JPS6119327A - Injection compression molding method and device thereof - Google Patents

Injection compression molding method and device thereof

Info

Publication number
JPS6119327A
JPS6119327A JP14116884A JP14116884A JPS6119327A JP S6119327 A JPS6119327 A JP S6119327A JP 14116884 A JP14116884 A JP 14116884A JP 14116884 A JP14116884 A JP 14116884A JP S6119327 A JPS6119327 A JP S6119327A
Authority
JP
Japan
Prior art keywords
temperature
resin
mold
cavity
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14116884A
Other languages
Japanese (ja)
Other versions
JPH0421574B2 (en
Inventor
Terunori Maruyama
丸山 照法
Masamichi Takeshita
竹下 正道
Shoki Eguchi
江口 昭喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14116884A priority Critical patent/JPS6119327A/en
Publication of JPS6119327A publication Critical patent/JPS6119327A/en
Publication of JPH0421574B2 publication Critical patent/JPH0421574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To make the form accuracy of a plastic lens high, by a method wherein at the time of cooling and curing of resin, the smaller the temperature distribution range of the resin in the inside of a cavity is, the more the molding shrinkage is unified within a softening temperature range of the resin, in a compression process after injection. CONSTITUTION:A first temperature controller 34 performs a function keeping the temperature of a stationary mold insertion piece, movable mold and movable mold insertion piece at a constant temperature T2 and the function cooling slowly the temperature of a mold from T2 to T3 after that, in an injection compression molding method making form accuracy of a plastic lens high, and a second temperature controller 35 can cool suddenly the temperature of the stationary mold insertion piece, movable mold and movable mold insertion piece. As a temperature distribution of resin in the inside of a cavity is cooled slowly up to a thermal deformation temperature emerging from a softening temperature region of the resin after the temperature distribution of the resin in the inside of the cavity has unified once in the softening temperature sphere through both the temperature controllers 34, 35, the resin is cooled while generation of an ununiform temperature of the resin to be followed by the cooling is being kept minimal.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は熱可塑性のプラスチック成形材料を用いてプラ
スチックレンズを製造する射出圧縮成形方法およびその
装置に係り、特にプラスチックレンズの形状精度を高精
度にする射出圧縮成形方法およびその装置に関するもの
である。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to an injection compression molding method and apparatus for manufacturing plastic lenses using a thermoplastic plastic molding material, and in particular to an injection compression molding method and apparatus for manufacturing plastic lenses with high precision. The present invention relates to an injection compression molding method and an apparatus therefor.

(発明の背景) 近年、金型製作技術や成形機の制量技術の向上によりP
Sm脂、PMM&樹脂あるいはpc@脂などを用いて、
比較的高精度なプラスチックレンズが製造されるように
なっている。
(Background of the invention) In recent years, with improvements in mold manufacturing technology and molding machine control technology, P
Using Sm fat, PMM&resin or PC@fat, etc.
Relatively high-precision plastic lenses are now being manufactured.

プラスチックレンズ中量も高品位なものは、カメラのフ
ァインダーレンズやインスタントカメラのレンズに使用
されている。しかし、これらのプラスチックレンズは、
レンズの光学性能に係るレンズ面精度や曲率半径精度等
の形状精度が、中高級のカメラの撮像レンズに用いられ
ているガラスレンズに比べると大幅に劣る。
Medium-sized, high-quality plastic lenses are used for camera viewfinder lenses and instant camera lenses. However, these plastic lenses
Shape accuracy such as lens surface accuracy and curvature radius accuracy related to the optical performance of the lens is significantly inferior to glass lenses used in imaging lenses of medium to high-end cameras.

熱可塑性の樹脂を用いたプラスチックレンズは射出圧縮
成形方法(Plastics Age Encyclo
pe −dia  1981 、P148−163)で
製造されている。従来の通常の射出圧縮成形方法では、
40〜90℃程度の一定温度に維持した金型に190〜
       。
Plastic lenses using thermoplastic resin are manufactured by injection compression molding (Plastics Age Encyclopedia).
pe-dia 1981, P148-163). In the conventional normal injection compression molding method,
190~ to the mold maintained at a constant temperature of about 40~90℃
.

260℃の高温に加熱した溶融熱可塑性樹脂を射出した
後、レンズキャビティの一面を構成する入れ駒を介して
金型内の樹脂に圧縮力を作用させながら樹脂を冷却固化
することで成形していた。
After injecting molten thermoplastic resin heated to a high temperature of 260°C, the resin is cooled and solidified while applying compressive force to the resin in the mold via the insert piece that forms one side of the lens cavity. Ta.

しかしながら、このような射出圧網成1形方法で製造さ
れたプラスチックレンズの形状をミクロンオーダの精度
で測定すると、必ず、そりやひけなどの成形歪が存在し
ている欠点があった。
However, when the shape of a plastic lens manufactured by such an injection pressure network forming method is measured with an accuracy on the order of microns, there is always a drawback that molding distortion such as warpage and sink marks is present.

このような欠点が発生する原因は、次のような理由によ
るものと考えられる。上記した従来の通常の射出圧縮成
形方法では、金型と金型キャビティ内に射出される樹脂
の温度差が大きく、キャビティ内に射出された高温の溶
融樹脂は50〜10”4程度の冷却速度で急速に冷却さ
れる。このため、樹脂内には大きな温度差が発生し、樹
脂は大きな温度差を有したまま冷却固化される0その結
果、成形後の樹脂の収縮は大きくかつ不均一になるので
、樹脂内の高温であった個所にはひけが発生し、樹脂全
体の温度不均一のアンバランスがそりを生じると考えら
れる。このようなことが、従来の通常の射出圧縮成形方
法ではガラスレンズ並の高精度のプラスチックレンズが
得られない理由であると考えられる。
The reason why such defects occur is considered to be due to the following reasons. In the conventional injection compression molding method described above, there is a large temperature difference between the mold and the resin injected into the mold cavity, and the high temperature molten resin injected into the cavity cools at a cooling rate of about 50 to 10"4. As a result, a large temperature difference occurs within the resin, and the resin cools and solidifies with a large temperature difference.As a result, the resin shrinks greatly and unevenly after molding. Therefore, it is thought that sink marks occur in areas of the resin that were at high temperatures, and that the imbalance of temperature throughout the resin causes warping. This is thought to be the reason why plastic lenses with the same high precision as glass lenses cannot be obtained.

本発明者等は上記従来の通常の射出圧縮成形方法では収
縮が大きい点に第一の欠点があると考え、この欠点を改
善する発明として、下記の特徴を有する成形方法を先き
に特許出願(特願昭58−105792号)した。
The present inventors believe that the first drawback of the above-mentioned conventional injection compression molding method is large shrinkage, and have previously applied for a patent for a molding method having the following characteristics as an invention to improve this drawback. (Patent Application No. 58-105792).

(1)成形機より金型キャビティ内に樹脂が充填された
後の保圧工程中に、圧縮力を前記キャビティ内の樹脂に
加えて、キャビティ内の樹脂に予備賦形を行なう。これ
と同時に、キャビティ内の樹脂と金型固定、可動両入れ
駒との密着度を向上させ、キャビティ内の樹脂と金型と
の熱伝達が十分性なわれるようにする。
(1) During the pressure holding process after the mold cavity is filled with resin from the molding machine, compressive force is applied to the resin in the cavity to preshape the resin in the cavity. At the same time, the degree of adhesion between the resin in the cavity and the mold fixing and movable inserting pieces is improved to ensure sufficient heat transfer between the resin in the cavity and the mold.

(2)次に、この状態を維持しつつ、キャビティ内の樹
脂を一旦冷却もしくは放置して内部固化の促進を図る。
(2) Next, while maintaining this state, the resin in the cavity is temporarily cooled or left to promote internal solidification.

その後、樹脂の軟化温度より高い温度まで入れ駒温度を
上昇させて、キャビティ内の樹脂の表面層のみを溶融す
るようにする。表面層のみを溶融するのは、以後の冷却
により発生する樹脂の収縮量を小さくするためである。
Thereafter, the temperature of the insert is increased to a temperature higher than the softening temperature of the resin, so that only the surface layer of the resin within the cavity is melted. The reason why only the surface layer is melted is to reduce the amount of resin shrinkage that occurs during subsequent cooling.

(3)次いで、キャビティ内の樹脂に再び圧縮力を付加
して、前記の溶融した表面層を賦形する。
(3) Next, compressive force is again applied to the resin in the cavity to shape the molten surface layer.

これと同時に、固定入れ駒と可動入れ駒の冷却を開始し
、この冷却温度に合せて、キャビティ内の樹脂に付加し
ている圧縮力を制御する。
At the same time, cooling of the fixed insertion piece and the movable insertion piece is started, and the compressive force applied to the resin in the cavity is controlled in accordance with this cooling temperature.

以上説明した上記特許出願の製造方法でPMMA樹脂を
用い凸レンズを成形すると、先きに記した従来の通常の
射出圧縮成形方法に比し、大幅にレンズ面精度が改善さ
れた高精度の凸レンズを得ることができた。この理由は
、上記特許ではキャビティ内の樹脂を一旦冷却した後、
レンズ表面層のみを溶融するようζこするので、前記従
来の通常の射出圧縮成形方法に比し、冷却により発生す
る樹脂の成形収縮を大幅に小さくできるためと考えられ
る。
When a convex lens is molded using PMMA resin using the manufacturing method described above in the patent application, a high-precision convex lens with significantly improved lens surface accuracy can be produced compared to the conventional injection compression molding method described above. I was able to get it. The reason for this is that in the above patent, after the resin in the cavity is cooled once,
This is thought to be because the ζ-rubbing is performed to melt only the lens surface layer, so the molding shrinkage of the resin caused by cooling can be significantly reduced compared to the conventional injection compression molding method.

れる0 しかし、上記特許出願の製造方法には、下記(1)〜(
3)の問題があることが、その後の研究により判明した
However, the manufacturing method of the above patent application includes the following (1) to (
Subsequent research revealed that there was a problem with 3).

(1)凹レンズを成形すると凸レンズのような高精度の
レンズは得られず、凸レンズに比し10〜20倍レンズ
面精度が劣る。
(1) When a concave lens is molded, a high-precision lens like a convex lens cannot be obtained, and the lens surface precision is 10 to 20 times lower than that of a convex lens.

(2)凸レンズでもPC樹脂を用いて成形するとPMM
A樹脂を用いた場合に比し、5〜10倍レンズ面精度が
劣る。
(2) PMM occurs when molding a convex lens using PC resin.
The lens surface precision is 5 to 10 times lower than when resin A is used.

t3)  PC樹脂を用いて凹レンズを成形すると、P
MM人樹脂を用いて凸レンズを成形した場合に比し、レ
ンズ面精度は大幅(50〜100倍以上)に劣る。
t3) When molding a concave lens using PC resin, P
Compared to the case where a convex lens is molded using MM resin, the lens surface precision is significantly inferior (by 50 to 100 times or more).

上記(1)〜(3)の欠点が生じる理由は次のように考
えられる。
The reasons for the above drawbacks (1) to (3) are considered to be as follows.

(A)  凹レンズが凸レンズより面精度が劣る理由は
最大肉厚部分が凸レンズではレンズ中央にあるが、凹レ
ンズでは最大肉厚部分がレンズ外周側にある。このため
、レンズ径方向の冷却収縮が凸レンズに比し大きくなる
と考えられる。
(A) The reason why a concave lens has inferior surface precision than a convex lens is that in a convex lens, the thickest part is at the center of the lens, but in a concave lens, the thickest part is on the outer periphery of the lens. For this reason, it is thought that the cooling contraction in the lens radial direction becomes larger than that of a convex lens.

ω)  PC樹脂を用いて凸レンズを作るとPMM人樹
脂を用いた場合に比し、面精度が劣る理由は。
ω) Why is the surface precision inferior when making a convex lens using PC resin compared to when using PMM resin?

前記特許出願の製造方法ではレンズ表面層のみを溶融す
るようにしている。このため、金型キャビティ内の樹脂
に温度分布が発生するのはさけられない。また、熱変形
温度、がPMM人樹脂では約100℃であるのに対し、
PC樹脂では約130℃であり、pc @詣はPMM入
樹脂より熱変形温度が高い。
In the manufacturing method of the patent application, only the lens surface layer is melted. Therefore, it is inevitable that temperature distribution occurs in the resin within the mold cavity. In addition, the heat distortion temperature is approximately 100°C for PMM resin, whereas
For PC resin, the temperature is about 130°C, and PC@Mari has a higher heat distortion temperature than PMM-containing resin.

このため、レンズ表面層のみを溶融するべく金型を加熱
する際、PC樹脂を用いた場合、PMMA樹脂を用いた
場合に比し金型を高副に加熱することが必要となる。し
たがって、金型キャビティ内の樹脂に発生する臨度差が
大きくなり、このため冷却に伴ない発生する樹脂の収縮
と樹脂各部の収縮の不均一が大きくなる。
Therefore, when heating the mold to melt only the lens surface layer, when using PC resin, it is necessary to heat the mold to a higher degree than when using PMMA resin. Therefore, the difference in temperature that occurs in the resin within the mold cavity becomes large, which increases the shrinkage of the resin that occurs as it cools and the non-uniformity of the shrinkage of each part of the resin.

(c)  pc樹脂を用いて凹レンズを成形するとレン
ズ表面精度が大幅に劣るのは、上記(〜との)の理由が
相乗的に作用するためであると考えられる。
(c) The reason why the lens surface precision is significantly inferior when a concave lens is molded using PC resin is thought to be that the above reasons (-) act synergistically.

(発明の目的) 本発明の目的は、前記した(1)〜(3)の従来技術の
欠点を改善し、PMMA樹脂、PC樹脂、Pa樹脂、凸
レンズおよび凹レンズの任意のいずれの組合せにおいて
も高精度のプラスチックレンズを製造できる射出圧縮成
形方法およびその装置を提供することにある。
(Objective of the Invention) The object of the present invention is to improve the drawbacks of the prior art (1) to (3) described above, and to improve the high performance in any combination of PMMA resin, PC resin, Pa resin, convex lens, and concave lens. An object of the present invention is to provide an injection compression molding method and an apparatus for manufacturing precision plastic lenses.

(発明の概要) 本発明の特徴は、互いに対向して配置された固定型およ
び可動型のいずれか一方に、摺動自在に設けられた入れ
駒と、これに対向する型または入れ駒との間に形成され
たキャビティ中に樹脂を射出、充填し、加圧シリンダに
より、前記入れ駒に圧力を加えて、前記キャビティ内の
樹脂に圧縮力を加える射出圧縮成形方法において、キャ
ビティ内の樹脂の温度分布を軟化温度域でシミ均一1ヒ
した後、樹脂の軟1ヒ温度域を脱する熱変形温度まで徐
冷することにより、冷却に伴なう樹脂の温度不均一の発
生を最小限にとどめつつ樹脂を冷却するようにした点に
ある〇 また、本発明の他の特徴は前記固定型、可動型および入
れ駒を前記軟化温度域で定温加熱し、その後肢軟化温度
域を脱する熱変形温度にまで徐冷する第1の温調機と、
前記定温加熱の前および前記徐冷の後に前記固定型、可
動型および入れ駒を急冷する第2のm偶機とを備えた点
にある。
(Summary of the Invention) The present invention is characterized by a sliding piece provided on one of a fixed mold and a movable mold that are arranged opposite to each other, and a mold or a piece that faces the mold. In an injection compression molding method, resin is injected and filled into a cavity formed between the cavities, and a pressure cylinder is used to apply pressure to the insert piece to apply compressive force to the resin in the cavity. After heating the temperature distribution uniformly in the softening temperature range, we gradually cool the resin to the heat distortion temperature that takes it out of the softening temperature range, minimizing the occurrence of temperature unevenness in the resin due to cooling. Another feature of the present invention is that the fixed type, movable type, and insertion piece are heated at a constant temperature in the softening temperature range, and the resin is cooled to leave the hindlimb softening temperature range. a first temperature controller that gradually cools to a deformation temperature;
The present invention further includes a second m-even machine that rapidly cools the fixed mold, the movable mold, and the inserted pieces before the constant temperature heating and after the slow cooling.

(発明の実施例) 本発明に先きだち、本発明者等は外径46u1中心厚さ
1.911J、外径部厚さ12.911j、曲率半径2
50iuと30藺の凹レンズ用の射出圧縮成形金型とP
C樹脂を用い、金型温度を一定に維持し、その後、徐冷
する実験を行なった。
(Embodiment of the Invention) Prior to the present invention, the present inventors had an outer diameter of 46u1, a center thickness of 1.911J, an outer diameter part thickness of 12.911J, and a radius of curvature of 2.
Injection compression mold and P for 50iu and 30iu concave lenses
Using C resin, an experiment was conducted in which the mold temperature was maintained constant and then slowly cooled.

実験では、射出時の樹脂温度を240℃とし、一定温度
に維持する金型温度を130〜180℃の範囲で変えた
。また金型温度を一定に維持する時間を5〜40分の範
囲で変えてレンズ表面精度を測定した。
In the experiment, the resin temperature during injection was set at 240°C, and the mold temperature maintained at a constant temperature was varied in the range of 130 to 180°C. In addition, the lens surface accuracy was measured by varying the time period during which the mold temperature was maintained constant within a range of 5 to 40 minutes.

さらに、金型温度を所定時間一定に維持した後、徐冷の
ための冷却速度を0.5〜to’c4の範囲で変えてレ
ンズ表面精度を測定した。
Furthermore, after maintaining the mold temperature constant for a predetermined period of time, the lens surface accuracy was measured while changing the cooling rate for slow cooling in the range of 0.5 to to'c4.

第2図は前者の実験の測定結果、すなわち、一定温度に
維持する金型偏度をパラメータとする金型温度維持時間
の変化に伴なうレンズ表面精度の測定結果を示す0第2
図で金型温度を一定に維持した後の冷却速度はいずれも
x、st4の共通条件で徐冷して成形した。第2図から
金型温度を140℃に維持し、金型温度維持時間を長く
すると、レンズ表面精度が良くなることがわかる。
Figure 2 shows the measurement results of the former experiment, that is, the measurement results of the lens surface accuracy as the mold temperature maintenance time changes with the mold deviation to maintain a constant temperature as a parameter.
In the figure, molding was performed by slow cooling under the common conditions of cooling rate x and st4 after maintaining the mold temperature constant. From FIG. 2, it can be seen that the lens surface precision improves when the mold temperature is maintained at 140° C. and the mold temperature maintenance time is increased.

第3図は後者の実験の測定結果、すなわち、金・型滉度
を所定寿間一定に維持した後の、前記金型温度をパラメ
ータとする冷却速度の変化に伴なうレンズ表面精度の測
定結果を示す。第3図で金型温度を一定に維持する時間
はいずれも15分間とした。第3図から金型温度を14
0℃に維持し、冷却速度を小さくすると、レンズ表面精
度が良くなることがわかる。
Figure 3 shows the measurement results of the latter experiment, that is, the measurement of the lens surface accuracy as the cooling rate changes with the mold temperature as a parameter after maintaining the mold/mold rigidity constant for a predetermined life. Show the results. In each case in FIG. 3, the time for maintaining the mold temperature constant was 15 minutes. From Figure 3, set the mold temperature to 14
It can be seen that the lens surface precision improves when the temperature is maintained at 0° C. and the cooling rate is reduced.

以上の実験結果から次のことがわかった。すなわち、第
2図から金型を一定扁度に維持する時間を長くする程、
また第3図から冷却速度を小さくする程レンズ表面精度
が向上できると言える。また第2図、第3図とも140
℃付近にレンズ表面精度を最も良好にする金型温度があ
る。これは用いたPC樹脂の熱変形温度範囲が130〜
150℃で、ガラス転移温度が142℃であることと密
接に関係していると考えられる。
The following was found from the above experimental results. In other words, from Figure 2, the longer the time to maintain the mold at a constant flatness,
Also, from FIG. 3, it can be said that the smaller the cooling rate, the more the lens surface precision can be improved. Also, both figures 2 and 3 are 140
There is a mold temperature around ℃ that gives the best lens surface accuracy. This is because the heat deformation temperature range of the PC resin used is 130~
It is thought that this is closely related to the fact that the glass transition temperature is 142°C at 150°C.

この、第2図と第3図に示す実験結果から、射出後の圧
縮工程において、樹脂を冷却・固化する際、樹脂の軟化
温度範囲で、キャビティ内の樹脂の温度分布幅を小さく
する程、成形収縮を均−比でき、プラスチックレンズの
形状精度を高精度にできるとする原理を導くことができ
る。
From the experimental results shown in Figures 2 and 3, it is clear that when cooling and solidifying the resin in the compression process after injection, the smaller the temperature distribution width of the resin in the cavity within the softening temperature range of the resin, the more It is possible to derive the principle that molding shrinkage can be balanced and the shape precision of plastic lenses can be made highly accurate.

本発明は、この新規な原理に基づいてなされたものであ
る。
The present invention is based on this novel principle.

以下に本発明を実施例によって説明する。第4図は本発
明の一実施例によるプラスチック凹レンズの成形金型を
示す。第1図は本発明の一実施例による成形制御装置の
ブロック図を示す。第4図と第1図の同一番号は同一部
品を示す。
The present invention will be explained below by way of examples. FIG. 4 shows a mold for forming a plastic concave lens according to an embodiment of the present invention. FIG. 1 shows a block diagram of a molding control device according to an embodiment of the present invention. The same numbers in FIG. 4 and FIG. 1 indicate the same parts.

第4図において、1は固定型、2は固定型入れ駒、3は
固定型補助板、4はスプールブツシュである。該1〜4
は固定型取り付は板5を介して射出成形機の固定盤(図
示省略)に取りつけられ、レンズ成形金型の固定側を構
成する。
In FIG. 4, 1 is a fixed type, 2 is a fixed type insertion piece, 3 is a fixed type auxiliary plate, and 4 is a spool bush. 1 to 4
The fixed mold attachment is attached to a fixed platen (not shown) of an injection molding machine via a plate 5, and constitutes the fixed side of the lens mold.

また、可動型6、可動型補助板7、スペーサ8と可動型
入れ駒9、入れ駒補助板10および油圧シリンダ11は
各々可動型取り付は板12を介して射出成形機の可動盤
(図示省略)に取り付けられ、レンズ成形金型の可動側
を構成する〇可動型入れ駒9は、入れ駒補助板10と一
体になり、油圧7リンダ11から力を受けてキャビティ
13内の樹脂を圧縮する。また、金型が開いたとき、プ
ラスチックレンズを金型外へ押し出す働きをする。
In addition, the movable mold 6, movable mold auxiliary plate 7, spacer 8, movable mold inserting piece 9, movable mold inserting piece auxiliary plate 10, and hydraulic cylinder 11 are each attached to the movable mold via a plate 12 on the movable platen of the injection molding machine (not shown). The movable mold insertion piece 9, which is attached to the lens mold (omitted) and constitutes the movable side of the lens mold, is integrated with the insertion piece auxiliary plate 10, and compresses the resin in the cavity 13 by receiving force from the hydraulic pressure cylinder 11. do. It also works to push the plastic lens out of the mold when the mold is opened.

固定型入れ駒2の面14と可動型6の面15と可動型入
れ駒9の面16が、レンズのキャンティ13を形成して
いる。
A surface 14 of the fixed mold insertion piece 2, a surface 15 of the movable mold 6, and a surface 16 of the movable mold insertion piece 9 form a Chianti 13 of the lens.

スプールブツシュ4内にはスプール17、可動型6には
ランナーゲート18が設けられており、これらは成形機
のシリンダ(図示省略)から射出された樹脂をキャビテ
ィ13へ導びく流路を形成している。
A spool 17 is provided in the spool bush 4 and a runner gate 18 is provided in the movable mold 6, and these form a flow path that guides the resin injected from the cylinder (not shown) of the molding machine to the cavity 13. ing.

固定型入れ駒z内には面14の近くに冷却孔19、ヒー
タ20、熱電対21が設置されている。固定型補助板3
内には冷却孔19を配管22 (第1図に示す)へ連絡
する冷却孔23が設けられている〇一方、可動型6内に
はキャビテイ面15の周囲にヒータ24、冷却孔25お
よび熱電対26が設置されている。可動型補助板7内に
は冷却孔25を配管27 (第1図に示す)へ連絡する
冷却孔28が設けられている0可動側の入れ駒9内には
、面16の近くに冷却孔29、ヒータ30および熱電対
31が設置されている。ヒータ20.24および30は
後記する金型初期崗度T、の実現手段であるO 入れ駒補助板10内には冷却孔29を配管32(第1図
に示す)に連絡する冷却孔33が設けられている0冷却
孔19 、23 、25 、28 、29および33へ
は後記する第1の温調機34内の熱         
7媒又は第2の温調機35内の冷媒が送られてくる。
A cooling hole 19, a heater 20, and a thermocouple 21 are installed near the surface 14 in the fixed type insert piece z. Fixed type auxiliary plate 3
A cooling hole 23 connecting the cooling hole 19 to a pipe 22 (shown in FIG. 1) is provided inside the movable mold 6. On the other hand, a heater 24, a cooling hole 25 and A thermocouple 26 is installed. A cooling hole 28 is provided in the movable auxiliary plate 7 to connect the cooling hole 25 to the piping 27 (shown in FIG. 29, a heater 30, and a thermocouple 31 are installed. The heaters 20, 24 and 30 are means for realizing the mold initial graviness T, which will be described later.In the inserting piece auxiliary plate 10, there is a cooling hole 33 that connects the cooling hole 29 to the piping 32 (shown in FIG. 1). The heat in the first temperature controller 34, which will be described later, flows to the provided cooling holes 19, 23, 25, 28, 29, and 33.
7 medium or the refrigerant in the second temperature controller 35 is sent.

、可動型6の中央には、スプール17およびランナーゲ
ート18内の冷却後の固化された樹脂を金型外へ押し出
す押し出しピン36が設置されている0押し出しピン3
6は固定側と可動側の金型が開いたとき、成形機の押し
出しロッド37により押し出される。
An extrusion pin 36 is installed in the center of the movable mold 6 to extrude the cooled solidified resin in the spool 17 and the runner gate 18 to the outside of the mold.
6 is extruded by the extrusion rod 37 of the molding machine when the molds on the fixed side and the movable side are opened.

第1図において、34はヒータ38、第1の冷却機39
およびプログラムコントローラ40から構成される第1
の温調機であり、その中に熱媒体(油)が入れられてい
る。プログラムコントローラ40は温度記録計41を介
して熱電対21,26および31と結線されており、熱
電対21.26および31のいずれか一つの検出温度に
応じヒータ38や第1の冷却機39のオン、オフを制御
する0また、第1の温調機34内の熱媒の温度を一定に
維持するプログラム制御機能と、時間の経過と共に一定
冷却速度で冷却できるプログラム制御機能を有している
In FIG. 1, 34 is a heater 38 and a first cooler 39.
and a program controller 40.
It is a temperature controller in which a heat medium (oil) is placed. The program controller 40 is connected to the thermocouples 21, 26, and 31 via a temperature recorder 41, and depending on the temperature detected by any one of the thermocouples 21, 26, and 31, the heater 38 and the first cooler 39 are activated. It also has a program control function that keeps the temperature of the heat medium in the first temperature controller 34 constant, and a program control function that allows cooling at a constant cooling rate over time. .

第1の温調機34内の熱媒は後記する金型温度T2〜T
、の範囲を分担する手段である。この熱媒は、送り用の
配管22.27および32を開閉する電磁弁42と、配
管22.27および32を経てそれぞれ冷却孔23−1
9.28−25および33−29に入り、戻り用の配管
43.44および45を経て、戻り用の配管43.44
および45を開閉する電磁弁46を通り、第1の温調機
34に戻る経路で循環する。
The heat medium in the first temperature controller 34 has a mold temperature T2 to T, which will be described later.
It is a means of sharing the scope of . This heat medium passes through the solenoid valve 42 that opens and closes the feed pipes 22, 27 and 32, and the cooling hole 23-1 through the pipes 22, 27 and 32, respectively.
9. Enters 28-25 and 33-29, passes through return pipes 43.44 and 45, and returns to return pipe 43.44.
It circulates through a solenoid valve 46 that opens and closes 45 and returns to the first temperature controller 34.

以上の機能により、第1の温調機34は固定型入れ駒2
、可動型6および可動型入れ駒9の温度を一定錫度T、
に維持する働きと、その後、金型温度をT、からT8へ
徐冷する働きとをすることができる。
With the above functions, the first temperature controller 34 is connected to the fixed type inserting piece 2.
, the temperature of the movable mold 6 and the movable mold insertion piece 9 is kept at a constant tin degree T,
After that, the mold temperature can be gradually cooled from T to T8.

35は第2の温調機であり、ヒータ47および第2の冷
却機48から構成されている。該第2の温調機35内に
は、第1の温調機34内の熱媒と同一物質の冷媒(油)
が入っている。該第2の温真機35内の冷媒は、後記す
る金型温度T、〜T、とT3〜T4への急速な移行を分
担する手段である。
35 is a second temperature controller, which is composed of a heater 47 and a second cooler 48. In the second temperature controller 35, a refrigerant (oil) of the same substance as the heating medium in the first temperature controller 34 is contained.
Contains. The refrigerant in the second warming machine 35 is a means for sharing the mold temperature T, ~T, which will be described later, and the rapid transition from T3 to T4.

この冷媒は送り用の配管49を経て該配管49を開閉す
る電磁弁50を通り、配管22.27および32を経て
、それぞれ冷却孔23−19.28−25および33−
29に入り、配管43.44および45を経て戻り用の
配管51、該配管51を開閉する電磁弁52を経て第2
の温調機35に戻る経路で循環する。
This refrigerant passes through the feed pipe 49, passes through the solenoid valve 50 that opens and closes the pipe 49, passes through the pipes 22.27 and 32, and then passes through the cooling holes 23-19, 28-25 and 33-, respectively.
29, passes through piping 43, 44 and 45, returns piping 51, and a solenoid valve 52 that opens and closes piping 51, and then goes to the second
It circulates through the path that returns to the temperature controller 35.

以上の機能により、第2の昌調機35は固定型入れ駒2
、可動型6および可動型入れ駒9の温度を急冷できる。
With the above functions, the second changing machine 35 is able to adjust the fixed type insertion piece 2.
, the temperature of the movable mold 6 and the movable mold insertion piece 9 can be rapidly cooled.

53は油圧発生機、54は油の送り用配管、55は油の
戻り用配管および56は送り用配管54を開閉する電磁
弁である。該油圧発生機53内の油は、電磁弁56、送
り用の配管54および油圧ンリンダ11を経て、戻り用
の配管55に戻る経路で循環できるようになっている。
53 is a hydraulic generator, 54 is an oil feed pipe, 55 is an oil return pipe, and 56 is a solenoid valve that opens and closes the feed pipe 54. The oil in the oil pressure generator 53 can be circulated through the solenoid valve 56, the feed pipe 54, and the hydraulic cylinder 11, and returns to the return pipe 55.

また、57a 、57bおよび57cは各々固定型用、
可動型用および入れ駒用のヒータコントローラである。
Also, 57a, 57b and 57c are for fixed type, respectively.
This is a heater controller for movable types and insert pieces.

これらのヒータコントローラはヒータ20.24および
30ならびに熱電対21 、26および31と結線され
ており、温度記録計41は熱電対21.26および31
の各検出温度を表示する。
These heater controllers are wired with heaters 20.24 and 30 and thermocouples 21, 26 and 31, and temperature recorder 41 is wired with thermocouples 21.26 and 31.
Displays each detected temperature.

前記ヒータコントローラ57a 、57bおよび57e
は、それぞれ熱電対21.26および31の各検出温度
が、各熱電対に対して設定した温度以下、あるいは以上
のとき、それぞれヒータ20゜24および30への通電
をオンあるいはオフする機能を有している。
The heater controllers 57a, 57b and 57e
has a function of turning on or off the power to the heaters 20, 24 and 30, respectively, when the detected temperatures of the thermocouples 21, 26 and 31 are below or above the temperature set for each thermocouple. are doing.

58.59.60および61は各々、各制御装置に設置
されたタイマで成形機の制御盤(図示省略)と結線され
ており、成形開始と同時に時間を計測し、各制御装置の
作動開始時点と作動停止時      3点を指示する
58, 59, 60 and 61 are each connected to the control panel of the molding machine (not shown) by a timer installed in each control device, and the time is measured at the same time as the start of molding, and the time when the operation of each control device starts. and 3 points when the operation stops.

さて、第5図に本実施例に係るプラスチックレンズの射
出圧縮成形工程中の制御シーケンスを示す。また、第6
図は本実施例に係る射出圧縮成形工程中の熱電対21.
26および31のいずれか一つの検出温度曲線をhで、
キャビティ13内の樹脂の推定最高温度曲線をkで、推
定最低温度曲線をtで示す。キャビティ13内の各部の
樹脂温度は曲線にとtの間で変化する。
Now, FIG. 5 shows a control sequence during the injection compression molding process of a plastic lens according to this embodiment. Also, the 6th
The figure shows a thermocouple 21 during the injection compression molding process according to this embodiment.
The detected temperature curve of any one of 26 and 31 is h,
The estimated maximum temperature curve of the resin in the cavity 13 is indicated by k, and the estimated minimum temperature curve is indicated by t. The resin temperature at each part within the cavity 13 changes between the curve and t.

次に、第5,6図を用い本実施例に係るプラスチックレ
ンズの射出圧縮工程を説明する。第5゜6図において、
Toは射出時の樹脂温度である。T1は成形開始時の初
期金型温度で、本実施例の場合、すなわち凹レンズを作
る場合、射出時にキャビティ内で分岐・合流する樹脂の
流れにより生じるウェルドラインを融着させて消すため
、高温の175:℃以上に設定した0金型初期温度をT
、に維持することは、熱電対21.26および31の検
出温度がT1を維持するようヒータコントローラ57a
Next, the injection compression process of the plastic lens according to this example will be explained using FIGS. 5 and 6. In Figure 5.6,
To is the resin temperature at the time of injection. T1 is the initial mold temperature at the start of molding, and in this example, when making a concave lens, the high temperature is used to melt and erase the weld lines that are created by the flow of resin that branches and merges in the cavity during injection. 175: 0 mold initial temperature set above ℃ T
, the heater controller 57a maintains the temperature detected by the thermocouples 21, 26 and 31 at T1.
.

57bおよび57cの設定を調節することで実現できる
This can be achieved by adjusting the settings of 57b and 57c.

T−は金型キャビティ13内の樹脂を入れ駒9の加圧に
よる圧縮賦形が可能でかつ樹脂温度を均−比するため、
樹脂の熱変形温度〜(熱変形温度+40℃)の範囲で±
5℃内の一定温度に0.5分間以上維持すべき金型温度
である。なお、 (熱変形温度+40℃)以上にすると
、精度が悪くなることが実験的に知られている。
T- allows the resin in the mold cavity 13 to be compressed and shaped by applying pressure with the piece 9, and also to equalize the resin temperature.
± in the range of heat distortion temperature of resin ~ (heat distortion temperature + 40℃)
This is the mold temperature that should be maintained at a constant temperature within 5° C. for 0.5 minutes or more. It is experimentally known that the accuracy deteriorates when the temperature exceeds (heat distortion temperature +40° C.).

ちなみに、プラスチックレンズに用いる樹脂の熱変形温
度(熱で軟化したと見なせる温度)は、ps樹脂が約9
5℃、PMMA樹脂が約100℃、PC樹脂が約130
℃である。
By the way, the heat deformation temperature (temperature at which it can be considered that it has been softened by heat) of the resin used for plastic lenses is approximately 9 for PS resin.
5℃, PMMA resin about 100℃, PC resin about 130℃
It is ℃.

金型温度のT1からT、への移行はヒータ20,24お
よび30による加熱を停止し、温度をT2に予め維持し
である第1の@調機34内の熱媒を金型内へ循環させる
ことで実現できる。
When the mold temperature shifts from T1 to T, the heating by the heaters 20, 24, and 30 is stopped, the temperature is maintained at T2, and the heat medium in the first @conditioner 34 is circulated into the mold. This can be achieved by doing so.

第6図では成形サイクルを短縮するため、ヒータ20.
24および30による加熱を停止した後(時刻t1)、
予め10〜20℃の低温に維持しである第2の温調機3
5内の冷媒を短時間金型内へ循環し、金型を急冷する(
時刻t、〜t2)oその後、第1の温調機34内の熱媒
を金型内へ循環した(時刻t2〜t4)O Tjは、入れ駒9の加圧状態において金型を徐冷するこ
とによりて、樹脂が完全に軟化域を脱したと見なされる
ときの金型温度である0なお、この金型温度T3は樹脂
が完全に軟化域を脱したと見なされる熱変形温度〜(熱
変形温度−20℃)の範囲までが適当である。
In FIG. 6, in order to shorten the molding cycle, heater 20.
After stopping the heating by 24 and 30 (time t1),
The second temperature controller 3 is maintained at a low temperature of 10 to 20°C in advance.
The refrigerant in 5 is circulated into the mold for a short time to rapidly cool the mold (
Time t, ~ t2) o After that, the heat medium in the first temperature controller 34 was circulated into the mold (time t2 ~ t4). The mold temperature T3 is the temperature at which the resin is considered to have completely escaped the softening range. It is suitable that the temperature is within the range of (heat distortion temperature -20°C).

金型温度をT2に維持し、その後T3まで徐冷すること
(時刻t3〜1.)はプログラムコントローラ40の設
定を2段に分け、初めT、を一定にし、その後徐冷勾配
をセットし、第1の温調機34内の熱媒を金型内に循環
することで実現できる。なお、この徐冷勾配は5す外風
下にすると好適であるO12は、樹脂冷却後のプラスチ
ックレンズを取り出すさいの金型温度である。金型温度
をT3からT4へ移行すること(時刻t、〜16)は第
2の温調機35内の冷媒を所定時間循環することで実現
できる。
To maintain the mold temperature at T2 and then slowly cool it to T3 (times t3 to 1.), the program controller 40 is set in two stages, initially T is kept constant, then the slow cooling gradient is set, This can be achieved by circulating the heat medium in the first temperature controller 34 within the mold. Note that this gradual cooling gradient is preferably set to 5° outside and downwind. O12 is the mold temperature at which the plastic lens is taken out after cooling the resin. Shifting the mold temperature from T3 to T4 (time t, to 16) can be achieved by circulating the refrigerant in the second temperature regulator 35 for a predetermined period of time.

また金型温度をT4からT1へ移行すること(時刻t、
〜18)は第2の温調機35の冷媒の循環を停止し、予
め温度T1に設定しであるヒニタコントローラ57a 
、57bおよび57eによるヒータ20゜24および3
0の加熱を開始するこ、とて実現できる0 次に、本実施例の射出圧縮成形方法を説明する0第5,
6図において、tOは成形開始時点であるOt、は成形
機の動作が射出から保圧に移る時点でこの時点に、金型
温度をT、に維持していたヒータ20゜24および30
の発熱を停止し、予め温度を10〜20℃にしである冷
媒の入っている第2の温調機35の電磁弁50および5
2を開き短時間金型を急冷する。同時に可動型入れ駒9
による加圧を作勲させるため油圧発生機53の電磁弁5
6を開くO 可動型入れ駒9は、キャビティ13内の樹脂圧力が可動
型入れ駒9を作動させている油圧シリンダllの圧力以
下にさがると、以後、プラスチックレンズを型外へ取り
出すための型開きの直前t6時点までキャビティ13内
の樹脂を圧縮し続ける。
Also, the mold temperature is transferred from T4 to T1 (time t,
~18) stops the circulation of the refrigerant in the second temperature controller 35, and sets the temperature T1 in advance to the temperature controller 57a.
, 57b and 57e heaters 20° 24 and 3
It is very possible to start the heating of 0.Next, the fifth part of
In Fig. 6, tO is the time when molding starts, and Ot is the time when the operation of the molding machine shifts from injection to holding pressure.
The electromagnetic valves 50 and 5 of the second temperature controller 35 containing the refrigerant stop the heat generation and set the temperature to 10 to 20°C in advance.
2 and quench the mold for a short time. At the same time, movable type insertion piece 9
The solenoid valve 5 of the hydraulic generator 53
6 Open O When the resin pressure in the cavity 13 falls below the pressure of the hydraulic cylinder 11 that operates the movable mold inserting piece 9, the movable mold inserting piece 9 is used to remove the plastic lens from the mold. The resin in the cavity 13 continues to be compressed until time t6 immediately before opening.

t2はキャビティ13内の樹脂の温度を均一にT2へ移
行するため、急冷していた第2の温調機35の電磁弁5
0および52を閉じ、予め熱媒の温度がT2に維持しで
ある第1の温調機34の電磁弁42および46を開く時
点である。t3は熱電対21゜26.31の検出温度が
T、になりた時点である。
At t2, in order to uniformly shift the temperature of the resin in the cavity 13 to T2, the solenoid valve 5 of the second temperature controller 35 that was rapidly cooling is activated.
0 and 52 are closed and the solenoid valves 42 and 46 of the first temperature controller 34 are opened, with the temperature of the heating medium being maintained at T2 in advance. At t3, the temperature detected by the thermocouple 21°26.31 reaches T.

t4は金型温度をT2一定に維持していた定温加熱制御
を停止し、徐冷制御に移る時1点である。
t4 is a point at which the constant temperature heating control that kept the mold temperature constant at T2 is stopped and the process is shifted to slow cooling control.

t5は熱電対21.26および31の検出温度が前記し
たT3以下の温度になったとき、第1の温調機34の電
磁弁42および46を閉じて、徐冷を停止し、第2の温
調機35の電磁弁50および52を再び開き、金型の急
冷を開始する時点であるOt6は入れ駒9による加圧を
停止する時点で金型を開き冷却・固化したプラスチック
レンズを金型外へ取り出す直前に設定されている。
At t5, when the temperatures detected by the thermocouples 21, 26 and 31 become below T3, the solenoid valves 42 and 46 of the first temperature controller 34 are closed to stop slow cooling, and the second At Ot6, the solenoid valves 50 and 52 of the temperature controller 35 are opened again to start rapid cooling of the mold, and at the time when the pressurization by the insertion piece 9 is stopped, the mold is opened and the cooled and solidified plastic lens is placed in the mold. It is set just before taking it outside.

t7はプラスチックレンズを金型から取り出した後、再
び金型温度を初期温度T、へ復帰させるため。
t7 is for returning the mold temperature to the initial temperature T again after taking out the plastic lens from the mold.

ヒータ20,24および30の加熱を再び開始する時点
である。t、は次のサイクルのため金型@血をT、へ復
帰した、1サイクル終了時点である。
It is now time to start heating heaters 20, 24 and 30 again. t, is the end of one cycle when the mold@blood is returned to T, for the next cycle.

本発明は前記したように、射出後の圧縮工程において樹
脂を冷却固化するさい、樹脂の軟化域の温度範囲で、キ
ャビティ内の樹脂の温度分布を小さくする程、成形収縮
を均一化でき、高精度のプラスチックレンズが得られる
とする原理に立脚している◇ それ故、前記金型の設定温度T2とT、の間に樹脂の熱
変形温度があること、金型温度をT2に維持するi、−
t、間がキャビティ内の樹脂温度分布を均一化できる程
、十分長い時間であり、また金型温度をT2からT3へ
移行するt、’−t、間の徐冷中の冷却速度がキャビテ
ィ内の樹脂温度の不均一を拡大しない十分ゆるやかなも
のであることが本発明の成立条件である。
As described above, when the resin is cooled and solidified in the compression process after injection, the smaller the temperature distribution of the resin in the cavity within the softening temperature range of the resin, the more uniform the molding shrinkage can be, and the higher the temperature. It is based on the principle that high-precision plastic lenses can be obtained ◇ Therefore, the thermal deformation temperature of the resin is between the set temperature T2 of the mold and T, and the mold temperature is maintained at T2. ,−
The time between t and t is long enough to make the resin temperature distribution in the cavity uniform, and the cooling rate during slow cooling between t and '-t, when the mold temperature is transferred from T2 to T3, is enough to make the resin temperature distribution in the cavity uniform. A condition for the establishment of the present invention is that the temperature is sufficiently gentle so as not to increase non-uniformity in temperature.

したがって13−1.間と1.−1.間は、共に、十分
長い時間を設定する必要がある。
Therefore, 13-1. Between and 1. -1. It is necessary to set a sufficiently long time for both periods.

他方、T、はT2に近く、%+ Tl’l Ttおよび
T4は低温である程、jO−tl + jl−jl +
  t、−tll+LB−t4 + t、  t、・・
・・・・・・・+t7−t8  は各々短かい時間であ
る程、成形サイクルを短かくし生産効率上、有利なこと
は言うまでもない0従って、金型設定温度T、〜T4%
各制御装置の作動開始又は停止時点t1〜t、の実際の
設定に際しては精度上の要求と合わせて成形サイクル上
の要求を考慮することが当然必要になる。
On the other hand, T is closer to T2, %+ Tl'l Tt and T4 are lower, jO-tl + jl-jl +
t, -tll+LB-t4 + t, t,...
It goes without saying that the shorter each of +t7-t8 is, the shorter the molding cycle is and the more advantageous it is in terms of production efficiency. Therefore, the mold setting temperature T, ~T4%
When actually setting the operation start or stop times t1 to t of each control device, it is naturally necessary to consider molding cycle requirements as well as accuracy requirements.

次に、樹脂温度および金型設定温度T。−T4ならびに
作動開始又は停止時点t1〜t8の具体的設定手順につ
いて説明する。まず、形状精度を含む残留応力、表面の
光沢、透明度などプラスチックレンズの品質全般を良好
にする条件を見い出す必要がある。
Next, the resin temperature and mold setting temperature T. - A detailed setting procedure for T4 and operation start or stop times t1 to t8 will be explained. First, it is necessary to find conditions that improve the overall quality of plastic lenses, including residual stress, including shape accuracy, surface gloss, and transparency.

形状精度に関しては、前記本発明の成立条件を守った上
で%T1およびT2は高目の温度に、T3およびT4は
低目の温度に、またt、〜t7の各間隔はいずれも長目
に設定するとよい。実験によればt、〜t8の合計が1
〜2時間程度であれば、長過ぎてプラスチックレンズの
品質が低下することは決してないO 上記プラスチックレンズの品質全般を満足する条件を見
い出した後、t、〜t、における各間隔は短かくす6方
へ・“°・1・・7・お−I″H)、 ″を低“倶′I
へ・       9T3はT、に近い方へ各々順次適
当な時間又は温度間隔で小きざみに変更する。このよう
にすると、プラスチックレンズの形状精度はやがて許容
値以下に低下する。
Regarding shape accuracy, while observing the conditions for establishing the present invention, %T1 and T2 are set to a high temperature, T3 and T4 are set to a low temperature, and each interval from t to t7 is set to a long value. It is recommended to set it to . According to experiments, the sum of t, ~t8 is 1
If it is about 2 hours, it will never be too long and the quality of the plastic lens will deteriorate. After finding the conditions that satisfy the overall quality of the plastic lens above, each interval at t and ~t can be shortened6. towards・“°・1・・7・o-I″H), ”low“ I
9T3 is changed in small increments closer to T at appropriate time or temperature intervals. If this is done, the shape accuracy of the plastic lens will eventually fall below an allowable value.

TO−T41tl〜t8の各々につきプラスチックレン
ズの形状精度を許容値以下に低下する直前の値を見い出
したら、再度循環的に同様手順を数回繰返えす。このよ
うにするとT0〜T4+tI〜t8はいずれも特定の値
に収束して行く。以上の手順によりT。−T41 tl
〜tllを成形サイクル上からも適正比していくことが
、できる0 ゛次に、本実施例に基づく具体例の結果を第1表に記す
After finding the value just before the shape accuracy of the plastic lens falls below the allowable value for each of TO-T41tl to t8, the same procedure is repeated several times in a cyclical manner. In this way, T0 to T4+tI to t8 all converge to specific values. T by the above procedure. -T41 tl
~tll can be appropriately compared from the viewpoint of the molding cycle.Next, the results of specific examples based on this example are shown in Table 1.

具体例人のレンズ形状は、外径47jlJ、中心厚さ1
.9m、外径厚さ12.7Tu1.曲率半径250uト
30IIjの凹レンズでPC樹脂を用いている。
Specific example: The shape of a human lens has an outer diameter of 47jlJ and a center thickness of 1
.. 9m, outer diameter thickness 12.7Tu1. The concave lens has a radius of curvature of 250u to 30IIj and is made of PC resin.

このレンズを前記した特許出願の方法で製造した場合、
130〜100μmの偏差を有する面精度しか得られな
かったが、本具体例による第1表に示す製造条件で製造
した場合、レンズ表面精度を3.0〜1.0μmにでき
、飛躍的に高精度のプラ第   1   表 スチックレンズを得ることができた。
When this lens is manufactured by the method of the patent application mentioned above,
Although only a surface accuracy with a deviation of 130 to 100 μm was obtained, when manufactured under the manufacturing conditions shown in Table 1 according to this specific example, the lens surface accuracy could be increased to 3.0 to 1.0 μm, resulting in a dramatically higher level of accuracy. We were able to obtain a highly accurate plastic lens.

また、具体例Bのレンズ形状は、外径47u1中心厚さ
14.5m、外径厚さ1.0.、曲率半径88藺と31
藺の凸レンズで、PC樹脂を用いている。
Further, the lens shape of specific example B has an outer diameter of 47u1, a center thickness of 14.5 m, and an outer diameter of 1.0 mm. , radius of curvature 88 and 31
This is a convex lens made of PC resin.

一方、具体例Cのレンズ形状は1.外径21朋、中心厚
さ1.8NJ1、外径厚さ5.81111.曲率半径2
3m5と17間の凹レンズで、PMMA樹脂を用いてい
る。
On the other hand, the lens shape of specific example C is 1. Outer diameter 21mm, center thickness 1.8NJ1, outer diameter thickness 5.81111. radius of curvature 2
It is a concave lens between 3m5 and 17m and is made of PMMA resin.

これらのいずれの場合も、レンズ表面精度を2.0〜1
.0μmに押えることができ、高精度のプラスチックレ
ンズを得ることができた。
In any of these cases, the lens surface accuracy should be 2.0 to 1.
.. It was possible to suppress the thickness to 0 μm and obtain a highly accurate plastic lens.

第1表で圧縮成形中に金型温度を熱変形温度以上の一定
温度に維持する1、−1,間は、具体例Aが4分、具体
例Bが夕分、具体例Cが1分である。
In Table 1, during compression molding, the mold temperature is maintained at a constant temperature above the heat deformation temperature between 1 and -1 for 4 minutes in Example A, in the evening in Example B, and 1 minute in Example C. It is.

1、−1.後の徐冷区間1.−1.間は、具体例人が6
分、具体例Bが10分、具体例Cが4分である。
1, -1. Later slow cooling section 1. -1. The number of concrete examples is 6.
minutes, specific example B is 10 minutes, and specific example C is 4 minutes.

1、−1.間の徐冷中の冷却速度は、具体例Aが1.7
′C4、具体例Bが3゜0′C4、具体例Cが5.09
外である。
1, -1. The cooling rate during slow cooling in Specific Example A was 1.7
'C4, specific example B is 3°0'C4, specific example C is 5.09
It's outside.

金型キャビティ内の樹脂温度を均一化するのに要する時
間や、温度分布の均−rヒを保持したまま冷却する冷却
速度は第1表に示すように成形しようとするレンズ形状
や成形に用いる樹脂、金型の大きさで当然異なる。それ
故、本発明は第1表に示す製造条件に限定されることな
く、樹脂の軟化湯度範囲において金型温度を一定霊度T
2に維持する温度や、区間1.−.1い徐冷区間1.−
1.。
The time required to equalize the resin temperature in the mold cavity and the cooling rate for cooling while maintaining an even temperature distribution are shown in Table 1, and are used for the lens shape and molding to be molded. Naturally, it varies depending on the size of the resin and mold. Therefore, the present invention is not limited to the manufacturing conditions shown in Table 1, and the mold temperature is maintained at a constant spirituality T within the resin softening temperature range.
The temperature to be maintained at 2 or the interval 1. −. 1 slow cooling section 1. −
1. .

1、−1.間の冷却速度がレンズ形状、樹脂、金型の大
きさなどに応じたものでよいのは当然である0第1表に
示す具体例は、PMM&樹脂とPC樹脂を用いたレンズ
であるが、本発明はこれに限定されることなく任意の種
類の樹脂を用いた任意の形状のプラスチックレンズの成
形に適用しうることは当然である。
1, -1. It goes without saying that the cooling rate between can be adjusted depending on the lens shape, resin, mold size, etc.The specific example shown in Table 1 is a lens using PMM & resin and PC resin. It goes without saying that the present invention is not limited thereto and can be applied to molding a plastic lens of any shape using any type of resin.

々 また本発明はレンズ以外の高精度の形状精度が必要なプ
ラスチック部品の射出綿成形に適用しうることは当然で
ある。
Naturally, the present invention can also be applied to injection molding of plastic parts other than lenses that require high shape accuracy.

(発明の効果) 本発明によれば、射出圧縮成形中のプラスチックの固化
時の温度分布を均一化できるので、成形後室温に安定し
た時点のプラスチックレンズの成形収縮を均−比でき、
ミクロンオーダにおいてもひけやそりの少ない形状精度
が高精度のプラスチックレンズを製造することができる
(Effects of the Invention) According to the present invention, the temperature distribution during solidification of the plastic during injection compression molding can be made uniform, so the molding shrinkage of the plastic lens at the time when the temperature stabilizes at room temperature after molding can be equalized.
Even on the micron order, it is possible to manufacture plastic lenses with high shape accuracy and minimal sink marks and warpage.

特に凹レンズなど肉厚差の大きい形状非対称性の著しい
レンズ程、その効果は著しく、例えば曲率半径250調
−30藺、外径47jIM、中心厚さ1.9811.外
径部厚さ12.7.のPC樹脂を用いた凹レンズの場合
、従来方法では130〜100μmの偏差があった表面
精度を3.0〜1.0μmと飛躍的に向上できた。
In particular, the effect is more pronounced for lenses with significant shape asymmetry such as concave lenses with large differences in wall thickness. Outer diameter thickness 12.7. In the case of a concave lens using PC resin, the surface precision was dramatically improved to 3.0 to 1.0 μm, whereas the conventional method had a deviation of 130 to 100 μm.

本発明によりプラスチックレンズの光学性能をガラスレ
ンズの光4性能に大幅に近づけることができ、ガラスレ
ンズより軽量、低コストのプラスチックレンズの用途を
一段と広げることができる〇
According to the present invention, the optical performance of plastic lenses can be brought significantly closer to the optical performance of glass lenses, and the applications of plastic lenses, which are lighter and lower cost than glass lenses, can be further expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の成形制御装置のブロック図
、 第2,3図は本発明の詳細な説明する実験デー ゛りを
示すグラフ、第4図は本発明の一実施例の射出圧縮成形
金型の断面図、 第5図は本発明の一実施例の射出圧縮成形制御のシーケ
ンス図、第6図は本発明の一実施例の動作を説明するた
めの温度一時間曲線図である。 1・・・固定型、2・・・固定型入れ駒、6・・・可動
型、9・・・可動型入れ駒、11・・・油圧フリンゾ、
13・・・キャビティ、19,25.29・・・冷却孔
、21.26.31・・・熱電対、20,24,30・
・・ヒータ、34・・・第1の温調機、35・・・第2
の温調機、53−・・油圧発生機、57a、57b。 57c・・・ヒータコントローラ、40・・・プログラ
ムコントローラ 第2図 24図 第  5  図 第  6  図
Fig. 1 is a block diagram of a molding control device according to an embodiment of the present invention, Figs. 2 and 3 are graphs showing experimental data explaining the present invention in detail, and Fig. 4 is a block diagram of a molding control device according to an embodiment of the present invention. 5 is a sequence diagram of injection compression molding control according to an embodiment of the present invention, and FIG. 6 is a temperature one-hour curve diagram for explaining the operation of an embodiment of the present invention. It is. 1... Fixed type, 2... Fixed type insertion piece, 6... Movable type, 9... Movable type insertion piece, 11... Hydraulic fringe,
13...Cavity, 19,25.29...Cooling hole, 21.26.31...Thermocouple, 20,24,30.
...Heater, 34...First temperature controller, 35...Second
temperature controller, 53--hydraulic generator, 57a, 57b. 57c... Heater controller, 40... Program controller Figure 2 Figure 24 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)互いに対向して配置された固定型および可動型の
いずれか一方に、摺動自在に設けられた入れ駒と、これ
に対向する型または入れ駒との間に形成されたキャビテ
ィ中に樹脂を射出、充填し、加圧シリンダにより、前記
入れ駒に圧力を加えて、前記キャビティ内の樹脂に圧縮
力を加える射出圧縮成形方法において、キャビティ内の
樹脂の温度分布を軟化温度域で一旦均一化した後、樹脂
の軟化温度域を脱する熱変形温度まで徐冷することによ
り、冷却に伴なう樹脂の温度不均一の発生を最小限にと
どめつつ樹脂を冷却するようにしたことを特徴とする射
出圧縮成形方法。
(1) In a cavity formed between a sliding piece provided in either a fixed mold or a movable mold placed facing each other, and the opposing mold or piece. In an injection compression molding method in which resin is injected and filled, and a pressure cylinder is used to apply pressure to the insert piece to apply compressive force to the resin in the cavity, the temperature distribution of the resin in the cavity is adjusted once in the softening temperature range. After homogenization, the resin is slowly cooled to a heat distortion temperature that takes it out of the resin's softening temperature range, thereby cooling the resin while minimizing the occurrence of temperature unevenness in the resin due to cooling. Characteristic injection compression molding method.
(2)前記固定型、可動型および入れ駒を、樹脂の熱変
形温度〜(熱変形温度+40℃)の温度範囲において±
5℃内の一定温度に一旦維持することにより、キャビテ
ィ内の樹脂の温度分布を軟化温度域にて一旦均一化する
ようにしたことを特徴とする前記特許請求の範囲第1項
記載の射出圧縮成形方法。
(2) The fixed mold, the movable mold, and the insertion piece are held within the temperature range of the heat deformation temperature of the resin to (heat deformation temperature + 40°C) ±
The injection compression according to claim 1, wherein the temperature distribution of the resin in the cavity is made uniform in the softening temperature range by once maintaining a constant temperature within 5°C. Molding method.
(3)(樹脂の熱変形温度+40℃)〜(熱変形温度−
20℃)の温度範囲において、前記固定型、可動型およ
び入れ駒を5℃/分以下の冷却速度で徐冷するようにし
たことを特徴とする前記特許請求の範囲第1項記載の射
出圧縮成形方法。
(3) (Heat distortion temperature of resin + 40℃) ~ (Heat distortion temperature -
The injection compression according to claim 1, wherein the fixed mold, the movable mold, and the insertion piece are slowly cooled at a cooling rate of 5° C./min or less in a temperature range of 20° C. Molding method.
(4)互いに対向して配置された固定型および可動型の
いずれか一方に、摺動自在に設けられた入れ駒と、これ
に対向する型または入れ駒との間に形成されたキャビテ
ィ中に樹脂を射出、充填し、加圧シリンダにより、前記
入れ駒に圧力を加えて、前記キャビティ内の樹脂に圧縮
力を加える射出圧縮成型装置において、前記固定型、可
動型および入れ駒を前記軟化温度域で定温加熱し、その
後該軟化温度域を脱する熱変形温度にまで徐冷する第1
の温調機と、前記定温加熱の前および前記徐冷の後に前
記固定型、可動型および入れ駒を急冷する第2の温調機
とを備えたことを特徴とする射出圧縮成形装置。
(4) In a cavity formed between a sliding piece provided in either a fixed mold or a movable mold placed opposite to each other, and the opposing mold or insertion piece. In an injection compression molding apparatus that injects and fills resin and applies pressure to the inserting piece using a pressure cylinder to apply compressive force to the resin in the cavity, the fixed mold, movable mold, and inserting piece are heated to the softening temperature. The first step is heating at a constant temperature in
An injection compression molding apparatus comprising: a temperature controller; and a second temperature controller that rapidly cools the fixed mold, the movable mold, and the inserted pieces before the constant temperature heating and after the slow cooling.
JP14116884A 1984-07-07 1984-07-07 Injection compression molding method and device thereof Granted JPS6119327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14116884A JPS6119327A (en) 1984-07-07 1984-07-07 Injection compression molding method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14116884A JPS6119327A (en) 1984-07-07 1984-07-07 Injection compression molding method and device thereof

Publications (2)

Publication Number Publication Date
JPS6119327A true JPS6119327A (en) 1986-01-28
JPH0421574B2 JPH0421574B2 (en) 1992-04-10

Family

ID=15285714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14116884A Granted JPS6119327A (en) 1984-07-07 1984-07-07 Injection compression molding method and device thereof

Country Status (1)

Country Link
JP (1) JPS6119327A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041379A1 (en) * 1996-02-29 1998-09-24 Hoya Corporation Method of injection molding plastic lens
US6156242A (en) * 1996-02-29 2000-12-05 Hoya Corporation Method of injection molding plastic lens
USRE38617E1 (en) * 1997-03-18 2004-10-12 Hoya Corporation Method of injection molding plastic lens
US6875380B2 (en) 1999-06-03 2005-04-05 Ricoh Company, Ltd. Method and apparatus for manufacturing plastic optical element and plastic optical element
EP4091791A1 (en) * 2021-05-19 2022-11-23 Essilor International Optimization of process parameters for lens with micro-lens design

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041379A1 (en) * 1996-02-29 1998-09-24 Hoya Corporation Method of injection molding plastic lens
US6156242A (en) * 1996-02-29 2000-12-05 Hoya Corporation Method of injection molding plastic lens
USRE38617E1 (en) * 1997-03-18 2004-10-12 Hoya Corporation Method of injection molding plastic lens
US6875380B2 (en) 1999-06-03 2005-04-05 Ricoh Company, Ltd. Method and apparatus for manufacturing plastic optical element and plastic optical element
EP4091791A1 (en) * 2021-05-19 2022-11-23 Essilor International Optimization of process parameters for lens with micro-lens design
WO2022243327A1 (en) * 2021-05-19 2022-11-24 Essilor International Optimization of process parameters for lens with micro-lens design

Also Published As

Publication number Publication date
JPH0421574B2 (en) 1992-04-10

Similar Documents

Publication Publication Date Title
US5718850A (en) Method and device for manufacturing optical elements
US20120171452A1 (en) Device and method for producing thick-walled moulded plastics parts having reduced shrinkage sites by injection molding or embossing
JPH0134132B2 (en)
JP2002539985A (en) Casting method for producing thin thermoplastic lenses
JPS6119327A (en) Injection compression molding method and device thereof
US6695607B2 (en) Mold half-block for injection molding an optical article out of thermoplastic material, and a mold including such a half-block
US5399303A (en) Method of controlling resin molding conditions
JPH06892A (en) Fresnel lens molding method and apparatus
JP2537231B2 (en) Plastic lens molding method
US20060170125A1 (en) Mold and process for making a very thin wall article
JPS6223723A (en) Process for injection and compression molding
JPH0354608B2 (en)
JPS6260623A (en) Injection compression molding method and device
JP2014151449A (en) Injection molding die and injection molding method
JPS61182918A (en) Injection compression mold
KR20140132270A (en) Method for molding a resin optical lens and the optical lens made thereby
JPS61290024A (en) Mold for molding plastic lens
JPH0724890A (en) Injection mold and injection molding method
JP2828161B2 (en) Plastic molding equipment
JPS61100420A (en) Manufacture of plastic lens
JP2002240110A (en) Method for injection molding plastic optical element
JPS5849218A (en) Manufacture of plastic lens
JPH09268021A (en) Injection molding for glass molded product
JP2510575B2 (en) Molding temperature analysis method for molded products
JPH0139337B2 (en)