JPH09183146A - Method for injection molding and mold for injection molding - Google Patents

Method for injection molding and mold for injection molding

Info

Publication number
JPH09183146A
JPH09183146A JP34401095A JP34401095A JPH09183146A JP H09183146 A JPH09183146 A JP H09183146A JP 34401095 A JP34401095 A JP 34401095A JP 34401095 A JP34401095 A JP 34401095A JP H09183146 A JPH09183146 A JP H09183146A
Authority
JP
Japan
Prior art keywords
temperature
mirror surface
cavity
injection molding
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34401095A
Other languages
Japanese (ja)
Inventor
Kazuo Nitta
和男 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP34401095A priority Critical patent/JPH09183146A/en
Publication of JPH09183146A publication Critical patent/JPH09183146A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To mold a lens with good molding accuracy even with a relatively simple mold structure even when an optical lens with a large difference in thickness between a thick part and a thin part is molded. SOLUTION: A mirror surface core piece 3 on the fixed side and a mirror surface core piece 4 on the movable side are slidably provided on a mold plate 1 on the fixed side and a mold plate 2 on the movable side. Heaters 6 and 7 are respectively provided at the center in each of the mirror surface core pieces 3 and 4. Electric wires 11 are connected to the heaters 6 and 7 and the electric wires 11 are connected to an electric source 9 through a controller 10 and a controller junction point 10a. A thermocouple 13a for detecting the temp. around a thick part and a thermocouple 13b for detecting the temp. around a thin part are provided in the neighborhood of mirror surface parts 3a and 3b of the mirror surface core pieces 3 and 4 and each of the thermocouples 3a and 13b is connected to the controller 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学レンズ等のよ
うな比較的高い精度を要する部品を容易かつ高精度に成
形することができる射出成形方法および射出成形用金型
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection molding method and an injection molding die capable of easily and highly accurately molding a component such as an optical lens which requires relatively high accuracy.

【0002】[0002]

【従来の技術】従来、光学レンズの成形は一般のモール
ド部品と同様に油や水等を熱媒体とし、温度調節器によ
り金型温度を一定温度に調節して行う方法が一般的に用
いられていた。しかし、この時の設定温度は成形樹脂固
有のガラス転移温度以下に設定されているため、冷却速
度が大きい場合には成形品内部とスキン層との間に極端
な温度差を生じてしまい、内部歪みの残留による品質の
劣化を引き起こす結果となる。
2. Description of the Related Art Conventionally, a method of molding an optical lens is generally used, in which oil or water is used as a heat medium and a mold temperature is adjusted to a constant temperature by a temperature controller, as in general mold parts. Was there. However, since the set temperature at this time is set below the glass transition temperature peculiar to the molding resin, if the cooling rate is high, an extreme temperature difference will occur between the inside of the molded product and the skin layer, and This results in deterioration of quality due to residual distortion.

【0003】そこで、上記欠点を解決すべく、例えば特
開平3−219936号公報には以下のような発明が提
案されている。上記発明の射出成形方法は、キャビティ
に射出充填された溶融プラスチックを冷却してレンズを
成形するにあたり、レンズ成形体の肉厚分布により異な
る固化速度を、厚肉部分に対しては冷却により強制的に
促進し、薄肉部分に対しては電磁誘導加熱または加熱流
体等による加熱により遅らせて等しく制御する方法であ
る。
Therefore, in order to solve the above-mentioned drawbacks, for example, Japanese Patent Laid-Open No. 3-219936 proposes the following invention. In the injection molding method of the above invention, when the molten plastic injected into the cavity is cooled to mold the lens, the solidification speed that varies depending on the wall thickness distribution of the lens molded body is forced by cooling the thick wall portion. In this method, the thin portion is delayed and controlled equally by electromagnetic induction heating or heating with a heating fluid.

【0004】上記方法に用いられる金型装置の一つは、
成形品が凸レンズの場合、冷却手段を備えた固定および
可動のベース金型と、それらベース金型の内部の入子型
と、その一対の入子型のパーティング部に設けられた凸
レンズ成形用のキャビティと、両入子型のキャビティ側
周囲に設けた電磁誘導加熱手段または加熱流体による加
熱手段と、両入子型の中央部に設けた流路による冷却手
段とからなる。
One of the mold apparatuses used in the above method is
When the molded product is a convex lens, a fixed and movable base mold provided with a cooling means, a nest mold inside the base mold, and a convex lens molding provided in the parting part of the pair of nest molds. 2), the electromagnetic induction heating means or the heating fluid heating means provided around the cavity side of the double insert mold, and the cooling means by the flow path provided in the central part of the double insert mold.

【0005】また金型装置の他の一つは、一対の入子型
のパーティング部に設けられた凹レンズ成形用のキャビ
ティと、両入子型のキャビティ側中央部に設けた電磁誘
導加熱または加熱流体による加熱手段と、両入子型の周
縁に沿って設けた流路による冷却手段とからなる。
Another one of the mold apparatuses is a cavity for molding a concave lens provided in a parting portion of a pair of nesting dies, and an electromagnetic induction heating provided in the center of the cavity of both nesting dies. The heating means is constituted by a heating fluid, and the cooling means is constituted by a flow path provided along the peripheral edges of the double insert mold.

【0006】さらに、金型装置の上記加熱および冷却手
段を、両入子型のキャビティ側の中央部と周縁部とに同
心円に設けた冷却流路と、各冷却流路に収容した電磁コ
イルによる電磁誘導加熱の両方から構成され、そこに設
けられたキャビティの形状に合わせてその両方を加熱ま
たは冷却用として交互使用を可能とし、キャビティのみ
の交換で凹凸両方のレンズの成形に使用できる構成より
なる。
Further, the heating and cooling means of the mold device are constituted by cooling passages provided concentrically in the central portion and the peripheral portion on the cavity side of the double insert die, and electromagnetic coils housed in the respective cooling passages. It is composed of both electromagnetic induction heating, and both can be used alternately for heating or cooling according to the shape of the cavity provided in it, and it can be used for molding both concave and convex lenses by exchanging only the cavity Become.

【0007】上記加熱と冷却手段とを備えた入子型の複
数組を、冷却手段を備えた固定および可動のベース金型
の所要箇所へ等間隔に内設し、各入子型内のキャビティ
を固定側ベース金型の中央から配設されたランナーと接
続して多数個取りの成形金型を構成した際には、入子型
相互の熱の干渉を断つ冷却路が上記ベース金型と入子型
との間に設けられる。
A plurality of sets of nesting dies having the above-mentioned heating and cooling means are internally provided at required intervals in fixed and movable base dies provided with cooling means, and cavities in each nesting die are provided. When connecting to the runner arranged from the center of the fixed side base mold to form a multi-cavity molding mold, the cooling path that cuts off the heat interference between the nested molds is the same as the base mold. It is provided between the insert type.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記特
開平3−219936号公報記載の発明においては以下
のような欠点がある。すなわち、成形品の内部歪みを緩
和するために厚肉部分と薄肉部分とのそれぞれの固化速
度を冷却手段あるいは加熱手段によってほぼ等しくしよ
うとするものであるため、温度制御が極めて困難であ
る。また、そのための装置も複雑なものとなってしま
う。さらに、キャビティの表面は全体的に温度分布が不
均一なものとなるために熱膨張の差異が生じ、キャビテ
ィ表面の面精度が悪化してしまうことも欠点の一つとし
て挙げられる。
However, the invention described in JP-A-3-219936 has the following drawbacks. That is, in order to alleviate the internal strain of the molded product, the solidification rates of the thick-walled portion and the thin-walled portion are made approximately equal by the cooling means or the heating means, so that temperature control is extremely difficult. Also, the device for that purpose becomes complicated. Another drawback is that the surface of the cavity has a non-uniform temperature distribution as a whole, which causes a difference in thermal expansion and deteriorates the surface accuracy of the cavity surface.

【0009】請求項1の課題は、比較的簡単な金型構造
でキャビティ内の樹脂の温度制御を行うことができ、し
かも高い面精度を確保することが可能な成形方法を提供
することにある。請求項2および3の課題は、成形品の
成形精度を更に良好かつ安定的とすることのできる射出
成形用金型を提供することにある。
An object of the present invention is to provide a molding method capable of controlling the temperature of the resin in the cavity with a relatively simple mold structure and ensuring a high surface accuracy. . It is an object of claims 2 and 3 to provide an injection molding die capable of further improving the molding accuracy of a molded product and making it stable.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、金型
キャビティを形成する鏡面駒に温度調節器を有する発熱
体を装填し、キャビティ温度を自在に制御して成形する
射出成形方法において、前記キャビティ内に射出した溶
融樹脂がガラス転移温度よりも高い温度域に存在する間
に前記発熱体でキャビティ表面を溶融樹脂のガラス転移
温度以上の域まで加熱し、キャビティ内の樹脂の低温部
と高温部とのそれぞれの温度差の絶対値が最小値付近と
なるまでキャビティ表面を一定温度に保持した後、前記
発熱体の稼動を停止して溶融樹脂をガラス転移温度以下
の域まで冷却することを特徴とする射出成形方法であ
る。
According to a first aspect of the invention, there is provided an injection molding method in which a heating element having a temperature controller is loaded on a mirror surface piece forming a mold cavity, and the cavity temperature is freely controlled for molding. While the molten resin injected into the cavity exists in a temperature range higher than the glass transition temperature, the heating element heats the surface of the cavity to a temperature equal to or higher than the glass transition temperature of the molten resin to cool the resin in the cavity. After maintaining the cavity surface at a constant temperature until the absolute value of the temperature difference between the high temperature part and the high temperature part is close to the minimum value, the operation of the heating element is stopped and the molten resin is cooled to a region below the glass transition temperature. It is an injection molding method characterized by the above.

【0011】請求項1の発明においては、型締めが完了
すると射出成形機から型締め完了信号が出力され、コン
トローラにより発熱体作動信号が出力される。これによ
り発熱体の加熱が開始され、この発熱体からの熱伝導に
よってこれを保持するキャビティ鏡面駒は成形樹脂のガ
ラス転移温度以上の域における適切な温度に調節され
る。溶融樹脂のキャビティへの射出はキャビティ表面が
樹脂のガラス転移温度を越えた時点で行われる。
According to the first aspect of the invention, when the mold clamping is completed, the injection molding machine outputs a mold clamping completion signal, and the controller outputs a heating element operation signal. As a result, heating of the heating element is started, and the cavity mirror surface piece holding the heating element is adjusted to an appropriate temperature in the region above the glass transition temperature of the molding resin by heat conduction from the heating element. The injection of the molten resin into the cavity is performed when the surface of the cavity exceeds the glass transition temperature of the resin.

【0012】この後、冷却工程が開始されるが、キャビ
ティ表面は成形樹脂のガラス転移温度以上の温度に調節
されているため、完全に固化されない状態で樹脂温は先
ずこの時のキャビティ温度付近において安定しようとす
る。この状態を、成形品の低温部すなわち薄肉部と高温
部すなわち厚肉部との温度差の絶対値が最小となるまで
保持する。これにより、キャビティ内の樹脂の温度分布
はほぼ均一となる。
After this, the cooling process is started, but since the cavity surface is adjusted to a temperature not lower than the glass transition temperature of the molding resin, the resin temperature is first in the vicinity of the cavity temperature at this time without being completely solidified. Try to stabilize. This state is maintained until the absolute value of the temperature difference between the low temperature portion, that is, the thin portion and the high temperature portion, that is, the thick portion of the molded product becomes the minimum. As a result, the temperature distribution of the resin in the cavity becomes substantially uniform.

【0013】しかる後、発熱体の作動は停止され、キャ
ビティ表面は樹脂のガラス転移温度以下の域まで冷却さ
れるが、薄肉部と厚肉部との温度差がほとんどない状態
で冷却されるため、内部の残留応力や不均一な収縮分布
を生じることはない。これにより、極めて良好な面精度
を持つレンズが成形される。そして、取り出し温度まで
冷却された後、成形されたレンズは金型外へ取り出され
る。
After that, the operation of the heating element is stopped, and the cavity surface is cooled to a region below the glass transition temperature of the resin, but is cooled in a state where there is almost no temperature difference between the thin portion and the thick portion. No internal residual stress or uneven shrinkage distribution is generated. As a result, a lens having extremely good surface accuracy is molded. Then, after being cooled to the take-out temperature, the molded lens is taken out of the mold.

【0014】請求項2の発明は、キャビティを形成する
鏡面駒に温度調節器を有する少なくとも一つの発熱体を
装填し、キャビティ温度を自在に制御し得る射出成形用
金型において、前記発熱体と前記鏡面駒に形成された鏡
面部との間に低熱伝導部材の断熱層を設けたことを特徴
とする射出成形用金型である。
According to a second aspect of the present invention, there is provided an injection molding die in which at least one heating element having a temperature controller is loaded on a mirror surface piece forming a cavity, and the cavity temperature can be freely controlled. The mold for injection molding is characterized in that a heat insulating layer of a low heat conductive member is provided between the mirror surface portion formed on the mirror surface piece.

【0015】請求項2の発明においては、キャビティ鏡
面駒の鏡面部と該鏡面駒に装填された発熱体との間には
低熱伝導部材の断熱層が形成されている。この断熱層に
より、鏡面部において発熱体加熱初期に発熱体近傍のみ
が高温となることはなく、比較的均一な温度分布で鏡面
を昇温する。これにより、成形品の成形精度は常に良好
かつ安定的となる。
According to the second aspect of the present invention, the heat insulating layer of the low heat conductive member is formed between the mirror surface portion of the cavity mirror surface piece and the heating element loaded in the mirror surface piece. With this heat insulating layer, in the mirror surface portion, only the vicinity of the heating element does not have a high temperature at the beginning of heating the heating element, and the mirror surface is heated with a relatively uniform temperature distribution. As a result, the molding accuracy of the molded product is always good and stable.

【0016】請求項3の発明は、前記断熱層が空気層で
あることを特徴とする請求項2記載の射出成形用金型で
ある。請求項3の発明においては、断熱層を空気層とし
たことにより、鏡面方向への直接的な熱伝導が抑制さ
れ、更に均一な温度分布で鏡面を昇温する。
The invention of claim 3 is the injection molding die according to claim 2, wherein the heat insulating layer is an air layer. In the invention of claim 3, since the heat insulation layer is an air layer, direct heat conduction in the mirror surface direction is suppressed, and the temperature of the mirror surface is further raised with a uniform temperature distribution.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)図1〜図3は本実施の形態を示し、図
1は用いる装置の概略構成図、図2は射出成形方法のフ
ローチャート、図3は射出直後の樹脂温降下を高温部と
低温部とに分けて示したグラフである。固定側型板1と
可動側型板2とには互いに軸を同じにしてそれぞれ凹面
を有する固定側鏡面駒3および可動側鏡面駒4が摺動可
能に具備されている。キャビティ5は、これらの鏡面駒
3,4の鏡面部3a,4aを突き合わせることにより形
成される。なお、鏡面形状は両側凹形状のみに限らず、
凹形状と凸形状とのいかなる組み合わせでも構わない。
(Embodiment 1) FIGS. 1 to 3 show this embodiment, FIG. 1 is a schematic configuration diagram of an apparatus used, FIG. 2 is a flow chart of an injection molding method, and FIG. It is the graph which divided and showed in the low temperature part. The fixed-side mold plate 1 and the movable-side mold plate 2 are slidably provided with a fixed-side mirror surface piece 3 and a movable-side mirror surface piece 4 having the same axis and having concave surfaces. The cavity 5 is formed by abutting the mirror surface portions 3a, 4a of these mirror surface pieces 3, 4 together. The mirror surface shape is not limited to the concave shape on both sides,
Any combination of concave and convex shapes may be used.

【0018】各鏡面駒3,4の内部中央には、鏡面部3
a,4aから一定の距離Hを介してそれぞれ一つずつ円
筒形状のヒータ6,7が具備されている。ヒータ6,7
には電線11が接続されており、電線11はコントロー
ラ10,コントローラ接点10aを介して電源9に接続
されている。ヒータ6,7と鏡面部3a,4aとの間の
一定距離Hは、樹脂圧によって撓みを生じることがほと
んどない程度の距離である。
The mirror surface portion 3 is provided at the center of the inside of each mirror surface piece 3, 4.
Cylindrical heaters 6 and 7 are provided one by one at a fixed distance H from a and 4a. Heaters 6,7
An electric wire 11 is connected to the electric wire 11, and the electric wire 11 is connected to the power source 9 via the controller 10 and the controller contact 10a. The constant distance H between the heaters 6 and 7 and the mirror surface portions 3a and 4a is such that the resin pressure hardly causes bending.

【0019】さらに、各鏡面駒3,4の鏡面部3a,4
a近傍には厚肉部付近温度検知用の熱電対13aと薄肉
部付近温度検知用の熱電対13bとが設けられており、
各熱電対13a,13bはコントローラ10に接続され
ている。なお、図1中の8aはスプル、8bはランナ
ー、12はエジェクタピンを示している。この他、10
0は射出成形機を示しており、射出成形機100はコン
トローラ10に接続されている。
Further, the mirror surface portions 3a, 4 of each mirror surface piece 3, 4
A thermocouple 13a for detecting a temperature near a thick portion and a thermocouple 13b for detecting a temperature near a thin portion are provided near a.
Each thermocouple 13a, 13b is connected to the controller 10. In FIG. 1, 8a is a sprue, 8b is a runner, and 12 is an ejector pin. Other than this, 10
Reference numeral 0 indicates an injection molding machine, and the injection molding machine 100 is connected to the controller 10.

【0020】以上の構成からなる装置を用いての射出成
形方法は、型締めが完了すると射出成形機100から型
締め完了信号が出力され、コントローラ10によりヒー
タ加熱信号が出力される。これにより、コントローラ接
点10aが閉じ、固定側および可動側のヒータ6,7は
加熱を開始する。このヒータ6,7からの熱伝導によ
り、これを保持する各鏡面駒3,4の鏡面部3a,4a
は成形樹脂のガラス転移温度以上の域における適切な温
度に調整される。
In the injection molding method using the apparatus having the above construction, when the mold clamping is completed, the injection molding machine 100 outputs a mold clamping completion signal, and the controller 10 outputs a heater heating signal. As a result, the controller contact 10a is closed, and the fixed-side and movable-side heaters 6 and 7 start heating. By heat conduction from the heaters 6 and 7, the mirror surface portions 3a and 4a of the mirror surface pieces 3 and 4 for holding the heaters 6 and 7 are held.
Is adjusted to an appropriate temperature in the range above the glass transition temperature of the molding resin.

【0021】各鏡面駒3,4の鏡面部3a,4aが樹脂
のガラス転移温度を越えた時点で溶融樹脂がキャビティ
5に射出される。この時の樹脂温は薄肉部および厚肉部
に関わらず、図3における0sec時の値に相当する。
この後、冷却工程が開始されるが、鏡面部3a,4aは
成形樹脂のガラス転移温度以上の温度に調節されている
ため、樹脂温は先ずこの時のキャビティ5温度付近にお
いて安定しようとする。但し、この時の樹脂はガラス転
移温度以上の域にあるため、完全には固化されていな
い。
The molten resin is injected into the cavity 5 when the mirror surface portions 3a, 4a of the mirror surface pieces 3, 4 exceed the glass transition temperature of the resin. The resin temperature at this time corresponds to the value at 0 sec in FIG. 3 regardless of the thin portion and the thick portion.
After this, the cooling step is started, but since the mirror surface portions 3a, 4a are adjusted to a temperature above the glass transition temperature of the molding resin, the resin temperature first tries to stabilize near the temperature of the cavity 5 at this time. However, since the resin at this time is in the range of the glass transition temperature or higher, it is not completely solidified.

【0022】上記状態を成形樹脂の低温部と高温部との
温度差の絶対値が最小値付近となるまで保持し、この数
値を近似的に厚肉部付近に設けた熱電対13aと薄肉部
付近に設けた熱電対13bとを介してコントローラ10
によって検知する。検知後、コントローラ10よりヒー
タ非加熱信号が出力され、コントローラ接点10aが開
く。ここまでが、図3における300sec時までの樹
脂温傾向を示すものである。
The above state is maintained until the absolute value of the temperature difference between the low temperature part and the high temperature part of the molding resin becomes close to the minimum value, and this value is approximated to the thermocouple 13a provided near the thick part and the thin part. Controller 10 via thermocouple 13b provided in the vicinity
Detect by. After the detection, the controller 10 outputs a heater non-heating signal, and the controller contact 10a opens. Up to this point, the resin temperature tendency up to 300 seconds in FIG. 3 is shown.

【0023】コントローラ接点10aが開くことにより
各ヒータ6,7は非導通となり、各鏡面駒3,4はガラ
ス転移温度以下まで冷却される。この時、樹脂における
薄肉部と厚肉部との温度差がほぼ最小の状態で冷却され
るため、内部の残留応力や不均一な収縮分布を生じるこ
とはない。これにより、極めて良好な面精度を持つレン
ズを成形することができる。しかる後、レンズは取り出
し可能な温度となり、スプル8aおよびランナー8bと
ともに可動側鏡面駒4およびエジェクタピン12に突き
出され、金型外へ取り出される。
When the controller contact 10a is opened, the heaters 6 and 7 are rendered non-conductive, and the mirror surface pieces 3 and 4 are cooled to the glass transition temperature or lower. At this time, since the resin is cooled in a state where the temperature difference between the thin portion and the thick portion is substantially minimum, no internal residual stress or uneven shrinkage distribution occurs. This makes it possible to mold a lens with extremely good surface accuracy. Thereafter, the temperature of the lens reaches a temperature at which it can be taken out, and the lens is ejected to the movable side mirror surface piece 4 and the ejector pin 12 together with the sprue 8a and the runner 8b and taken out of the mold.

【0024】本実施の形態によれば、温度制御可能な発
熱体を鏡面駒内に装填し、成形樹脂のガラス転移温度よ
りも高い温度範囲で成形樹脂の温度分布を均一化した
後、取り出し温度まで冷却するものである。因って、厚
肉部と薄肉部との肉厚差の大きな光学レンズを成形する
場合においても、比較的簡単な金型構造でありながら良
好な成形精度を得ることができる等、生産効率の飛躍的
な向上に貢献することができる。
According to the present embodiment, a heating element whose temperature is controllable is loaded in the mirror surface piece, the temperature distribution of the molding resin is made uniform in the temperature range higher than the glass transition temperature of the molding resin, and then the take-out temperature is set. To cool down. Therefore, even when molding an optical lens having a large difference in wall thickness between the thick portion and the thin portion, it is possible to obtain good molding accuracy even with a relatively simple mold structure. It can contribute to a dramatic improvement.

【0025】尚、本実施の形態では300secでヒー
タをOFFとしたが、より多くの時間を費やせば、更に
薄肉部と厚肉部との温度差を小さくすることができ、よ
り良好な面精度を持ったレンズを得ることが出来る。
In the present embodiment, the heater is turned off at 300 seconds, but if more time is spent, the temperature difference between the thin portion and the thick portion can be further reduced, and a better surface can be obtained. It is possible to obtain a lens with accuracy.

【0026】(実施の形態2)図4は本実施の形態を示
す要部拡大断面図である。本実施の形態では、前記実施
の形態1で用いた装置の各鏡面駒3,4に断熱層を設け
て構成した点が異なり、他の構成は同様な構成部分から
成るもので、同一構成部分には同一番号を付してその説
明を省略する。本実施の形態における断熱層は、固定側
鏡面駒3および可動側鏡面駒4に具備される各ヒータ
6,7のそれぞれの挿入穴6a,7aの鏡面側最深部に
円錐形状の空間6b,7bをそれぞれ設けたものであ
る。
(Embodiment 2) FIG. 4 is an enlarged sectional view of an essential part showing this embodiment. The present embodiment is different in that it is configured by providing a heat insulating layer on each mirror surface piece 3 and 4 of the apparatus used in the first embodiment, and other configurations are made up of the same components, and the same components are the same. Are assigned the same numbers and their explanations are omitted. The heat insulating layer in the present embodiment is a conical space 6b, 7b at the mirror surface-side deepest part of the insertion holes 6a, 7a of the heaters 6, 7 provided in the fixed side mirror surface piece 3 and the movable side mirror surface piece 4, respectively. Are provided respectively.

【0027】以上の構成からなる装置は、固定側および
可動側の各ヒータ6,7が加熱を開始すると、熱伝導に
より各鏡面駒3,4も昇温を始める。しかし、ヒータ挿
入穴6a,7aの円錐形状の空間6b,7bにより鏡面
方向への直接的な熱伝導は抑制されるため、鏡面部3
a,4aにおける不均一な温度分布が発生することはな
い。これにより、個々の鏡面駒3,4の鏡面部3a,4
aはそれぞれ均一的な温度分布に保持され、鏡面駒3,
4自体の偏った熱膨張による面精度劣化を阻止する。
In the apparatus having the above-mentioned structure, when the fixed and movable heaters 6 and 7 start heating, the temperature of each mirror surface piece 3 and 4 also starts to increase due to heat conduction. However, since the conical spaces 6b and 7b of the heater insertion holes 6a and 7a suppress direct heat conduction in the mirror surface direction, the mirror surface portion 3
A non-uniform temperature distribution does not occur in a and 4a. As a result, the mirror surface portions 3a, 4 of the individual mirror surface pieces 3, 4 are
a is maintained in a uniform temperature distribution, and the mirror surface piece 3,
This prevents deterioration of surface accuracy due to uneven thermal expansion of 4 itself.

【0028】本実施の形態によれば、個々の鏡面駒をそ
れぞれ均一的な温度分布に保持し、鏡面駒自体の偏った
熱膨張による面精度劣化を阻止することができる。因っ
て、厚肉部と薄肉部との肉厚差の大きな光学レンズを成
形する場合においても、更に良好な面精度を有したレン
ズを成形することができる等、種々の効果を発揮するこ
とができる。
According to the present embodiment, it is possible to keep the individual mirror surface pieces in a uniform temperature distribution and prevent deterioration of surface accuracy due to uneven thermal expansion of the mirror surface pieces themselves. Therefore, even when an optical lens having a large difference in thickness between the thick portion and the thin portion is formed, it is possible to form a lens having better surface accuracy, and to exert various effects. You can

【0029】尚、本実施の形態では各挿入穴6a,7a
の鏡面側最深部を空間6b,7bとしたが、本発明は空
間6b,7b(空間といえども空気は充填されている)
に限定するものではなく、ヒータ6,7の熱を直接鏡面
部3a,4aに伝えない断熱部材で構成しても良い。例
えば、セラミックス等の耐熱性の有る断熱部材を存在さ
せることでも同等の効果が得られる。
In this embodiment, the insertion holes 6a and 7a are provided.
The spaces 6b and 7b are the deepest portions on the mirror surface side of the present invention, but in the present invention, the spaces 6b and 7b (even though the space is filled with air).
However, the heat of the heaters 6 and 7 may not be directly transmitted to the mirror surface portions 3a and 4a. For example, even if a heat insulating member having heat resistance such as ceramics is present, the same effect can be obtained.

【0030】また、各空間6b,7bの形状について
も、円錐形状に限定されるものではなく、鏡面駒3,4
の鏡面部3a,4a方向へ対するヒータ6,7の面積を
覆う程度の大きさを有するものであれば、その材質に応
じて本発明の主旨を損なわない範囲で任意の形状をとり
得るものである。
Further, the shape of each space 6b, 7b is not limited to the conical shape, and the mirror surface pieces 3, 4
As long as it has a size enough to cover the area of the heaters 6 and 7 facing the mirror surface portions 3a and 4a, it may have any shape depending on the material thereof without departing from the gist of the present invention. is there.

【0031】[0031]

【発明の効果】請求項1の効果は、温度制御可能な発熱
体を鏡面駒内に装填し、成形樹脂のガラス転移温度より
も高い温度範囲で成形樹脂の温度分布を均一化した後、
取り出し温度まで冷却するものであり、厚肉部と薄肉部
との肉厚差の大きな光学レンズを成形する場合において
も、比較的簡単な金型構造でありながら良好な成形精度
を得ることができる
The effect of claim 1 is that after the temperature-controllable heating element is loaded in the mirror surface piece and the temperature distribution of the molding resin is made uniform in the temperature range higher than the glass transition temperature of the molding resin,
It cools down to the take-out temperature, and even when molding an optical lens with a large difference in wall thickness between the thick part and the thin part, it is possible to obtain good molding accuracy with a relatively simple mold structure.

【0032】請求項2および3の効果は、個々の鏡面駒
をそれぞれ均一的な温度分布に保持し、鏡面駒自体の偏
った熱膨張による面精度劣化を阻止することで、更に良
好な面精度を有したレンズを成形することができる。
The effects of the second and third aspects are that the individual mirror surface pieces are each kept in a uniform temperature distribution and the deterioration of the surface accuracy due to the uneven thermal expansion of the mirror surface piece itself is prevented. It is possible to mold a lens having

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment.

【図2】実施の形態1を示すフローチャートである。FIG. 2 is a flowchart showing the first embodiment.

【図3】実施の形態1を示すグラフである。FIG. 3 is a graph showing the first embodiment.

【図4】実施の形態2を示す要部拡大断面図である。FIG. 4 is an enlarged sectional view of essential parts showing a second embodiment.

【符号の説明】[Explanation of symbols]

1 固定側型板 2 可動側型板 3 固定側鏡面駒 4 可動側鏡面駒 5 キャビティ 6,7 ヒータ 8a スプル 8b ランナー 9 電源 10 コントローラ 10a コントローラ接点 11 電線 12 エジェクタピン 13a,13b 熱電対 100 射出成形機 1 Fixed-side mold plate 2 Movable-side mold plate 3 Fixed-side mirror surface piece 4 Movable-side mirror surface piece 5 Cavity 6,7 Heater 8a Sprue 8b Runner 9 Power supply 10 Controller 10a Controller contact 11 Wire 12 Ejector pin 13a, 13b Thermocouple 100 Injection molding Machine

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金型キャビティを形成する鏡面駒に温度
調節器を有する発熱体を装填し、キャビティ温度を自在
に制御して成形する射出成形方法において、前記キャビ
ティ内に射出した溶融樹脂がガラス転移温度よりも高い
温度域に存在する間に前記発熱体でキャビティ表面を溶
融樹脂のガラス転移温度以上の域まで加熱し、キャビテ
ィ内の樹脂の低温部と高温部とのそれぞれの温度差の絶
対値が最小値付近となるまでキャビティ表面を一定温度
に保持した後、前記発熱体の稼動を停止して溶融樹脂を
ガラス転移温度以下の域まで冷却することを特徴とする
射出成形方法。
1. An injection molding method in which a heating element having a temperature controller is loaded on a mirror surface piece forming a mold cavity and molding is performed by freely controlling the cavity temperature, and the molten resin injected into the cavity is glass. While existing in the temperature range higher than the transition temperature, the cavity surface is heated by the heating element to a region above the glass transition temperature of the molten resin, and the absolute temperature difference between the low temperature part and the high temperature part of the resin in the cavity is absolute. An injection molding method, characterized in that the cavity surface is kept at a constant temperature until the value becomes close to the minimum value, and then the operation of the heating element is stopped to cool the molten resin to a region below the glass transition temperature.
【請求項2】 キャビティを形成する鏡面駒に温度調節
器を有する少なくとも一つの発熱体を装填し、キャビテ
ィ温度を自在に制御し得る射出成形用金型において、前
記発熱体と前記鏡面駒に形成された鏡面部との間に断熱
層を設けたことを特徴とする射出成形用金型。
2. An injection molding die in which at least one heating element having a temperature controller is loaded on a mirror surface piece forming a cavity, and the cavity temperature is freely controlled, and the heating element and the mirror surface piece are formed. An injection molding die, characterized in that a heat insulating layer is provided between the heat insulating layer and the mirror surface portion.
【請求項3】 前記断熱層が空気層であることを特徴と
する請求項2記載の射出成形用金型。
3. The injection molding die according to claim 2, wherein the heat insulating layer is an air layer.
JP34401095A 1995-12-28 1995-12-28 Method for injection molding and mold for injection molding Withdrawn JPH09183146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34401095A JPH09183146A (en) 1995-12-28 1995-12-28 Method for injection molding and mold for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34401095A JPH09183146A (en) 1995-12-28 1995-12-28 Method for injection molding and mold for injection molding

Publications (1)

Publication Number Publication Date
JPH09183146A true JPH09183146A (en) 1997-07-15

Family

ID=18365967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34401095A Withdrawn JPH09183146A (en) 1995-12-28 1995-12-28 Method for injection molding and mold for injection molding

Country Status (1)

Country Link
JP (1) JPH09183146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188909A (en) * 2007-02-06 2008-08-21 Olympus Corp Injection molding machine/method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188909A (en) * 2007-02-06 2008-08-21 Olympus Corp Injection molding machine/method

Similar Documents

Publication Publication Date Title
JP4865734B2 (en) Mold equipment for injection molding machines
JPH08238623A (en) Method and device for producing synthetic resin component part
JP2001113580A (en) Injection molding machine
JPH0137252B2 (en)
JP4467980B2 (en) Injection molding method for optical parts made of thermoplastic synthetic materials
JP2000127175A (en) Molding machine
JP3946813B2 (en) Molding method to improve sink marks
JP2009172945A (en) Heating system and heating method for molding metallic mold and method of manufacturing resin molded article
JPH10315292A (en) Method and device for plastic molding
JPH09183146A (en) Method for injection molding and mold for injection molding
JP2003112246A (en) Die for metal alloy injection molding
JP2003094158A (en) Nozzle apparatus for metal injection molding machine
JPH05124077A (en) Manufacture of plastic molding
JPH0724890A (en) Injection mold and injection molding method
JP2828161B2 (en) Plastic molding equipment
JPH09104048A (en) Apparatus and method for heating and heating/cooling mold
JPH0596576A (en) Mold
JP3719757B2 (en) Mold and molding method
JPH04284217A (en) Hot runner type molding device
EP0846542B1 (en) Method of and apparatus for injection moulding a plastic substrate using a plurality of separate temperature adjusting means
JP2001096578A (en) Plastic molding apparatus
JPH11320621A (en) Mold for molding plastic molded article and method for molding
JP2510575B2 (en) Molding temperature analysis method for molded products
JP2002103405A (en) Method and mold for molding optical element
JP2001300999A (en) Method and apparatus for molding injection-molded article, and molding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304