JPS6033520A - Fiber-reinforced optical fiber and its manufacture - Google Patents

Fiber-reinforced optical fiber and its manufacture

Info

Publication number
JPS6033520A
JPS6033520A JP58142438A JP14243883A JPS6033520A JP S6033520 A JPS6033520 A JP S6033520A JP 58142438 A JP58142438 A JP 58142438A JP 14243883 A JP14243883 A JP 14243883A JP S6033520 A JPS6033520 A JP S6033520A
Authority
JP
Japan
Prior art keywords
resin
layer
optical fiber
fiber
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58142438A
Other languages
Japanese (ja)
Inventor
Takayoshi Nakasone
隆義 中曽根
Masao Okada
岡田 正夫
Kenji Kozuka
健次 小塚
Yoji Ida
井田 洋治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP58142438A priority Critical patent/JPS6033520A/en
Publication of JPS6033520A publication Critical patent/JPS6033520A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4402Optical cables with one single optical waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To prevent the fracture, microbending, etc., of an element wire and to improve flexure characteristics by bringing a fiber-reinforced resin layer formed around the outer circumference of the element wire and a thermoplastic resin coating layer arranged around its outer circumference into contact integrally by anchor effect. CONSTITUTION:The layer 22 of the fiber-reinforced thermosetting resin (FRP) is formed around the outer circumference of the optical fiber element wire 2, and the layer 8 of thermoplastic resin (TP) is arranged around the outer circumference of the FRP layer 22; and the coating layer 8 and FRP layer 22 are brought into contact integrally by the anchor effect. Namely, a reinforcing fiber bundle 4 impregnated with thermosetting resin (TR) in an unset state is arranged around the outer circumference of the element wire 2 and coated with TP, and then a heat treatment is carried out after temporary cooling to bring the FRP layer 22 and TP layer 8 into contact integrally by the anchor effect simultaneously with the setting of the TS. Consequently, the TP layer 8 serves as a die which sets the internal FRP layer 22 while holding it in a specific shape, and prevents the breaking of the wire by protecting the element wire 2 against high tensile force. Further, the FRP layer 22 and TP layer are brought into contact by the heat treatment to improve the flexure characteristics and to increase the coating speed.

Description

【発明の詳細な説明】 本発明は4JIi紺強化光ファイバ並びにその製造方法
に関号るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 4JIi navy blue reinforced optical fiber and a method of manufacturing the same.

従来、石英系ガラス等からなるコア、クラッドの周囲を
1次被覆した後これにシリコン等のバッファ層を施した
光フアイバ素線の外周を熱硬化性樹脂で結着一体化した
補強繊帷束で被覆してなる繊組強化光ファイバは公知と
なっている。
Conventionally, this is a reinforced fiber bundle in which the outer periphery of an optical fiber is formed by first coating the core and cladding made of quartz glass, etc., and then applying a buffer layer of silicone, etc. to the outer periphery of the optical fiber, which is bound and integrated with thermosetting resin. A fiber reinforced optical fiber coated with is known.

上記のような繊維強化光ファイバの一般的な製造方法と
しては、光フアイバ素線の外周に未硬化の熱硬化性樹脂
を含浸した補強繊維束を配設して被覆し、これを加熱成
形ダイス内に通して引き抜きながら熱硬化性樹脂を完全
に硬化している。しかしながら、上記のJ:うな製造方
法では、未硬化の熱硬化性樹脂を含浸した補強11i1
1f束がダイスを通過する際、熱硬化性樹脂が未硬化状
態から硬化して固体に変わるのでその時の熱硬化性樹脂
の粘匪の大幅な変化によりダイス壁面と補強繊維との摩
擦も変化するため、成形ダイス内で補強IM 11束が
移動して光フアイバ素線の軟らかいシリコン層に変形を
与え伝送損失を低下させる原因どなるマイクロベント等
の発生を与えた。また、成形ダイス^で、ある一定長さ
は熱硬化1り樹脂が硬化した固体とダイス壁面との摩擦
になるので、成形ダイスと引取機の張力が大ぎくなって
その張力が許容範囲を越えて中心の光ファイバを断線づ
る恐れがあった。更にダイスの長さも熱硬化性樹脂の硬
化には化較的長い時間がかかるためダイスは長大なもの
どなりil−+争↑11ら悪かつIこ。
A general manufacturing method for fiber-reinforced optical fibers as described above is to cover the outer periphery of an optical fiber with a reinforcing fiber bundle impregnated with an uncured thermosetting resin, and then heat-form the fiber through a thermoforming die. The thermosetting resin is completely cured as it is passed through and pulled out. However, in the above J: eel manufacturing method, the reinforcement 11i1 impregnated with an uncured thermosetting resin
When the 1f bundle passes through the die, the thermosetting resin hardens from an uncured state to a solid state, and the friction between the die wall surface and reinforcing fibers also changes due to a significant change in the viscosity of the thermosetting resin at that time. As a result, the reinforcing IM 11 bundle moved within the molding die, deforming the soft silicon layer of the optical fiber strand, and causing micro-bent, etc., which caused a reduction in transmission loss. In addition, for a certain length of the molding die, there is friction between the hardened thermosetting resin and the wall of the die, so the tension between the molding die and the pulling machine increases and the tension exceeds the allowable range. There was a risk of breaking the central optical fiber. Furthermore, the length of the die is also bad because it takes a relatively long time for the thermosetting resin to harden, so the die is long and loud.

本発明は上記のような従来の欠陥に鑑みてなされたもの
C゛、ぞの目的は中心の光ファイバを破断する恐れのあ
るような張力を全く加えることなく、また、マイク1−
1ベント等の発生をLiえるシリ:1ン層の変形を皆無
に]ノ、史に光フ1イバ索線の周囲に形成された熱硬化
1(1樹脂層とその外周の被覆熱可塑性樹脂とがアンカ
ー効果によって一体的に結着されて曲げ特flrに優れ
た繊麗強化光ファイバ並びにこのような繊紺強化光ファ
イバを極めて効率良く製造する方法を提供するにある。
The present invention has been made in view of the above-mentioned deficiencies of the prior art.The purpose of the present invention is to provide a microphone 1-
In the past, thermosetting 1 (1 resin layer and its outer periphery coating thermoplastic resin) was formed around the optical fiber cable. An object of the present invention is to provide a finely reinforced optical fiber which is integrally bound by an anchor effect and has excellent bending properties FLR, and a method for manufacturing such a fiber reinforced dark blue optical fiber extremely efficiently.

以下に本発明の好適な実施例について添削図面を参照に
して説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

先づ、本発明の方法について第1図及び第2図を参照に
して説明すると、ボビン1から光フアイバ素線2が連続
的に引き出されて供給される。この光フアイバ索線2は
石英系ガラス等からなるコア、クラッドの周囲を一次被
覆した後、これにバッファ層を施した線材からなってい
る。上記のボビン1どは別のボごン3から多数のガラス
繊維束4が連続的に引き出されこのガラス繊維束ぺけ未
硬化の熱硬化性樹脂、好ましくは不飽和ポリエステル樹
脂、を収容した槽5内に通され、ここでこの未硬化の熱
硬化性樹脂がガラス繊鞘束4に含浸されることにイ【る
。次いでこの未硬化の熱硬化性樹脂を含浸したガラス1
1i1F束4は〜連の賦形リング6を通して所定の断面
形状に賦形されて、中心に光フアイバ索線2を被覆した
状態で溶融押出機7の吐出口の中央通路に導かれる。こ
の溶h(I押出機7では溶融した熱可塑性樹脂8が、上
記中央通−3= 路の出口を環状に取り囲む吐出口から放Q1状に吐出さ
れて、ガラス1IIlf束4を被覆する。その後直ちに
ガラス繊維束4を溶融状態で被覆した熱可塑性樹脂8は
冷却水槽19にて冷却固化され、内部の熱硬化性樹脂が
未だ硬化していない線状物10が得られる。
First, the method of the present invention will be explained with reference to FIGS. 1 and 2. An optical fiber 2 is continuously drawn out from a bobbin 1 and supplied. The optical fiber cable 2 is made of a wire having a core made of quartz glass or the like, a cladding, and a buffer layer coated on the core and cladding. In the above-mentioned bobbin 1, a large number of glass fiber bundles 4 are continuously drawn from another boggon 3, and the glass fiber bundles are placed in a tank 5 containing an uncured thermosetting resin, preferably an unsaturated polyester resin. The glass fiber sheath bundle 4 is then impregnated with this uncured thermosetting resin. Next, glass 1 impregnated with this uncured thermosetting resin
The 1i1F bundle 4 is shaped into a predetermined cross-sectional shape through a series of shaping rings 6, and guided to the central passage of the discharge port of the melt extruder 7 with the optical fiber cord 2 coated in the center. In this molten extruder 7, the molten thermoplastic resin 8 is discharged in the form of a discharge port that annularly surrounds the outlet of the central channel 3, and coats the glass 1IIlf bundle 4. Immediately thereafter, The thermoplastic resin 8 covering the glass fiber bundle 4 in a molten state is cooled and solidified in a cooling water tank 19 to obtain a linear object 10 in which the thermosetting resin inside has not yet hardened.

この線状物10は第2図に詳細に示した硬化槽11に導
入される。この硬化槽11は前後方向に細長いパイプ状
となっており、その一端側部には所定温fft(100
℃以上)で加圧された蒸気の供給口12が設けられ、ま
たその細端側部は凝縮水排出口13が設けられている。
This linear material 10 is introduced into a curing tank 11, which is shown in detail in FIG. The curing tank 11 is shaped like a long and narrow pipe in the front-rear direction, and one end of the curing tank 11 has a predetermined temperature fft (100
A supply port 12 for steam pressurized at temperatures above .degree. C.) is provided, and a condensed water outlet 13 is provided at the narrow end side thereof.

この硬化槽11の前後両端部には水槽171a、14b
が設けられ、各水槽の下方側部と上方側部にはそれぞれ
給水口15a、15bと排水口16a、16bとが形成
されている。この水槽14a、14bと硬化槽11との
間は透孔17a、17bを有するシート状弾性パツキン
18a、18bによって仕切られ、また水4f’!14
a、141)の前後側は透孔を形成した他のシート状弾
性パツキン19a、19bによ4− って閉じられている。先づ、硬化槽11内に100℃以
上の蒸気をその飽和蒸気圧で供給口12から供給し、ま
た雨水槽14a、14.bにそれぞれの給水1115a
、15bから冷却水を供給し、溢れた水をυ1水ロ16
a、16bから排出する。この状態において、前記線状
物10を後方の水槽14a、14hの透孔を通して硬化
槽11内に導入する。この硬化槽11内の蒸気の温度は
線状物10の被覆熱可塑性樹脂8の融点付近の温度、例
えばナイロン12の場合は140〜150℃、低密度ポ
リエチレンの場合は120〜14.0℃、ポリプロピレ
ンの場合は130〜150℃とする。
Water tanks 171a and 14b are provided at both front and rear ends of this curing tank 11.
are provided, and water supply ports 15a, 15b and drain ports 16a, 16b are formed in the lower and upper sides of each water tank, respectively. The water tanks 14a, 14b and the curing tank 11 are partitioned by sheet-like elastic packings 18a, 18b having through holes 17a, 17b, and the water 4f'! 14
The front and rear sides of a and 141) are closed by other sheet-like elastic packings 19a and 19b having through holes. First, steam at a temperature of 100° C. or higher is supplied from the supply port 12 at a saturated steam pressure into the curing tank 11, and the rainwater tanks 14a, 14. b to each water supply 1115a
, supply cooling water from 15b, and drain the overflow water to υ1waterro16
a, discharge from 16b. In this state, the linear object 10 is introduced into the curing tank 11 through the through holes of the rear water tanks 14a and 14h. The temperature of the steam in this curing tank 11 is around the melting point of the thermoplastic resin 8 covering the linear material 10, for example, 140 to 150°C in the case of nylon 12, 120 to 14.0°C in the case of low density polyethylene, In the case of polypropylene, the temperature is 130 to 150°C.

このような温度条件下においては、線状物10内の未硬
化の熱硬化性樹脂の硬化反応が開始すると、被覆熱可塑
性樹脂8との界面は熱硬化性樹脂の硬化発熱のため蒸気
温度より高くなって、イの界面の被覆熱可塑性樹脂の内
側部を溶融し、これによって熱硬化↑Il樹脂ど被覆熱
可塑性樹脂どは互いに加斤下におけるアンカー効果によ
って強固に接着される。
Under such temperature conditions, when the curing reaction of the uncured thermosetting resin in the linear object 10 starts, the interface with the coating thermoplastic resin 8 becomes warmer than the steam temperature due to the heat generated by curing of the thermosetting resin. The temperature rises and melts the inner part of the coating thermoplastic resin at the interface of A, whereby the thermosetting ↑Il resin and the coating thermoplastic resin are firmly adhered to each other by the anchor effect under pressure.

一方、被覆熱可塑性樹脂の蒸気に接している表面は、蒸
気にtJ(熱してほぼ蒸気温石に保たれ、表面の丸味が
維持される。硬化槽11において上記のように熱処理さ
れた線状物10は、次いで前方の水PJ 14 b内に
導入され、溶融状態となっていた被覆熱可塑f11樹脂
8は直ちに冷却同化され2)。
On the other hand, the surface of the coated thermoplastic resin that is in contact with the steam is heated to tJ (heated by the steam and maintained almost like a steam hot stone, and the roundness of the surface is maintained. 10 is then introduced into the forward water PJ 14 b, and the coated thermoplastic f11 resin 8, which was in a molten state, is immediately cooled and assimilated 2).

この水槽14b並びに後プラ側水槽14aは硬化槽11
内の蒸気が散逸しないJ:う、また蒸気圧が低下しない
ようにする液体シールC゛あり、前方側の水槽141i
は被覆熱可塑↑1樹脂8を冷ノJ固化りる冷却槽として
の役割もなしている。
This water tank 14b and the rear plastic side water tank 14a are the hardening tank 11.
There is also a liquid seal C to prevent the vapor pressure from escaping, and there is a water tank 141i on the front side.
also serves as a cooling tank in which the coated thermoplastic ↑1 resin 8 is cooled and solidified.

−に記の」、うに熱処理された線状物10は、引取機2
0によ−)−(引き取られ、巻取を幾21によってドラ
ム上に巻2N取らね、6戯または出荷されるのである。
- The linear material 10 heat-treated by the sea urchin is transported to the collecting machine 2.
It is picked up, wound 2N onto a drum by 21, and then shipped.

i記の7.法(゛製造された繊維強化光ファイバは、第
3図にホされ−(いるにうに、光フアイバ索線2の外周
に繊組強化熱硬化1(1樹脂層22が形成され、この樹
脂層22の外周に熱可塑性樹脂からなる被覆層8が形成
され、被覆層8の熱可塑↑II樹脂ど等の内側の熱硬化
性樹脂とがアンカー効果にJ:って一体向に密着されて
/rるのである。
7 of book i. The manufactured fiber-reinforced optical fiber is shown in FIG. A coating layer 8 made of a thermoplastic resin is formed on the outer periphery of the coating layer 8, and the thermosetting resin on the inside of the coating layer 8, such as the thermoplastic ↑II resin, is tightly adhered to the inner side of the thermoplastic resin due to the anchor effect. This is what happens.

以上の説明から明らかなように、本発明に係る綴紐強化
光ファイバでは綴紐強化熱硬化性樹脂層22と被覆層8
どがアンカー効果によって一体的に密着しているI、:
め、両層が一体的にテンションメンバーとして機能1ノ
、引張り強力及び曲げ強力が極めて優れた繊組強化光フ
ァイバと覆ることができる。
As is clear from the above explanation, in the string-reinforced optical fiber according to the present invention, the string-reinforced thermosetting resin layer 22 and the coating layer 8
I, which is in close contact with each other due to the anchor effect:
Therefore, both layers integrally function as a tension member and can be covered with a fiber reinforced optical fiber having extremely excellent tensile strength and bending strength.

;トに本発明の方法では、中心に光フアイバ素線を配し
た補強繊鞘束が未硬化の熱硬化性樹脂を含浸した後、溶
融した熱可塑性樹脂で被覆され、次いでこの熱可塑性樹
脂が冷却固化されてなるため、この固化した被覆熱可塑
1!1樹脂が内部の熱硬化性樹脂を所定形状に維持して
硬化させるダイスとしての役割をなし、従って従来のJ
:うに熱硬化t11樹脂が加熱成形ダイス内を高抵抗で
引張られる必要がなく、成形が極めて簡単になるととも
に、内部、の光ファイバに断線の原因となるような高張
力が加えられる心配が全くない。更にまた、−に記のに
−7= うに同化した熱可塑竹樹111rで被覆され、内81≦
の熱硬化性樹脂が未硬化の状態のものを加fiニされた
蒸気が充満された熱処理槽にう9人し、該熱可塑性樹脂
の融熱付近の温度で加熱することによって、該熱硬化性
樹脂が硬化する時にそれと接する熱可塑性樹脂を一部溶
融し、両者はアンカー効果にJ:って密着され、曲げ特
性が改善されるとともに補強lli維束が表面被覆樹脂
層から飛び出す現象もなくなる。
(g) In the method of the present invention, a reinforcing fiber sheath bundle having an optical fiber wire arranged in the center is impregnated with an uncured thermosetting resin, and then coated with a molten thermoplastic resin, and then this thermoplastic resin is coated with a molten thermoplastic resin. Because it is cooled and solidified, this solidified coating thermoplastic 1!1 resin plays the role of a die that hardens the internal thermosetting resin while maintaining it in a predetermined shape.
: There is no need for the thermosetting T11 resin to be pulled with high resistance inside the thermoforming die, making molding extremely simple, and there is no need to worry about applying high tension that could cause breakage to the internal optical fiber. do not have. Furthermore, -7 = covered with thermoplastic bamboo tree 111r assimilated into sea urchin, of which 81≦
The uncured thermosetting resin is placed in a heat treatment tank filled with heated steam, and heated at a temperature close to the melting heat of the thermoplastic resin. When the thermoplastic resin hardens, a portion of the thermoplastic resin in contact with it melts, and the two are brought into close contact due to the anchor effect, improving bending properties and eliminating the phenomenon of reinforcing fibers popping out of the surface coating resin layer. .

また、上記熱処理を加圧蒸気下で行なう時には、比較的
低]ス1へでしかも熱湯による熱処理に比べて3〜5倍
の高速で熱処理づることを可能にしたのである。
Furthermore, when the heat treatment is carried out under pressurized steam, it is possible to carry out the heat treatment at a comparatively low rate of 1% and at a rate 3 to 5 times faster than heat treatment using hot water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る繊維強化光ファイバの製造方法の
全体説明図、第2図は第1図の蒸気硬化槽の具体的構成
を示づ側断面図、第3図は本発明の繊維強化光ファイバ
を示す断面図である。 =8− 2・・・・・・・・・光フアイバ索線 4・・・・・・・・・ガラス141i 111束5・・
・・・・・・・熱硬化性樹脂層 7・・・・・・・・・溶融押出機 8・・・・・・・・・熱可塑tノl樹脂9・・・・・・
・・・冷7Jl水11ν10・・・・・・線状物 11・・・・・・硬化層 22・・・・・・熱硬化v1樹脂層 特許出願人 宇部目束化成株式会社 代 理 人 弁理士 −色健輔
FIG. 1 is an overall explanatory diagram of the method for manufacturing fiber-reinforced optical fiber according to the present invention, FIG. 2 is a side sectional view showing the specific structure of the steam curing tank of FIG. 1, and FIG. FIG. 2 is a cross-sectional view showing a reinforced optical fiber. =8- 2......Optical fiber cable 4...Glass 141i 111 bundle 5...
...... Thermosetting resin layer 7 ...... Melt extruder 8 ...... Thermoplastic resin 9 ......
・・・Cold 7Jl water 11ν10・・・String material 11・・・Cured layer 22・・・Thermosetting v1 resin layer Patent applicant Ube Mezuka Kasei Co., Ltd. Agent Patent attorney Shi - Kensuke Iro

Claims (2)

【特許請求の範囲】[Claims] (1)光フアイバ系線の外周に繊紐強化熱硬化竹樹脂層
を形成し、該樹脂層の外周に熱可塑t’l樹脂からなる
被覆層を形成し、該被覆層の熱11■塑t’l樹脂をそ
の内側の熱硬化性樹脂とアンカー効宋によって一体的に
密着してなることを特徴とするllllf強化光ファイ
バ。
(1) Form a string-reinforced thermosetting bamboo resin layer around the outer periphery of the optical fiber wire, form a covering layer made of thermoplastic T'l resin around the outer periphery of the resin layer, and A reinforced optical fiber characterized in that a T'l resin is integrally adhered to an inner thermosetting resin and an anchor.
(2)光フアイバ索線の外周に未硬化の熱硬化性樹脂を
含浸した補強繊維束を配設し、該補強mw#束の外周に
溶融した熱硬化性樹脂を押出して被覆し、該被覆熱可塑
性樹脂を直ちに冷却固化し、次いで加熱処理槽に導入し
、該加熱処理槽では固化した前記被覆熱可塑性樹脂の融
点付近の温痕を有する蒸気を加圧印加し、これによって
該熱硬化性樹脂の硬化反応を促進するとともに、該被覆
熱可塑性樹脂を該熱硬化↑1樹脂との界面において溶融
状態として密着させ、該加熱処理槽の通過後に該被覆熱
可塑性樹脂を再び冷却固化してなることを特徴とり−る
繊組強化光ファイバの製造方法。
(2) A reinforcing fiber bundle impregnated with an uncured thermosetting resin is arranged around the outer periphery of the optical fiber cable, and the outer periphery of the reinforcing mw# bundle is coated with a molten thermosetting resin by extrusion. The thermoplastic resin is immediately cooled and solidified, and then introduced into a heat treatment tank. In the heat treatment tank, steam having a temperature near the melting point of the solidified coated thermoplastic resin is applied under pressure, whereby the thermosetting resin is While accelerating the curing reaction of the resin, the coating thermoplastic resin is brought into close contact with the thermosetting ↑1 resin in a molten state at the interface, and after passing through the heat treatment tank, the coating thermoplastic resin is cooled and solidified again. A method for manufacturing a fiber-braided reinforced optical fiber.
JP58142438A 1983-08-05 1983-08-05 Fiber-reinforced optical fiber and its manufacture Pending JPS6033520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142438A JPS6033520A (en) 1983-08-05 1983-08-05 Fiber-reinforced optical fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142438A JPS6033520A (en) 1983-08-05 1983-08-05 Fiber-reinforced optical fiber and its manufacture

Publications (1)

Publication Number Publication Date
JPS6033520A true JPS6033520A (en) 1985-02-20

Family

ID=15315314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142438A Pending JPS6033520A (en) 1983-08-05 1983-08-05 Fiber-reinforced optical fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS6033520A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324091A3 (en) * 2001-12-21 2004-06-16 Pirelli Communications Cables & Systems U.S.A., LLC Reinforced tight-buffered optical fiber and cables made with same
US8995810B2 (en) 2010-09-29 2015-03-31 Dow Global Technologies Llc Flexible strength members for wire cables
US20180326627A1 (en) * 2015-10-29 2018-11-15 Asahi Kasei Kabushiki Kaisha Composite Molded Article and Method for Producing the Same
JP2019211642A (en) * 2018-06-05 2019-12-12 宇部エクシモ株式会社 Filament for optical fiber cable, fiber-reinforced optical fiber cable, and optical fiber sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413352A (en) * 1977-07-01 1979-01-31 Nippon Telegr & Teleph Corp <Ntt> Reiforcement of optical transmission glass fiber
JPS57186708A (en) * 1981-05-13 1982-11-17 Furukawa Electric Co Ltd:The Frp optical cord

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413352A (en) * 1977-07-01 1979-01-31 Nippon Telegr & Teleph Corp <Ntt> Reiforcement of optical transmission glass fiber
JPS57186708A (en) * 1981-05-13 1982-11-17 Furukawa Electric Co Ltd:The Frp optical cord

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324091A3 (en) * 2001-12-21 2004-06-16 Pirelli Communications Cables &amp; Systems U.S.A., LLC Reinforced tight-buffered optical fiber and cables made with same
US7403687B2 (en) 2001-12-21 2008-07-22 Pirelli Communications Cables And Systems Usa, Llc Reinforced tight-buffered optical fiber and cables made with same
US8995810B2 (en) 2010-09-29 2015-03-31 Dow Global Technologies Llc Flexible strength members for wire cables
US20180326627A1 (en) * 2015-10-29 2018-11-15 Asahi Kasei Kabushiki Kaisha Composite Molded Article and Method for Producing the Same
US10479005B2 (en) * 2015-10-29 2019-11-19 Asahi Kasei Kabushiki Kaisha Composite molded article and method for producing the same
JP2019211642A (en) * 2018-06-05 2019-12-12 宇部エクシモ株式会社 Filament for optical fiber cable, fiber-reinforced optical fiber cable, and optical fiber sensor

Similar Documents

Publication Publication Date Title
KR102488487B1 (en) High-strength carbon fiber composite material root material having resin ribs on the surface and its manufacturing method
JPS6218679B2 (en)
JPS6290229A (en) Continuous molding method for cylindrical molded material
JPS6367465B2 (en)
JPH0559056B2 (en)
JP3954777B2 (en) Manufacturing method of strain sensing optical cable
JPS6033520A (en) Fiber-reinforced optical fiber and its manufacture
US4710216A (en) Method of making flexible optical fiber bundle
JPH06297591A (en) Production of concrete reinforcing material made of frp
JPH03249287A (en) Twisted structure made of fiber-reinforced thermosetting resin and its production
JPH042165B2 (en)
JPS6026308A (en) Fiber-reinforced optical fiber and its production
JPS6015611A (en) Fiber reinforced optical fiber and its production
JPS5934833B2 (en) Manufacturing method of glass fiber reinforced plastic wire
JPH0428082Y2 (en)
JPS608046A (en) Method and apparatus for covering and hardening fiber- reinforced synthetic resin bar
JPH09226012A (en) Manufacture of frp yarn stock for frp coil spring
JPS60183130A (en) Forming of frp joint
JPS6228103B2 (en)
JPS58150913A (en) Optical cable
JPS6123105A (en) Optical fiber cable and its manufacture
JPH11352369A (en) Reinforced optical fiber cord and its production
JPH02131923A (en) Manufacture of long sized fiber reinforced plastic(frp) material
JPS6122314A (en) Fiber reinforced optical fiber and its manufacture
JPS5945117A (en) Forming method of curved pipe