JPH0724890A - Injection mold and injection molding method - Google Patents

Injection mold and injection molding method

Info

Publication number
JPH0724890A
JPH0724890A JP19414493A JP19414493A JPH0724890A JP H0724890 A JPH0724890 A JP H0724890A JP 19414493 A JP19414493 A JP 19414493A JP 19414493 A JP19414493 A JP 19414493A JP H0724890 A JPH0724890 A JP H0724890A
Authority
JP
Japan
Prior art keywords
gas
injection molding
cavity
cavity surface
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19414493A
Other languages
Japanese (ja)
Inventor
Tetsuo Suga
哲生 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19414493A priority Critical patent/JPH0724890A/en
Publication of JPH0724890A publication Critical patent/JPH0724890A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7337Heating or cooling of the mould using gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/76Cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide an injection mold and a method for injection molding in which a molded form having extremely high accuracy and transferability is molded in a short cycle time. CONSTITUTION:The injection mold comprises an insert 1 for forming a cavity, a gas communicating hole 2 for communicating with an interior of the insert 1, a permeable member 3 provided near a surface of the cavity, and a gas heater 4 arranged in the hole 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック製品等の
射出成形に用いられる金型および成形方法に関し、より
詳しくは、光学部品のような高精度な転写性を求められ
る成形品をきわめて迅速に得ることのできる射出成形金
型および射出成形方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold and a molding method used for injection molding of plastic products and the like, and more particularly, to a molded product such as an optical component which is required to have a highly accurate transfer property very quickly. The present invention relates to an injection molding die and an injection molding method which can be obtained.

【0002】[0002]

【従来の技術】従来この種の成形品の成形に関しては、
例えば、特開昭61−279515号公報記載のよう
に、金型内に加熱部材と冷却部材を設け、射出充填後に
加熱・冷却(ヒートサイクル)を行って、成形品の精度
向上を図ったり、また、特開昭63−286312号公
報記載のように、金型を開いて成形品を取り出した後
に、次回の成形に先立って、キャビティ面に高温エアー
を直接吹きつけてキャビティ面を加熱して、成形材料の
流動性を改善し、成形品の精度向上を図ったりしてい
る。
2. Description of the Related Art Conventionally, regarding molding of this type of molded article,
For example, as described in Japanese Patent Application Laid-Open No. 61-279515, a heating member and a cooling member are provided in a mold, and heating / cooling (heat cycle) is performed after injection filling to improve the precision of a molded product. Further, as described in JP-A-63-286312, after opening the mold and taking out the molded product, prior to the next molding, hot air is blown directly onto the cavity surface to heat the cavity surface. , Improving the fluidity of molding materials and improving the precision of molded products.

【0003】[0003]

【発明が解決しようとする課題】ところが、上述の従来
技術のうち、特開昭61−279515号公報記載の発
明にあっては、キャビティ表面から加熱部材までの距離
が離れているため、キャビティ表面を所定温度まで加熱
するのに長時間かかるという問題点があった。さらに、
この問題点を解決すべく、加熱部材とキャビティ表面に
近づけ過ぎるとキャビティ表面の温度分布にムラが発生
してしまい、面形状に歪みを生じて面精度が著しく悪く
なるという問題点があった。
However, among the above-mentioned conventional techniques, in the invention described in Japanese Patent Laid-Open No. 61-279515, since the distance from the cavity surface to the heating member is large, the cavity surface is There is a problem in that it takes a long time to heat up to a predetermined temperature. further,
In order to solve this problem, if the heating member and the cavity surface are brought too close to each other, the temperature distribution on the cavity surface becomes uneven, and the surface shape is distorted so that the surface accuracy is significantly deteriorated.

【0004】また、特開昭63−286312号公報記
載の発明にあっては、前回の成形ショットによる成形品
を取り出した後、次回のショット前に加熱工程を行う必
要があるため、この加熱時間だけ成形サイクルタイムが
長くなるという問題点があった。また、キャビティ表面
を加熱しても金型全体の温度が低温のため、熱がどんど
ん吸収されてしまい、実質的な加熱に長時間かかるとい
う問題点もあった。また、このように長時間かけて加熱
したとしても、金型を閉じて射出するまでの数秒の間に
キャビティ表面温度が低下してしまい十分な効果が得ら
れないという問題点もあった。本発明は上述の問題点に
鑑みてなされたもので、極めて高精度な転写性を有する
成形品を短いサイクルタイムで成形できる射出成形用金
型および射出成形方法を提供することを目的とする。
Further, in the invention described in Japanese Patent Laid-Open No. 63-28612, it is necessary to perform a heating process after taking out a molded product by the previous molding shot and before the next shot. However, there is a problem that the molding cycle time becomes long. Further, even if the surface of the cavity is heated, the temperature of the entire mold is low, so the heat is absorbed more and more, and there is a problem that substantial heating takes a long time. Further, even if heating is performed for such a long time, there is a problem that the cavity surface temperature is lowered within a few seconds until the mold is closed and the mold is injected, and a sufficient effect cannot be obtained. The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an injection molding die and an injection molding method capable of molding a molded article having extremely high precision transferability in a short cycle time.

【0005】[0005]

【課題を解決するための手段】上記構成からなる本発明
の射出成形金型を、図1に示される符号を付して説明す
れば、固定側と可動側と、その間にキャビティ部を有す
る射出成形金型において、キャビティ部を構成する入子
1と、この入子1の内部を連通する気体連通孔2と、こ
の気体連通孔2の途中で、且つキャビティ表面近傍に設
けられた通気性部材3と、前記気体連通孔2内に配設さ
れた気体加熱用ヒータ4とを備えることとした。
The injection molding die of the present invention having the above-described structure will be described with reference to the reference numerals shown in FIG. 1. The injection molding has a fixed side, a movable side and a cavity portion therebetween. In a molding die, an insert 1 forming a cavity, a gas communication hole 2 communicating with the inside of the insert 1, and a gas permeable member provided in the middle of the gas communication hole 2 and near the cavity surface. 3 and the heater 4 for heating the gas arranged in the gas communication hole 2.

【0006】[0006]

【作用】上記構成からなる本発明おいては、図2に示す
ように、前回のショットによる成形品を取り出す数秒前
にヒータ4の電源をONにする。そして、成形品を取り
出した後、気体連通孔2に気体を通す。気体はヒータ4
にて加熱された後、通気性部材3を通過する。ここで、
通気性部材3は多孔質構造になっており、気体と接触す
る面積が広いため、加熱された気体が通過性部材3を通
過すると気体の持つ熱量は効率よく通気性部材3に蓄熱
される。従って、通気性部材3は極めて早く加熱され、
その熱量がキャビティ面5に伝達されて高温状態に保た
れる。型締後、キャビティ面5が高温(成形する樹脂の
ガラス転移点以上)に保たれている状態で溶融樹脂を射
出充填する。その後、成形品の厚肉部の温度が均一にな
った後、ヒータ4の電源をOFFする。ヒータ4を切る
ことにより通気性部材3を通過する気体は冷たくなり、
成形品を冷却することができる。成形品が冷却された
後、気体の流入を止める。その後、成形品を取り出す為
に金型を開く。このとき、同時に気体加熱用ヒータ4の
電源をONし、次のショットの為に予備加熱しておく。
予備加熱することにより次に気体を流したときにすぐに
高温気体にすることができる。また、予備加熱しても、
気体は流していないことと、ヒータ4からキャビティ面
5までに距離があることから、成形突き出しに影響を及
ぼすことはない。
In the present invention having the above structure, as shown in FIG. 2, the heater 4 is turned on a few seconds before the molded product obtained by the previous shot is taken out. Then, after taking out the molded product, gas is passed through the gas communication hole 2. Gas is heater 4
After being heated at, it passes through the breathable member 3. here,
Since the gas permeable member 3 has a porous structure and has a large area in contact with the gas, when the heated gas passes through the gas permeable member 3, the heat quantity of the gas is efficiently stored in the gas permeable member 3. Therefore, the breathable member 3 is heated very quickly,
The amount of heat is transferred to the cavity surface 5 and kept at a high temperature. After the mold is clamped, the molten resin is injected and filled while the cavity surface 5 is kept at a high temperature (above the glass transition point of the resin to be molded). After that, after the temperature of the thick portion of the molded product becomes uniform, the power source of the heater 4 is turned off. By turning off the heater 4, the gas passing through the breathable member 3 becomes cooler,
The molded product can be cooled. After the molded article has cooled, the inflow of gas is stopped. After that, the mold is opened to take out the molded product. At this time, at the same time, the gas heating heater 4 is turned on to preheat it for the next shot.
By preheating, a high temperature gas can be obtained immediately when the gas is made to flow next time. Also, even if it is preheated,
Since no gas is flowing and there is a distance from the heater 4 to the cavity surface 5, it does not affect the molding protrusion.

【0007】以下、添付図面を参照して本発明に係る射
出成形金型および射出成形方法の実施例を説明する。な
お、図面の説明において同一の要素には同一符号を付
し、重複する説明を省略する。
Embodiments of an injection molding die and an injection molding method according to the present invention will be described below with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0008】[0008]

【実施例1】まず、本発明の実施例1を説明する。図3
は射出成形金型を示す断面図、図4はこの金型に用いら
れる入子を示す断面図である。図において、6は可動側
取付板、7は固定側取付板でそれぞれ図示しない成形機
のプラテンに固定されている。8は可動板、9は固定
板、10は可動側入子、11は固定側入子であり、可動
側入子10と固定側入子11に挟まれた領域には、樹脂
が注入されるキャビティ部12が形成されている。ま
た、可動側入子10は突出板13に固定されており、型
開時に可動板8内をパーティング面と直角方向に摺動で
きる。また、固定側入子11は固定板9内に固定されて
いる。
First Embodiment First, a first embodiment of the present invention will be described. Figure 3
Is a cross-sectional view showing an injection molding die, and FIG. 4 is a cross-sectional view showing an insert used in this die. In the figure, 6 is a movable side mounting plate, and 7 is a fixed side mounting plate, which are fixed to a platen of a molding machine (not shown). 8 is a movable plate, 9 is a fixed plate, 10 is a movable side insert, 11 is a fixed side insert, and resin is injected into a region sandwiched between the movable side insert 10 and the fixed side insert 11. The cavity portion 12 is formed. Further, the movable insert 10 is fixed to the projecting plate 13, and can slide in the movable plate 8 in the direction perpendicular to the parting surface when the mold is opened. Further, the fixed side insert 11 is fixed in the fixed plate 9.

【0009】可動側入子10は、図4に示す如く、底面
部には気体流入孔14が形成され、この孔14と気体圧
送装置25とはホース16で接続されている。気体流入
孔14に連通する気体連通孔15は、可動側入子10の
底面部の中心から、キャビティ表面に向けた円筒状の孔
として設けられており、さらにこれに連通して、可動側
入子10内部の外周部にも円筒状の孔が複数個開いてお
り、それらの孔は気体流出孔17に通じている。可動側
入子10中心部の気体連通孔15の内部には熱電対を内
蔵したコイルヒータ18が埋設されており、外部に設置
した温度コントローラ19に接続されている。可動側入
子10内のキャビティ表面近傍には厚さ数mmの通気性
部材(例えばポーセラックスII 品種PM30(新東
工業株式会社))20が心材21に固定され、その外側
には0.1〜1.0mm厚のニッケルメッキ22が施し
てある。この通気性部材20は前記気体連通孔15に通
じている。即ち、気体流入孔14から流入した気体は通
気性部材20を通過して気体流出孔17から流出するこ
とになる。
As shown in FIG. 4, the movable insert 10 has a gas inflow hole 14 formed in the bottom surface thereof, and the hole 14 and the gas pressure feeding device 25 are connected by a hose 16. The gas communication hole 15 communicating with the gas inflow hole 14 is provided as a cylindrical hole from the center of the bottom surface portion of the movable side insert 10 toward the cavity surface, and further communicates with this to form a movable side insertion hole. A plurality of cylindrical holes are also formed in the outer peripheral portion inside the child 10, and these holes communicate with the gas outflow holes 17. A coil heater 18 having a built-in thermocouple is embedded in the gas communication hole 15 at the center of the movable-side insert 10 and connected to a temperature controller 19 installed outside. In the vicinity of the cavity surface in the movable side insert 10, a breathable member 20 having a thickness of several millimeters (for example, porcerax II type PM30 (Shinto Kogyo Co., Ltd.)) 20 is fixed to the core material 21, and 0.1 is provided outside thereof. A nickel plating 22 having a thickness of 1.0 mm is applied. The breathable member 20 communicates with the gas communication hole 15. That is, the gas flowing in from the gas inflow hole 14 passes through the gas permeable member 20 and flows out from the gas outflow hole 17.

【0010】固定側入子11は可動側入子10と同様な
構造になっている。気体流入孔23は固定板9内部に開
いた孔24を通じ気体圧送装置25と接続されており、
気体流出孔26は固定板9内部に開いた孔27を通じ外
部に開放している。その他の部分は可動側と同様に、コ
イルヒータ28、通気性部材29、気体連通孔30およ
びニッケルメッキ31から構成されている。
The fixed-side insert 11 has the same structure as the movable-side insert 10. The gas inflow hole 23 is connected to the gas pressure feeding device 25 through a hole 24 opened inside the fixing plate 9,
The gas outflow hole 26 is open to the outside through a hole 27 opened inside the fixed plate 9. Other parts are composed of the coil heater 28, the air permeable member 29, the gas communication hole 30, and the nickel plating 31, as in the movable side.

【0011】このように構成された実施例の射出成形金
型を使用するに際しては、成形品を取り出す数秒前の型
開時にコイルヒータ18,28の電源をONにする。こ
のときの設定温度は樹脂の熱転移点より20℃程度高い
温度にしておく(例えばPC樹脂の場合165℃前後、
PMMA樹脂の場合130℃前後)。その後、成形品を
取り出した後、気体圧送装置25を作動させ、気体連通
孔15,30にエアーを通す。(なお、エアーに代えて
窒素等の不活性の気体にしてもよい。)エアーはヒータ
18,28にて加熱された後、通気性部材20,29を
通過する。加熱エアーが通過するとその熱は通気性部材
20,29に伝達され、さらにキャビティ表面のニッケ
ルメッキ22,31を加熱する。型締後、キャビティ表
面が加熱された状態で溶融樹脂を射出充填し、数秒後、
ヒータ18,28の電源をOFFにする。その後、エア
ーの流入量を減らし、成形品が冷却された後、気体の流
入を止めてから成形品を取り出す。
When using the injection molding die of the embodiment thus constructed, the coil heaters 18, 28 are turned on when the mold is opened a few seconds before the molded product is taken out. The set temperature at this time is set to a temperature about 20 ° C. higher than the heat transition point of the resin (for example, in the case of PC resin, about 165 ° C.,
(Around 130 ° C for PMMA resin). Then, after taking out the molded product, the gas pressure feeding device 25 is operated to pass air through the gas communication holes 15 and 30. (Note that an inert gas such as nitrogen may be used instead of air.) The air is heated by the heaters 18 and 28 and then passes through the breathable members 20 and 29. When the heated air passes, the heat is transferred to the breathable members 20, 29, and further heats the nickel platings 22, 31 on the surfaces of the cavities. After clamping the mold, inject and fill the molten resin with the cavity surface heated, and after a few seconds,
The power sources of the heaters 18 and 28 are turned off. After that, the inflow amount of air is reduced, and after the molded product is cooled, the inflow of gas is stopped and the molded product is taken out.

【0012】以上の手順に従って射出成形を行えば、通
気性部材20,29に加熱エアーを通すことにより数秒
でキャビティ面のニッケルメッキ22,31を加熱する
ことができる。また、ニッケルメッキ層も薄いため、加
熱・冷却の応答性に優れる。そのため、従来は加熱に時
間がかかっていたヒートサイクル成形を短時間で実現で
きる効果がある。また、流入エアーの量をコントロール
すれば、冷却曲線を微妙にコントロールできる。また、
通気性部材20,29の内部を均一に気体が通過するた
め、キャビティ面の部分的な温度ムラも少ない。また、
成形品全体(厚肉部も薄肉部も)を熱転移点より高温状
態の均一状態にした後で冷却を開始するので、通常のヒ
ートサイクル成形同様、高精度な転写性を有する成形品
を得ることができる。
If injection molding is performed according to the above procedure, the nickel plating 22 and 31 on the cavity surface can be heated in a few seconds by passing heated air through the breathable members 20 and 29. Moreover, since the nickel plating layer is thin, the response of heating / cooling is excellent. Therefore, there is an effect that heat cycle molding, which conventionally takes time to heat, can be realized in a short time. Also, the cooling curve can be delicately controlled by controlling the amount of inflowing air. Also,
Since the gas uniformly passes through the inside of the breathable members 20 and 29, there is little local temperature unevenness on the cavity surface. Also,
Cooling is started after the entire molded product (both thick and thin parts) is in a state of higher temperature than the heat transition point, so that a molded product with highly accurate transferability can be obtained as in normal heat cycle molding. be able to.

【0013】[0013]

【実施例2】次に、本発明の実施例2を説明する。図5
は、射出成形金型を示す全体断面図であり、図6は本実
施例に用いられるヒータを説明する図であり、図7はキ
ャビティ表面温度の変化を説明する図である。実施例1
においてはキャビティ部が異なる平面形状をしていた
が、本実施例においては凹レンズ形状をしている。その
為、可動側入子32のキャビティ面は球面形状をしてい
る。可動側入子32内に固定された通気性部材33のキ
ャビティ面側の形状も球面形状をしている。また、通気
性部材33の反キャビティ面側の中心部には円筒状の孔
34が開いており、気体連通孔35に通じている。ま
た、ヒータ36には図6に示すような膜ヒータをロール
状に回転巻きしたものを用いている。
Second Embodiment Next, a second embodiment of the present invention will be described. Figure 5
FIG. 6 is an overall cross-sectional view showing an injection mold, FIG. 6 is a view for explaining a heater used in this embodiment, and FIG. 7 is a view for explaining changes in cavity surface temperature. Example 1
In the above, the cavity portion had a different planar shape, but in this embodiment, it has a concave lens shape. Therefore, the cavity surface of the movable insert 32 has a spherical shape. The shape of the breathable member 33 fixed in the movable side insert 32 on the cavity surface side is also spherical. Further, a cylindrical hole 34 is opened in the center of the air permeable member 33 on the side opposite to the cavity surface, and communicates with the gas communication hole 35. Further, as the heater 36, a film heater as shown in FIG. 6 which is wound in a roll shape is used.

【0014】このように通気性部材33の形状が凸形状
をしている場合には、中心部において肉厚が厚くなって
しまうため、加熱気体が肉厚の厚い部分に行き届かない
ことがある。そこで本実施例では、通気性部材33の肉
厚の厚い部分に円筒状の孔34を開けることにより、高
温気体の熱を均等にキャビティ面に伝達するようにし
た。また、本実施例の場合、エアーが回転巻きされたロ
ール状の膜ヒータ36の隙間を通過することにより加熱
されるため、ヒータの熱を効率良くエアーに伝えること
ができる。
When the breathable member 33 has a convex shape as described above, the wall thickness becomes thicker at the central portion, so that the heated gas may not reach the thick wall portion. . Therefore, in this embodiment, the heat of the high temperature gas is evenly transferred to the cavity surface by forming the cylindrical hole 34 in the thick portion of the breathable member 33. In addition, in the case of the present embodiment, since the air is heated by passing through the gap of the roll-shaped film heater 36 which is wound by rotation, the heat of the heater can be efficiently transmitted to the air.

【0015】本実施例のレンズは、中心肉厚が1mm、
外周部の最大肉厚が2.5mm、外径φ20mmであ
る。このようなレンズでは肉厚1mmの部分が充填時の
高温状態から固化状態になるのに約5〜6秒程度かかる
のに対して、肉厚2.5mmの部分は約30秒程度必要
とする。よって通常の成形を行うと冷却初期の内圧の高
い状態で固化する薄肉部の収縮率は小さくなり、冷却末
期の内圧の低い状態で固化する厚肉部は収縮率が大きく
なり面形状にうねりを生じてしまう(内圧は樹脂の収縮
と共に時間がたつにつれて低下する)。そこで本実施例
では、射出前に加熱エアーを通気性部材33に通すこと
によりキャビティ表面温度を樹脂のガラス転移点以上に
しておく。その状態で射出し、厚肉部の温度が薄肉部の
温度と同じになるまで加熱エアーを送りつづける。具体
的には、射出充填後から約30秒程度、キャビティ表面
温度を樹脂のガラス転移点以上に保持する。その後、ヒ
ータの電源をOFFし、さらにキャビティ部を徐冷する
ためにエアーの流量を少なくする。(それでも冷却速度
が早いようだったらエアーの流入を完全にとめてしまっ
ても構わない。)図7はPC樹脂を用いて成形した場合
のキャビティ表面の温度の変化図である。射出後のキャ
ビティ部全体が160℃の均一温度になる。ガラス転移
点温度以上の為、圧力の伝達ができ、圧力的に均一な状
態である。この状態から取り出し温度まで冷却するの
で、薄肉部と厚肉部はほとんど同じ内圧状態で冷却でき
る。したがって、部分的な収縮率の差がほとんど発生せ
ず、極めて高精度なプラスチックレンズを得ることがで
きる。本実施例の場合、サイクルタイム75秒であり、
ほとんど従来の標準成形と同じ生産性で成形できた。
The lens of this embodiment has a center wall thickness of 1 mm,
The outer peripheral portion has a maximum thickness of 2.5 mm and an outer diameter of 20 mm. In such a lens, it takes about 5 to 6 seconds for a portion having a thickness of 1 mm to be solidified from a high temperature state at the time of filling, whereas a portion having a thickness of 2.5 mm requires about 30 seconds. . Therefore, when normal molding is performed, the shrinkage rate of the thin-walled part that solidifies in the high internal pressure state at the beginning of cooling is small, and the shrinkage rate of the thick-walled part that solidifies at the low internal pressure state at the end of cooling is large, resulting in waviness (Internal pressure decreases with time as the resin shrinks). Therefore, in this embodiment, the cavity surface temperature is set to the glass transition point of the resin or higher by passing heated air through the breathable member 33 before injection. Inject in that state, and continue to send heated air until the temperature of the thick portion becomes the same as the temperature of the thin portion. Specifically, the cavity surface temperature is maintained above the glass transition point of the resin for about 30 seconds after injection filling. After that, the power of the heater is turned off, and the flow rate of air is reduced to gradually cool the cavity. (If the cooling rate is still high, the inflow of air may be completely stopped.) FIG. 7 is a temperature change diagram of the cavity surface when molding is performed using PC resin. After injection, the entire cavity has a uniform temperature of 160 ° C. Since the temperature is above the glass transition temperature, pressure can be transmitted and the pressure is uniform. Since cooling is performed from this state to the take-out temperature, the thin portion and the thick portion can be cooled under almost the same internal pressure state. Therefore, there is almost no difference in the shrinkage ratio, and a highly accurate plastic lens can be obtained. In the case of this embodiment, the cycle time is 75 seconds,
Molding was possible with almost the same productivity as conventional standard molding.

【0016】[0016]

【実施例3】次に、本発明の実施例3を説明する。図8
は、射出成形金型の入子を示す断面図であり、図9は、
キャビティ表面温度の変化を説明する図である。図示の
通り、本実施例ではキャビティ表面がフレネル形状37
の入子38を使用することとした。
Third Embodiment Next, a third embodiment of the present invention will be described. Figure 8
FIG. 9 is a cross-sectional view showing the insert of the injection molding die, and FIG.
It is a figure explaining the change of cavity surface temperature. As illustrated, in this embodiment, the cavity surface has a Fresnel shape 37.
It was decided to use the nest 38 of the above.

【0017】本実施例のヒートサイクル成形の目的はフ
レネル形状37の高充填性であるため、加熱して充填
後、すぐにヒータ39の電源をOFFする。そして、で
きるだけ早く冷却する為にエアーは金型を開ける直前ま
で同じ状態で流し続ける。
Since the purpose of the heat cycle molding of this embodiment is the high filling property of the Fresnel shape 37, the heater 39 is turned off immediately after heating and filling. Then, in order to cool as quickly as possible, air continues to flow in the same state until just before opening the mold.

【0018】このように充填直後から冷却エアーを流し
続けると、極めてハイサイクルで高充填されたフレネル
を成形することができる。具体的には、本実施例でPM
MA樹脂を使用したところ、約17秒のサイクルで成形
することができた。
In this way, if cooling air continues to flow immediately after filling, it is possible to form a highly filled Fresnel with an extremely high cycle. Specifically, in this embodiment, PM
When MA resin was used, molding could be performed in a cycle of about 17 seconds.

【0019】[0019]

【発明の効果】以上のように本発明の射出成形金型およ
び射出成形方法によれば、通気性部材に高温気体を通す
ことにより極めて高速にキャビティ面を加熱あるいは冷
却することができるため、ヒートサイクル成形時間を大
幅に短縮することができる。また、通気性部材の内部を
均一に気体が通過する為、部分的な温度ムラも少ない。
さらに、成形品全体(厚肉部も薄肉部も)を熱転移点よ
り高温状態の均一状態にした後で冷却を開始するので、
極めて高精度な転写性を有する成形品を得ることができ
る。
As described above, according to the injection molding die and the injection molding method of the present invention, the cavity surface can be heated or cooled at an extremely high speed by passing a high temperature gas through the gas permeable member. The cycle molding time can be significantly reduced. Moreover, since the gas uniformly passes through the inside of the breathable member, there is little local temperature unevenness.
Furthermore, cooling is started after the entire molded product (both thick and thin parts) is brought into a uniform state where the temperature is higher than the thermal transition point.
It is possible to obtain a molded product having extremely high precision transferability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による射出成形金型の基本構成を示す概
念図である。
FIG. 1 is a conceptual diagram showing a basic configuration of an injection molding die according to the present invention.

【図2】本発明による射出成形方法によるキャビティ表
面温度の変化を説明する図である。
FIG. 2 is a diagram illustrating a change in cavity surface temperature by the injection molding method according to the present invention.

【図3】本発明の実施例1の射出成形金型を示す断面図
である。
FIG. 3 is a cross-sectional view showing an injection molding die of Example 1 of the present invention.

【図4】本発明の実施例1の金型に用いられる入子を示
す断面図である。
FIG. 4 is a cross-sectional view showing an insert used in the mold of Example 1 of the present invention.

【図5】本発明の実施例2の射出成形金型を示す全体断
面図である。
FIG. 5 is an overall cross-sectional view showing an injection molding die of Example 2 of the present invention.

【図6】本発明の実施例2に用いられるヒータを説明す
る図である。
FIG. 6 is a diagram illustrating a heater used in a second embodiment of the present invention.

【図7】本発明の実施例2のキャビティ表面温度の変化
を説明する図である。
FIG. 7 is a diagram illustrating a change in cavity surface temperature according to the second embodiment of the present invention.

【図8】本発明の実施例3の金型に用いられる入子を示
す断面図である。
FIG. 8 is a cross-sectional view showing an insert used in a mold of Example 3 of the present invention.

【図9】本発明の実施例3のキャビティ表面温度の変化
を説明する図である。
FIG. 9 is a diagram illustrating a change in cavity surface temperature according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 入子 2 気体連通孔 3 連通性部材 4 気体加熱用ヒータ 5 キャビティ面 1 Nest 2 Gas communication hole 3 Communication member 4 Gas heating heater 5 Cavity surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固定側と可動側と、その間にキャビティ
部を有する射出成形金型において、キャビティ部を構成
する入子と、この入子の内部を連通する気体連通孔と、
この気体連通孔の途中で、且つキャビティ表面近傍に設
けられた通気性部材と、前記気体連通孔内に配設された
気体加熱用ヒータとを備えたことを特徴とする射出成形
金型。
1. An injection molding die having a fixed side, a movable side, and a cavity portion therebetween, and a nest forming the cavity portion and a gas communication hole communicating the inside of the nest.
An injection mold comprising: a gas permeable member provided in the vicinity of the cavity surface in the middle of the gas communication hole, and a gas heating heater arranged in the gas communication hole.
【請求項2】 請求項1記載の射出成形金型を用いて射
出成形する際に、入子の内部に設けられた気体加熱用ヒ
ータに通電し、気体連通孔に気体を流通させてキャビテ
ィ表面近傍に設けられた通気性部材を樹脂のガラス転移
点温度以上に加熱し、その後、キャビティ部に樹脂を充
填し、キャビティ内部の厚肉部の樹脂温度が均一になっ
た後、気体加熱用ヒータの電源を切り、成形品を冷却す
ることを特徴とする射出成形方法。
2. When the injection molding die according to claim 1 is used for injection molding, a heater for heating gas provided inside the insert is energized to allow the gas to flow through the gas communication hole and the cavity surface. A gas heating heater is used after heating an air-permeable member provided in the vicinity above the glass transition temperature of the resin, and then filling the resin in the cavity to make the resin temperature in the thick portion inside the cavity uniform. The injection molding method is characterized in that the power of is turned off and the molded product is cooled.
JP19414493A 1993-07-09 1993-07-09 Injection mold and injection molding method Pending JPH0724890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19414493A JPH0724890A (en) 1993-07-09 1993-07-09 Injection mold and injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19414493A JPH0724890A (en) 1993-07-09 1993-07-09 Injection mold and injection molding method

Publications (1)

Publication Number Publication Date
JPH0724890A true JPH0724890A (en) 1995-01-27

Family

ID=16319651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19414493A Pending JPH0724890A (en) 1993-07-09 1993-07-09 Injection mold and injection molding method

Country Status (1)

Country Link
JP (1) JPH0724890A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067979A1 (en) * 1999-05-06 2000-11-16 Mitsui Chemicals, Incorporated Synthetic resin forming metal mold, metal mold temperature regulating device, and metal mold temperature regulating method
JP2014031018A (en) * 2013-10-02 2014-02-20 Panasonic Corp Mold for resin injection molding, and injection molding method using mold
ITTO20130071A1 (en) * 2013-01-29 2014-07-30 Fiat Group Automobiles Spa MOLD, IN PARTICULAR FOR THE CONSTRUCTION OF COMPONENTS IN PLASTIC MATERIAL
CN105922514A (en) * 2016-07-06 2016-09-07 健大电业制品(昆山)有限公司 Mould with relatively good ventilating and cooling effects
CN113352549A (en) * 2020-03-04 2021-09-07 苏州金锦泰模塑科技有限公司 Structure for accelerating cooling of injection mold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067979A1 (en) * 1999-05-06 2000-11-16 Mitsui Chemicals, Incorporated Synthetic resin forming metal mold, metal mold temperature regulating device, and metal mold temperature regulating method
US6936206B1 (en) 1999-05-06 2005-08-30 Mitsui Chemicals, Inc. Synthetic resin molding mold, apparatus for and method of adjusting a temperature of the mold
ITTO20130071A1 (en) * 2013-01-29 2014-07-30 Fiat Group Automobiles Spa MOLD, IN PARTICULAR FOR THE CONSTRUCTION OF COMPONENTS IN PLASTIC MATERIAL
JP2014031018A (en) * 2013-10-02 2014-02-20 Panasonic Corp Mold for resin injection molding, and injection molding method using mold
CN105922514A (en) * 2016-07-06 2016-09-07 健大电业制品(昆山)有限公司 Mould with relatively good ventilating and cooling effects
CN113352549A (en) * 2020-03-04 2021-09-07 苏州金锦泰模塑科技有限公司 Structure for accelerating cooling of injection mold

Similar Documents

Publication Publication Date Title
JPH0724890A (en) Injection mold and injection molding method
JPH08244072A (en) Injection mold and molding method
JPH06315961A (en) Method and apparatus for injection molding without causing visible sink mark on product
JPH1177762A (en) Injection molding die and manufacture of injection molded product
JPH10296733A (en) Molding method for improving sinkmark and mold temperature controlling system
JP2003136561A (en) Injection mold for annular molded product and method for molding annular molded product
JPH11115013A (en) Plastic injection molding method
EP0846542B1 (en) Method of and apparatus for injection moulding a plastic substrate using a plurality of separate temperature adjusting means
JPS63296912A (en) Injection molding device
JPH08156028A (en) Injection mold and injection molding method
JPH04163119A (en) Manufacture of plastic molded item
JP3438908B2 (en) Heat cycle system for injection molding
JPS61182918A (en) Injection compression mold
JPH0421574B2 (en)
JPS6374618A (en) Plastic molding die for disk board
JPH05253963A (en) Rotary molding apparatus
JPS61290024A (en) Mold for molding plastic lens
JPH053373B2 (en)
JP2001096584A (en) Plastic molding apparatus
JPH04284217A (en) Hot runner type molding device
JPH09183146A (en) Method for injection molding and mold for injection molding
JPH02229018A (en) Mold
JP2004330609A (en) Method and apparatus for molding cylindrical molding
JPH11320621A (en) Mold for molding plastic molded article and method for molding
JPS6360724A (en) Injection molding method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021008