JP2008188909A - Injection molding machine/method - Google Patents

Injection molding machine/method Download PDF

Info

Publication number
JP2008188909A
JP2008188909A JP2007026877A JP2007026877A JP2008188909A JP 2008188909 A JP2008188909 A JP 2008188909A JP 2007026877 A JP2007026877 A JP 2007026877A JP 2007026877 A JP2007026877 A JP 2007026877A JP 2008188909 A JP2008188909 A JP 2008188909A
Authority
JP
Japan
Prior art keywords
cavity
temperature
injection molding
mold
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007026877A
Other languages
Japanese (ja)
Other versions
JP4767192B2 (en
Inventor
Kazuhiro Kikumori
一洋 菊森
Jun Inahashi
潤 稲橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007026877A priority Critical patent/JP4767192B2/en
Publication of JP2008188909A publication Critical patent/JP2008188909A/en
Application granted granted Critical
Publication of JP4767192B2 publication Critical patent/JP4767192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the dispersion of molding precision and finished product failure attributed to the dispersion of an internal temperature distribution of a molded object during cooling, in injection molding technique. <P>SOLUTION: First, a plurality of temperature sensors 3 is arranged equally around each of a plurality of cavities 4 formed in a mold 1, and the temperature distribution is detected by an external temperature detector 8. Further, in a calculation/control device 9, the temperature width T<SB>2</SB>around the individual cavity 4, is calculated from the temperature detected by the temperature sensor 3, and the timing of opening the mold 1 is controlled through a molding machine-side control device 10 so as to open the mold 1 at the point of time when the temperature width T<SB>2</SB>to the target temperature width T<SB>1</SB>when the molded object is unloaded from the preset cavity 4, is T<SB>1</SB>>T<SB>2</SB>and the relationship between the inter target cavity temperature difference T<SB>3</SB>and the intercavity temperature difference T<SB>4</SB>is T<SB>3</SB>>T<SB>4</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、射出成形技術に関し、たとえば、光学部品等の精密部品等の射出成形等に適用して有効な技術に関する。   The present invention relates to an injection molding technique, for example, a technique effective when applied to injection molding of precision parts such as optical parts.

通常、射出成形は、溶融樹脂を金型内に設けられたキャビティへ射出し、保圧を行い、その後冷却してから型を開き、成形品を取出すといった工程からなる。その中で保圧を掛ける時間や樹脂を冷却する時間は作業者が条件出し等の作業を行い、目標の成形品の形状や精度を得るために必要十分なある一定の時間を設定する。その中でも冷却時間は品質・サイクルタイムの面から非常に重要な条件である。   In general, injection molding includes a process of injecting molten resin into a cavity provided in a mold, holding pressure, then cooling, opening the mold, and taking out the molded product. The time during which pressure is applied and the time during which the resin is cooled are set by a worker to set a certain time that is necessary and sufficient to obtain the shape and accuracy of a target molded product. Among them, the cooling time is a very important condition in terms of quality and cycle time.

この冷却時間は主に金型内に充填される樹脂の温度と物性と金型の温度制御性能で決まり、この金型の温度制御は金型内に温度制御した水や油の温調媒体を通すことで行われている。   This cooling time is mainly determined by the temperature and physical properties of the resin filled in the mold and the temperature control performance of the mold. The temperature control of this mold is controlled by the temperature-controlled water or oil temperature control medium in the mold. It is done by passing.

しかしながら、この温調媒体の流路は型構造や加工性の制約から必ずしも成形品を得る部分(密閉空間)であるキャビティに対して一様に、そしてキャビティの近くに温調媒体流路を確保することが出来ない。そのため、金型内に充填された樹脂は一様に冷却されず成形品内において温度分布が生じ、その結果として成形品の形状変化や精度の悪化に繋がる。   However, the temperature control medium flow path is uniform with respect to the cavity that is the part (sealed space) where the molded product is obtained (sealed space) due to restrictions on the mold structure and workability, and the temperature control medium flow path is secured near the cavity. I can't do it. For this reason, the resin filled in the mold is not uniformly cooled, and a temperature distribution is generated in the molded product. As a result, the shape of the molded product is changed and accuracy is deteriorated.

このような成形品内の温度分布は特に冷却時間が短い場合に顕著に現れ、冷却時間が長くなるにつれて、徐々に解消する傾向があることが知られている。よって、従来では冷却時間を長くとることで上述のような問題に対処しているが、それでは成形サイクルタイムが長くなり結果として、成形コストが上がる。   It is known that such a temperature distribution in the molded product appears prominently when the cooling time is short, and tends to gradually disappear as the cooling time increases. Therefore, conventionally, the above-mentioned problem is dealt with by taking a long cooling time. However, this increases the molding cycle time, resulting in an increase in molding cost.

また、前述のとおりこの冷却時間は一定としているため、連続成形時に外乱等の影響により金型温度等の成形条件がばらついた際、その影響はダイレクトに成形品に現れる。そのため、成形品の精度のバラツキが大きくなることが予想され非常に生産性が悪い。   Since the cooling time is constant as described above, when the molding conditions such as the mold temperature vary due to the influence of disturbance or the like during continuous molding, the influence directly appears on the molded product. Therefore, it is expected that the variation in accuracy of the molded product will increase, and the productivity is very poor.

その中で、成形品の冷却状態を把握しそれに基づいて冷却時間を定めることを目的として、特許文献1においては、金型内の温度を測定し、金型の温度上昇に応じて冷却時間を長くすることが提案されている。   Among them, for the purpose of grasping the cooling state of the molded product and determining the cooling time based thereon, in Patent Document 1, the temperature in the mold is measured, and the cooling time is set according to the temperature rise of the mold. Proposed to be longer.

また、特許文献2においては、射出成形品の表面温度を測定するように金型内に埋め込まれた温度センサからの温度出力が、予め設定された成形品温度に達した時に金型を開き、成形品を取出すように冷却時間を制御する方法が提案されている。   Moreover, in patent document 2, when the temperature output from the temperature sensor embedded in the mold so as to measure the surface temperature of the injection molded product reaches a preset molded product temperature, the mold is opened. A method of controlling the cooling time so as to take out the molded product has been proposed.

しかしながら、これらの特許文献1および特許文献2の方法では、いずれも金型内や成形品表面の温度を代表点の1点でしか測定していないため、成形品全体の冷却状態を完全に捉えているとは言い難く成形品全体に対しての最適な冷却時間で成形されていないことが懸念される。また、温度を測定する場所によって設定する値が変化することが予想され、温度測定場所によっては十分な効果が得られない可能性がある。
特開平6−254929号公報 特開平5−192977号公報
However, in both methods of Patent Document 1 and Patent Document 2, since the temperature inside the mold or the surface of the molded product is measured only at one representative point, the cooling state of the entire molded product is completely captured. It is difficult to say that there is a concern that the molded product is not molded with an optimal cooling time. Moreover, it is expected that the value to be set varies depending on the place where the temperature is measured, and there is a possibility that a sufficient effect may not be obtained depending on the place where the temperature is measured.
JP-A-6-254929 Japanese Patent Laid-Open No. 5-192777

本発明の目的は、射出成形技術において、冷却中の成形品内の温度分布のばらつきに起因する成形精度のばらつきや製品不良を減少させることにある。
本発明の他の目的は、必要以上に長い成形サイクルタイムを設定することなく、冷却中の成形品内の温度分布のばらつきに起因する成形精度のばらつきや製品不良を減少させることにある。
An object of the present invention is to reduce variations in molding accuracy and product defects due to variations in temperature distribution in a molded product during cooling in the injection molding technique.
Another object of the present invention is to reduce variations in molding accuracy and product defects caused by variations in temperature distribution in a molded product during cooling without setting a molding cycle time longer than necessary.

本発明の他の目的は、成形サイクルタイムの短縮、および成形精度のばらつきや製品不良の低減により、射出成形の生産性を向上させることにある。   Another object of the present invention is to improve injection molding productivity by shortening molding cycle time and reducing molding accuracy variation and product defects.

本発明の第1の観点は、成形型内のキャビティに溶融樹脂を射出し、保圧および冷却後、前記成形型を型開きして成形品を得る射出成形装置であって、
前記成形型の前記キャビティ周りに配置された複数の温度測定手段と、
前記温度測定手段によって検出された温度から前記キャビティの周りの温度幅T2を計算し、予め設定した前記キャビティから前記成形品を取出すときの目標温度幅T1に対し前記温度幅T2が、T1>T2となった時点で前記成形品を取出すために前記成形型を開くように前記射出成形装置を制御する制御手段と、
を含む射出成形装置を提供する。
A first aspect of the present invention is an injection molding apparatus for injecting a molten resin into a cavity in a mold, holding and cooling, and then opening the mold to obtain a molded product,
A plurality of temperature measuring means disposed around the cavity of the mold;
The temperature range T 2 of the surrounding from the detected temperature of the cavity by the temperature measuring means calculates, said temperature range T 2 with respect to the target temperature range T 1 of the case is taken out from the cavity preset the molded article, Control means for controlling the injection molding apparatus to open the mold for taking out the molded product when T 1 > T 2 ;
An injection molding apparatus is provided.

本発明の第2の観点は、成形型内の複数のキャビティに溶融樹脂を射出し、保圧および冷却後、前記成形型を型開きして複数の成形品を同時に成形する多数個取りの射出成形装置であって、
個々の前記キャビティの周りに一様に配置された複数の温度測定手段と、
個々の前記キャビティに関して、当該キャビティの周りに一様に配置された複数の前記温度測定手段によって検出された温度から平均値を算出し、前記平均値の中の最大値と最小値の差より計算されるキャビティ間温度差T4が、予め設定した前記キャビティから前記成形品を取出すときの目標キャビティ間温度差T3に対し、T3>T4の関係になった時点で前記成形品を取出すために型を開くように前記射出成形装置を制御する制御手段と、
を含む射出成形装置を提供する。
A second aspect of the present invention is a multi-cavity injection in which a molten resin is injected into a plurality of cavities in a mold, and after holding and cooling, the mold is opened to simultaneously mold a plurality of molded products. A molding device,
A plurality of temperature measuring means uniformly arranged around each said cavity;
For each of the cavities, an average value is calculated from the temperatures detected by the plurality of temperature measuring means uniformly arranged around the cavity, and is calculated from the difference between the maximum value and the minimum value among the average values. When the inter-cavity temperature difference T 4 is in a relationship of T 3 > T 4 with respect to the target inter-cavity temperature difference T 3 when the molded product is taken out from the preset cavity, the molded product is taken out. Control means for controlling the injection molding device to open the mold for
An injection molding apparatus is provided.

本発明の第3の観点は、成形型内のキャビティに溶融樹脂を射出し、保圧および/または冷却を行う工程と、
前記キャビティ周りに配置された複数の温度測定手段によって検出された温度から前記キャビティの周りの温度幅T2を計算し、前記温度幅T2が、予め設定した前記キャビティから成形品を取出すときの目標温度幅T1に対して、T1>T2となった時点で前記成形型を開く工程と、
を含む射出成形方法を提供する。
According to a third aspect of the present invention, a step of injecting a molten resin into a cavity in a mold and performing holding pressure and / or cooling,
The calculated temperature range T 2 of the around the cavity from the detected temperature by the plurality of temperature measuring means disposed around the cavity, the temperature range T 2 is, when taking out the molded article from the cavity to a preset Opening the mold when T 1 > T 2 with respect to the target temperature range T 1 ;
An injection molding method is provided.

本発明の第4の観点は、成形型内の複数のキャビティの各々に溶融樹脂を射出し、保圧および/または冷却を行う工程と、
個々の前記キャビティに対し、当該キャビティの周りに配置された温度測定手段によって検出された温度から平均値を算出し、個々の前記キャビティから計測された複数の前記平均値の中の最大値と最小値の差より計算されるキャビティ間温度差T4が予め設定した前記キャビティから成形品を取出すときの目標キャビティ間温度差T3に対し、T4<T3の関係になった時点で、前記成形型を開く工程と、
を含む射出成形方法を提供する。
According to a fourth aspect of the present invention, a step of injecting a molten resin into each of a plurality of cavities in a mold to perform pressure holding and / or cooling,
For each of the cavities, an average value is calculated from the temperatures detected by temperature measuring means disposed around the cavity, and a maximum value and a minimum value among a plurality of the average values measured from the individual cavities. When the inter-cavity temperature difference T 4 calculated from the difference between the values becomes T 4 <T 3 with respect to the target inter-cavity temperature difference T 3 when the molded product is taken out from the cavity, Opening the mold,
An injection molding method is provided.

本発明によれば、たとえば、キャビティの周りに複数の温度測定手段を設けることで、成形品全体の温度分布を把握し、それらの結果から成形品に対して最適な成形サイクルで成形をすることで、成形バラツキや成形品の不良の混入の確率を小さくし、生産性を向上させることができる。   According to the present invention, for example, by providing a plurality of temperature measuring means around the cavity, the temperature distribution of the entire molded product can be grasped, and the molded product can be molded with the optimal molding cycle from those results. Thus, it is possible to reduce the probability of mixing of molding variations and defective molded products, and to improve productivity.

すなわち、冷却中の成形品内の温度分布の状態を把握して、成形品全体を考慮した最適な冷却時間での成形が可能となり、必要以上に成形サイクルタイムを長く設定することなく、成形品の成形精度のばらつきが小さくなるとともに、製品不良を低減でき、射出成形の生産性が向上する。   In other words, it is possible to understand the temperature distribution in the molded product during cooling and to perform molding with the optimal cooling time considering the entire molded product, and without having to set the molding cycle time longer than necessary. The variation in molding accuracy is reduced, product defects can be reduced, and injection molding productivity is improved.

本発明によれば、射出成形技術において、冷却中の成形品内の温度分布のばらつきに起因する成形精度のばらつきや製品不良を減少させることができる。
また、必要以上に長い成形サイクルタイムを設定することなく、冷却中の成形品内の温度分布のばらつきに起因する成形精度のばらつきや製品不良を減少させることができる。
According to the present invention, in the injection molding technique, it is possible to reduce variations in molding accuracy and product defects caused by variations in temperature distribution in the molded product during cooling.
Moreover, it is possible to reduce variations in molding accuracy and product defects due to variations in temperature distribution in the molded product during cooling without setting a molding cycle time longer than necessary.

また、成形サイクルタイムの短縮、および成形精度のばらつきや製品不良の低減により、射出成形の生産性を向上させることができる。   Moreover, the productivity of injection molding can be improved by shortening the molding cycle time and reducing variations in molding accuracy and product defects.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
[実施の形態1]
(構成)
本発明の実施の形態1について、以下、図1Aおよび図1Bを用いて説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Embodiment 1]
(Constitution)
Embodiment 1 of the present invention will be described below with reference to FIGS. 1A and 1B.

図1Aは、本発明の一実施の形態である射出成形方法を実施する射出成形装置の概要を説明するための説明図であり、図1Bは、図1Aにおける線A−Aの部分の断面図である。   FIG. 1A is an explanatory diagram for explaining an outline of an injection molding apparatus that performs an injection molding method according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A. It is.

本実施の形態の射出成形装置100は、金型1(成形型)、温度検出器8、計算・制御装置9(制御手段)、成形機側制御装置10を含んでいる。
図1Aおよび図1Bに示すように金型1は、固定側金型1a、可動側金型1bからなり、この金型1内には複数のキャビティ4が形成されている。すなわち、本実施の形態の金型1は、一回の射出成形にて複数のキャビティ4から、複数個の成形品11を同時に成形する、いわゆる多数個取りの構成である。
The injection molding apparatus 100 of the present embodiment includes a mold 1 (molding die), a temperature detector 8, a calculation / control device 9 (control means), and a molding machine side control device 10.
As shown in FIGS. 1A and 1B, the mold 1 includes a fixed mold 1 a and a movable mold 1 b, and a plurality of cavities 4 are formed in the mold 1. That is, the mold 1 of the present embodiment has a so-called multi-cavity configuration in which a plurality of molded products 11 are simultaneously molded from a plurality of cavities 4 by one injection molding.

固定側金型1aおよび可動側金型1bには、対向方向に突出入子12がそれぞれ設けられ、その対向端面は、成形面12aおよび成形面12bを備えている。そして、固定側金型1aと可動側金型1bが密着した状態で、この成形面12aおよび成形面12bにより、密閉空間であるキャビティ4が形成される。   The fixed side mold 1a and the movable side mold 1b are provided with protruding inserts 12 in the opposing direction, and the opposing end faces are provided with a molding surface 12a and a molding surface 12b. Then, in a state where the fixed side mold 1a and the movable side mold 1b are in close contact, the molding surface 12a and the molding surface 12b form a cavity 4 that is a sealed space.

固定側金型1aの側には、複数のキャビティ4の配置領域の中央に開口するスプルー5と、このスプルー5から個々のキャビティ4に連通する放射状の複数のランナー6が設けられている。   On the fixed-side mold 1a side, a sprue 5 that opens to the center of the arrangement area of the plurality of cavities 4 and a plurality of radial runners 6 that communicate from the sprues 5 to the individual cavities 4 are provided.

そして、外部からスプルー5に注入される図示しない樹脂は、ランナー6、このランナー6と各キャビティ4の接続部に設けられた縮径部であるゲート7を経由して、個々のキャビティ4に充填され、成形面12a、成形面12bの形状が転写された外形形状の成形品11に成形される。   The resin (not shown) injected into the sprue 5 from the outside is filled into the individual cavities 4 via the runners 6 and the gates 7 which are the diameter-reduced portions provided at the connection portions between the runners 6 and the respective cavities 4. Then, it is molded into a molded product 11 having an outer shape to which the shapes of the molding surface 12a and the molding surface 12b are transferred.

金型1には、複数のキャビティ4の周りに、温調媒体流路2が設けられており、外部から、この温調媒体流路2に所望の温度の熱媒体を流通させることで、金型1のキャビティの温度が制御される構成となっている。   The mold 1 is provided with a temperature control medium flow path 2 around a plurality of cavities 4, and a heat medium having a desired temperature is circulated through the temperature control medium flow path 2 from the outside. The temperature of the cavity of the mold 1 is controlled.

本実施の形態の場合、個々のキャビティ4の周りには、複数の温度センサ3(温度測定手段)が埋設されている。この温度センサ3は、温度を検出する機能を備えた検出部3aと、検出結果の情報を外部の温度検出器8に伝達するための導線3bからなる。   In the case of the present embodiment, a plurality of temperature sensors 3 (temperature measurement means) are embedded around each cavity 4. The temperature sensor 3 includes a detection unit 3 a having a function of detecting a temperature, and a conductive wire 3 b for transmitting information of a detection result to an external temperature detector 8.

この場合、温度センサ3の検出部3aは、たとえば4個のキャビティ4の各々を取り囲むように壁面から同じ距離に3点、合計で12点設けてあり、これらは金型1の可動側金型1b、固定側金型1aの両方に設けてある。   In this case, the detection unit 3a of the temperature sensor 3 is provided with, for example, three points at the same distance from the wall so as to surround each of the four cavities 4, for a total of 12 points. 1b and the fixed side mold 1a.

本実施の形態1においては、たとえば、温度センサ3の検出部3aをキャビティの壁面から1.5mm、金型のパーティング面から深さ2mmの場所に、キャビティ4の回りに均等な配置角度(この場合、120°)で一様に配置している。   In the first embodiment, for example, the detection unit 3a of the temperature sensor 3 is placed at a uniform arrangement angle around the cavity 4 (1.5 mm from the wall of the cavity and 2 mm from the parting surface of the mold). In this case, they are uniformly arranged at 120 °.

また、この温度センサ3の検出部3aからの出力は、導線3bを介して温度検出器8に送られ、温度検出器8は温度センサ3からの信号を温度値に変換した結果を温度情報3cとして計算・制御装置9に送る。そして計算・制御装置9において、温度情報3cに基づいて出力された型開閉信号9aは成形機側制御装置10に送られ、射出成形装置100はその型開閉信号9aの如何によって、型開閉動作指令10aを出力することで、金型1の固定側金型1aに対する可動側金型1bの開閉動作等を行う。   Moreover, the output from the detection part 3a of this temperature sensor 3 is sent to the temperature detector 8 via the conducting wire 3b, and the temperature detector 8 converts the result of converting the signal from the temperature sensor 3 into a temperature value as temperature information 3c. To the calculation / control device 9 as follows. In the calculation / control apparatus 9, the mold opening / closing signal 9a output based on the temperature information 3c is sent to the molding machine side control apparatus 10, and the injection molding apparatus 100 determines the mold opening / closing operation command depending on the mold opening / closing signal 9a. By outputting 10a, the movable side mold 1b is opened and closed with respect to the fixed side mold 1a of the mold 1.

なお、本実施の形態において温度センサ3の検出部3aは、一例として、個々のキャビティ4の壁面から1.5mm、金型1のパーティング面から深さ2mmの位置に配置しているが、この距離はキャビティ4の壁面から近いほうが良い。   In the present embodiment, the detection unit 3a of the temperature sensor 3 is disposed at a position 1.5 mm from the wall surface of each cavity 4 and 2 mm from the parting surface of the mold 1 as an example. This distance should be close to the wall surface of the cavity 4.

(作用)
以下、図1A、図1B、図2、図3を用いて本実施の形態の射出成形装置100における成形処理の実施手順の一例を説明する。
(Function)
Hereinafter, an example of the procedure of the molding process in the injection molding apparatus 100 of the present embodiment will be described with reference to FIGS. 1A, 1B, 2, and 3.

図2は、本実施の形態を適用した射出成形装置の機能を説明するためのブロック図である。
個々の温度センサ3は、検出部3aの設置点で検出された個々のキャビティ4の温度の測定値を導線3bを介して、温度情報3cとして計算・制御装置9に伝達する。
FIG. 2 is a block diagram for explaining the function of the injection molding apparatus to which the present embodiment is applied.
Each temperature sensor 3 transmits the measured value of the temperature of each cavity 4 detected at the installation point of the detection unit 3a to the calculation / control apparatus 9 as temperature information 3c via the lead 3b.

計算・制御装置9は、外部から入力された目標温度幅T1、目標キャビティ間温度差T3、冷却上限時間tmax、許容連続不良上限数Nmaxと、温度センサ3から得られた個々のキャビティ4の温度の測定結果である温度情報3cとに基づいて、後述のような判定処理によって型開閉信号9aを成形機側制御装置10に出力する。 The calculation / control device 9 includes a target temperature width T 1 , a target inter-cavity temperature difference T 3 , a cooling upper limit time t max , an allowable continuous failure upper limit number N max, and individual temperatures obtained from the temperature sensors 3. Based on the temperature information 3c that is a measurement result of the temperature of the cavity 4, a mold opening / closing signal 9a is output to the molding machine side control device 10 by a determination process as described later.

成形機側制御装置10は、型開閉信号9aに基づいて、型開閉動作指令10aを金型1に出力して固定側金型1aに対する可動側金型1bの開閉動作を行わせる。
図3は計算・制御装置9内の動作を含む射出成形装置100の作用の一例を示すフローチャートである。
Based on the mold opening / closing signal 9a, the molding machine side controller 10 outputs a mold opening / closing operation command 10a to the mold 1 to cause the movable mold 1b to open / close with respect to the fixed mold 1a.
FIG. 3 is a flowchart showing an example of the operation of the injection molding apparatus 100 including the operation in the calculation / control apparatus 9.

まず、連続不良数nを0に初期化する(ステップ201)。
次に射出成形を開始する。すなわち、射出成形機の可塑化装置(図示せず)によって加熱溶融された樹脂は金型内のスプルー5に圧入され、ランナー6、ゲート7を通過し、成形品を得る部分であるキャビティ4に射出されて充填される(ステップ202)。
First, the number of consecutive defects n is initialized to 0 (step 201).
Next, injection molding is started. That is, the resin melted by heating by a plasticizing device (not shown) of an injection molding machine is press-fitted into the sprue 5 in the mold, passes through the runner 6 and the gate 7, and enters the cavity 4 which is a part for obtaining a molded product. It is injected and filled (step 202).

キャビティ4周りに埋設された各温度センサ3は樹脂の射出後、徐々に冷却されていく際のキャビティ4付近の温度変化をリアルタイムに検出し、その結果を計算・制御装置9に送る(ステップ203)。   Each temperature sensor 3 embedded around the cavity 4 detects in real time the temperature change in the vicinity of the cavity 4 when the resin is gradually cooled after injection of the resin, and sends the result to the calculation / control device 9 (step 203). ).

計算・制御装置9では、図3に示すように、まず入力された各温度センサ3の出力温度(温度情報3c)から、各キャビティ周りの温度幅T2(ステップ204)およびキャビティ間温度差T4(ステップ206、ステップ207)を計算する。 In the calculation / control apparatus 9, as shown in FIG. 3, first, from the input output temperature (temperature information 3c) of each temperature sensor 3, the temperature width T 2 around each cavity (step 204) and the inter-cavity temperature difference T 4 (Step 206, Step 207) is calculated.

ここでステップ204のキャビティ4周りの温度幅T2は、たとえば、一つのキャビティ4に対して、その周りに一様に配置された温度センサ3の出力値の中の最大値と最小値の差をとったものを指す。 Here, the temperature width T 2 around the cavity 4 in step 204 is, for example, the difference between the maximum value and the minimum value among the output values of the temperature sensor 3 arranged uniformly around one cavity 4. It refers to something taken.

また、ステップ207におけるキャビティ間温度差T4は、たとえば、ステップ206において各キャビティ4それぞれに対しその周りに配置された温度センサ3の出力を平均したものを各キャビティの平均温度とし、それらのキャビティ4の平均温度の中の最大値と最小値の差をとったものを指す。 The temperature difference T 4 between the cavities in step 207 is, for example, an average of the outputs of the temperature sensors 3 arranged around each cavity 4 in step 206 as an average temperature of each cavity. It indicates the difference between the maximum and minimum values among the average temperatures of 4.

次に、これら計算値と、あらかじめ計算・制御装置9に入力されている目標温度幅T1(ステップ205)および目標キャビティ間温度差T3(ステップ208)を比較し、各キャビティ4に対しT1>T2、なおかつT3>T4となっているかを判定する(ステップ209)。 Next, these calculated values are compared with the target temperature width T 1 (step 205) and the target inter-cavity temperature difference T 3 (step 208) that have been input to the calculation / control device 9 in advance. It is determined whether 1 > T 2 and T 3 > T 4 are satisfied (step 209).

そして、冷却時間tが冷却上限時間tmaxを超過する前に(ステップ213)、このような関係になった時点で成形機側制御装置10に型を開くように型開閉信号9aを送り(ステップ210)、成形機側制御装置10は型を開き、成形品を良品として取り出し(ステップ211)、ステップ201に戻って、連続不良数nを0に初期化した後、次の成形に進む。   Then, before the cooling time t exceeds the cooling upper limit time tmax (step 213), a mold opening / closing signal 9a is sent to the molding machine side control device 10 so as to open the mold when the relationship becomes such a relationship (step 210). ), The molding machine side control device 10 opens the mold, takes out the molded product as a non-defective product (step 211), returns to step 201, initializes the number of consecutive defects n to 0, and then proceeds to the next molding.

一方、上述のステップ209の判定で条件不成立の場合には、計算・制御装置9には冷却上限時間tmaxを予め入力し(ステップ212)、樹脂射出後の冷却時間tがt<tmaxの間に各キャビティに対しT1>T2、なおかつT3>T4とならない場合は(ステップ213)、連続不良数nを1加算するとともに(ステップ214)、その成形品を不良と判断し(ステップ215)、良品と判断された成形品とは区別して取出し(ステップ218)、ステップ202に戻り次の成形処理を開始する。 On the other hand, if the condition in step 209 is not satisfied, the cooling upper limit time t max is input to the calculation / control device 9 in advance (step 212), and the cooling time t after resin injection is t <t max . If T 1 > T 2 and T 3 > T 4 are not satisfied for each cavity (step 213), the number of consecutive defects n is incremented by 1 (step 214), and the molded product is determined to be defective ( Step 215), taking out the molded product which is determined to be non-defective (step 218), returning to step 202 and starting the next molding process.

また、ステップ218の前に、連続不良数nが、予め入力された一定数である許容連続不良上限数Nmax(ステップ216)だけ連続した場合には(ステップ217)、アラームを出し射出成形を中止する(ステップ219)。 Also, before the step 218, if the number of consecutive defects n continues for the upper limit number N max (step 216) of the allowable consecutive defects that is a predetermined number (step 216), an alarm is issued and injection molding is performed. Stop (step 219).

なお、上述の図3では、個々のキャビティ4の回りの温度幅T2と、複数のキャビティ4の間におけるキャビティ間温度差T4の両方の条件によって判定しているが、温調媒体流路2またはキャビティ間温度差T4のいずれか一方のみを用いた判定を行ってもよい。 In FIG. 3 described above, determination is made based on both conditions of the temperature width T 2 around each cavity 4 and the inter-cavity temperature difference T 4 between the plurality of cavities 4. one of only two or cavity between the temperature difference T 4 the determination may be performed using.

たとえば、金型1に単一のキャビティ4が設けられた、いわゆる一個取りの成形の場合には、この一つのキャビティ4の周りにおける温度幅T2のみによる判定となる。
また、本実施の形態2のように、金型1に複数のキャビティ4が設けられた多数個取りの場合には、上述のように温度幅T2およびキャビティ間温度差T4の両方を用いた判定に限らず、いずれか一方のみを用いた判定を行うこともできる。
For example, in the case of so-called single-piece molding in which a single cavity 4 is provided in the mold 1, the determination is based only on the temperature width T 2 around the single cavity 4.
Further, as in the second embodiment, when a plurality of cavities 4 are provided in the mold 1, both the temperature width T 2 and the inter-cavity temperature difference T 4 are used as described above. The determination using only one of them is also possible.

ここで、この目標温度幅T1および目標キャビティ間温度差T3は予備的な実験により求めるか、もしくは要求される成形品の精度を得られるように経験値あるいはシミュレーションにより設定する。一般的な指針としては、目標温度幅T1を小さく設定すると成形品の精度が良好になり、特に成形品のそりや寸法の非対称性を解消できる。また、目標キャビティ間温度差T3が小さいほど、キャビティ間の成形品の精度バラツキが小さくなり、安定した生産をすることが可能となる。 Here, the target temperature width T 1 and the target inter-cavity temperature difference T 3 are obtained by preliminary experiments or set by empirical values or simulations so as to obtain the required accuracy of the molded product. As a general guideline, if the target temperature width T 1 is set small, the accuracy of the molded product is improved, and in particular, warpage of the molded product and dimensional asymmetry can be eliminated. Further, the smaller the target inter-cavity temperature difference T 3 , the smaller the accuracy variation of the molded product between the cavities, and the more stable production becomes possible.

以下、このメカニズムについて図4を用いて説明する。金型1内に充填された樹脂は金型1の温調媒体流路2を流れる熱媒体による温度調節機能により徐々に冷却されていく。この金型1の温度調節は前述の通り金型内に温度制御した水や油の冷却媒体を通すことで行われるが、この温調媒体流路2は金型1の構造や、当該温調媒体流路2の加工上の制約等により成形品、つまりキャビティ4に対して必ずしも均等に配置することができない。そのため、樹脂を均等に冷却できず、成形品11内に温度分布が生じ、これに起因して成形品11内の熱収縮率にも分布が生じる。   Hereinafter, this mechanism will be described with reference to FIG. The resin filled in the mold 1 is gradually cooled by the temperature adjustment function by the heat medium flowing through the temperature control medium flow path 2 of the mold 1. The temperature control of the mold 1 is performed by passing a temperature-controlled water or oil cooling medium through the mold as described above. The temperature control medium flow path 2 has the structure of the mold 1 and the temperature control. Due to processing restrictions on the medium flow path 2, the molded product, that is, the cavities 4 cannot always be arranged uniformly. For this reason, the resin cannot be uniformly cooled, and a temperature distribution is generated in the molded product 11, and due to this, a distribution is also generated in the thermal shrinkage rate in the molded product 11.

たとえば、図4のような複数のキャビティ4の配置では、コ字形の経路の温調媒体流路2に近い右側の3つのキャビティ4の各々では、温調媒体流路2に近い側の冷却すなわち収縮が早く、温調媒体流路2から遠い反対側では、冷却すなわち収縮が遅くなる。   For example, in the arrangement of the plurality of cavities 4 as shown in FIG. 4, in each of the three cavities 4 on the right side close to the temperature control medium flow path 2 of the U-shaped path, On the opposite side far from the temperature control medium flow path 2, the cooling, that is, the shrinkage is slow.

また、温調媒体流路2から最も離間した左側の一つのキャビティ4では、全体が他の3つのキャビティ4よりも冷却(収縮)が遅くなる。
このような成形品11内の温度分布は冷却時間が短い場合に顕著に現れ、冷却時間を長くとることで解消されていく傾向になるが、冷却が不十分な状態、つまり成形品11内の温度分布のばらつきが大きい時点で金型1を開き、成形品11を取り出すと、成形品11はその温度分布に応じて変形し、そりや寸法の非対称性が発生し、結果として要求される精度を満足できなくなる。
Further, the cooling (shrinkage) of the entire left cavity 1 farthest from the temperature control medium flow path 2 is slower than that of the other three cavities 4.
Such a temperature distribution in the molded product 11 appears prominently when the cooling time is short, and tends to be eliminated by taking a long cooling time, but the cooling is insufficient, that is, in the molded product 11. When the mold 1 is opened and the molded product 11 is taken out when the variation in temperature distribution is large, the molded product 11 is deformed according to the temperature distribution, and warpage and dimensional asymmetry occur, resulting in the required accuracy. Can not be satisfied.

このようなことは各キャビティ4の間の目標キャビティ間温度差T3に関しても同様にいえる。温調媒体流路2は、図1A、図1Bのように各キャビティ4に関しても同じような配置をすることができない。そのため、各キャビティ4は同じように冷却されない場合が殆どであり、キャビティ間においても冷却状態がばらつく。その結果として、個々のキャビティ4の位置によって成形品の精度が違ってくる。 This also applies to the target inter-cavity temperature difference T 3 between the cavities 4. The temperature control medium flow path 2 cannot be similarly arranged with respect to each cavity 4 as shown in FIGS. 1A and 1B. Therefore, most cavities 4 are not cooled in the same way, and the cooling state varies between cavities. As a result, the accuracy of the molded product varies depending on the position of each cavity 4.

図5に実際にキャビティ周りの温度幅T2を測定した結果と成形品(光学素子)の精度の関係を示す。図5中のP−V値とは、レンズ設計形状と成形レンズの実測形状との差を示した値であり、非対称性(As)とはレンズの直交する2方向における形状の非対称性を示した値である。 FIG. 5 shows the relationship between the result of actually measuring the temperature width T 2 around the cavity and the accuracy of the molded product (optical element). The PV value in FIG. 5 is a value indicating the difference between the lens design shape and the actually measured shape of the molded lens, and the asymmetry (As) indicates the asymmetry of the shape in two orthogonal directions of the lens. Value.

この図5よりキャビティ周りの温度差である温度幅T2が大きいほど成形品の精度が悪化していることから、この成形品内の温度分布が成形品の精度に与える影響は大きいといえる。 From FIG. 5, it can be said that the temperature distribution in the molded product has a great influence on the accuracy of the molded product because the accuracy of the molded product is worsened as the temperature width T 2 that is the temperature difference around the cavity is larger.

本実施の形態においては、一例として、目標温度幅T1を0.35[℃]、目標キャビティ間温度差T3を0.4[℃]として成形を行った。その際、温度のサンプリング間隔は0.1[s](秒)とし、前の10点の移動平均から各時間におけるT2およびT4を決定した。そして、このような条件の下で成形を行った結果、要求精度を満足する成形品を安定して得ることができた。 In the present embodiment, as an example, molding was performed with the target temperature width T 1 set to 0.35 [° C.] and the target inter-cavity temperature difference T 3 set to 0.4 [° C.]. At that time, the temperature sampling interval was 0.1 [s] (seconds), and T 2 and T 4 at each time were determined from the moving average of the previous 10 points. As a result of molding under such conditions, it was possible to stably obtain a molded product that satisfies the required accuracy.

本実施の形態においては、一例として、目標温度幅T1を0.35[℃]、目標キャビティ間温度差T3を0.4[℃]として成形を行ったが、これらの値の範囲は成形品11の大きさと要求精度にもよるが、光学レンズの場合はおおよそT1、T2共に0.1[℃]〜0.5[℃]の範囲に、また一般的な構造部品の場合、T1は0.1[℃]〜1[℃]、T2は0.1[℃]〜1[℃]の範囲に設定すると成形品11の形状精度を十分に確保することができる。この範囲よりも低い温度では、温度センサ3の一般的な分解能を越えてしまうため、0.1℃よりも低い温度を設定することはあまり現実的ではない。 In the present embodiment, as an example, molding was performed with the target temperature width T 1 set to 0.35 [° C.] and the target inter-cavity temperature difference T 3 set to 0.4 [° C.]. Depending on the size of the molded product 11 and the required accuracy, both T 1 and T 2 are approximately in the range of 0.1 [° C.] to 0.5 [° C.] in the case of optical lenses, and in the case of general structural parts When T 1 is set in the range of 0.1 [° C.] to 1 [° C.] and T 2 is set in the range of 0.1 [° C.] to 1 [° C.], the shape accuracy of the molded article 11 can be sufficiently secured. If the temperature is lower than this range, the general resolution of the temperature sensor 3 is exceeded. Therefore, setting a temperature lower than 0.1 ° C. is not very realistic.

また温度のサンプリング間隔は、使用される温度センサ3の最小応答速度〜0.1[s]の範囲で設定するのが望ましい。これよりも大きいサンプリング間隔を設定してしまうと、成形サイクルを秒単位で制御することが難しくなるため現実的ではない。上述の移動平均を計算する点の数に関しては、10点以上でかつ移動平均の計算幅(サンプリング間隔×移動平均の計算点数の値)が1[s]以下になるように設定することが望ましい。10点よりも少ないとサンプリングの際のノイズの影響が大きくなる。また、移動平均の温度幅が1[s]を超えるような値を設定してしまうと、冷却の際の温度変化を十分捉えること難しくなる。   The temperature sampling interval is preferably set in the range of the minimum response speed of the temperature sensor 3 to be used to 0.1 [s]. If a sampling interval larger than this is set, it becomes difficult to control the molding cycle in seconds, which is not practical. Regarding the number of points for calculating the above moving average, it is desirable to set it so that it is 10 points or more and the calculation width of the moving average (sampling interval × number of moving average calculation points) is 1 [s] or less. . When the number is less than 10, the influence of noise during sampling increases. Moreover, if a value is set such that the temperature width of the moving average exceeds 1 [s], it becomes difficult to sufficiently capture the temperature change during cooling.

このように、本実施の形態1によれば、キャビティ4の周りの温度差に起因する成形品11の精度悪化を低減するとともにそのような精度悪化を防ぐための最適なサイクルタイムでの成形が可能になる。すなわち、全体が所定の温度以下に均一に冷却されるまで待つために、一律に長いサイクルタイムを設定する必要がない。   As described above, according to the first embodiment, it is possible to reduce the accuracy deterioration of the molded article 11 due to the temperature difference around the cavity 4 and to perform molding at an optimum cycle time to prevent such accuracy deterioration. It becomes possible. That is, in order to wait until the whole is uniformly cooled below a predetermined temperature, it is not necessary to set a uniformly long cycle time.

また、成形毎に最適なサイクルタイムで成形を行うので外乱等の影響を小さくできるため、連続成形時の品質バラツキも小さい安定した生産が可能となる。
さらには、測定された温度幅に基づいて成形品の良否を判断し、良品と不良品を区別して取出すことにより、成形品の中に成形不良の不良品が混入する確率を小さくすることが可能になる。
[実施の形態2]
(構成)
本発明の実施の形態2について以下、図6A、図6B、図7を用いて説明する。図6Aは実施の形態2における射出成形装置100の構成例の概略図であり、図6Bは、図6Aにおける線B−Bの部分の断面図である。
In addition, since molding is performed with an optimum cycle time for each molding, the influence of disturbance and the like can be reduced, and stable production with small quality variation during continuous molding is possible.
Furthermore, it is possible to reduce the probability that defective products with molding defects will be mixed in the molded product by judging the quality of the molded product based on the measured temperature range and distinguishing the good product from the defective product. become.
[Embodiment 2]
(Constitution)
A second embodiment of the present invention will be described below with reference to FIGS. 6A, 6B, and 7. FIG. 6A is a schematic diagram of a configuration example of the injection molding apparatus 100 according to the second embodiment, and FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A.

本実施の形態2において上述の実施の形態1と同様の箇所については、同一の符号を付して詳細な説明は省略する。
図6Aおよび図6Bにおいて成形品11aは偏肉度(厚肉部11bと薄肉部11cの比)が大きな形状である。また、温度センサ3は実施の形態1と同様に、たとえば、キャビティの壁面から1.5mm、金型のパーティング面から深さ2mmの場所に一様に配置するとともに、突出入子12の中にもキャビティ4の壁面から1.5mmの位置に配置している。
In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
6A and 6B, the molded product 11a has a shape with a large thickness deviation (ratio between the thick portion 11b and the thin portion 11c). Similarly to the first embodiment, the temperature sensor 3 is arranged uniformly at a location 1.5 mm from the wall surface of the cavity and 2 mm deep from the parting surface of the mold, In addition, it is arranged at a position of 1.5 mm from the wall surface of the cavity 4.

(作用)
成形方法・過程については実施の形態1と基本的には同様であるが、本実施の形態2における成形品11aは偏肉度が大きいため、実施の形態1のような成形品の周囲の冷却状態だけでなく成形品11aの厚肉方向の冷却状態も重要になる。図7に示すように厚肉部11bと薄肉部11cに大きな温度差がある状態で成形品11aを取出すとその温度差および肉厚の違いによって成形品11aの収縮率に差が生じ精度が悪化する。
(Function)
The molding method and process are basically the same as those in the first embodiment, but the molded product 11a in the second embodiment has a large unevenness, so that the periphery of the molded product as in the first embodiment is cooled. Not only the state but also the cooling state of the molded product 11a in the thickness direction is important. As shown in FIG. 7, when the molded product 11a is taken out with a large temperature difference between the thick wall portion 11b and the thin wall portion 11c, the shrinkage rate of the molded product 11a is different due to the temperature difference and the thickness difference, and the accuracy is deteriorated. To do.

そのため本実施の形態2においては、その厚肉部11bの温度状態も把握するために成形品11aの周りに加え、キャビティ4の成形面12a、成形面12bを構成する突出入子12の中にも温度センサ3を配置している。   Therefore, in the second embodiment, in order to grasp the temperature state of the thick portion 11b, in addition to the periphery of the molded product 11a, the projecting insert 12 constituting the molding surface 12a and the molding surface 12b of the cavity 4 is provided. The temperature sensor 3 is also arranged.

そして、突出入子12に配置された温度センサ3を含む複数の温度センサ3の出力値から各キャビティ周りの温度幅T2およびキャビティ間温度差T4を上述の実施の形態1と同様に計算し、これらが目標温度幅T1と目標キャビティ間温度差T3に対し、各キャビティ4aにおいてT1>T2、なおかつT3>T4となっているかを判定する。 Then, the temperature width T 2 around each cavity and the temperature difference T 4 between the cavities are calculated from the output values of the plurality of temperature sensors 3 including the temperature sensor 3 arranged in the protruding insert 12 as in the first embodiment. Then, with respect to the target temperature width T 1 and the target inter-cavity temperature difference T 3 , it is determined whether T 1 > T 2 and T 3 > T 4 in each cavity 4a.

そして、このような関係になった時点で成形機側制御装置10に型を開くように信号を送り、成形機側制御装置10は型を開き、成形品を良品として取り出し次の成形に進む。
目標温度幅T1および目標キャビティ間温度差T3を設定する際の指針としては、上述の実施の形態1の考え方と同様、これらの値が小さいほど成形品の精度が良く、値が大きいほど成形品の精度が悪い。
When such a relationship is reached, a signal is sent to the molding machine side control device 10 to open the mold, and the molding machine side control device 10 opens the mold, takes the molded product as a non-defective product, and proceeds to the next molding.
As a guideline for setting the target temperature width T 1 and the target inter-cavity temperature difference T 3 , the smaller the value, the better the accuracy of the molded product, and the larger the value, the same as in the first embodiment. The accuracy of the molded product is poor.

本実施の形態2においては、一例として、目標温度幅T1を0.5[℃]、目標キャビティ間温度差T3を0.4[℃]として成形を行った。その際、温度のサンプリング間隔は0.1[s]とし、前の10点の移動平均から各時間における温度幅T2およびキャビティ間温度差T4を決定した。そして、このような条件の下で成形を行った結果、要求精度を満足する成形品11aを安定して得ることができた。 In the second embodiment, as an example, molding was performed with the target temperature width T 1 set to 0.5 [° C.] and the target inter-cavity temperature difference T 3 set to 0.4 [° C.]. At that time, the temperature sampling interval was 0.1 [s], and the temperature width T 2 and inter-cavity temperature difference T 4 at each time were determined from the moving average of the previous 10 points. As a result of molding under such conditions, it was possible to stably obtain a molded product 11a that satisfies the required accuracy.

(効果)
本実施の形態2によると、キャビティ4の周囲の他に、キャビティ4の成形面12a、成形面12bを構成する突出入子12にも温度センサ3を配置したことにより、厚肉部11bと薄肉部11cの寸法差である偏肉度の大きい成形品11aに対しても要求する精度を満たすための最適なサイクルタイムでの成形が可能となり、成形品11aを安定して生産することができる。
(effect)
According to the second embodiment, in addition to the periphery of the cavity 4, the temperature sensor 3 is also disposed on the projecting insert 12 that forms the molding surface 12 a and the molding surface 12 b of the cavity 4. The molded product 11a having a large unevenness, which is a dimensional difference of the portion 11c, can be molded with an optimum cycle time to satisfy the required accuracy, and the molded product 11a can be stably produced.

以上説明したように、本発明の上述の各実施の形態によれば、射出成形技術において、冷却中の成形品内の温度分布のばらつきに起因する成形精度のばらつきや製品不良を減少させることができる。   As described above, according to each of the above-described embodiments of the present invention, in the injection molding technique, it is possible to reduce variations in molding accuracy and product defects due to variations in temperature distribution in the molded product during cooling. it can.

また、必要以上に長い成形サイクルタイムを設定することなく、冷却中の成形品内の温度分布のばらつきに起因する成形精度のばらつきや製品不良を減少させることができる。
また、成形サイクルタイムの短縮、および成形精度のばらつきや製品不良の低減により、射出成形の生産性を向上させることができる。
Moreover, it is possible to reduce variations in molding accuracy and product defects due to variations in temperature distribution in the molded product during cooling without setting a molding cycle time longer than necessary.
Moreover, the productivity of injection molding can be improved by shortening the molding cycle time and reducing variations in molding accuracy and product defects.

なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。   Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明を適用した射出成形装置の概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of the injection molding apparatus to which this invention is applied. 図1Aにおける線A−Aの部分の断面図である。It is sectional drawing of the part of the line AA in FIG. 1A. 本発明の実施の形態1を適用した射出成形装置の機能を説明するためのブロック図である。It is a block diagram for demonstrating the function of the injection molding apparatus to which Embodiment 1 of this invention is applied. 本発明の実施の形態1を適用した射出成形装置の作用の一例を示すフローチャートである。It is a flowchart which shows an example of an effect | action of the injection molding apparatus to which Embodiment 1 of this invention is applied. 本発明の実施の形態1を適用した射出成形装置の作用の一例を示す説明図である。It is explanatory drawing which shows an example of an effect | action of the injection molding apparatus to which Embodiment 1 of this invention is applied. 本発明の実施の形態1を適用した射出成形装置の作用の一例を示す線図である。It is a diagram which shows an example of an effect | action of the injection molding apparatus to which Embodiment 1 of this invention is applied. 本発明の実施の形態2における射出成形装置の構成例の説明図である。It is explanatory drawing of the structural example of the injection molding apparatus in Embodiment 2 of this invention. 図6Aにおける線B−Bの部分の断面図である。It is sectional drawing of the part of line BB in FIG. 6A. 本発明の実施の形態2における射出成形装置の作用を説明する断面図である。It is sectional drawing explaining the effect | action of the injection molding apparatus in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 金型
1a 固定側金型
1b 可動側金型
2 温調媒体流路
3 温度センサ
3a 検出部
3b 導線
3c 温度情報
4 キャビティ
4a キャビティ
5 スプルー
6 ランナー
7 ゲート
8 温度検出器
9 計算・制御装置
9a 型開閉信号
10 成形機側制御装置
10a 型開閉動作指令
11 成形品
11a 成形品
11b 厚肉部
11c 薄肉部
12 突出入子
12a 成形面
12b 成形面
100 射出成形装置
1 目標温度幅
2 温度幅
3 目標キャビティ間温度差
4 キャビティ間温度差
n 連続不良数
max 許容連続不良上限数
t 冷却時間
max 冷却上限時間
DESCRIPTION OF SYMBOLS 1 Mold 1a Fixed side mold 1b Movable side mold 2 Temperature control medium flow path 3 Temperature sensor 3a Detection part 3b Conductor 3c Temperature information 4 Cavity 4a Cavity 5 Sprue 6 Runner 7 Gate 8 Temperature detector 9 Calculation / control device 9a Mold opening / closing signal 10 Molding machine side control device 10a Mold opening / closing operation command 11 Molded product 11a Molded product 11b Thick portion 11c Thin portion 12 Projection insert 12a Molding surface 12b Molding surface 100 Injection molding device T 1 Target temperature range T 2 Temperature range T 3 Temperature difference between target cavities T 4 Temperature difference between cavities n Maximum number of continuous defects N max Maximum allowable continuous defects t Cooling time t max Maximum cooling time

Claims (14)

成形型内のキャビティに溶融樹脂を射出し、保圧および冷却後、前記成形型を型開きして成形品を得る射出成形装置であって、
前記成形型の前記キャビティ周りに配置された複数の温度測定手段と、
前記温度測定手段によって検出された温度から前記キャビティの周りの温度幅T2を計算し、予め設定した前記キャビティから前記成形品を取出すときの目標温度幅T1に対し前記温度幅T2が、T1>T2となった時点で前記成形品を取出すために前記成形型を開くように前記射出成形装置を制御する制御手段と、
を含むことを特徴とする射出成形装置。
An injection molding apparatus for injecting molten resin into a cavity in a mold, holding and cooling, and then opening the mold to obtain a molded product,
A plurality of temperature measuring means disposed around the cavity of the mold;
The temperature range T 2 of the surrounding from the detected temperature of the cavity by the temperature measuring means calculates, said temperature range T 2 with respect to the target temperature range T 1 of the case is taken out from the cavity preset the molded article, Control means for controlling the injection molding apparatus to open the mold for taking out the molded product when T 1 > T 2 ;
An injection molding apparatus comprising:
請求項1記載の射出成形装置において、
単一の前記キャビティの壁面から同じ距離に2つ以上の前記温度測定手段を、当該キャビティの周りに一様に設けることを特徴とする射出成形装置。
The injection molding apparatus according to claim 1, wherein
An injection molding apparatus, wherein two or more temperature measuring means are uniformly provided around the cavity at the same distance from the wall surface of the single cavity.
請求項1記載の射出成形装置において、
予め設定する冷却上限時間tmaxの間に前記温度幅T2と前記目標温度幅T1がT1>T2の関係とならない場合に、前記成形品を不良と判断することを特徴とする射出成形装置。
The injection molding apparatus according to claim 1, wherein
Injection wherein the molded product is determined to be defective when the temperature range T 2 and the target temperature range T 1 do not satisfy the relationship of T 1 > T 2 during a preset cooling upper limit time t max Molding equipment.
成形型内の複数のキャビティに溶融樹脂を射出し、保圧および冷却後、前記成形型を型開きして複数の成形品を同時に成形する多数個取りの射出成形装置であって、
個々の前記キャビティの周りに一様に配置された複数の温度測定手段と、
個々の前記キャビティに関して、当該キャビティの周りに一様に配置された複数の前記温度測定手段によって検出された温度から平均値を算出し、前記平均値の中の最大値と最小値の差より計算されるキャビティ間温度差T4が、予め設定した前記キャビティから前記成形品を取出すときの目標キャビティ間温度差T3に対し、T3>T4の関係になった時点で前記成形品を取出すために型を開くように前記射出成形装置を制御する制御手段と、
を含むことを特徴とする射出成形装置。
A multi-piece injection molding apparatus that injects molten resin into a plurality of cavities in a mold, holds and cools, and then opens the mold to simultaneously mold a plurality of molded articles,
A plurality of temperature measuring means uniformly arranged around each said cavity;
For each of the cavities, an average value is calculated from the temperatures detected by the plurality of temperature measuring means uniformly arranged around the cavity, and is calculated from the difference between the maximum value and the minimum value among the average values. When the inter-cavity temperature difference T 4 is in a relationship of T 3 > T 4 with respect to the target inter-cavity temperature difference T 3 when the molded product is taken out from the preset cavity, the molded product is taken out. Control means for controlling the injection molding device to open the mold for
An injection molding apparatus comprising:
請求項4記載の射出成形装置において、
前記制御手段は、前記温度測定手段によって検出された温度から個々の前記キャビティの周りの温度幅T2を計算し、予め設定した前記キャビティから前記成形品を取出すときの目標温度幅T1に対し前記温度幅T2が、T1>T2となり、かつ前記目標キャビティ間温度差T3と前記キャビティ間温度差T4の関係が、T3>T4となった時点で前記成形型を開くように前記射出成形装置を制御することを特徴とする射出成形装置。
The injection molding apparatus according to claim 4, wherein
The control means calculates a temperature width T 2 around each of the cavities from the temperature detected by the temperature measuring means, and with respect to a target temperature width T 1 when taking out the molded product from the preset cavities. The mold is opened when the temperature width T 2 satisfies T 1 > T 2 and the relationship between the target inter-cavity temperature difference T 3 and the inter-cavity temperature difference T 4 satisfies T 3 > T 4. The injection molding apparatus is controlled as described above.
請求項4記載の射出成形装置において、
複数の前記キャビティの各々に関して、個々の前記キャビティの壁面から同じ距離に2つ以上の前記温度測定手段を、個々の前記キャビティの周りに一様に設けることを特徴とする射出成形装置。
The injection molding apparatus according to claim 4, wherein
An injection molding apparatus characterized in that, for each of the plurality of cavities, two or more temperature measuring means are uniformly provided around each of the cavities at the same distance from the wall surface of each of the cavities.
請求項4記載の射出成形装置において、
予め設定する冷却上限時間tmaxの間に前記キャビティ間温度差T4と前記目標キャビティ間温度差T3がT3>T4の関係とならない場合に、前記成形品を不良と判断することを特徴とする射出成形装置。
The injection molding apparatus according to claim 4, wherein
Determining that the molded product is defective when the inter-cavity temperature difference T 4 and the target inter-cavity temperature difference T 3 do not satisfy the relationship of T 3 > T 4 during a preset cooling upper limit time t max. Characteristic injection molding device.
請求項3または請求項7記載の射出成形装置において、
前記制御手段は、成形不良と判断された前記成形品を良品と判断された前記成形品とは区別して取出すことを特徴とする射出成形装置。
The injection molding device according to claim 3 or claim 7,
An injection molding apparatus characterized in that the control means takes out the molded product determined to be defective from the molded product determined to be non-defective.
請求項3、請求項7または請求項8記載の射出成形装置において、
前記制御手段は、前記成形不良が一定数連続した場合には成形を中止することを特徴とする射出成形装置。
The injection molding apparatus according to claim 3, 7 or 8,
An injection molding apparatus according to claim 1, wherein the control means stops molding when a predetermined number of molding defects continue.
成形型内のキャビティに溶融樹脂を射出し、保圧および/または冷却を行う工程と、
前記キャビティ周りに配置された複数の温度測定手段によって検出された温度から前記キャビティの周りの温度幅T2を計算し、前記温度幅T2が、予め設定した前記キャビティから成形品を取出すときの目標温度幅T1に対して、T1>T2となった時点で前記成形型を開く工程と、
を含むことを特徴とする射出成形方法。
Injecting molten resin into the cavity in the mold and holding and / or cooling;
The calculated temperature range T 2 of the around the cavity from the detected temperature by the plurality of temperature measuring means disposed around the cavity, the temperature range T 2 is, when taking out the molded article from the cavity to a preset Opening the mold when T 1 > T 2 with respect to the target temperature range T 1 ;
An injection molding method comprising:
成形型内の複数のキャビティの各々に溶融樹脂を射出し、保圧および/または冷却を行う工程と、
個々の前記キャビティに対し、当該キャビティの周りに配置された温度測定手段によって検出された温度から平均値を算出し、個々の前記キャビティから計測された複数の前記平均値の中の最大値と最小値の差より計算されるキャビティ間温度差T4が予め設定した前記キャビティから成形品を取出すときの目標キャビティ間温度差T3に対し、T4<T3の関係になった時点で、前記成形型を開く工程と、
を含むことを特徴とする射出成形方法。
Injecting molten resin into each of a plurality of cavities in the mold, and performing pressure holding and / or cooling;
For each of the cavities, an average value is calculated from the temperatures detected by temperature measuring means disposed around the cavity, and a maximum value and a minimum value among a plurality of the average values measured from the individual cavities. When the inter-cavity temperature difference T 4 calculated from the difference between the values becomes T 4 <T 3 with respect to the target inter-cavity temperature difference T 3 when the molded product is taken out from the cavity, Opening the mold,
An injection molding method comprising:
請求項11記載の射出成形方法において、
前記成形型を開く工程では、
前記温度測定手段によって検出された温度から個々の前記キャビティの周りの温度幅T2を計算し、予め設定した前記キャビティから前記成形品を取出すときの目標温度幅T1に対し前記温度幅T2が、T1>T2となり、かつ前記目標キャビティ間温度差T3と前記キャビティ間温度差T4の関係が、T3>T4となった時点で前記成形型を開くことを特徴とする射出成形方法。
The injection molding method according to claim 11, wherein
In the step of opening the mold,
The temperature The temperature range T 2 of the around individual of the cavity from the sensed temperature calculated by measuring means, the temperature range T 2 with respect to the target temperature range T 1 of the case from the cavity previously set taking the molded article However, the mold is opened when T 1 > T 2 and the relationship between the target inter-cavity temperature difference T 3 and the inter-cavity temperature difference T 4 satisfies T 3 > T 4. Injection molding method.
請求項10記載の射出成形方法において、
単一の前記キャビティの壁面から一定の距離に2つ以上の前記温度測定手段を、当該キャビティの周りに一様に設けることを特徴とする射出成形方法。
The injection molding method according to claim 10, wherein
An injection molding method, wherein two or more temperature measuring means are uniformly provided around the cavity at a fixed distance from the wall surface of the single cavity.
請求項11記載の射出成形方法において、
複数の前記キャビティの各々に関して、個々の前記キャビティ壁面から一定の距離に2つ以上の前記温度測定手段を、個々の前記キャビティの周りに一様に設けることを特徴とする射出成形方法。
The injection molding method according to claim 11, wherein
An injection molding method characterized in that, for each of the plurality of cavities, two or more temperature measuring means are uniformly provided around each of the cavities at a fixed distance from each of the cavity wall surfaces.
JP2007026877A 2007-02-06 2007-02-06 Injection molding apparatus and injection molding method Active JP4767192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026877A JP4767192B2 (en) 2007-02-06 2007-02-06 Injection molding apparatus and injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026877A JP4767192B2 (en) 2007-02-06 2007-02-06 Injection molding apparatus and injection molding method

Publications (2)

Publication Number Publication Date
JP2008188909A true JP2008188909A (en) 2008-08-21
JP4767192B2 JP4767192B2 (en) 2011-09-07

Family

ID=39749463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026877A Active JP4767192B2 (en) 2007-02-06 2007-02-06 Injection molding apparatus and injection molding method

Country Status (1)

Country Link
JP (1) JP4767192B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014022A (en) * 2011-06-30 2013-01-24 Canon Inc Method of manufacturing molding
JP2018176476A (en) * 2017-04-07 2018-11-15 ファナック株式会社 Ejection molding system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192977A (en) * 1992-01-20 1993-08-03 Japan Steel Works Ltd:The Cooling time control method for injection molding machine
JPH06254929A (en) * 1993-03-09 1994-09-13 Jiyuken Kogyo:Kk Injection molding machine
JPH09183146A (en) * 1995-12-28 1997-07-15 Olympus Optical Co Ltd Method for injection molding and mold for injection molding
JPH11115012A (en) * 1997-10-14 1999-04-27 Mitsubishi Heavy Ind Ltd Temperature controller of injection mold
JP2001198964A (en) * 2000-01-20 2001-07-24 Canon Inc Apparatus and method for controlling temperature of injection mold
JP2004117592A (en) * 2002-09-24 2004-04-15 Canon Inc Optical element and its molding method
JP2005153196A (en) * 2003-11-21 2005-06-16 Olympus Corp Injection molding machine, injection molding method and optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192977A (en) * 1992-01-20 1993-08-03 Japan Steel Works Ltd:The Cooling time control method for injection molding machine
JPH06254929A (en) * 1993-03-09 1994-09-13 Jiyuken Kogyo:Kk Injection molding machine
JPH09183146A (en) * 1995-12-28 1997-07-15 Olympus Optical Co Ltd Method for injection molding and mold for injection molding
JPH11115012A (en) * 1997-10-14 1999-04-27 Mitsubishi Heavy Ind Ltd Temperature controller of injection mold
JP2001198964A (en) * 2000-01-20 2001-07-24 Canon Inc Apparatus and method for controlling temperature of injection mold
JP2004117592A (en) * 2002-09-24 2004-04-15 Canon Inc Optical element and its molding method
JP2005153196A (en) * 2003-11-21 2005-06-16 Olympus Corp Injection molding machine, injection molding method and optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014022A (en) * 2011-06-30 2013-01-24 Canon Inc Method of manufacturing molding
JP2018176476A (en) * 2017-04-07 2018-11-15 ファナック株式会社 Ejection molding system
US10688699B2 (en) 2017-04-07 2020-06-23 Fanuc Corporation Injection molding system

Also Published As

Publication number Publication date
JP4767192B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP6317482B2 (en) A novel method for introducing indirect and direct mold pressure, temperature, and flow front detection sensors without machining the mold
Huang et al. A novel clamping force searching method based on sensing tie-bar elongation for injection molding
US7597827B2 (en) Method for automatically balancing the volumetric filling of cavities
WO2007026987A1 (en) Injection molding apparatus having separation type mold and controlling method thereof
KR101442247B1 (en) Method for controlling cooling time in injection moulding process of an injection moulding machine
US20060073227A1 (en) Molding system for molding micro pattern structure having micro heating heating element and method for fabricating mold insert for molding micro pattern structure used therein
EP2117804B1 (en) Identifying quality of molded article based on determination of plug blow
JP4767192B2 (en) Injection molding apparatus and injection molding method
CN102574318B (en) For controlling or regulate the method for injection process
US20200206998A1 (en) Quality prediction system and molding machine
JPH10315292A (en) Method and device for plastic molding
Salomeia et al. Experimental investigation of stretch blow molding, Part 1: Instrumentation in an industrial environment
KR20170082928A (en) Device and method for controlling switchover of hold pressure in injection molding device
WO2015046406A1 (en) Molding machine
JPH11291300A (en) Mold for plastic injection molding, production thereof and injection molding method using mold
CN108127865B (en) Mold stack
CN103648745B (en) The manufacture method of mechanograph and mould
US20080035299A1 (en) Detection of plug blow from metal-molding system, amongst other things
JP2006315259A (en) Mold apparatus for injection molding
JP7283138B2 (en) Molded product quality prediction system and molding machine
JP2004090064A (en) Method for controlling temperature of die-casting mold
JPS63176124A (en) Injection molding method and equipment
JP5233679B2 (en) Accuracy verification method for solidification defect prediction analysis
JPH1128752A (en) Apparatus for measuring pressure/temperature of injection mold
JP2001198964A (en) Apparatus and method for controlling temperature of injection mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R151 Written notification of patent or utility model registration

Ref document number: 4767192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250