer using a fiber-reinforced thermosetting resin, a conventionally known method, for example, a pultrusion method in a mold or the like, requires a mold. The problem arises that the take-up resistance in the inside becomes large, and when trying to form a spiral groove,
It is necessary to carry out pultrusion in a mold having a spiral groove, and there is a problem that the take-up resistance further increases.
そこで本発明者らは、金型内での引抜成形法を要しな
い繊維強化硬化性樹脂(以下FRPと称す)製スペーサの
新規な製造方法について鋭意検討して本発明を完成し
た。Accordingly, the present inventors have diligently studied a novel method of manufacturing a spacer made of a fiber-reinforced curable resin (hereinafter referred to as FRP) that does not require a pultrusion molding method in a mold, and have completed the present invention.
《発明の構成》 上記問題点が解決できる本発明の構成は、得ようとす
るスペーサの芯部及び各リブの断面積に応じて分割され
て所要本数毎に集束された連続状補強繊維群に活性エネ
ルギー線硬化性樹脂を含浸し、これらの各々を所定形状
に絞り成形した後合体しつつスペーサの最終断面形状に
絞り成形し、次いで活性エネルギー線照射装置に通して
硬化することを特徴とする。<< Structure of the Invention >> The structure of the present invention that can solve the above-described problems is a continuous reinforcing fiber group divided according to the core area of the spacer to be obtained and the cross-sectional area of each rib and bundled for each required number. It is characterized by impregnating with an active energy ray-curable resin, drawing and forming each of them into a predetermined shape, then drawing them into the final cross-sectional shape of the spacer while uniting them, and then hardening by passing through an active energy ray irradiation device. .
本発明において使用てきる補強繊維は長繊維状であっ
て高強度低伸度で補強効果のあるもの、例えばガラス繊
維,芳香族ポリアミド繊維,炭素繊維,セラミック繊維
などが挙げられ、活性エネルギー線硬化性樹脂として
は、紫外線,可視光線、電子線などの活性エネルギー線
で硬化可能なもの、例えば、紫外線硬化性の場合はビニ
ルエステル系のものが、耐熱性,経済性の点から好まし
い。The reinforcing fibers used in the present invention are in the form of long fibers having high strength and low elongation and having a reinforcing effect, such as glass fibers, aromatic polyamide fibers, carbon fibers, and ceramic fibers. As the curable resin, a resin curable by an active energy ray such as an ultraviolet ray, a visible ray, or an electron beam, for example, in the case of an ultraviolet curable resin, a vinyl ester-based resin is preferable from the viewpoint of heat resistance and economy.
未硬化状硬化性樹脂の含浸に先立つ連続状補強繊維の
分割は、得ようとするスペーサの最終形状に基づいて芯
部(中央部)およびリブの部分の断面積に応じて、目標
とする補強繊維の含有率から計算される本数を算出して
導かれる本数を一群とする。The division of the continuous reinforcing fibers prior to the impregnation of the uncured curable resin is performed according to the cross-sectional area of the core (central portion) and the rib portion based on the final shape of the spacer to be obtained. The number derived from calculating the number calculated from the fiber content is defined as one group.
これらの分割されたそれぞれの補強繊維群に未硬化状
の活性エネルギー線硬化性樹脂を含浸した後、余分の樹
脂を逐次絞り成形して分割状態での最終絞り断面積を製
品の相当断面積のほぼ100〜110%程度とした後、これら
を合体させ、最終絞りダイスによって再度製品の相当断
面積迄絞り成形する。After each of these divided reinforcing fiber groups is impregnated with an uncured active energy ray-curable resin, the excess resin is sequentially drawn and the final drawn cross-sectional area in the divided state is the equivalent cross-sectional area of the product. After about 100-110%, they are combined and drawn again by the final drawing die to the equivalent sectional area of the product.
次いで、これを使用した硬化性樹脂材料に応じた硬化
装置、例えば紫外線硬化性樹脂を使用した場合にあって
は、紫外線照射装置等に通して、未硬化状樹脂を硬化せ
しめ、FRP製スペーサを得る。Next, a curing device corresponding to the curable resin material using the same, for example, when an ultraviolet curable resin is used, is passed through an ultraviolet irradiation device or the like to cure the uncured resin, and the FRP spacer is removed. obtain.
スペーサの長手軸に平行な直線状溝を得る場合には以
上の工程で足りるが、螺旋状の溝を有するスペーサを得
るに際しては以下の様にすればよい。The above steps are sufficient for obtaining a linear groove parallel to the longitudinal axis of the spacer, but the following method may be used for obtaining a spacer having a spiral groove.
上記活性エネルギー線照射装置の入口側に前記最終絞
りダイスを配置し、出口側にはスペーサの形状に対応し
た非回転の出口ガイドを設け、絞りダイスと出口ガイド
間の長さLの間で、絞り成形体に螺旋ピッチに応じて撚
を付加し、活性エネルギー線照射装置中で硬化させた
後、該出口ガイドに通し、引続いて回転引取機により引
取ればよい。The final drawing die is arranged on the entrance side of the active energy ray irradiation device, and a non-rotating exit guide corresponding to the shape of the spacer is provided on the exit side. Between the length L between the drawing die and the exit guide, Twist may be added to the drawn product according to the helical pitch, cured in an active energy ray irradiation device, passed through the outlet guide, and subsequently taken out by a rotary take-up machine.
なお、活性エネルギー線としては、紫外線,可視光
線,電子線等があり、これらのエネルギー線によって硬
化可能なように硬化性樹脂及びその組成を選択すればよ
い。The active energy rays include ultraviolet rays, visible light rays, electron beams, and the like, and the curable resin and the composition thereof may be selected so as to be curable by these energy rays.
また、未硬化状樹脂の硬化にあっては、例えば紫外線
と遠赤外線とを併用できるよう、これらに感応する触媒
を併用することもできる。In the curing of the uncured resin, a catalyst responsive to these may be used in combination so that, for example, ultraviolet rays and far infrared rays can be used in combination.
《作 用》 本発明のFRP製スペーサの製造方法によれば、未硬化
段階での絞り成形を複数に分割した後に一体化している
ので補強繊維の密度がほぼ均一となって良形状のものが
得られ、かつ引抜金型を用いることなく硬化成形できる
ので、従来において問題となっていた金型中での引抜抵
抗の問題がなく、かつ、螺旋状溝を有するスペーサも特
別な金型等を用いることなく自在に製造できる。<Operation> According to the method of manufacturing the FRP spacer of the present invention, since the drawing at the uncured stage is divided into a plurality of pieces and then integrated, the density of the reinforcing fibers becomes almost uniform and a good shape is obtained. Since it can be obtained and can be cured and molded without using a drawing die, there is no problem of drawing resistance in the die which has been a problem in the past, and a spacer having a spiral groove requires a special die or the like. It can be manufactured freely without using it.
上記螺旋溝の成形は、活性エネルギー線照射装置の入
口側の最終絞りダイス及び出口側のガイド間で、未硬化
成形体を捩り、撚りを加え、硬化を完了した部分を固定
された出口ガイドに通すと、照射装置内において、未硬
化の部分側へ捩り力が伝搬して連続的に撚りが付加さ
れ、所定螺旋ピッチのものが得られる。The spiral groove is formed by twisting the uncured molded body between the final drawing die on the entrance side of the active energy ray irradiation device and the guide on the exit side, adding twist, and curing the cured part to the fixed exit guide. When it is passed, in the irradiation device, a torsional force is propagated to the uncured portion side, and twist is continuously added, so that a beam having a predetermined helical pitch is obtained.
また、活性エネルギー線硬化性の樹脂を使用するの
で、表面は比較的速く硬化し、最終製品の形状も安定し
たものが得られる。In addition, since an active energy ray-curable resin is used, the surface cures relatively quickly, and a stable final product can be obtained.
《実 施 例》 以下、本発明につき好適な実施例により説明する。<< Embodiment >> Hereinafter, a preferred embodiment of the present invention will be described.
実施例1 第1図に示すごとき形状のFRPスペーサSを以下の様
にして製造した。Example 1 An FRP spacer S having the shape shown in FIG. 1 was manufactured as follows.
280テクスのガラスヤーンA1を20本準備し、これを中
央の芯部用および4つのリブ部用の5ブロックに各4本
づつ分割した。Twenty 280-tex glass yarns A1 were prepared and divided into four blocks, each having five blocks for the central core and four ribs.
分割された各4本の繊維群に、紫外線硬化性樹脂とし
て、ビニルエステル系樹脂(三井東圧化学製、商品名エ
スタ−H−2000)60部、架橋成分としてヘキサンジオー
ルジアクリレート(日本化薬製:カヤラッドHDDA)20
部、高沸点反応性希釈剤としてNビニル2ピロリドン20
部、光重合開始剤(チバガイギー製:イルガキュア65
1)3部及び熱硬化性触媒(化薬アクゾ製:カヤプチル
B)2部を組成とする未硬化状樹脂1を含浸し、次いで
第2図(A)に示すような5ヶの角孔から構成され、各
正方形の一辺が0.95,0.9,0.85mmの絞りノズル2Aに通し
て絞り成形した後、5本の絞り成形体を、前記0.85mmの
絞りダイスの総面積と同一の面積の第2図(B)に示す
十字状絞りノズル2Bに通して、一体とした。For each of the four divided fiber groups, 60 parts of a vinyl ester resin (trade name: ESTA-H-2000, manufactured by Mitsui Toatsu Chemicals) as an ultraviolet curable resin, and hexanediol diacrylate (Nippon Kayaku) as a crosslinking component Made: Kayarad HDDA) 20
Parts, N-vinyl 2-pyrrolidone 20 as a high boiling point reactive diluent
Part, photopolymerization initiator (Ciba Geigy: Irgacure 65
1) Impregnated with an uncured resin 1 composed of 3 parts and 2 parts of a thermosetting catalyst (manufactured by Kayaku Akzo: Kyaptyl B), and then through five square holes as shown in FIG. 2 (A). After forming each of the squares through a drawing nozzle 2A having a side of 0.95, 0.9, and 0.85 mm, each of the five drawn molded bodies is formed into a second area having the same area as the total area of the drawing dies of 0.85 mm. It was passed through a cross-shaped throttle nozzle 2B shown in FIG.
引続いて、これを製品形状に対応した第2図(C)に
示す最終絞りダイス2Cに通した後、長さ750mmの紫外線
照射装置3(オーク社製:QR4000)及び長さ1500mmの熱
硬化用パイプ4を直列に接続し前者の装置内温度を150
℃、後者のパイプ内温度を300℃とした硬化装置中に通
して、6m/分の速度で硬化し、ベルト型の引取機5によ
り引取りドラム6に巻取った。Subsequently, after passing this through the final drawing die 2C shown in FIG. 2 (C) corresponding to the product shape, a UV irradiation device 3 (Oak: QR4000) having a length of 750 mm and a thermosetting material having a length of 1500 mm Pipes 4 are connected in series, and the temperature in the former apparatus is set to 150
C., the latter was passed through a curing device in which the temperature in the pipe was 300.degree. C., cured at a speed of 6 m / min, and wound around a take-up drum 6 by a belt-type take-up machine 5. FIG.
得られた直線溝のFRP製スペーサSは、ガラス繊維の
体積含有率が63%,引張強力496kg,0.2%伸長時強力が1
8.8kg,0.5%伸長時43kg,1%伸長時85.5kgで最小曲げ直
径が約100mmであり、形状も良好であって光ファイバ担
持用スペーサとして充分な性能である。The obtained linear grooved FRP spacer S has a glass fiber volume content of 63%, a tensile strength of 496 kg and a tensile strength at elongation of 0.2% of 1%.
It has a minimum bending diameter of about 100 mm at 8.8 kg, 43 kg at 0.5% elongation, and 85.5 kg at 1% elongation, and has a good shape and sufficient performance as an optical fiber supporting spacer.
比較例1 上記実施例と比較して絞りダイスの形状を当初より十
字状のものとして逐次絞り成形して、他は実施例1と同
様にしてスペーサを得た。得られたスペーサは形状が不
良で、実用に供し得ないものであった。Comparative Example 1 Compared with the above-described embodiment, the draw die was formed into a cross shape from the beginning and successively formed by drawing, and a spacer was obtained in the same manner as in Example 1 except for the above. The obtained spacer had a bad shape and could not be put to practical use.
実施例2 実施例1と同一の条件で絞り成形した後、最終絞りダ
イス2Cと紫外線照射装置3の出口側ガイド10間の距離を
800mmとして、この間で未硬化状成形体に2回撚を加え
た後、出口側ガイド10に案内し、紫外線照射装置3中で
撚付加及び部分的硬化を施し、次いで熱硬化用パイプ4
に通して硬化を完了させ、螺旋ピッチに同調して回転す
る回転引取機5′により引取りつつ、回転巻取機6′で
巻取った。得られたFRPスペーサは螺旋ピッチ400mmのも
のであった。この螺旋スペーサも断面形状は良好で、充
分実用に適するものであった。Example 2 After drawing under the same conditions as in Example 1, the distance between the final drawing die 2C and the exit side guide 10 of the ultraviolet irradiation device 3 was increased.
During this time, the uncured molded body is twisted twice, guided to the outlet side guide 10, subjected to twist addition and partial curing in the ultraviolet irradiation device 3, and then subjected to the heat curing pipe 4.
To complete the curing, and the film was wound up by a rotary winder 6 'while being taken up by a rotary winder 5' rotating in synchronization with the spiral pitch. The obtained FRP spacer had a spiral pitch of 400 mm. This spiral spacer also had a good cross-sectional shape and was sufficiently suitable for practical use.
《効 果》 以上、実施例により詳細に説明したように、本発明の
光ファイバ担持用FRP製スペーサの製造方法によれば、
従来のこの種の製品の製造に必要であった金型中での引
抜方法によらないで型には無接触の状態で成形できるの
で、引取抵抗の増大などの問題が解決でき、かつ螺旋溝
のスペーサを比較的容易に製造できる。<< Effects >> As described above in detail in the examples, according to the method for manufacturing an FRP spacer for supporting an optical fiber of the present invention,
Molding can be performed in a non-contact state with the mold without relying on a drawing method in a mold required for the production of this type of product in the past, so that problems such as an increase in take-up resistance can be solved and a spiral groove can be solved. Can be manufactured relatively easily.
第1図は実施例1により得られたFRP製スペーサの断面
形状、第2図(A,B,C)は実施例に使用した絞りダイス
の概略図、第3図は本発明の製造方法の工程の一例を示
す説明図である。 A1……ガラスヤーン(補強繊維) 2A〜2C……絞りダイス 3……紫外線照射装置(活性エネルギー線照射装置) S……FRPスペーサFIG. 1 is a sectional view of the FRP spacer obtained in Example 1, FIG. 2 (A, B, C) is a schematic view of a drawing die used in Example, and FIG. It is explanatory drawing which shows an example of a process. A1… Glass yarn (reinforcing fiber) 2A ~ 2C …… Drawing die 3 …… Ultraviolet irradiation device (active energy beam irradiation device) S …… FRP spacer
フロントページの続き (56)参考文献 特開 昭62−174134(JP,A) 特開 昭61−179407(JP,A) 特開 昭61−10440(JP,A) (58)調査した分野(Int.Cl.6,DB名) B29C 70/00 - 70/88 G02B 6/44 Continuation of front page (56) References JP-A-62-174134 (JP, A) JP-A-61-179407 (JP, A) JP-A-61-10440 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) B29C 70/00-70/88 G02B 6/44
Claims (4)
断面積に応じて分割されて所要本数毎に集束された連続
状補強繊維群に活性エネルギー線硬化性樹脂を含浸し、
これらの各々を所定形状に絞り成形した後合体しつつス
ペーサの最終断面形状に絞り成形し、次いで活性エネル
ギー線照射装置に通して硬化することを特徴とする光フ
ァイバ担持用繊維強化硬化性樹脂製スペーサの製造方
法。An active energy ray-curable resin is impregnated into a continuous reinforcing fiber group divided according to a required number of pieces and divided according to a cross-sectional area of a core portion and a rib of a spacer to be obtained,
Each of these is drawn into a predetermined shape, then drawn into the final cross-sectional shape of the spacer while being united, and then cured by passing through an active energy ray irradiation device. Manufacturing method of spacer.
照射装置の入口側の最終絞りダイスと出口側のガイドの
間で螺旋ピッチに対応した撚りを加えつつ硬化した後得
られた螺旋スペーサの螺旋ピッチに同調して回転する回
転引取機により引取ることを特徴とする請求項1記載の
光ファイバ担持用繊維強化硬化性樹脂製スペーサの製造
方法。2. The helical pitch of the helical spacer obtained after curing while applying a twist corresponding to the helical pitch between the final drawing die on the entrance side and the guide on the exit side of the active energy ray irradiation device in the curing step. 2. The method for producing a fiber-reinforced curable resin spacer for holding an optical fiber according to claim 1, wherein the spacer is taken by a rotary take-up machine that rotates in synchronization with the above.
硬化性樹脂であることを特徴とする請求項1または2記
載の光ファイバ担持用繊維強化硬化性樹脂製スペーサの
製造方法。3. The method according to claim 1, wherein the active energy ray-curable resin is an ultraviolet-curable resin.
し、紫外線により表面を予備硬化し、しかる後熱硬化に
て完全硬化することを特徴とする請求項3記載の光ファ
イバ担持用繊維強化硬化性樹脂製スペーサの製造方法。4. An optical fiber carrier according to claim 3, wherein a UV curable catalyst and a thermosetting catalyst are used in combination, and the surface is pre-cured by ultraviolet rays and then completely cured by heat curing. A method for manufacturing a fiber-reinforced curable resin spacer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2068230A JP2996481B2 (en) | 1990-03-20 | 1990-03-20 | Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2068230A JP2996481B2 (en) | 1990-03-20 | 1990-03-20 | Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03268927A JPH03268927A (en) | 1991-11-29 |
JP2996481B2 true JP2996481B2 (en) | 1999-12-27 |
Family
ID=13367787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2068230A Expired - Fee Related JP2996481B2 (en) | 1990-03-20 | 1990-03-20 | Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2996481B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3327984B2 (en) * | 1993-04-09 | 2002-09-24 | 宇部日東化成株式会社 | Method for producing fiber-reinforced resin shaped rods |
CN102468635B (en) * | 2010-11-10 | 2014-08-06 | 江苏源盛复合材料技术股份有限公司 | Preparation technology of conductor spacer used by power transmission line |
-
1990
- 1990-03-20 JP JP2068230A patent/JP2996481B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03268927A (en) | 1991-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1301421C (en) | Continuous molding method for rod-like product | |
US4795234A (en) | Reinforced optical fiber | |
JPS6128092A (en) | Composite wire body and its production | |
US4975232A (en) | Process for producing fiber reinforced plastics linear materials | |
US4741597A (en) | Method of manufacturing an optical fibre having a synthetic resin coating and optical fibre having a synthetic resin coating manufactured according to the method | |
CA2077019C (en) | Optical glass fiber | |
JP3058897B2 (en) | Method for producing fiber-reinforced curable resin fine filaments | |
CN113370559B (en) | Continuous linear resin-based fiber reinforced prepreg | |
JP2996481B2 (en) | Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber | |
JP3126442B2 (en) | Method of manufacturing fiber-reinforced resin fine wire | |
JP2984021B2 (en) | Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same | |
JP4116968B2 (en) | FRP tensile body for drop optical fiber cable | |
JP3940500B2 (en) | Reinforced optical fiber cord and manufacturing method thereof | |
JP2849421B2 (en) | Optical fiber supporting spacer and method of manufacturing the same | |
JP2000272021A (en) | Mold for producing frp filament and manufacture of frp fine filament | |
JP2869116B2 (en) | Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same | |
JP2849418B2 (en) | Tension member for reinforcing optical fiber ribbon and method of manufacturing the same | |
JP7474293B2 (en) | Composite reinforcement rod with heat shrink tube and its manufacturing method | |
JPH0137259B2 (en) | ||
JP3433867B2 (en) | Method for producing fiber reinforced resin strand | |
JP7208719B2 (en) | Linear body for optical fiber cable, fiber reinforced optical fiber cable and optical fiber sensor | |
JPH0749450Y2 (en) | Fiber Optic Tension Member | |
JPS60218610A (en) | Reinforcing material made of aromatic polyamide fiber | |
JPH06293079A (en) | Production of profile rod-shaped article made of fiber reinforced resin | |
JP3471837B2 (en) | Manufacturing method of composite member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |