JP3115982B2 - Method for producing titanium ring for electrodeposition drum - Google Patents

Method for producing titanium ring for electrodeposition drum

Info

Publication number
JP3115982B2
JP3115982B2 JP07027929A JP2792995A JP3115982B2 JP 3115982 B2 JP3115982 B2 JP 3115982B2 JP 07027929 A JP07027929 A JP 07027929A JP 2792995 A JP2792995 A JP 2792995A JP 3115982 B2 JP3115982 B2 JP 3115982B2
Authority
JP
Japan
Prior art keywords
base material
titanium
heat
bending
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07027929A
Other languages
Japanese (ja)
Other versions
JPH08225905A (en
Inventor
博 佐藤
一彦 山本
Original Assignee
株式会社ナイカイアーキット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイカイアーキット filed Critical 株式会社ナイカイアーキット
Priority to JP07027929A priority Critical patent/JP3115982B2/en
Publication of JPH08225905A publication Critical patent/JPH08225905A/en
Application granted granted Critical
Publication of JP3115982B2 publication Critical patent/JP3115982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電解メッキ法により銅
箔,ニッケル箔などの金属箔を製造する製箔装置の回転
ドラム陰極に使用されるチタンリングの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium ring used for a rotating drum cathode of a foil making apparatus for producing a metal foil such as a copper foil and a nickel foil by an electrolytic plating method.

【0002】[0002]

【従来の技術】プリント配線板用電解銅箔を中心とする
金属箔の製造に使用される回転ドラム陰極の材質として
のチタンは、特公昭46-90号,特公昭58-24507号等に開
示されているごとく耐食性に優れ、かつ電着金属箔の剥
離性が良いことから広く用いられている。チタンを電着
面とする電解銅箔製造装置は、図1に示すように銅メッ
キ液の器となる浴槽1の中心に回転ドラム陰極2がドラ
ム軸受3にセットされ、その容積の約1/2が電解液5に
浸漬され、陰極に対面して配置される陽極6との間に整
流器7を介して直流が通電され、メッキ浴の一方の側か
ら浴に浸入したチタン面に銅がメッキされ始め、他方の
側の浴面から出るまでに所定の厚みの銅箔となった後、
チタン面から剥がされてボビンに巻き取られ連続的に製
造される。
2. Description of the Related Art Titanium as a material for a rotating drum cathode used in the production of metal foil, mainly electrolytic copper foil for printed wiring boards, is disclosed in JP-B-46-90 and JP-B-58-24507. As described above, it is widely used because of its excellent corrosion resistance and good releasability of electrodeposited metal foil. As shown in FIG. 1, in an apparatus for producing an electrolytic copper foil using titanium as an electrodeposition surface, a rotating drum cathode 2 is set on a drum bearing 3 at the center of a bathtub 1 serving as a vessel for a copper plating solution, and the volume of the rotating drum cathode 2 is approximately 1 / 2 is immersed in an electrolytic solution 5 and a direct current is passed through a rectifier 7 between the anode 6 disposed facing the cathode through a rectifier 7 so that copper is plated on the titanium surface that has entered the bath from one side of the plating bath. Began to be, and after it became a copper foil of a predetermined thickness until it came out of the bath surface on the other side,
It is peeled off from the titanium surface and wound on a bobbin to be manufactured continuously.

【0003】図2は回転ドラム陰極の一部破断正面図
で、その代表的寸法はチタン板厚み5〜8mm,直径2〜
3m,幅1〜3mであり、回転軸8を中心に構成される
軟鋼製インナードラム9の外側にチタンリング10が焼嵌
めなどにより嵌め合わされたうえ、表面を機械仕上げ後
研磨して使用される。そして腐食磨耗による厚みの減小
が初期厚みの30〜50%に達すると、インナードラム表面
への圧着力が不均整になって電気的接触抵抗にムラを生
じ、銅箔の厚みの不均一や局部的過熱による変色などの
不具合を生じるため、寿命として更新される。この種の
回転ドラム陰極に使用されるチタンリングは、今日、次
の2つの方法で製造される。その1つは、熱間又は冷間
圧延チタン板をロール成形機により円筒状に巻いて対向
する板の両端を突き合わせ、プラズマ溶接法などにより
溶接する方法であり、他の1つはチタン素材をリング圧
延機にかけて溶接部のないシームレスリングに成形する
リングローリング法であるが、それぞれに長所、短所が
有る。
FIG. 2 is a partially cutaway front view of a rotating drum cathode, whose typical dimensions are a titanium plate thickness of 5 to 8 mm and a diameter of 2 to 2 mm.
A titanium ring 10 is fitted to the outside of an inner drum 9 made of mild steel, which is 3 m in width and 1 to 3 m in width and centered on a rotating shaft 8. . When the thickness reduction due to corrosion and abrasion reaches 30 to 50% of the initial thickness, the pressure force applied to the inner drum surface becomes uneven, resulting in uneven electrical contact resistance. Due to problems such as discoloration due to local overheating, the life is renewed. Titanium rings used for this type of rotating drum cathode are today manufactured in two ways: One is a method in which a hot or cold-rolled titanium plate is rolled into a cylindrical shape by a roll forming machine, and the opposite ends of the plate are butted together and welded by plasma welding or the like. The ring rolling method uses a ring rolling mill to form a seamless ring without welds, but each method has advantages and disadvantages.

【0004】その短所は、溶接法に関しては結晶粒度が
ASTME112のNo.6〜8,結晶構造が等軸α晶の組
織を持つ母材部に対して、溶接継手部(以下溶接域と称
す)における溶接部が溶融凝固したままの鋸歯状粗大凝
固組織となり、また、それに接する熱影響部がβ変態点
を超える温度に加熱されることに起因して変化した変態
組織あるいは変態点に近い高温に加熱されて結晶成長し
た粗大粒組織になり、腐食,摩耗性が母材部と異なるこ
とである。
[0004] The disadvantage is that, with respect to the welding method, a base material having a crystal grain size of No. 6 to 8 of ASTME112 and a crystal structure having an equiaxed α-crystal structure is welded to a welded joint (hereinafter referred to as a weld zone). The welded part in the above becomes a saw-tooth coarse solidified structure as it is melt-solidified, and the heat-affected zone in contact with it changes to a transformed structure or a high temperature close to the transformed point caused by being heated to a temperature exceeding the β transformation point. It becomes a coarse-grained structure grown by heating and has different corrosion and wear properties from the base material.

【0005】この様なチタン溶接継手部断面における溶
着金属部,熱影響部,母材部それぞれのマクロ組織,お
よび硬さ分布の詳細は、例えば文献 チタン加工技術
(社)チタニウム協会編P-110,写真4-2(1992)に見ら
れる通りで、このままドラム陰極として使用すると、チ
タン面に電着した銅箔に溶接部および熱影響部の凝固,
変態組織の模様および研磨面の粗さの違いが転写され
て、プリント配線板用銅箔に規定される品質が不合格に
なる。
For details of such macrostructures and hardness distributions of the welded metal portion, the heat-affected zone, and the base metal portion in the section of the titanium welded joint, see, for example,
As shown in P-110, Photo 4-2 (1992), edited by Titanium Association, when used as a drum cathode as it is, solidification of the weld and heat-affected zone on copper foil electrodeposited on titanium surface
The difference in the texture of the transformed structure and the roughness of the polished surface is transferred, and the quality specified for the copper foil for printed wiring boards is rejected.

【0006】従って、溶接法に関しては従来から溶接域
の変態組織を母材部に近似化するための後処理、例えば
特開平2-243790号,特開平4-36488号,特開平4-262872
号などに提案されている組織調整処理を必要とする。こ
れらは何れも金属学的に公知である原理、例えば金属便
覧,日本金属学会編,丸善(1960)P-518 図8・26,圧
延加工,熱処理による結晶粒の変態模式図に示されてい
るように、オーステナイト或いはフェライトなどの単相
金属の初期結晶粒が圧延,熱処理を加えることによって
再結晶し、適性条件のもとで微細化される現象からも明
らかなように、或る粗大結晶粒からなる金属材料を加工
して、その内部に塑性歪を蓄積させた後に適当な温度で
熱処理することにより、加工組織が再結晶し、均質微細
化した結晶が得られる原理を応用したもので、これらの
組織調整手段により、チタンリング溶接域の痕跡は目立
たなくなって、一般には実用上ほぼ問題ないまでに改善
されるに至った。
Therefore, regarding the welding method, post-treatments for approximating the transformed structure of the weld zone to the base metal portion, for example, JP-A-2-243790, JP-A-4-36488, JP-A-4-62872 are conventionally used.
Requires the organizational adjustment process proposed in the issue. These are all known principles in metallurgy, for example, shown in the Handbook of Metals, edited by The Japan Institute of Metals, Maruzen (1960) P-518, FIG. As can be seen from the phenomenon that the initial crystal grains of a single-phase metal such as austenite or ferrite are recrystallized by rolling and heat treatment and are refined under appropriate conditions, certain coarse crystal grains By processing a metal material consisting of and accumulating plastic strain inside it and then heat-treating it at an appropriate temperature, the processed structure is recrystallized, applying the principle of obtaining homogeneous and fine crystals. The traces in the titanium ring welded area became inconspicuous by these structure adjusting means, and were generally improved to practically no problem.

【0007】しかしながら、急速に進歩し高度に精密化
しつつある多層プリント配線板に使用される一部の銅箔
は、厚み18μm以下の薄厚化と共に表面の凹凸の小さい
ロープロファイル化が進んで、表面特性の一層の均質化
が求められ、それに対応してチタンリング溶接域の改善
された痕跡に対しても一層の改善が求められている。
However, some copper foils used in multilayer printed wiring boards, which are rapidly advancing and becoming more and more precise, have been reduced in thickness to 18 μm or less and low profile with small surface irregularities has been developed. There is a need for further homogenization of the properties, and correspondingly a further improvement for the improved traces of the titanium ring weld zone.

【0008】他方、溶接ビードのないリングローリング
法に関しては、現在一部に使用されてはいるが、リング
圧延機の圧下能力の制約から結晶の細粒化に必要な塑性
歪を十分加えることが困難なため、電着面に要求される
微細で均質な結晶組織が得難く、かつ製造コストが嵩む
などの問題があるために、最近、特開平6-93400号に見
られる改善すなわち、チタン素材に対して熱間でのリン
グローリングを施し、リング状のチタン製中間製品を
得、この中間製品に対して冷間において再び圧下を加
え、引続き焼鈍し、チタン製電着ドラムを得る方法が提
案されてはいるものの、国内では未だ広く使用されるに
至っていない。
On the other hand, although the ring rolling method without a weld bead is currently used in some cases, it is necessary to sufficiently apply the plastic strain necessary for grain refinement of crystals due to the restriction of the rolling capacity of a ring rolling mill. Because of the difficulty, it is difficult to obtain a fine and uniform crystal structure required for the electrodeposited surface, and there are problems such as an increase in manufacturing cost. A hot rolling method is used to obtain a ring-shaped titanium intermediate product, and this intermediate product is cold-pressed again and continuously annealed to obtain a titanium electrodeposition drum. Although it has been used, it has not yet been widely used in Japan.

【0009】[0009]

【発明が解決しようとする課題】前記の通り、溶接によ
り接合して成るチタンリングの溶接域は、そのままでは
マクロおよびミクロ組織が母材部とは違った粗大な凝固
変態組織をなし、腐食磨耗性も母材部と相異する。した
がって、変態した組織を母材と同質とするための後処理
が必要になる。それには原理上、母材の原料から製品に
至るまでの加工履歴に相当する圧錬,圧延,焼鈍などの
加工を加えれば良いことは当然に考えられる。しかしな
がら、溶接域の限られた領域に母材の履歴と同等の加工
を実行するのは困難であるので、それを如何なる代替え
手段で効果的に行うかにある。
As described above, the welding area of the titanium ring formed by welding has a macro- and micro-structure that is a coarse solidification transformed structure different from that of the base material as it is, resulting in corrosion wear. The properties are also different from those of the base material. Therefore, a post-treatment is required to make the transformed structure homogeneous with the base material. In principle, it is naturally possible to add processing such as squeezing, rolling and annealing corresponding to the processing history from the raw material of the base material to the product. However, since it is difficult to perform a process equivalent to the history of the base material in a limited region of the welding region, there is a need for what alternative means to perform it effectively.

【0010】特開平2-243790号,特開平4-262872号は、
溶接部及びその周辺の変態組織をそれぞれの提案する圧
下,焼鈍手段により再結晶させて結晶粒の大きさを調整
するもので、かつて問題視されて来た銅箔面へ転写され
る溶接部跡を目立たなくするのに貢献している。しかし
ながら、前記の通り高度に精密なプリント配線板用薄
厚、ロープロファイル銅箔を製造するためのチタンリン
グに対しては、さらに改善が求められている。即ち、例
えば特開平4-262872号などのような溶接部及び溶接部近
傍を外側へ押出して形成された内側凹部に外面を冷却し
ながら肉盛り溶接し、続いてこの肉盛り部に温間又は冷
間にて押潰し加工を施し、続いて該押潰し加工部に焼鈍
処理を施すごとき調整手段によっても、溶接部跡には造
箔業界の厳しい検査の指摘する斑点模様の組織むらが散
在することがある。
JP-A-2-243790 and JP-A-4-62872 disclose:
The size of the crystal grains is adjusted by recrystallizing the weld and the transformed structure around it by the proposed rolling and annealing means. The trace of the weld transferred to the copper foil surface, which was once regarded as a problem Contribute to making it less noticeable. However, as described above, further improvements are required for titanium rings for producing highly precise thin, low-profile copper foil for printed wiring boards. That is, for example, welding is performed while cooling the outer surface to the inner concave portion formed by extruding the welded portion and the vicinity of the welded portion outward as in Japanese Patent Application Laid-Open No. 4-262872, and then warm or Even by adjusting means such as performing a crushing process in a cold state and subsequently performing an annealing process on the crushed portion, unevenness of a spotted pattern pointed out by strict inspection of the foil forming industry is scattered in the trace of the welded portion. Sometimes.

【0011】この組織むらは、一般用銅箔の製造には余
り問題にならない程に僅少ではあるが、組織むらは、銅
箔の製造工程におけるチタン電着面の硫酸酸性銅メッキ
浴および電着面からの銅箔剥離による化学的,物理的腐
食摩耗にもとづく表面粗さの経時変化が母材部と異な
り、銅箔にその斑点模様を写し出して精密プリント配線
板用銅箔に求められる品質に不合格となるため、銅箔の
溶接域の部分を切除して使用しなければならず、作業性
の低下およびコスト高を招いている。よって、本発明者
らは前記提案の組織調整手段によって改善はされたもの
の、なお僅かに存在するチタンリング溶接域の斑点模様
を消去することを課題として取り組んだ結果、本発明を
完成させるに至った。
[0011] The unevenness of the structure is so small that it does not cause much problem in the production of copper foil for general use. The time-dependent change in surface roughness based on chemical and physical corrosion and wear due to the peeling of copper foil from the surface differs from that of the base material, and the spot pattern is projected on the copper foil to achieve the quality required for copper foil for precision printed wiring boards. Since it is rejected, it is necessary to cut and use a portion of the welding area of the copper foil, which causes a reduction in workability and an increase in cost. Accordingly, the present inventors worked to solve the problem of eliminating the spot pattern in the titanium ring welded area, which was improved by the proposed structure adjusting means, but was still present, and as a result, completed the present invention. Was.

【0012】[0012]

【課題を解決するための手段】本発明者らは、特開平2-
243790号,特開平4-262870号などの肉盛り,圧下,熱処
理の再結晶化手段により母材組織に近似化された溶接域
の研磨面になお、僅かに散在する斑点模様の組織むらに
注目しその原因を克明に追求した結果、再結晶化手段に
より微細化しかつ粒界が鮮明化した結晶粒の中に、組織
改善前の粗大組織を押し潰した時の圧下変形組織の片鱗
とみられる粒界が不鮮明な結晶群が混在することを認
め、1回の肉盛り,圧下,熱処理のみでは変態組織全体
を改質するために必要な塑性歪を十分行き亘らせること
は困難と判断した。
Means for Solving the Problems The present inventors have disclosed Japanese Patent Laid-Open No.
Note the uneven texture of the spot pattern that is slightly scattered on the polished surface of the weld area approximated to the base metal structure by the recrystallization means of overlaying, pressing, and heat treatment as described in 243790 and JP-A-4-62870. As a result of rigorously pursuing the cause, among the crystal grains that have been refined by the recrystallization means and the grain boundaries have been sharpened, grains that appear to be flakes of the pressed deformation structure when the coarse structure before the structure improvement is crushed are crushed. It was recognized that crystal groups with unclear boundaries were mixed, and it was judged that it was difficult to sufficiently spread the plastic strain required to reform the entire transformed structure by only one build-up, pressing, and heat treatment.

【0013】この判断をもとに、組織改善手段について
追求し実験を重ねた結果、次に記す3段階の熱処理・再
結晶化の加工工程を経ることによって、本発明の課題で
ある溶接域の組織むらをより一層減少させることが可能
となり、結晶粒度,研磨性,耐食性を母材により一層近
似させ得ることを見出した。
Based on this judgment, as a result of pursuing and experimenting on the means for improving the structure, the following three stages of heat treatment and re-
Through the crystallization process step, can be tissue unevenness of the weld zone is an object of the present invention is further reduced and becomes, grain size, abrasive, corrosion resistance was found that capable of further approximated by matrix .

【0014】第1工程 1.溶接域を溶接線を中心にリングの外側に突出する曲
げ加工を施す。 2.曲げ加工部をプレスして元の円弧に復元する。 3.上の屈伸加工部を熱処理して再結晶化する。
First Step 1. A bending process is performed to protrude the welding area outside the ring around the welding line. 2. Press the bent part to restore the original arc. 3. The upper bent portion is recrystallized by heat treatment.

【0015】第2工程 第1工程と同じ要領の屈伸加工,熱処理再結晶化を1回
以上繰り返す。
Second Step The bending and elongating and heat treatment recrystallization in the same manner as in the first step are repeated one or more times.

【0016】第3工程 1.前工程と同様に溶接域をリングの外側に突出する曲
げ加工を施す。 2.曲げ加工部の凹部の両側の母材部と熱影響部の境界
部に、母材厚みの15〜20%の高さの肉盛りをし、次いで
その内側凹部を埋める肉盛りをする。 3.肉盛り部全体を母材板厚に等しくなるようにプレス
する。 4.上記加工部を熱処理再結晶化する。以上の工程を経
た溶接域組織は母材部組織に極めて近似し、従来法に散
見された組織むらの殆ど見られない均質緻密な結晶組織
に蘇生される。
Third Step 1. As in the previous step, a bending process is performed to protrude the welding area to the outside of the ring. 2. At the boundary between the base material portion and the heat-affected zone on both sides of the concave portion of the bent portion, a build-up having a height of 15 to 20% of the base material thickness is performed, and then a build-up to fill the inner concave portion is formed. 3. The entire overlay is pressed so as to be equal to the thickness of the base material. 4. The processed portion is recrystallized by heat treatment. The structure of the weld zone after the above process is very similar to the structure of the base metal part, and is revived to a homogeneous and dense crystal structure with almost no unevenness of structure observed in the conventional method.

【0017】[0017]

【作用】上述の円筒状に巻いて突き合わせ溶接した後に
行われる第1,第2,第3工程の各曲げ加工の作用につ
いて説明する。
The operation of each bending process in the first, second, and third steps performed after the above-described cylindrical winding and butt welding will be described.

【0018】第1工程における曲げ加工は、溶接部を中
心とした溶接域の凝固,変態組織を改質する基本的手段
である圧下,熱処理に先立って,圧延のみでは到達し得
ない組織の局所に再結晶化の塑性歪を与える作用をす
る。即ち、金属組織中の結晶群(塊)は圧延によって押し
潰されて偏平状に変形し、その粒界に塑性歪を蓄積し、
熱処理時の再結晶核を生み出すが、圧下率を高めるだけ
では組織全体に再結晶エネルギーを等しく浸透させるこ
とは不可能である。すなわち、前記した斑点模様の組織
むらは、十分な塑性歪が行き届かなかったことによる残
留圧下組織とみられる。これに対して曲げ加工の塑性変
形の形態は圧延とは異なるが、曲げ変形の外側の組織に
は引っ張り応力が、内側の組織には圧縮応力が加えられ
て、凝固,変態組織の結晶構造に、すべりと双晶が関与
する塑性変形を与え、圧延のみでは到達出来ない局所に
塑性歪を行き届かせる作用をする。
Prior to the rolling and heat treatment, which is a basic means of modifying the solidification and transformation structure of the weld zone around the weld zone, the bending process in the first step involves localization of the structure that cannot be achieved by rolling alone. Acts to give the plastic strain of recrystallization. That is, the crystal group (lumps) in the metal structure is crushed by rolling and deforms into a flat shape, accumulating plastic strain at the grain boundaries,
Although recrystallization nuclei are generated during the heat treatment, it is impossible to make the recrystallization energy equally penetrate the entire structure only by increasing the rolling reduction. That is, it is considered that the above-mentioned uneven structure of the spot pattern is a residual reduction structure due to insufficient plastic strain. On the other hand, the form of plastic deformation in bending is different from rolling, but the tensile structure is applied to the structure outside the bending deformation and the compressive stress is applied to the structure inside the bending deformation. It provides plastic deformation involving slip and twinning, and acts to spread plastic strain to local areas that cannot be reached by rolling alone.

【0019】第2工程の曲げ加工の作用は第1工程と全
く同様である。チタン圧延板が製造される工程で、数段
階の圧延焼鈍が繰り返されてはじめて緻密で均質な組織
の製品になるのと同様に、繰り返しによって均質化が高
められる。しかし、その回数は多い程良いというもので
はない。経済的でないことはいうまでもないが、母材の
組織以上に細密にする必要はないからで、経験上1回乃
至2回で目的が達成される。
The function of the bending in the second step is exactly the same as in the first step. In the process of manufacturing a rolled titanium plate, the homogenization is enhanced by the repetition, just as the rolling annealing in several stages is repeated to obtain a product having a dense and homogeneous structure. However, the higher the number, the better. Needless to say, it is not economical, but it is not necessary to make the structure finer than the structure of the base material.

【0020】第3工程の曲げ加工の作用は2つある。そ
の1つは第1,第2工程と同様であり、繰り返し効果と
して作用する。もう1つは圧延,熱処理の原理的再結晶
作用を行わせ、目的とする緻密な微細粒組織に仕上げて
完成させることである。本発明においては、従来法が溶
接部の母材のV字開先の凹部、或いは溶接部及び溶接部
近傍を押し出し加工した溝状の凹部に肉盛りするのに対
して、熱影響部と母材部との境界が曲げ幅の両側に位置
する寸法の押型,受型で成形され、その境界部に母材の
厚みの15〜20%の高さの肉盛りが行われ、次いでこれに
よって形成された凹部を満たす肉盛りが行われる。
The effect of the bending in the third step is twofold. One of them is similar to the first and second steps, and acts as a repetitive effect. The other is to carry out the principle recrystallization action of rolling and heat treatment, and to finish and complete the target fine and fine grain structure. In the present invention, while the conventional method builds up a V-shaped groove in the base material of the welded portion or a groove-shaped recess formed by extruding the welded portion and the vicinity of the welded portion, the heat-affected zone and the base material are welded. The boundary with the material part is formed by pressing and receiving dies whose dimensions are located on both sides of the bending width, and the boundary is laid up with a height of 15 to 20% of the thickness of the base material, and then formed by this The filling that fills the recessed portion is performed.

【0021】この様にして、次に行われる押し潰し加工
によって肉盛り部全体の厚みが母材厚みに等しくしたと
きの圧下率は、溶接部が約60%で最大となり、母材部と
の境界が約20%で最小となって、その間は溶接部からの
距離に逆比例して減小し、熱影響率の大きさにほぼ比例
するように考慮されている。これによって溶接部,熱影
響部の夫々の位置における再結晶粒の粒度が均整化され
る特徴が生まれる。以上の具体的作用を以下の実施例で
詳しく述べる。
In this manner, when the thickness of the entire built-up portion is made equal to the thickness of the base material by the subsequent crushing process, the rolling reduction becomes maximum when the welded portion is about 60%, and the reduction ratio with the base material portion is reduced. It is considered that the boundary is minimum at about 20%, during which the distance decreases in inverse proportion to the distance from the weld and is approximately proportional to the magnitude of the heat effect rate. As a result, a feature is created in which the grain size of the recrystallized grains at each position of the welded portion and the heat-affected zone is equalized. The above specific operation will be described in detail in the following examples.

【0022】[0022]

【実施例】図3〜図7は本発明の実施例を示す。図3は
チタンリングの溶接部の組織調整における主要工程を示
す。曲げ加工にはV曲げ,U曲げ,R曲げなどが適用出
来るが、ここではV曲げを代表させて例示する。図4〜
図7は各工程における溶接部近傍の研磨表面の結晶組織
の50倍倍率で撮影した顕微鏡写真である。以下に手順を
追って説明する。
3 to 7 show an embodiment of the present invention. FIG. 3 shows the main steps in adjusting the structure of the welded portion of the titanium ring. V-bending, U-bending, R-bending, and the like can be applied to the bending, but the V-bending is exemplified here. FIG. 4-
FIG. 7 is a photomicrograph taken at 50 times magnification of the crystal structure of the polished surface near the weld in each step. The procedure will be described below.

【0023】厚み12mmの熱間圧延チタン板を冷間圧延し
た厚み6.5mmのチタン板をロール成型機で内径500mm,幅
300mmの円筒状に巻いてリングに成形し、対向するチタ
ン板の両端部を突合せアルゴンガスでシールドしながら
プラズマ溶接法により突合せ部を一端から他端に連続し
て溶接した。図3(A)はチタンリングの溶接部近傍を示
し、符号11が溶接部でその幅は約3mmであった。また、
溶接部に隣接した符号12が結晶組織が変態した熱影響部
でその幅は左右それぞれ約10mmであった。その外側の符
号13が材料チタン板の組織を有する母材部で符号14が母
材部と熱影響部との境界部である。
A 6.5 mm thick titanium plate obtained by cold rolling a 12 mm thick hot rolled titanium plate is 500 mm in inner diameter and width by a roll forming machine.
The butt portion was continuously welded from one end to the other end by a plasma welding method while wrapping around a 300 mm cylinder to form a ring, and butt-shielding the opposite ends of the titanium plate with argon gas. FIG. 3A shows the vicinity of the welded portion of the titanium ring, and reference numeral 11 denotes a welded portion having a width of about 3 mm. Also,
The reference numeral 12 adjacent to the welded portion is a heat-affected zone where the crystal structure was transformed, and the width thereof was about 10 mm on each of the right and left sides. Reference numeral 13 on the outer side indicates a base material having the structure of the titanium material plate, and reference numeral 14 indicates a boundary between the base material and the heat affected zone.

【0024】図4は上述のチタン板から切り出した厚み
6.5mm,幅300mm,長さ200mmの板2枚を用いて両者の幅同
志を突き合わせ、上記と全く同じ条件でプラズマ溶接し
て一体化した試験板について、表面を研磨した後、腐食
液により腐食させた面の母材部,熱影響部,溶接部のそ
れぞれを50倍の倍率で撮影した顕微鏡写真で、(c)が母
材部,(a)が熱影響部,(b)が溶接部である。なお、試験
板は上記チタンリングからは直接顕微鏡観察出来ない為
に実物に代替えさせたものではあるが、実物と完全に加
工条件を合わせているので、試験板の結果は実物の結果
とほぼ同じであることを確認している。これから判るよ
うに、母材部(c)は冷間圧延チタン板の特徴的組織であ
る粒界,凹凸が鮮明で均質な微細結晶であるが、溶接部
(b)は母材部が溶融点(1688℃)以上に加熱されて溶融し
た後冷却されて凝固し、β晶からα晶に変化したままの
凝固組織であり、β変態点(882℃)以上に加熱された部
分と882℃以下ではあるが加熱されて結晶成長した部分
を持つ熱影響部(a)も、母材部(c)の組織とは一変した粗
大な変態組織になっていることが認められる。
FIG. 4 shows the thickness cut out from the above-mentioned titanium plate.
Using two plates of 6.5mm, 300mm width and 200mm length, the widths of both plates were butted together, and the surface of a test plate integrated by plasma welding under exactly the same conditions as above was polished, and then corroded by a corrosive liquid. Micrographs of the base metal, heat-affected zone, and weld at the 50-times magnification of the exposed surface, where (c) is the base metal, (a) is the heat-affected zone, and (b) is the weld. It is. The test plate was replaced with a real one because it could not be directly observed with a microscope from the above titanium ring, but since the processing conditions were completely matched with the real one, the results of the test plate were almost the same as those of the real one Make sure that As can be seen, the base material (c) is a uniform fine crystal with clear grain boundaries and irregularities which are the characteristic structure of the cold-rolled titanium sheet,
(b) is a solidification structure in which the base material is heated above the melting point (1688 ° C.), melts and then cools and solidifies, and remains unchanged from β crystal to α crystal, and β transformation point (882 ° C.) The heat-affected zone (a), which has a heated portion and a portion below 882 ° C but heated and grown, also has a coarse transformed structure that is completely different from the structure of the base material portion (c). It is recognized that.

【0025】次に、溶接部を中心とした溶接域の範囲
が、図3(B)のように、溶接部11が外側に突き出た形に
V曲げされた。このV曲げは型幅=20mm,角度=110゜
のダイとスプリングバッグ防止のため先端にビードをつ
けたポンチが用いられ、プレスした後の熱影響部と母材
部との境界がほぼ型幅の両端に一致し、凸部15の高さ及
び凹部16の深さは約7mmであった。
Next, as shown in FIG. 3B, the range of the welding area centered on the welded portion was V-shaped so that the welded portion 11 protruded outward. This V-bending uses a die with a die width of 20 mm and an angle of 110 °, and a punch with a bead at the tip to prevent a spring bag. The boundary between the heat-affected zone and the base material after pressing is almost the die width The height of the projection 15 and the depth of the recess 16 were about 7 mm.

【0026】次に、V曲げされた部分に厚み6.5mm,内
径500mmの円弧の曲面に一致させた型でプレスされ、元
のシリンダーの円弧に復元された。
Next, the V-bent portion was pressed with a mold conforming to the curved surface of an arc having a thickness of 6.5 mm and an inner diameter of 500 mm, and was restored to the original cylinder arc.

【0027】続いて、溶接域を高周波誘導加熱装置で59
0℃に昇温して15分保持した後、自然放冷された。この
加熱条件は、母材の冷間圧延チタン板が冷間加工後に取
られた熱処理条件にもとづいて決められた。
Subsequently, the welding area was heated with a high-frequency induction heating device.
After the temperature was raised to 0 ° C. and maintained for 15 minutes, it was naturally cooled. The heating conditions were determined based on the heat treatment conditions taken after the cold-rolled titanium sheet of the base material was cold-worked.

【0028】前記の試験板が上記と全く同一条件でV曲
げ,熱処理された後の表面組織が顕微鏡観察され写真撮
影された。図5(a)が熱影響部,(b)が溶接部である。こ
れから明らかなように、両者共に未だ母材の組織とかけ
離れてはいるが、図4(a),(b)の粒界の全く見られない
粗大組織が分裂して、凹凸のある結晶組織に変化してい
るのが認められる。
The surface structure of the test plate after V bending and heat treatment under the same conditions as described above was observed under a microscope and photographed. FIG. 5A shows the heat-affected zone and FIG. 5B shows the weld zone. As is evident from the above, both of them are still far from the structure of the base material, but the coarse structure without any grain boundaries shown in FIGS. 4 (a) and 4 (b) splits into a crystal structure with irregularities. It is noted that it has changed.

【0029】次いで第2工程としてチタンリングの溶接
域が第1工程と全く同じ条件でV曲げ,熱処理された。
この繰り返し加工後の熱影響部と溶接部の組織は、同じ
加工が施された試験板の顕微鏡写真である図6(a)(熱影
響部),(b)(溶接部)から知ることが出来る。両者の写真
における組織は図5(a),(b)と比べて明らかに再結晶組
織が母材に近づいていることが認められる。
Next, as a second step, the titanium ring welding area was V-bent and heat-treated under exactly the same conditions as in the first step.
The structures of the heat-affected zone and the welded portion after this repetitive processing can be known from the micrographs of the test plate subjected to the same processing, as shown in FIGS. 6 (a) (heat-affected zone) and (b) (welded zone). I can do it. The structures in both photographs clearly show that the recrystallized structure is closer to the base material than in FIGS. 5 (a) and 5 (b).

【0030】次いで第3工程が次のように施工された。
先ず初めに溶接域のV曲げが第1,第2工程と同様に行
われた。既述のように、その目的の1つは屈曲による塑
性歪の付与であり、第2の目的は押し潰し圧下による塑
性歪付与である。第2の目的のために図3に示すV曲げ
の幅の両端の母材部と熱影響部との境界部14の位置に母
材と同等のJIS1種チタン溶加棒によって符号17の肉
盛り(A)が高さ1.6mm、巾4mmの寸法でTIG溶接さ
れ、次いでこれによって形成された凹部に図3D符号18
に示す肉盛り(B)がTIG溶接された。何れの溶接もチ
タンリングの外側を冷却して行われた。
Next, the third step was performed as follows.
First, the V-bending of the welding area was performed in the same manner as in the first and second steps. As described above, one of the purposes is to apply plastic strain by bending, and the second purpose is to apply plastic strain by crushing and reducing. For the second purpose, at the position of the boundary 14 between the base material and the heat-affected zone at both ends of the width of the V-bend shown in FIG. (A) is TIG-welded to a size of 1.6 mm in height and 4 mm in width, and then, in the recess formed by this, reference numeral 18 in FIG.
(B) was subjected to TIG welding. Each welding was performed by cooling the outside of the titanium ring.

【0031】次に、肉盛りされた曲げ部全体がプレスさ
れて母材部13の厚み6.5mmとほぼ等しい厚みに成型さ
れ、図3(E)のように、チタンリングはほぼ真円に復元
した。目的とする組織改質に重要な圧下率εは、一般に
母材厚みtと埋め溶接された溶接材厚みt’から次式に
よって表される。
Next, the entire bent portion is pressed and molded to have a thickness substantially equal to the thickness of 6.5 mm of the base material portion 13, and the titanium ring is restored to a substantially perfect circle as shown in FIG. did. The rolling reduction ε important for the intended microstructural modification is generally expressed by the following equation from the thickness t ′ of the base metal and the thickness t ′ of the welded material subjected to fill welding.

【0032】[0032]

【数1】 (Equation 1)

【0033】但し、本発明においては溶接部と、熱影響
部と母材部との境界部はほぼ上式に近似するが、その中
間部は傾斜面であるため位置によって異なり、溶接部の
最大値と熱影響部端部の最小値の範囲内における各位置
の圧下率は母材部からの距離にほぼ逆比例して減小す
る。ちなみに母材部は約60%,熱影響部端部は約20%,
その間の熱影響部は20〜60%の圧下率の塑性歪が与えら
れたことになる。
However, in the present invention, the boundary between the welded portion and the heat-affected zone and the base metal portion is approximately similar to the above equation. However, the middle portion is an inclined surface, and therefore differs depending on the position. The rolling reduction of each position within the range of the value and the minimum value at the end of the heat-affected zone decreases in inverse proportion to the distance from the base material portion. By the way, the base material is about 60%, the end of the heat affected zone is about 20%,
In the meantime, the heat affected zone was given a plastic strain with a rolling reduction of 20 to 60%.

【0034】この後、上記加工部位が590℃に加熱さ
れ、15分保持後放冷された。上記と同一条件でV曲げ、
肉盛り溶接、圧延、熱処理された試験板の溶接部、熱影
響部の表面が研磨された後、顕微鏡観察された。それぞ
れのミクロ組織は、粒界が鮮明な微細粒が均整に揃い、
母材のミクロ組織に極めて近似していることが認められ
た。図7はその顕微鏡写真で、(a)が熱影響部,(b)が溶
接部であり、これを図4(c)の母材部の顕微鏡写真と対
比することによりほぼ完全に改質されていることが分か
る。
After that, the above-mentioned processed portion was heated to 590 ° C., kept for 15 minutes and allowed to cool. V bending under the same conditions as above,
After the surfaces of the welded portion and the heat-affected zone of the test plate subjected to overlay welding, rolling, and heat treatment were polished, they were observed under a microscope. In each microstructure, fine grains with clear grain boundaries are uniformly arranged,
It was found that the microstructure was very similar to the microstructure of the base metal. FIG. 7 is a micrograph of the heat-affected zone, and FIG. 7 (b) is a welded zone. By comparing this with the micrograph of the base material in FIG. You can see that it is.

【0035】また、改質部位の硬度をビッカース硬さ試
験機にかけて測定した結果のHv値は母材部115〜130,
溶接部120〜130,熱影響部109〜117で硬度も極めて近似
していることが確認された。
The Hv value obtained by measuring the hardness of the modified portion using a Vickers hardness tester was as follows.
It was confirmed that the hardness was very similar between the welded portions 120 to 130 and the heat affected zones 109 to 117.

【0036】熱処理を終了した実物のチタンリングは、
この後電着ドラムの基体であるインナードラムに焼嵌め
され、その表面層約0.5mmが機械切削された後、研磨機
にかけられて、表面粗さ(Ra)が約0.25μmに仕上げら
れてから、溶接継手部が入念に目視検査された。その結
果、従来法では明瞭に判別された溶接跡の模様は、極め
て見難く、かつ従来法に散見された組織むらも殆ど認め
られなかった。
The actual titanium ring after the heat treatment is
After this, it is shrink-fitted to the inner drum, which is the base of the electrodeposition drum, and after its surface layer is machined by about 0.5 mm, it is polished and finished to a surface roughness (Ra) of about 0.25 μm. The welded joint was carefully inspected. As a result, the pattern of the welding trace clearly distinguished by the conventional method was extremely difficult to see, and the unevenness of the structure scattered by the conventional method was hardly recognized.

【0037】[0037]

【発明の効果】上記の通り、本発明の熱間又は冷間圧延
チタン板を材料として製造される電着ドラム用チタンリ
ングは、チタン板をロール成形して突き合わせ部を溶接
することにより生じる溶接部および熱影響部の凝固,変
態組織が、均質緻密な母材部の組織とほぼ等しく再生さ
れ、かつ、従来の組織改善処理方法に見られる組織むら
を殆ど無いまでに均質微細化することが可能となり、薄
厚,ロープロファイル銅箔に求められる高品質銅箔を歩
留まり良く製造することができ、総合的に優れた経済効
果をもたらすことができる。
As described above, the titanium ring for an electrodeposition drum manufactured by using the hot or cold-rolled titanium plate of the present invention as a material provides a weld formed by rolling a titanium plate and welding a butt portion. The solidification and transformation structure of the heat affected zone and the heat-affected zone can be regenerated almost equally to the structure of the homogeneous and dense base material, and the structure can be made uniform and fine to the extent that there is almost no unevenness found in the conventional structure improvement treatment method. As a result, high-quality copper foil required for thin, low-profile copper foil can be manufactured with high yield, and an overall excellent economic effect can be brought about.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電解銅箔製造装置の正面略図である。FIG. 1 is a schematic front view of an apparatus for manufacturing an electrolytic copper foil.

【図2】電着ドラムの構造およびこれを構成するチタン
リングの取り付け位置を示す一部破断正面図である。
FIG. 2 is a partially cutaway front view showing a structure of an electrodeposition drum and a mounting position of a titanium ring constituting the same.

【図3】本発明のチタンリングの製造におけるチタン板
溶接部および熱影響部の組織改善の主要工程を示す部分
断面図である。
FIG. 3 is a partial cross-sectional view showing a main process of improving the structure of a titanium plate weld and a heat-affected zone in the production of a titanium ring according to the present invention.

【図4】従来のチタンリングの母材となる冷間圧延チタ
ン板の組織の顕微鏡写真であり、(a)は熱影響部、(b)は
溶接部そして(c)は母材部である。
FIG. 4 is a micrograph of the structure of a cold-rolled titanium plate as a base material of a conventional titanium ring, where (a) is a heat-affected zone, (b) is a welded portion, and (c) is a base material portion. .

【図5】本発明の組織改善処理における第1工程を終了
した段階での(a)は溶接部、(b)は熱影響部の組織の顕微
鏡写真である。
5A and 5B are photomicrographs of the structure of the welded portion and the structure of the heat-affected zone at the stage where the first step in the structure improving process of the present invention has been completed.

【図6】本発明の組織改善処理における第2工程を終了
した段階での(a)は溶接部、(b)は熱影響部の組織の顕微
鏡写真である。
FIGS. 6A and 6B are micrographs of the structure of the welded portion and the structure of the heat-affected zone at the stage when the second step in the structure improving process of the present invention is completed.

【図7】本発明の組織改善処理における第3工程を終了
し完成した段階での(a)は溶接部、(b)は熱影響部の組織
の顕微鏡写真である。
7A and 7B are photomicrographs of the structure of the welded portion and the structure of the heat-affected zone at the stage where the third step in the structure improvement treatment of the present invention has been completed and completed.

【符号の説明】[Explanation of symbols]

10 チタンリング 11 溶接部 12 熱影響部 13 母材部 14 境界部 15 曲げ凸部 16 曲げ凹部 17 肉盛り部A 18 肉盛り部B 10 Titanium ring 11 Welded part 12 Heat affected part 13 Base material part 14 Boundary part 15 Bend convex part 16 Bend concave part 17 Overlay part A 18 Overlay part B

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−262872(JP,A) 特開 平4−36488(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22F 1/18 C25D 1/04 C25D 17/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-262872 (JP, A) JP-A-4-36488 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22F 1/18 C25D 1/04 C25D 17/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解金属箔製造用電着ドラムの陰極とな
るチタンリングの製造方法にあって、円筒状に巻かれた
純チタン板の対向する両端を突き合わせ溶接する溶接部
および熱影響部に生じる凝固、変態組織を母材と同質の
組織に調整する手段において、溶接域を溶接線を中心に
リングの外側に曲げ加工を施した後、該曲げ加工部をプ
レスして元の円弧に復元した屈伸加工部を熱処理再結晶
する第1工程と、前記曲げ加工、復元、熱処理再結晶
を更に1回以上繰り返す第2工程と、前記曲げ加工に
より形成する凹部に肉盛した後圧延加工して板厚に合わ
せて熱処理再結晶化する第3工程を順次施すことを特徴
とする電着ドラム用チタンリングの製造方法。
1. A method for manufacturing a titanium ring serving as a cathode of an electrodeposition drum for producing an electrolytic metal foil, comprising: a welded portion for butt-welding opposite ends of a pure titanium plate wound in a cylindrical shape; In the means for adjusting the resulting solidification and transformation structure to a structure of the same quality as the base material, after bending the welding area to the outside of the ring around the welding line, press the bent part to restore the original arc Heat - treated recrystallized bent and stretched part
A first step of reduction, the bending, restore, heat treatment recrystallization
A second step of repeating further one or more times of, suitable to thickness by rolling after NikuSakari the recess formed by the bending process
A third step of sequentially performing heat treatment and recrystallization .
JP07027929A 1995-02-16 1995-02-16 Method for producing titanium ring for electrodeposition drum Expired - Lifetime JP3115982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07027929A JP3115982B2 (en) 1995-02-16 1995-02-16 Method for producing titanium ring for electrodeposition drum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07027929A JP3115982B2 (en) 1995-02-16 1995-02-16 Method for producing titanium ring for electrodeposition drum

Publications (2)

Publication Number Publication Date
JPH08225905A JPH08225905A (en) 1996-09-03
JP3115982B2 true JP3115982B2 (en) 2000-12-11

Family

ID=12234588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07027929A Expired - Lifetime JP3115982B2 (en) 1995-02-16 1995-02-16 Method for producing titanium ring for electrodeposition drum

Country Status (1)

Country Link
JP (1) JP3115982B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250994B2 (en) * 1999-12-28 2002-01-28 三井金属鉱業株式会社 Electrolytic copper foil
JP4441642B2 (en) * 2000-12-27 2010-03-31 三井金属鉱業株式会社 Titanium cathode electrode for producing electrolytic copper foil, rotating cathode drum using the titanium cathode electrode, method for producing titanium material used for titanium cathode electrode, and method for correcting titanium material for titanium cathode electrode
JP4532017B2 (en) * 2001-05-18 2010-08-25 赤星工業株式会社 Method and apparatus for manufacturing titanium ring of drum for manufacturing electrolytic metal foil
CN103567611B (en) * 2012-07-24 2016-05-04 宁波江丰电子材料股份有限公司 The welding method of focusing ring
KR102230872B1 (en) 2019-12-19 2021-03-24 주식회사 포스코 Manufacturing method of titanium ring for electro-deposition drum and titanium ring manufactured thereof

Also Published As

Publication number Publication date
JPH08225905A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
WO2004065032A1 (en) Metal foil tube and method and apparatus for production thereof
EP3769894A1 (en) Metal material solid-phase bonding method and solid-phase bonding device
JP3115982B2 (en) Method for producing titanium ring for electrodeposition drum
CN106715005B (en) Even if omitting breaking down process, finishing procedure, surface texture after hot rolling also excellent hot rolling titanium slab and its manufacturing method
AU596744B2 (en) Variable strenth materials by rapid deformation
US5148966A (en) Method for producing outer skin for electric deposition foil producing drum
JPH01272750A (en) Production of expanded material of alpha plus beta ti alloy
KR101782664B1 (en) Heat treatment method and heat treatment apparatus
AU596743B2 (en) Variable strength steel, formed by rapid deformation
JP2013007063A (en) TITANIUM ALLOY THICK PLATE FOR DRUM FOR MANUFACTURING ELECTROLYTIC Cu FOIL, AND METHOD OF MANUFACTURING THE SAME
CN110366602B (en) Thermal cycling for austenite grain refinement
US10821559B2 (en) Method for obtaining a welding electrode
JP2964920B2 (en) Titanium material for electrodeposition drum for electrodeposition foil production
US5712046A (en) Titanium ring for an electrodeposition drum and a method for its manufacture
JP4532017B2 (en) Method and apparatus for manufacturing titanium ring of drum for manufacturing electrolytic metal foil
JPH06335769A (en) Manufacture of titanium electrodeposited face plate drum
JP2004255457A (en) Composite roll for hot rolling and method for manufacturing it
CN111615565B (en) Welding electrode for aluminium or steel sheets and method for obtaining same
KR20060118411A (en) Copper-nickel-silicon two phase quench substrate
JPH09195080A (en) Production of outer skin of drum for producing electrodeposited foil
JP2005288519A (en) Electrode material and its production method
JPH02243790A (en) Titanium electrocoated face plate drum and its production
JP2002322526A (en) Titanium for copper foil production drum having uniform metallic structure and production method therefor
RU2209706C2 (en) Method for making composite rolling rolls
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term