JP2005288519A - Electrode material and its production method - Google Patents

Electrode material and its production method Download PDF

Info

Publication number
JP2005288519A
JP2005288519A JP2004109876A JP2004109876A JP2005288519A JP 2005288519 A JP2005288519 A JP 2005288519A JP 2004109876 A JP2004109876 A JP 2004109876A JP 2004109876 A JP2004109876 A JP 2004109876A JP 2005288519 A JP2005288519 A JP 2005288519A
Authority
JP
Japan
Prior art keywords
less
electrode material
extrusion
welding
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004109876A
Other languages
Japanese (ja)
Inventor
Masataka Kawazoe
正孝 川添
Katsuyuki Takeya
桂之 竹谷
Mioko Itou
美緒子 井藤
Hiroyuki Sasaki
浩之 佐々木
Hideyuki Hasegawa
英之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP2004109876A priority Critical patent/JP2005288519A/en
Publication of JP2005288519A publication Critical patent/JP2005288519A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the mechanical properties, heat resistance and high temperature yield stress of a copper alloy material for welding, and to improve its continuous spotting properties (electrode life) as an electrode material. <P>SOLUTION: An alloy stock expressed by general formula of Cu<SB>bal.</SB>Cr<SB>a</SB>Zr<SB>b</SB>X<SB>c</SB>(wherein, X is at least one kind of element selected from Fe, P, Co, Si and Mn; a, b and c satisfy 0.4 wt%≤a≤1.5wt%, 0.02 wt%≤b≤0.1 wt%, and 0≤Fe+P+[Co×0.75]+[Si×0.6]+[Mn×0.35]<0.015 wt%, respectively and the balance Cu with inevitable impurities) is subjected to extrusion at 300 to 600°C at an extrusion ratio of ≥4 by an extrusion method or an equal-channel angular extrusion method as shown in Figure, thus the electrode material having a structure where fine grains with a mean grain size of ≤50 nm are precipitated into a structure composed of fibrous crystal grains with a minor axis length of ≤10 μm consisting of subcrystal grains with a mean grain size of ≤3 μm is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウム、マグネシウム、鉄及びこれらの合金、さらにはその金属めっき材等からなる被溶接材料を溶接する際に用いる電極材料及びその製造方法に関するものである。   The present invention relates to an electrode material used when welding a material to be welded made of aluminum, magnesium, iron and alloys thereof, and further, a metal plating material thereof, and a manufacturing method thereof.

従来、アルミニウム、マグネシウム、鉄及びこれらの合金、さらにはその金属めっき材等からなる被溶接材料を溶接する際に用いる電極材料としてはクロム銅(Cu−Cr)、アルミナ分散銅(Al23分散銅)からなる電極材料が用いられている。 Conventionally, chromium, copper (Cu—Cr), alumina-dispersed copper (Al 2 O 3 ) are used as electrode materials used when welding a material to be welded made of aluminum, magnesium, iron, and alloys thereof, or metal plating materials thereof. An electrode material made of (dispersed copper) is used.

例えば特許文献1には、Cu−Cr合金からなる溶接用電極材料は約1000℃の高温で製造されるため合金中の結晶粒が粗大化して耐磨耗性、耐熱性が低くなるという欠点があるが、このCu−Cr合金にホウ素を0.01〜0.2重量%添加することにより合金の結晶粒を微細化して耐熱性、高温硬度を向上させることが記載されている。   For example, Patent Document 1 has a defect that a welding electrode material made of a Cu—Cr alloy is manufactured at a high temperature of about 1000 ° C., so that crystal grains in the alloy become coarse and wear resistance and heat resistance become low. However, it is described that by adding 0.01 to 0.2% by weight of boron to this Cu—Cr alloy, crystal grains of the alloy are refined to improve heat resistance and high temperature hardness.

特許文献2には、銅にある限られた量のCr、Zrを添加することにより導電率と強度がともに高い合金が得られる旨が記載されている。具体的にはCu−0.01〜2.0wt%Cr合金、Cu−0.005〜1.0wt%Zr合金、Cu−0.01〜2.0wt%Cr−0.005〜1.0wt%Zr合金などが挙げられている。   Patent Document 2 describes that an alloy having high conductivity and high strength can be obtained by adding a limited amount of Cr and Zr in copper. Specifically, Cu-0.01-2.0 wt% Cr alloy, Cu-0.005-1.0 wt% Zr alloy, Cu-0.01-2.0 wt% Cr-0.005-1.0 wt% Zr alloys and the like are mentioned.

特許文献3には、溶接用電極材料の合金組成をCr0.4〜1.0重量% 、Sn0.05〜0.2重量%、残部を不可避不純物を含む銅からなるものとすることにより、電極先端部の変形損耗を減少させて寿命を向上させることが記載されている。   In Patent Document 3, the electrode composition is made of an alloy composition of welding electrode material of Cr 0.4 to 1.0 wt%, Sn 0.05 to 0.2 wt%, and the balance made of copper containing inevitable impurities. It is described that the life of the tip is improved by reducing deformation and wear of the tip.

特許文献4には、溶接用電極材料の組成を、Zr0.05〜1.0重量% 、Cr3〜20重量%、残部Cuからなる合金組成とすることにより、導電率が高まると共に耐摩耗性を向上させて、スポット溶接の打点数を増大させることが記載されている。   In Patent Document 4, the composition of the welding electrode material is an alloy composition made of 0.05 to 1.0% by weight of Zr, 3 to 20% by weight of Cr, and the balance Cu, so that the conductivity is increased and the wear resistance is improved. It is described to improve and increase the number of spot welding spots.

しかしながら、クロム銅からなる電極材料は、Crの固溶量が多いため導電率及び熱導電率が低く、さらに結晶粒径が数十μmと大きいため、繰り返し疲労強度が低いといった問題がある。電極材料として用いた場合には、少ない打点回数で電極先端径が拡大し溶接電流密度が低下するため連続打点性が低く、さらに、導電率及び熱伝導率が低いため、被溶接材と合金化しやすく溶着打点数が低いといった問題を有する。   However, an electrode material made of chromium copper has a problem that the electrical conductivity and thermal conductivity are low because of the large amount of Cr dissolved, and the repeated fatigue strength is low because the crystal grain size is as large as several tens of μm. When used as an electrode material, the electrode tip diameter expands with a small number of spots and the welding current density decreases, resulting in low continuous spotting, and low conductivity and thermal conductivity. There is a problem that the number of welding hit points is low.

また、アルミナ分散銅からなる電極材料は、高温での降伏応力が低く、少ない打点回数で電極先端径が拡大し、溶接電流密度が低下するため、連続打点性が低く、さらに、導電率及び熱伝導率が低いため、被溶接材料と合金化しやすく溶着打点数が低いといった問題を有する。   In addition, the electrode material made of alumina-dispersed copper has low yield stress at high temperatures, the electrode tip diameter increases with a small number of spots, and the welding current density decreases. Since the conductivity is low, there is a problem that it is easy to alloy with the material to be welded and the number of welding hit points is low.

特公昭56−31196号公報Japanese Patent Publication No.56-31196 特開昭59−193233号公報JP 59-193233 A 特開昭62−3885号公報Japanese Patent Application Laid-Open No. 62-3885 特開平6−73473号公報JP-A-6-73473

そこで、本発明は上述の問題を解消すべくなされたものであり、組織構造を亜結晶粒から構成される繊維状結晶粒からなる組織中に、拡散速度が遅い原子を含む粒子を微細析出させることにより機械的特性、耐熱性、高温降伏応力及び電極材料としての連続打点性(電極寿命)を向上させるとともに、微細析出物を析出促進させることにより導電率を向上させ、電極材料として被溶接材料と合金化を抑制し溶着打点数(耐溶着性)の向上をはかることができる電極材料及びその製造方法を提供することを目的とする。
また、本発明は、結晶粒を微細化させることにより靱性を向上し、さらに微細析出物の析出を促進させることにより導電率を向上させ、電極材料としての連続打点性(電極寿命)と溶着打点数(耐溶着性)の向上を図ることができる電極材料及びその製造方法を提供することを目的とする。
Therefore, the present invention has been made to solve the above-described problems, and finely precipitate particles containing atoms having a low diffusion rate in a structure composed of fibrous crystal grains composed of sub-crystal grains. In addition to improving mechanical properties, heat resistance, high-temperature yield stress, and continuous spotting properties (electrode life) as electrode materials, it also improves conductivity by promoting precipitation of fine precipitates, and is a material to be welded as an electrode material. It is an object of the present invention to provide an electrode material capable of suppressing alloying and improving the number of welding points (welding resistance) and a method for producing the same.
In addition, the present invention improves toughness by refining crystal grains, further improves conductivity by promoting precipitation of fine precipitates, and provides continuous spotability (electrode life) as an electrode material and welding hits. An object is to provide an electrode material capable of improving the score (welding resistance) and a method for producing the same.

本発明の構成は以下に記載する通りである。
(1)一般式:Cubal.CrZr(但し、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである)で示される組成からなり、前記組成の組織構造が、平均粒径が3μm以下の亜結晶粒から構成される短軸長さが10μm以下の繊維状結晶粒からなる組織中に平均結晶粒子径50nm以下の微細粒子が析出してなる組織構造を有することを特徴とする上記(1)の電極材料。
(2)一般式:Cubal.CrZr(但し、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである)で示される組成からなり、前記組成の組織構造が、平均結晶粒径が3μm以下の等軸状結晶粒からなる組織中に平均結晶粒径50nm以下の微細粒子が析出してなる組織構造を有することを特徴とする電極材料。
The configuration of the present invention is as described below.
(1) General formula: Cu bal. Cr a Zr b X c (where X is at least one element selected from Fe, P, Co, Si, Mn, and a, b, c are each 0 .4 wt% ≦ a ≦ 1.5 wt%, 0.02 wt% ≦ b ≦ 0.1 wt%, 0 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35] < The minor axis length is composed of a sub-crystal grain having an average grain size of 3 μm or less. The electrode material according to (1), wherein the electrode material has a structure in which fine particles having an average crystal particle diameter of 50 nm or less are precipitated in a structure composed of fibrous crystal grains having a diameter of 10 μm or less.
(2) General formula: Cu bal. Cr a Zr b X c (where X is at least one element selected from Fe, P, Co, Si, Mn, and a, b, c are each 0 .4 wt% ≦ a ≦ 1.5 wt%, 0.02 wt% ≦ b ≦ 0.1 wt%, 0 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35] < In which the balance is 0.015 wt% and the balance is Cu containing inevitable impurities), and the structure of the composition is in a structure composed of equiaxed crystal grains having an average crystal grain size of 3 μm or less. An electrode material having a structure in which fine particles having an average crystal grain size of 50 nm or less are precipitated.

(3)一般式:Cubal.CrZr(但し、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0.001≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである)で示される組成からなることを特徴とする上記(1)、(2)の電極材料。
(4)上記微細粒子の析出分散状態が、平均粒子間距離で200nm以下であることを特徴とする上記(1)〜(3)の電極材料。
(5)上記微粒子がCr、CuZr、CuZrから選ばれる少なくとも1種であることを特徴とする上記(1)〜(4)の電極材料。
(3) General formula: Cu bal. Cr a Zr b X c (where X is at least one element selected from Fe, P, Co, Si, Mn, and a, b, c are each 0 .4 wt% ≦ a ≦ 1.5 wt%, 0.02 wt% ≦ b ≦ 0.1 wt%, 0.001 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35 The electrode material according to the above (1) or (2), wherein the electrode material has a composition represented by <0.015 wt% and the balance is Cu containing inevitable impurities].
(4) The electrode material according to any one of (1) to (3) above, wherein the precipitation dispersion state of the fine particles is an average interparticle distance of 200 nm or less.
(5) The electrode material according to (1) to (4) above, wherein the fine particles are at least one selected from Cr, Cu 3 Zr, and Cu 9 Zr 2 .

(6)一般式:Cubal.CrZr(但し、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである)で示される組成からなるCu系合金素材を、温度300〜600℃で押出を行うことを特徴とする電極材料の製造方法。
(7)押出方向を途中で内角180℃未満の側方に変化させてせん断変形を与えることによって押出すことを特徴とする上記(6)の電極材料の製造方法。
(8)押出比4以上で、押出を行うことを特徴とする上記(6)、(7)の電極材料の製造方法。
(6) General formula: Cu bal. Cr a Zr b X c (where X is at least one element selected from Fe, P, Co, Si, Mn, and a, b, c are each 0 .4 wt% ≦ a ≦ 1.5 wt%, 0.02 wt% ≦ b ≦ 0.1 wt%, 0 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35] < A method for producing an electrode material, comprising: extruding a Cu-based alloy material having a composition represented by the following formula: 0.01% by weight, and the remainder being Cu containing inevitable impurities:
(7) The method for producing an electrode material according to (6) above, wherein the extrusion is performed by changing the extrusion direction to the side with an inner angle of less than 180 ° C. to give a shear deformation.
(8) The method for producing an electrode material according to (6) or (7) above, wherein extrusion is performed at an extrusion ratio of 4 or more.

本発明の電極材料及びその製造方法によれば、微細な結晶組織中に、平均結晶粒径50nm以下の微細粒子を微細析出させることにより機械的特性、耐熱性、高温降伏応力及び電極材料としての連続打点性(電極寿命)を向上させるとともに、微細析出物を析出促進させることにより導電率を向上させ、電極材料として被溶接材料と合金化を抑制し溶着打点数(耐溶着性)を向上させることができる電極材料を提供することできる。さらに、前記優れた特性を備えた電極材料を容易に製造することができる。   According to the electrode material of the present invention and the method for producing the same, mechanical properties, heat resistance, high-temperature yield stress, and electrode material can be obtained by finely precipitating fine particles having an average crystal grain size of 50 nm or less in a fine crystal structure. Improves continuous spotting (electrode life) and promotes precipitation by promoting the precipitation of fine precipitates, suppresses alloying with the material to be welded as the electrode material, and improves the number of welding spots (welding resistance) An electrode material that can be provided can be provided. Furthermore, an electrode material having the excellent characteristics can be easily produced.

本発明の電極材を得るための具体的方法としては、特定の組成からなる合金素材を再結晶温度以下で、押出法及び側方押出法(ECAE法:equal-channel angular extrusion)によって成形する方法を用いることが好ましい。
まず、押出法について述べる。
合金素材の結晶粒を繊維状(具体的には、アスペクト比1.5以上の等軸状でない結晶粒)とし、かつその下部組織を微細な亜結晶粒にし、微細粒子を析出させるための具体的手段としては、温度300〜600℃、押出比4以上で行う直接押出或いは間接押出からなる押出法が有効である。前記押出法は、合金素材の断面積を大きく変化させ、その断面積の変化にともない、その条件を適切に設定することによって合金素材に剪断変形及び塑性変形(歪)を与えることが可能である。これによって、繊維状結晶粒の短軸長さを10μm以下、かつ下部組織の平均亜結晶粒径を3μm以下、更に平均結晶粒子径50nm以下の微細粒子の析出を促進することができ、高温での高降伏応力、耐熱性、高導電率を材料に付与できるものである。
As a specific method for obtaining the electrode material of the present invention, an alloy material having a specific composition is formed at a recrystallization temperature or lower by an extrusion method and a side extrusion method (ECAE method: equal-channel angular extrusion). Is preferably used.
First, the extrusion method will be described.
Concrete for crystallizing alloy material crystal grains (specifically, non-equal axis grains with an aspect ratio of 1.5 or more) and substructure of the substructure to precipitate fine particles As an appropriate means, an extrusion method comprising direct extrusion or indirect extrusion performed at a temperature of 300 to 600 ° C. and an extrusion ratio of 4 or more is effective. In the extrusion method, the cross-sectional area of the alloy material is greatly changed, and according to the change of the cross-sectional area, it is possible to give shear deformation and plastic deformation (strain) to the alloy material by appropriately setting the conditions. . Thereby, precipitation of fine particles having a minor axis length of fibrous crystal grains of 10 μm or less, an average subcrystal grain size of the substructure of 3 μm or less, and an average crystal grain diameter of 50 nm or less can be promoted at a high temperature. High yield stress, heat resistance, and high conductivity can be imparted to the material.

本発明における押出法に用いる押出成形装置を、図1に示す直接押出成形装置に基づいて説明すると、長手方向に連通する供給部1が形成されたコンテナー2と供給部1の一端側に配され、成形される押出成形材Mの断面形状の開口が形成されたダイ3と供給部1の他端側に配され、前記ダイ3に向かって供給部1内を摺動する一方側にダミーブロック4を備えたステム5とからなる。   The extrusion molding apparatus used for the extrusion method in the present invention will be described based on the direct extrusion molding apparatus shown in FIG. 1. The supply section 1 communicating in the longitudinal direction is provided on one end side of the supply section 1 and the supply section 1. The die 3 formed with an opening having a cross-sectional shape of the extrusion molding material M to be molded and the other end side of the supply unit 1 and a dummy block on one side sliding in the supply unit 1 toward the die 3 4 and a stem 5 with 4.

なお、図示されていないが、押出成形装置には、コンテナー2内の温度をコントロールするための加熱・冷却手段及び温度検知手段並びに温度制御手段等が設けられている。
押出成形は、供給部1内に押出材料Sを配し、他端側のステム5をダイ3に向けて摺動させ、押出材料Sをダイ3に向けて押圧することによってダイ3に形成されている開口に合った断面形状の押出成形材Mを作製する。この場合、ダイ3により押出材料Sの断面積を減少させることによって、材料には歪が与えられ、押出成形材は結晶粒が繊維状化、かつ下部組織の亜結晶粒が微細化、更に微細粒子が歪み誘起により析出促進され、優れた機械的特性の向上が行える。
Although not shown, the extrusion molding apparatus is provided with heating / cooling means, temperature detection means, temperature control means, and the like for controlling the temperature in the container 2.
The extrusion molding is formed on the die 3 by arranging the extrusion material S in the supply unit 1, sliding the stem 5 on the other end side toward the die 3, and pressing the extrusion material S toward the die 3. An extrusion molding material M having a cross-sectional shape matching the opening is prepared. In this case, by reducing the cross-sectional area of the extruded material S with the die 3, the material is distorted, and the extruded material has a crystallized fiber shape and a sub-crystal grain of the substructure is refined and further refined. Precipitation of particles is promoted by strain induction, and excellent mechanical properties can be improved.

この方法を合金素材に適用することにより、非常に単純な工程で、繊維状結晶粒の短軸長さを10μm以下、かつ下部組織の平均亜結晶粒径を3μm以下とし、更に析出物の平均粒子径が50nm以下に微細化され、高温降伏応力、耐熱性、靭性、導電率を大きく改善できる。また、そのプロセスは、鋳造組織、合金成分のマクロ、ミクロ的な偏析の破壊、均質化にも効果を持っている。   By applying this method to the alloy material, the minor axis length of the fibrous crystal grains is set to 10 μm or less and the average subcrystal grain size of the substructure is set to 3 μm or less in a very simple process. The particle size is reduced to 50 nm or less, and the high-temperature yield stress, heat resistance, toughness, and conductivity can be greatly improved. The process also has an effect on the fracture and homogenization of cast structure, macro of alloy components, micro segregation.

本発明において、上記押出法による押出は温度300〜600℃、押出比4以上で行うことが重要である。その理由は、前記温度が300℃未満の場合、機械的強度は向上するものの、微細析出物の析出促進が充分に行えず導電率を向上させることができなくなるためであり、また前記温度が600℃を超える場合、結晶粒の繊維状化、かつ下部組織の亜結晶粒の微細化、更に析出粒子の微細化が行えず、機械的強度等の向上が行えず、さらに析出していた分散粒子の再固溶が起こり、導電率を向上させることができなくなるためである。さらに、押出比4未満の場合、合金素材の結晶粒の繊維状化、かつ下部組織の亜結晶粒の微細化、更に微細粒子の析出促進が充分に行えず、機械的強度、導電率の向上が期待できないためである。   In the present invention, it is important that extrusion by the above extrusion method is performed at a temperature of 300 to 600 ° C. and an extrusion ratio of 4 or more. The reason is that, when the temperature is less than 300 ° C., the mechanical strength is improved, but the precipitation cannot be sufficiently promoted to prevent the precipitation of fine precipitates, and the conductivity cannot be improved. If the temperature exceeds ℃, the crystal grains become fibrous, the substructure grains cannot be refined, the precipitated particles cannot be refined, and the mechanical strength cannot be improved. This is because re-dissolution occurs and the conductivity cannot be improved. Furthermore, when the extrusion ratio is less than 4, the alloy material crystal grains are made fibrous, the substructure grains of the substructure are not refined, and the precipitation of the fine particles is not sufficiently promoted, and the mechanical strength and conductivity are improved. This is because it cannot be expected.

さらに、本発明において、上記押出法を施すにあたって、事前に温度350〜700℃の範囲内で熱処理(以下、事前熱処理ともいう)を施すことが好ましい。この事前熱処理を施すことにより、微細析出物が分散し、押出過程で導入された転位等のピンニングに寄与して結晶粒の繊維状化、かつ下部組織の亜結晶粒を微細化させることができる。前記温度が350℃未満の場合、析出が起こらず、また前記温度が700℃を超える場合、結晶粒径及び析出物が粗大化しすぎて、上記押出法を施しても適切な繊維状結晶粒の短軸長さ、かつ下部組織の亜結晶粒径或いは析出物の大きさにコントロールすることができなくなる。事前熱処理時間については、少なくとも30分以上であれば上記効果が期待できる。なお、上限については特に制限はないが、経済性等を考慮した場合、100時間以内であることが望ましい。   Furthermore, in the present invention, it is preferable to perform a heat treatment (hereinafter, also referred to as a preheat treatment) within a temperature range of 350 to 700 ° C. in advance in performing the extrusion method. By applying this pre-heat treatment, fine precipitates are dispersed, contributing to pinning such as dislocations introduced in the extrusion process, and making the crystal grains fibrillated and sub-crystal grains in the substructure can be made finer. . When the temperature is less than 350 ° C., precipitation does not occur, and when the temperature exceeds 700 ° C., the crystal grain size and precipitates are too coarse, and even if the above extrusion method is applied, suitable fibrous crystal grains It becomes impossible to control the minor axis length and the subcrystal grain size of the substructure or the size of the precipitate. About the prior heat processing time, the said effect can be anticipated if it is at least 30 minutes or more. In addition, although there is no restriction | limiting in particular about an upper limit, when it considers economical efficiency etc., it is desirable that it is less than 100 hours.

また、本発明においては、上記押出法を施した後、温度350〜700℃の範囲内で熱処理(以下、事後熱処理ともいう)を施すことが好ましく、この事後熱処理を施すことにより、析出物を均一微細に析出分散させることができるため、電極材料として導電率を向上させることができる。前記温度が350℃未満の場合、前記析出物の析出量が不足し、導電率の向上に繋がらない。また前記温度が700℃を超える場合、析出していた分散粒子の再固溶が起きて導電率の低下を招きやすくなる。熱処理時間については、少なくとも10分以上であれば上記効果が期待できる。なお、上限については特に制限はないが、経済性等を考慮した場合、50時間以内であることが望ましい。   In the present invention, it is preferable to perform a heat treatment (hereinafter also referred to as a post-heat treatment) within a temperature range of 350 to 700 ° C. after performing the above extrusion method. Since it can be uniformly and finely deposited and dispersed, the electrical conductivity can be improved as an electrode material. When the temperature is lower than 350 ° C., the amount of the precipitate deposited is insufficient, and the conductivity is not improved. On the other hand, when the temperature exceeds 700 ° C., the precipitated dispersed particles are re-dissolved and the conductivity tends to decrease. About the heat processing time, the said effect can be anticipated if it is at least 10 minutes or more. In addition, although there is no restriction | limiting in particular about an upper limit, when it considers economical efficiency etc., it is desirable that it is less than 50 hours.

本発明においては、前記事前熱処理及び前記事後熱処理を併用することが、繊維状結晶粒の短軸長さ、平均亜結晶粒径及び微細析出物を適切な大きさにコントロールし、また、微細析出物を均一微細分散させ、その析出量をコントロールする上で、特に好ましい。   In the present invention, the combined use of the pre-heat treatment and the post-heat treatment controls the short axis length of the fibrous crystal grains, the average subcrystal grain size and the fine precipitates to an appropriate size, This is particularly preferable for uniformly dispersing fine precipitates and controlling the amount of precipitation.

次に、側方押出法(ECAE法)について述べる。
ECAE法は、合金素材の持つ断面積を変化させずに、その押出方向を途中で内角180°未満(より好ましくは内角60〜120°の範囲)の側方に変化させるものであり、合金素材に220%以上、さらには10000%以上の伸びに相当する塑性変形(歪)を与えることが可能である。これによって、等軸状で平均結晶粒径を3μm以下、更に平均粒子径50nm以下の微細粒子の析出を促進することができ、高強度、耐熱性を材料に付与できるものである。
Next, the side extrusion method (ECAE method) will be described.
The ECAE method changes the extrusion direction to the side of an inner angle of less than 180 ° (more preferably in the range of an inner angle of 60 to 120 °) in the middle without changing the cross-sectional area of the alloy material. It is possible to give plastic deformation (strain) corresponding to elongation of 220% or more, further 10,000% or more. Thereby, precipitation of fine particles having an equiaxed shape with an average crystal grain size of 3 μm or less and an average particle diameter of 50 nm or less can be promoted, and high strength and heat resistance can be imparted to the material.

本発明におけるECAE法は、図2に示すように、内面で同一断面積を持つ2つの押出しコンテナー、又はコンテナー21とダイ22を180°未満の適当な角度(2φ)で接合し、一方のコンテナー21に合金素材Sを挿入し、ラム23によって次のコンテナー21又はダイ22に向けて押出すことによって、材料に側方方向の剪断変形を加える方法であり、好ましくはこの工程を複数回行う。この方法を合金素材に適用することにより、非常に単純な工程で、しかも断面積を減少させることなく、結晶粒が3μm以下に微細化され、靭性を大きく改善することができる(特開平9−137244号公報参照)。   In the ECAE method of the present invention, as shown in FIG. 2, two extrusion containers having the same cross-sectional area on the inner surface, or the container 21 and the die 22 are joined at an appropriate angle (2φ) of less than 180 °, and one container is In this method, the alloy material S is inserted into the material 21 and extruded toward the next container 21 or die 22 by the ram 23 to apply a shear deformation in the lateral direction to the material. Preferably, this step is performed a plurality of times. By applying this method to the alloy material, the crystal grains can be refined to 3 μm or less by a very simple process and without reducing the cross-sectional area, and the toughness can be greatly improved (Japanese Patent Laid-Open No. 9-1990). No. 133244).

また、そのプロセスは、鋳造組織、合金成分のマクロ、ミクロ的な偏析の破壊、均質化にも効果を持っており、合金素材では一般に行われている高温・長時間の均質化熱処理を省略することも可能である。さらに、たとえダイ2において断面積の減少を伴っても、その効果は変わらない。   The process also has an effect on fracture and homogenization of cast structure, macro of alloy components, micro segregation, and omits high temperature and long time homogenization heat treatment that is generally performed for alloy materials. It is also possible. Furthermore, even if the die 2 is accompanied by a reduction in the cross-sectional area, the effect does not change.

本発明におけるECAE法で合金素材に加えられる剪断変形量は、2つのコンテナー又はコンテナーとダイの接合角度によって異なる。一般に、このような剪断変形による押出し1回当たりの歪量Δεは下記式(1)で与えられる。 The amount of shear deformation applied to the alloy material by the ECAE method in the present invention varies depending on the bonding angle between the two containers or the container and the die. In general, the strain amount Δε i per one extrusion due to such shear deformation is given by the following equation (1).

Δε=(2/√3)・cotanφ ・・・(1)
ERR=(A0/A)=exp(Δε) ・・・(2)
EAR={1−(1/ERR)}×100 ・・・(3)
EE=(ERR−1)×100 ・・・(4)
(但し、Δεは歪量、φは接合角度の1/2、ERRは加工前後の面積比、A0は加工前の断面積、Aは加工後の断面積、EARは加工前後の相当断面減少率、EEは相当歪(伸びと同義)を表す。)
Δε i = (2 / √3) · cotanφ (1)
ERR = (A 0 / A) = exp (Δε i ) (2)
EAR = {1- (1 / ERR)} × 100 (3)
EE = (ERR-1) × 100 (4)
(Where Δε i is the strain amount, φ is 1/2 of the joining angle, ERR is the area ratio before and after processing, A 0 is the cross-sectional area before processing, A is the cross-sectional area after processing, and EAR is the equivalent cross-section before and after processing) (Decrease rate, EE represents equivalent strain (synonymous with elongation).)

即ち、2つのコンテナー又はコンテナーとダイの接合の内角が直角(90°)の場合、1回の側方押出で歪量は1.15(相当伸び:220%)、120°の場合、歪量は0.67(相当伸び:95%)で与えられる。断面積が同一のまま直角に側方押出しすることによって、圧延による圧下率(断面減少率)69%に相当する加工を加えることができる。   In other words, when the inner angle of two containers or container-die joint is a right angle (90 °), the strain amount is 1.15 (equivalent elongation: 220%) by one side extrusion, and when 120 °, the strain amount is 120 °. Is given by 0.67 (equivalent elongation: 95%). By performing side extrusion at a right angle while maintaining the same cross-sectional area, it is possible to add a process corresponding to a rolling reduction (cross-sectional reduction rate) of 69% by rolling.

上記プロセスを繰り返すことによって、材料の断面積を変えずに材料中に無限に歪を蓄積することができる。その繰返しによって材料に与えられる積算歪量εは下記式(5)で与えられる。
ε=Δε×N ・・・(5)
(但し、εは積算歪量、Nは押出回数を表す。)
By repeating the above process, infinite strain can be accumulated in the material without changing the cross-sectional area of the material. The accumulated strain amount ε t given to the material by the repetition is given by the following equation (5).
ε t = Δε i × N (5)
(However, ε t represents the amount of accumulated strain, and N represents the number of extrusions.)

この繰り返し回数(N)は、理論的には多いほどよいが、実際には合金によってある回数でその効果に飽和状態が見られる。一般の展伸用合金素材では、繰り返し回数4回(接合角度が直角の場合、積算歪量:4.6、相当伸び:10000%)で十分な効果を得ることができる。圧延によっても無限に歪を蓄積することができるが、その場合、断面積は無限に小さくなり、この点において側方押出法とは対照的である。   The number of repetitions (N) is theoretically better as much as possible, but in reality, the effect is saturated in a certain number of times depending on the alloy. With a general wrought alloy material, a sufficient effect can be obtained with 4 repetitions (when the joining angle is a right angle, the cumulative strain amount is 4.6 and the equivalent elongation is 10,000%). Infinite strain can also be accumulated by rolling, but in that case, the cross-sectional area becomes infinitely small, which is in contrast to the side extrusion method.

本発明において、上記ECAE法は温度300〜500℃で行うことが重要である。この温度範囲内とするのは、前記温度が300℃未満の場合、機械的強度は向上するものの、微細析出物の析出促進が充分に行えず導電率を向上させることができなくなるためであり、また前記温度が500℃を超える場合、結晶粒の微細化、かつ析出粒子の微細化が行えず、機械的強度等の向上が行えず、さらに析出していた分散粒子の再固溶が起こり、導電率を向上させることができなくなるためである。   In the present invention, it is important that the ECAE method is performed at a temperature of 300 to 500 ° C. This temperature range is because when the temperature is less than 300 ° C., the mechanical strength is improved, but the precipitation cannot be sufficiently promoted to prevent the precipitation of fine precipitates, and the conductivity cannot be improved. When the temperature exceeds 500 ° C., the crystal grains cannot be refined, and the precipitated particles cannot be refined, the mechanical strength and the like cannot be improved, and re-dissolution of the precipitated dispersed particles occurs. This is because the conductivity cannot be improved.

さらに、上記ECAE法を施すにあたって、事前に温度350〜700℃の範囲内で熱処理(以後、事前熱処理ともいう)を施すことが好ましい。この事前熱処理を施すことにより、微細析出物が分散し、ECAE過程で導入された転位等のピンニングに寄与して、結晶粒を微細化させることができる。前記温度が350℃未満の場合、析出が起こらず、また前記温度が700℃を超える場合、結晶粒径及び析出物が粗大化しすぎて、ECAE法を施しても適切な結晶粒径或いは析出物の大きさにコントロールすることができなくなる。事前熱処理時間については、少なくとも30分以上であれば上記効果が期待できる。なお、上限については特に制限はないが、経済性等を考慮した場合、100時間以内であることが望ましい。   Further, when performing the ECAE method, it is preferable to perform a heat treatment (hereinafter also referred to as a preheat treatment) within a temperature range of 350 to 700 ° C. in advance. By performing this preliminary heat treatment, fine precipitates are dispersed, contributing to pinning such as dislocations introduced in the ECAE process, and crystal grains can be refined. When the temperature is less than 350 ° C., precipitation does not occur, and when the temperature exceeds 700 ° C., the crystal grain size and the precipitate are too coarse, and even if the ECAE method is applied, an appropriate crystal grain size or precipitate is obtained. It becomes impossible to control to the size of. About the prior heat processing time, the said effect can be anticipated if it is at least 30 minutes or more. In addition, although there is no restriction | limiting in particular about an upper limit, when it considers economical efficiency etc., it is desirable that it is less than 100 hours.

また、本発明においては、上記ECAE法を施した後、温度350〜700℃の範囲内で熱処理(以後、事後熱処理ともいう)を施すことが好ましく、この事後熱処理を施すことにより、析出物を均一微細に析出分散させることができるため、電極材料として導電率を向上させることができる。前記温度が350℃未満の場合、前記析出物の析出量が不足し、導電率の向上に繋がらない。また前記温度が700℃を超える場合、析出していた分散粒子の再固溶が起きて導電率の低下を招きやすくなる。熱処理時間については、少なくとも10分以上であれば上記効果が期待できる。なお、上限については特に制限はないが、経済性等を考慮した場合、50時間以内であることが望ましい。   In the present invention, after the ECAE method, it is preferable to perform a heat treatment (hereinafter also referred to as a post-heat treatment) within a temperature range of 350 to 700 ° C. Since it can be uniformly and finely deposited and dispersed, the electrical conductivity can be improved as an electrode material. When the temperature is lower than 350 ° C., the amount of the precipitate deposited is insufficient, and the conductivity is not improved. On the other hand, when the temperature exceeds 700 ° C., the precipitated dispersed particles are re-dissolved and the conductivity tends to decrease. About the heat processing time, the said effect can be anticipated if it is at least 10 minutes or more. In addition, although there is no restriction | limiting in particular about an upper limit, when it considers economical efficiency etc., it is desirable that it is less than 50 hours.

本発明においては、前記事前熱処理及び前記事後熱処理を併用することが、平均結晶粒径及び微細析出物を適切な大きさにコントロールし、また、微細析出物を均一微細分散させ、その析出量をコントロールする上で、特に好ましい。   In the present invention, the combined use of the pre-heat treatment and the post-heat treatment controls the average crystal grain size and fine precipitates to an appropriate size, and uniformly finely disperses the fine precipitates. It is particularly preferable for controlling the amount.

本発明の電極材料に用いるCu系合金素材としては、一般式:Cubal.CrZrで示される組成からなる合金が好ましい。ここで、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである。
合金を構成する各成分の組成比を限定した理由を以下に述べる。
The Cu-based alloy material used for the electrode material of the present invention is preferably an alloy having a composition represented by the general formula: Cu bal. Cr a Zr b X c . Here, X is at least one element selected from Fe, P, Co, Si, and Mn, and a, b, and c are 0.4 wt% ≦ a ≦ 1.5 wt% and 0.02 wt%, respectively. ≦ b ≦ 0.1 wt%, 0 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35] <0.015 wt%, the balance being Cu containing inevitable impurities It is.
The reason why the composition ratio of each component constituting the alloy is limited will be described below.

<Zr>
Zrが0.02wt%より少ない場合は、析出Cr粒子が粗大化しやすいので、耐熱性が十分ではない。また0.1wt%より多くなると、Crと相互作用し、Crの固溶限を増やすので導電率(IACS)が低下し、十分な電極特性が得られない。
<Zr>
When Zr is less than 0.02 wt%, the deposited Cr particles are likely to be coarsened, so that the heat resistance is not sufficient. On the other hand, if it exceeds 0.1 wt%, it interacts with Cr and increases the solid solubility limit of Cr, so that the conductivity (IACS) is lowered and sufficient electrode characteristics cannot be obtained.

<Cr>
Crは耐熱性及び高温降伏応力の向上に寄与する微細な析出物を析出することができる。Crが0.4wt%より少ない場合は、Crの析出量が少なくなり、Crの分散量が少なくなるので、強度が十分ではない。また1.5wt%以上になると、Crの析出量が多くなるのでIACSが低下し、十分な電極特性が得られない。
<Cr>
Cr can precipitate fine precipitates that contribute to the improvement of heat resistance and high-temperature yield stress. When Cr is less than 0.4 wt%, the amount of Cr deposited is reduced and the amount of Cr dispersed is reduced, so that the strength is not sufficient. On the other hand, if the content is 1.5 wt% or more, the amount of Cr deposited increases, so that IACS decreases and sufficient electrode characteristics cannot be obtained.

<Fe、P、Co、Si、Mn>
これらの成分が合計量で0.015wt%以上固溶していると、IACSが90%以下となってしまう。IACSが90%以下であると、ハリツキ性が低下し、実施データからも明らかなように、平均溶着打点数が、小さく(500未満)となってしまいラインを頻繁に止める必要があり、生産性が悪くなる。逆に、0.001wt%以下とするには製造上多大のコストを要するため工業的に好ましくないので、0.001wt%以上0.015wt%以下であることが好ましい。
また、特に制御すべきはFe、P、Co、Si、Mnの比率であり、いずれもCuに固溶することによりIACSを低下させる。Fe、Pは最も悪影響を与え、次いでCo、Si、Mnの順でIACS低下を招く。
その影響度合いの比率は、Fe:1を基準として、Co:0.75、Si:0.6、Mn:0.35であり、Fe+P+Co×0.75+Si×0.6+Mn×0.35<0.015の範囲内で管理することにより優れた電極特性が得られることが明らかとなった。
<Fe, P, Co, Si, Mn>
If these components are dissolved in a total amount of 0.015 wt% or more, IACS will be 90% or less. When the IACS is 90% or less, the sharpness is reduced, and as is clear from the implementation data, the average number of welding points becomes small (less than 500), and it is necessary to frequently stop the line. Becomes worse. On the other hand, it is industrially unfavorable because it takes a great deal of manufacturing cost to make it 0.001 wt% or less, and therefore it is preferably 0.001 wt% or more and 0.015 wt% or less.
In particular, the ratio of Fe, P, Co, Si, and Mn should be controlled, and all of them reduce IACS by dissolving in Cu. Fe and P have the most adverse effects, and then lead to a decrease in IACS in the order of Co, Si, and Mn.
The ratio of the degree of influence is Co: 0.75, Si: 0.6, Mn: 0.35 on the basis of Fe: 1, Fe + P + Co × 0.75 + Si × 0.6 + Mn × 0.35 <0. It was revealed that excellent electrode characteristics can be obtained by controlling within the range of 015.

また本発明品は硬度がHv90以上であることが好ましい。Hv90未満になると溶接通電による電極先端部の温度上昇と加圧力によって材料がつぶれ、電極先端径が増大することにより電流密度が下がり、溶接不良が発生する   The product of the present invention preferably has a hardness of Hv90 or higher. When the Hv is less than 90, the material collapses due to the temperature rise and pressure applied at the electrode tip due to welding energization, and the current density decreases due to an increase in electrode tip diameter, resulting in poor welding.

また、本発明に有効な電極材料の組織構造は、アスペクト比1.5以上の等軸状でない繊維状結晶粒の短軸長さを10μm以下、かつ下部組織の平均亜結晶粒径を3μm以下、微細析出物の大きさ(分散粒子径)が50nm以下である。このような組織構造とすることにより500、600℃での高温降伏応力を200MPa以上、導電率(IACS)を90%以上とすることができる。さらには、繊維状結晶粒の短軸長さを10μm以下、かつ下部組織の平均亜結晶粒径を1μm以下、微細析出物の大きさ(分散粒子径)が25nm以下の組織構造とすることにより500、600℃での高温降伏応力を250MPa以上、導電率(IACS)を90%以上とすることができる。   In addition, the structure of the electrode material effective for the present invention is that the minor axis length of the non-equiaxial fibrous crystal grains having an aspect ratio of 1.5 or more is 10 μm or less, and the average subcrystal grain size of the substructure is 3 μm or less. The size of fine precipitates (dispersed particle diameter) is 50 nm or less. By setting it as such a structure, the high temperature yield stress in 500 and 600 degreeC can be 200 Mpa or more, and electrical conductivity (IACS) can be 90% or more. Furthermore, by making the structure of the minor axis length of the fibrous crystal grains 10 μm or less, the average subcrystal grain size of the substructure 1 μm or less, and the size of fine precipitates (dispersion particle diameter) 25 nm or less. The high temperature yield stress at 500 and 600 ° C. can be 250 MPa or more, and the conductivity (IACS) can be 90% or more.

また、本発明に有効な電極材料の他の組織構造は、平均結晶粒径が3μm以下の等軸状結晶粒からなる組織中に平均粒子径(分散粒子径)が50nm以下の微細粒子が析出してなる組織構造である。このような組織構造とすることにより室温硬度(Hv)を100以上、導電率(IACS)を90%以上とすることができ、さらには、平均結晶粒径が1μm以下、微細析出物の大きさ(分散粒子径)が25nm以下の組織構造とすることにより室温硬度(Hv)を120以上、導電率(IACS)を90%以上とすることができる。   Another structure of the electrode material effective for the present invention is that fine particles having an average particle diameter (dispersion particle diameter) of 50 nm or less are precipitated in a structure composed of equiaxed crystal grains having an average crystal grain size of 3 μm or less. This is an organizational structure. By adopting such a structure, the room temperature hardness (Hv) can be 100 or more, the conductivity (IACS) can be 90% or more, and the average crystal grain size is 1 μm or less, the size of fine precipitates. By adopting a structure having a (dispersed particle diameter) of 25 nm or less, the room temperature hardness (Hv) can be 120 or more and the conductivity (IACS) can be 90% or more.

また、耐熱性の向上に寄与する微細析出物の分散状態は、平均粒子間距離で200nm以下であり、好ましくは、100nm以下である。直径50nm以下の粒子が、上記間隔で分散することで、600℃数時間保持後の硬度低下を抑制することが可能になる。なお、本発明において、析出する微細析出物の具体的な例としては、Cr、Cu3Zr及びCu9Zr2などのCu−Zr系、Fe、Cu3P等がある。 Moreover, the dispersion state of fine precipitates that contribute to the improvement of heat resistance is 200 nm or less, preferably 100 nm or less, in terms of the average interparticle distance. Dispersion of particles having a diameter of 50 nm or less at the above intervals makes it possible to suppress a decrease in hardness after being held at 600 ° C. for several hours. In the present invention, specific examples of the fine precipitate to be precipitated include Cu—Zr series such as Cr, Cu 3 Zr and Cu 9 Zr 2 , Fe, Cu 3 P and the like.

以下、実施例並びに比較例に基づき本発明を具体的に説明するが、本発明が以下の実施例に限定されるものでないことはもとよりである。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, it cannot be overemphasized that this invention is not limited to a following example.

[実施例1] 押出法による製造例
(電極材の製造)
高周波溶解炉で電気銅、各地金をアルゴン雰囲気中にて溶解し、黒鉛鋳型に鋳造して、直径40mm、長さ300mmの鋳塊を得た。得られた鋳塊の組成はICP発光分析により組成分析を行った。この鋳塊を1000℃で2時間溶体化処理し、その後500℃で8時間の時効硬化処理を行った。
作製された各材料はΦ40x70mmの寸法に機械加工した。この定尺丸棒は高周波加熱装置によって約1分間で500℃まで加熱し、直ちに図1に示す押出機コンテナに挿入した後、押出比5.5、押出速度1mm/secの条件で温間押出する。押し出したΦ18.5の丸棒は500℃で8時間熱処理を施し最終処理材とした。
[Example 1] Example of production by extrusion method (production of electrode material)
In a high frequency melting furnace, electrolytic copper and various gold were melted in an argon atmosphere and cast into a graphite mold to obtain an ingot having a diameter of 40 mm and a length of 300 mm. The composition of the obtained ingot was subjected to composition analysis by ICP emission analysis. This ingot was solution-treated at 1000 ° C. for 2 hours, and then age-hardened at 500 ° C. for 8 hours.
Each produced material was machined to a size of Φ40 × 70 mm. This standard round bar is heated to 500 ° C. in about 1 minute by a high-frequency heating device, immediately inserted into the extruder container shown in FIG. 1, and then warm extruded under conditions of an extrusion ratio of 5.5 and an extrusion speed of 1 mm / sec. To do. The extruded Φ18.5 round bar was heat-treated at 500 ° C. for 8 hours to obtain a final treated material.

(合金組織)
最終処理材(試料No.5)の組織写真を図3に示す。押出材の組織は平均粒径が3μm以下の亜結晶粒から構成される短軸長さが10μm以下の繊維状結晶粒からなり、その中に平均粒径50nm以下の微細粒子が粒子間隔200nm以下で分散している。また、Fe、P、Co、Mn、Siは組織中に固溶していた。
(Alloy structure)
A structural photograph of the final treated material (sample No. 5) is shown in FIG. The structure of the extruded material is composed of fibrous crystal grains having a minor axis length of 10 μm or less composed of sub-crystal grains having an average particle diameter of 3 μm or less, and fine particles having an average particle diameter of 50 nm or less are included in the particle spacing of 200 nm or less. Are distributed. Moreover, Fe, P, Co, Mn, and Si were dissolved in the structure.

(室温硬度・導電率評価)
実施例1と同様の手法で、最終処理材の室温硬度(Hv)と室温での導電率(%IACS)の測定結果を合金組成と共に表1に示す。本発明の試料(試料3〜7)は導電率(%IACS)は90%以上まで増加していることがわかる。
(Evaluation of room temperature hardness and conductivity)
Table 1 shows the measurement results of room temperature hardness (Hv) and electrical conductivity at room temperature (% IACS) of the final treatment material together with the alloy composition in the same manner as in Example 1. It can be seen that the samples (samples 3 to 7) of the present invention have increased conductivity (% IACS) to 90% or more.

(電極寿命・耐溶着性評価)
電極性能を評価するために、直径Φ16mm(先端R8)―先端平坦部径Φ6mmの電極を作製し、溶接母材として板厚0.7mmの溶融亜鉛メッキ鋼板(平均メッキ付着量:45g/m)用い、単相交流定置式スポット溶接機を使用して試験を行った。溶接電流は11kA、通電時間は8サイクル、加圧力は2.5kN、連続溶接速度は1回/1sとした。電極寿命は溶接部を剥がしてナゲット径が5mmを下回った打点回数で評価した。平均溶着打点数は、電極材と溶接母材が10kgfを超える強度で張り付いた時点の打点数とした。
また、電極寿命及び耐溶着性及び総合評価の評価基準としては、実施例1において採用したものと同一の基準を採用した。
評価結果を表1に示した。なお、表中で、二重枠のセルは本発明の規定する数値範囲外の数値であることを示す。
(Evaluation of electrode life and welding resistance)
In order to evaluate the electrode performance, an electrode having a diameter of Φ16 mm (tip R8) −tip flat portion diameter of Φ6 mm was prepared, and a hot-dip galvanized steel sheet having a thickness of 0.7 mm as a welding base material (average plating adhesion amount: 45 g / m 2) ) And a test was conducted using a single-phase AC stationary spot welder. The welding current was 11 kA, the energization time was 8 cycles, the applied pressure was 2.5 kN, and the continuous welding speed was 1 time / 1 s. The electrode life was evaluated based on the number of hits when the welded part was peeled off and the nugget diameter was less than 5 mm. The average number of welding points was the number of points at the time when the electrode material and the welded base material were stuck with a strength exceeding 10 kgf.
Further, the same criteria as those employed in Example 1 were adopted as the evaluation criteria for electrode life, welding resistance, and comprehensive evaluation.
The evaluation results are shown in Table 1. In the table, a double-frame cell indicates a numerical value outside the numerical range defined by the present invention.

Figure 2005288519
Figure 2005288519

表1中のNo.1.2は熱的安定性が十分ではなく、使用中の温度上昇に伴い著しく硬さが低下し、連続打点数が1000回未満となった。またNo.8〜10は添加元素の固溶量が多く導電率(%IACS)が低い(表中には示されていないが熱伝導率も低すぎる)ため、ジュール発熱が非常に高く、かつ抜熱速度が低いため結晶粒が成長し靭性が低下、かつ被溶接材と合金化しやすく平均溶着打点数が500回未満となった。
また、No.11〜14の、Fe、P、Co、Si、Mnの組成総量が0.015wt%より大きい組成範囲の材料についても同様な理由のため平均溶着打点数が500回未満となった。
No. in Table 1 In 1.2, the thermal stability was not sufficient, the hardness decreased remarkably with increasing temperature during use, and the number of continuous hits was less than 1000. No. Nos. 8 to 10 have a high solid solution amount of the additive element and a low conductivity (% IACS) (not shown in the table but the thermal conductivity is too low), so the Joule heat generation is very high and the heat removal rate Therefore, the crystal grains grew and the toughness was lowered, and it was easy to form an alloy with the welded material, and the average number of welding hit points was less than 500 times.
No. For the materials having a composition range of 11 to 14 in which the total composition amount of Fe, P, Co, Si, and Mn is greater than 0.015 wt%, the average number of welding points was less than 500 for the same reason.

また、本製法の比較として、以下の製造方法によって試料を作成した。
高周波溶解炉で電気銅、各地金をアルゴン雰囲気中にて溶解し、黒鉛鋳型に鋳造して、直径40mm、長さ300mmの鋳塊を得た。この鋳塊を900℃の温度で25mm角の棒状に押出加工した。押出後1000℃で2時間溶体化処理し、500℃で8時間の時効処理を行った(表2の試料No.1参照)。
Moreover, the sample was created with the following manufacturing methods as a comparison with this manufacturing method.
In a high frequency melting furnace, electrolytic copper and various gold were melted in an argon atmosphere and cast into a graphite mold to obtain an ingot having a diameter of 40 mm and a length of 300 mm. The ingot was extruded into a 25 mm square bar at a temperature of 900 ° C. After extrusion, solution treatment was performed at 1000 ° C. for 2 hours, and aging treatment was performed at 500 ° C. for 8 hours (see sample No. 1 in Table 2).

比較従来材No.1はCrの固溶量が多く導電率(%IACS)が低すぎるため(表中には示されていないが熱伝導率も低すぎる)、ジュール発熱が非常に高く、かつ冷却効率が悪く、さらに熱的安定性が低いため電極材温度上昇に伴ない著しく固さが低下した。その結果、少ない打点回数で電極材先端径が拡大し、溶接電極密度が低下するため、連続打点数は低い。耐溶着性については、導電率(%IACS)が低すぎる(表中には示されていないが、熱伝導率も低すぎる)ため、また結晶粒径が数十μmと大きいことにより靭性が低いため、被溶接材と合金化しやすく平均溶着打点数が少ない。   Comparative Conventional Material No. 1 has a large amount of solid solution of Cr and the conductivity (% IACS) is too low (not shown in the table but the thermal conductivity is too low), so the Joule heat generation is very high and the cooling efficiency is poor. Furthermore, since the thermal stability was low, the hardness decreased remarkably with increasing electrode material temperature. As a result, the tip diameter of the electrode material is expanded with a small number of hit points, and the weld electrode density is lowered, so that the number of continuous hit points is low. As for the welding resistance, the electrical conductivity (% IACS) is too low (not shown in the table, but the thermal conductivity is too low), and the toughness is low due to the large crystal grain size of several tens of micrometers. Therefore, it is easy to alloy with the material to be welded, and the average number of welding points is small.

[実施例2] ECAE法による製造例
(電極材の製造)
高周波溶解炉で電気銅、各地金をアルゴン雰囲気中にて溶解し、黒鉛鋳型に鋳造して、直径40mm、長さ300mmの鋳塊を得た。得られた鋳塊の組成はICP発光分析により組成分析をおこなった。この鋳塊を900℃の温度で25mm角の棒状に押出加工した。押出後1000℃で2時間溶体化処理し、600℃で1時間の事前熱処理を行った。事前熱処理後、各材料は図2に示す直角で連結した2つのコンテナーの一方に挿入し、500℃にて速度1mm/秒で側方押出しを4パス繰り返し、25mm角の側方押出し処理材を得た。側方押出し処理後、各材料は500℃で1時間熱処理を行って最終処理材を得た。
[Example 2] Production example by ECAE method (production of electrode material)
In a high frequency melting furnace, electrolytic copper and various gold were melted in an argon atmosphere and cast into a graphite mold to obtain an ingot having a diameter of 40 mm and a length of 300 mm. The composition of the obtained ingot was subjected to composition analysis by ICP emission analysis. The ingot was extruded into a 25 mm square bar at a temperature of 900 ° C. After extrusion, solution treatment was performed at 1000 ° C. for 2 hours, and pre-heat treatment was performed at 600 ° C. for 1 hour. After the pre-heat treatment, each material is inserted into one of two containers connected at right angles shown in FIG. 2, and side extrusion is repeated 4 times at a speed of 1 mm / second at 500 ° C. Obtained. After the side extrusion treatment, each material was heat-treated at 500 ° C. for 1 hour to obtain a final treated material.

(合金組織)
最終処理材(試料No.6)の組織写真を図4に示す。側方処理前の結晶粒径は50〜100μmであったが、最終処理材の結晶粒径は等軸状で3μm以下、微細析出物の大きさは50nm以下まで微細化されていた。また微細析出物の粒子間距離も200nm以下であり、微細析出物は組織中に均一分散している。また、Fe、P、Co、Mn、Siは組織中に固溶していた。
(Alloy structure)
A structural photograph of the final treated material (sample No. 6) is shown in FIG. The crystal grain size before the side treatment was 50 to 100 μm, but the crystal grain size of the final treated material was equiaxed to 3 μm or less, and the size of fine precipitates was refined to 50 nm or less. The distance between the fine precipitates is also 200 nm or less, and the fine precipitates are uniformly dispersed in the structure. Moreover, Fe, P, Co, Mn, and Si were dissolved in the structure.

(室温硬度・導電率評価)
最終処理材の室温硬度(Hv)と室温での導電率(%IACS)の測定結果を合金組成と共に表2に示す。従来の材料と比較すると室温硬度(Hv)は同等もしくは若干低いが、合金組成を調整した材料の導電率(%IACS)は90%以上まで増加していることがわかる。なお、硬度測定は荷重50gfのマイクロビッカース硬度計にて硬さを測定した結果である。また、導電率測定は上記最終処理材表面を鏡面研磨し、これをデジタル導電率計(オートシグマ300)の測定プローブを試料表面に接触させてその数値を測定した結果である。
(Evaluation of room temperature hardness and conductivity)
Table 2 shows the measurement results of room temperature hardness (Hv) and electrical conductivity at room temperature (% IACS) of the final treated material together with the alloy composition. It can be seen that the room temperature hardness (Hv) is equal or slightly lower than that of the conventional material, but the conductivity (% IACS) of the material with the alloy composition adjusted is increased to 90% or more. The hardness measurement is the result of measuring the hardness with a micro Vickers hardness tester with a load of 50 gf. In addition, the conductivity measurement is a result of mirror polishing the surface of the final treatment material, and contacting the measurement probe of a digital conductivity meter (Auto Sigma 300) with the sample surface to measure the numerical value.

(電極寿命・耐溶着性評価)
電極寿命を評価するために、先端径φ6mm(40R)の電極に成形し、溶接母材として板厚1.6mmのAl−Mg系合金板のショットダルフィニッシュ材を酸洗した後、市販の低粘度鉱物油を塗布したものを使用し、単相交流定置式スポット溶接機を使用して、電極を水冷しながらスポット溶接試験を行った。溶接電流は31kA、通電時間は10サイクル、加圧力は500kgfとした。溶接条件はWES7302に準じ、径5mmのナゲットが得られる条件とし、連続溶接速度は1回/2秒とした。電極寿命は、溶接部を剥がしてネゲット径(長軸と短軸を足して2で割った値)が5mmを下回った打点回数で評価した。
上記電極寿命の評価試験において、電極材料と被溶接材料が張り付いた場合、電極材を引張試験機で引っ張って分離した時の荷重を測定し、その荷重が10kgfを超える時を「溶着」とし、溶着に至るまでの打点回数を溶着打点数、その平均値を平均溶着打点数とした。
(Evaluation of electrode life and welding resistance)
In order to evaluate the life of the electrode, it was formed into an electrode having a tip diameter of 6 mm (40R), and a shot dull finish material of an Al-Mg alloy plate having a plate thickness of 1.6 mm was pickled as a welding base material. What applied viscosity mineral oil was used, and the spot welding test was done using the single phase alternating current stationary spot welding machine, water-cooling an electrode. The welding current was 31 kA, the energization time was 10 cycles, and the applied pressure was 500 kgf. Welding conditions were in accordance with WES7302, and a condition that a nugget with a diameter of 5 mm was obtained, and the continuous welding speed was 1 time / 2 seconds. The electrode life was evaluated by the number of hits at which the welded part was peeled off and the nugget diameter (the value obtained by adding the major axis and the minor axis and divided by 2) was less than 5 mm.
In the above electrode life evaluation test, when the electrode material and the material to be welded stick, the load when the electrode material is pulled and separated by a tensile tester is measured, and when the load exceeds 10 kgf, it is referred to as “welding” The number of hitting points until welding was taken as the number of welding hits, and the average value was taken as the average number of welding hits.

電極寿命及び耐溶着性及び総合評価の各基準は次の通りとした。
[電極寿命評価基準]
○:連続打点1000回以上
×:連続打点1000回未満
[耐溶着性評価基準]
○:平均溶着打点数500回以上
×:平均溶着打点数500回未満
[総合評価]
○:連続打点性および耐溶着性の評価が共に○
△:連続打点性および耐溶着性の評価が×を含む
×:連続打点性および耐溶着性の評価が共に×
各試料の評価結果を表2に示した。なお、表中で、二重枠のセルは本発明の規定する数値範囲外の数値であることを示す。
The standards for electrode life, welding resistance and comprehensive evaluation were as follows.
[Electrode life evaluation criteria]
○: More than 1000 consecutive hit points ×: Less than 1000 consecutive hit points
[Evaluation criteria for welding resistance]
○: Average number of welding points 500 times or more ×: Average number of welding points 500 or less [Comprehensive evaluation]
○: Both continuous dot resistance and welding resistance are evaluated ○
Δ: Evaluation of continuous spotting and welding resistance includes x. ×: Both evaluation of continuous spotting and welding resistance are x.
The evaluation results of each sample are shown in Table 2. In the table, a double-frame cell indicates a numerical value outside the numerical range defined by the present invention.

Figure 2005288519
Figure 2005288519

表2中のNo2.3.4は熱的安定性が十分ではなく、使用中の温度上昇に伴ない著しく硬さが低下し、連続打点数が1000回未満となった。またNo24〜33は添加元素の固溶量が多く導電率(%IACS)が低い(表中には示されていないが熱伝導率も低すぎる)ため、ジュール発熱が非常に高く、かつ抜熱速度が低いため結晶粒が成長し靭性が低下、かつ被溶接材と合金化しやすく平均溶着打点数が500回未満となった。   No. 2.3.4 in Table 2 had insufficient thermal stability, the hardness decreased remarkably as the temperature increased during use, and the number of continuous hits was less than 1000. In Nos. 24-33, the additive element has a large solid solution amount and a low conductivity (% IACS) (not shown in the table, but the thermal conductivity is too low), so the Joule heat generation is very high, and the heat removal. Since the speed was low, the crystal grains grew and the toughness was lowered, and it was easy to alloy with the material to be welded, and the average number of deposition hit points was less than 500 times.

また、比較従来材No.1はCrの固溶量が多く導電率(%IACS)が低すぎるため(表中には示されていないが熱伝導率も低すぎる)、ジュール発熱が非常に高く、かつ冷却効率が悪く、さらに熱的安定性が低いため電極材温度上昇に伴ない著しく固さが低下した。その結果、少ない打点回数で電極材先端径が拡大し、溶接電極密度が低下するため、連続打点数は低い。耐溶着性については、導電率(%IACS)が低すぎる(表中には示されていないが、熱伝導率も低すぎる)ため、また結晶粒径が数十μmと大きいことにより靭性が低いため、被溶接材と合金化しやすく平均溶着打点数が少ない。   Comparative conventional material No. 1 has a large amount of solid solution of Cr and the conductivity (% IACS) is too low (not shown in the table but the thermal conductivity is too low), so the Joule heat generation is very high and the cooling efficiency is poor. Furthermore, since the thermal stability was low, the hardness decreased remarkably with increasing electrode material temperature. As a result, the tip diameter of the electrode material is expanded with a small number of hit points, and the weld electrode density is lowered, so that the number of continuous hit points is low. As for the welding resistance, the electrical conductivity (% IACS) is too low (not shown in the table, but the thermal conductivity is too low), and the toughness is low due to the large crystal grain size of several tens of micrometers. Therefore, it is easy to alloy with the material to be welded, and the average number of welding points is small.

以上より、高硬度、高導電率(%IACS)及び熱的安定性の高い微細結晶粒の材料は、溶接特性に優れるということが明らかになった。
また、Fe、P、Co、Si、Mnの組成総量を0.001wt%未満の材料は、製造上非常に困難であったため、作製することができなかった。
From the above, it has been clarified that a material with fine grains having high hardness, high conductivity (% IACS) and high thermal stability is excellent in welding characteristics.
Further, a material having a total composition amount of Fe, P, Co, Si, and Mn of less than 0.001 wt% was very difficult to manufacture, and thus could not be manufactured.

本発明の電極材料は靱性及び導電率が高く、連続打点性(電極寿命)と溶着打点数(耐溶着性)に優れるので、アルミニウム、マグネシウム、鉄及びこれらの合金、さらにはその金属めっき材等からなる被溶接材料を溶接する際に用いる電極材料としての利用性が高い。   The electrode material of the present invention has high toughness and electrical conductivity, and is excellent in continuous spotting performance (electrode life) and number of welding spots (welding resistance), so aluminum, magnesium, iron and alloys thereof, and metal plating materials thereof, etc. It is highly usable as an electrode material used when welding a material to be welded.

本発明において用いる押出成形装置の一例を示す図である。It is a figure which shows an example of the extrusion molding apparatus used in this invention. 本発明において用いる側方押出成形装置の一例を示す図である。It is a figure which shows an example of the side extrusion molding apparatus used in this invention. 実施例1で得た最終処理材の金属組織を示す図である(EBSP、TEMによる)。It is a figure which shows the metal structure of the final processing material obtained in Example 1 (by EBSP and TEM). 実施例2で得た最終処理材の金属組織を示す図である(EBSP、TEMによる)。It is a figure which shows the metal structure of the final processing material obtained in Example 2 (by EBSP and TEM).

符号の説明Explanation of symbols

1 供給部
2 コンテナー
3 ダイ
4 ダミーブロック
5 ステム
21 コンテナー
22 ダイ
23 ラム
S 合金素材
M 押出成形材
DESCRIPTION OF SYMBOLS 1 Supply part 2 Container 3 Die 4 Dummy block 5 Stem 21 Container 22 Die 23 Ram S Alloy material M Extrusion material

Claims (8)

一般式:Cubal.CrZr(但し、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである)で示される組成からなり、前記組成の組織構造が、平均粒径が3μm以下の亜結晶粒から構成される短軸長さが10μm以下の繊維状結晶粒からなる組織中に平均結晶粒子径50nm以下の微細粒子が析出してなる組織構造を有することを特徴とする請求項1記載の電極材料。 General formula: Cu bal. Cr a Zr b X c (where X is at least one element selected from Fe, P, Co, Si, and Mn, and a, b, and c are each 0.4 wt%. ≦ a ≦ 1.5 wt%, 0.02 wt% ≦ b ≦ 0.1 wt%, 0 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35] <0.015 wt %, And the balance is Cu containing inevitable impurities), and the structure of the composition has a minor axis length of 10 μm or less composed of sub-crystal grains having an average grain size of 3 μm or less 2. The electrode material according to claim 1, wherein the electrode material has a structure in which fine particles having an average crystal particle diameter of 50 nm or less are deposited in a structure composed of fibrous crystal grains. 一般式:Cubal.CrZr(但し、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである)で示される組成からなり、前記組成の組織構造が、平均結晶粒径が3μm以下の等軸状結晶粒からなる組織中に平均結晶粒径50nm以下の微細粒子が析出してなる組織構造を有することを特徴とする電極材料。 General formula: Cu bal. Cr a Zr b X c (where X is at least one element selected from Fe, P, Co, Si, and Mn, and a, b, and c are each 0.4 wt%. ≦ a ≦ 1.5 wt%, 0.02 wt% ≦ b ≦ 0.1 wt%, 0 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35] <0.015 wt %, And the balance is Cu containing inevitable impurities), and the structure of the composition is an average crystal grain in a structure composed of equiaxed crystal grains having an average crystal grain size of 3 μm or less. An electrode material having a structure in which fine particles having a diameter of 50 nm or less are precipitated. 一般式:Cubal.CrZr(但し、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0.001≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである)で示される組成からなることを特徴とする請求項1又は2記載の電極材料。 General formula: Cu bal. Cr a Zr b X c (where X is at least one element selected from Fe, P, Co, Si, and Mn, and a, b, and c are each 0.4 wt%. ≦ a ≦ 1.5 wt%, 0.02 wt% ≦ b ≦ 0.1 wt%, 0.001 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35] <0 3. The electrode material according to claim 1, wherein the electrode material has a composition represented by the following formula: 0.15 wt% and the balance being Cu containing inevitable impurities. 上記微細粒子の析出分散状態が、平均粒子間距離で200nm以下であることを特徴とする請求項1〜3のいずれかに記載の電極材料。   The electrode material according to any one of claims 1 to 3, wherein the fine particles are dispersed and dispersed in an average interparticle distance of 200 nm or less. 上記微粒子がCr、CuZr、CuZrから選ばれる少なくとも1種であることを特徴とする請求項1〜4のいずれかに記載の電極材料。 The electrode material according to claim 1, wherein the fine particles are at least one selected from Cr, Cu 3 Zr, and Cu 9 Zr 2 . 一般式:Cubal.CrZr(但し、Xは、Fe、P、Co、Si、Mnから選ばれる少なくとも1種の元素であり、a,b,cは、それぞれ0.4wt%≦a≦1.5wt%、0.02wt%≦b≦0.1wt%、0≦Fe+P+〔Co×0.75〕+〔Si×0.6〕+〔Mn×0.35〕<0.015wt%を満たし、残部が不可避的不純物を含むCuである)で示される組成からなるCu系合金素材を、温度300〜600℃で押出を行うことを特徴とする電極材料の製造方法。 General formula: Cu bal. Cr a Zr b X c (where X is at least one element selected from Fe, P, Co, Si, and Mn, and a, b, and c are each 0.4 wt%. ≦ a ≦ 1.5 wt%, 0.02 wt% ≦ b ≦ 0.1 wt%, 0 ≦ Fe + P + [Co × 0.75] + [Si × 0.6] + [Mn × 0.35] <0.015 wt %, And the balance is Cu containing inevitable impurities), and a Cu-based alloy material having a composition represented by the following formula is extruded at a temperature of 300 to 600 ° C. 押出方向を途中で内角180℃未満の側方に変化させてせん断変形を与えることによって押出すことを特徴とする請求項6記載の電極材料の製造方法。   7. The method for producing an electrode material according to claim 6, wherein the extrusion is performed by changing the extrusion direction to the side with an inner angle of less than 180 [deg.] C. to give a shear deformation. 押出比4以上で、押出を行うことを特徴とする請求項6又は7記載の電極材料の製造方法。   8. The method for producing an electrode material according to claim 6, wherein the extrusion is performed at an extrusion ratio of 4 or more.
JP2004109876A 2004-04-02 2004-04-02 Electrode material and its production method Pending JP2005288519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109876A JP2005288519A (en) 2004-04-02 2004-04-02 Electrode material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109876A JP2005288519A (en) 2004-04-02 2004-04-02 Electrode material and its production method

Publications (1)

Publication Number Publication Date
JP2005288519A true JP2005288519A (en) 2005-10-20

Family

ID=35322060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109876A Pending JP2005288519A (en) 2004-04-02 2004-04-02 Electrode material and its production method

Country Status (1)

Country Link
JP (1) JP2005288519A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179600A (en) * 2010-03-01 2011-09-15 Daido Metal Co Ltd Sliding bearing in turbocharger of internal combustion engine
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
EP3290540A4 (en) * 2016-05-13 2018-12-05 Miyoshi Gokin Kogyo Co., Ltd. Copper alloy tube with excellent high-temperature brazeability, and manufacturing method for same
CN114457254A (en) * 2022-01-13 2022-05-10 武汉正威新材料科技有限公司 Preparation method of ultrafine-grained copper-magnesium alloy based on combined extrusion and obtained alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179600A (en) * 2010-03-01 2011-09-15 Daido Metal Co Ltd Sliding bearing in turbocharger of internal combustion engine
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP2015036433A (en) * 2013-08-12 2015-02-23 三菱マテリアル株式会社 Copper alloy for electronic/electric apparatus, copper alloy sheet for electronic/electric apparatus, component for electronic/electric apparatus, terminal and bus bar
US10392680B2 (en) 2013-08-12 2019-08-27 Mitsubishi Materials Corporation Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar
EP3290540A4 (en) * 2016-05-13 2018-12-05 Miyoshi Gokin Kogyo Co., Ltd. Copper alloy tube with excellent high-temperature brazeability, and manufacturing method for same
US10357813B2 (en) 2016-05-13 2019-07-23 Miyoshi Gokin Kogyo Co., Ltd. Copper alloy tube with excellent high-temperature brazeability and manufacturing method therefor
CN114457254A (en) * 2022-01-13 2022-05-10 武汉正威新材料科技有限公司 Preparation method of ultrafine-grained copper-magnesium alloy based on combined extrusion and obtained alloy

Similar Documents

Publication Publication Date Title
TWI422691B (en) High strength and high conductivity copper alloy tube, rod, wire
Surekha et al. Development of high strength, high conductivity copper by friction stir processing
CA2669122C (en) Cu-ni-si-co copper alloy for electronic materials and method for manufacturing same
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
CN106065443B (en) Copper alloy and method for producing same
CN100503860C (en) Aluminum alloy plate and process for producing the same
US20040238501A1 (en) Electrode material and method for manufacture thereof
JPS58213840A (en) Metal composition suitable for producing semi-solid semi-liquid state and manufacture
JP2009507133A (en) Method for press quenching 6020 aluminum alloy
JP4801386B2 (en) Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP2001288517A (en) Cu-BASED ALLOY, CASTING HAVING HIGH STRENGTH AND HIGH THERMAL CONDUCTIVITY USING THE SAME AND METHOD FOR PRODUCING CASTING
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP4930993B2 (en) Copper alloy material, method for producing the same, and electrode member for welding equipment
JP3861712B2 (en) Cu-based alloy and method for producing high-strength and high-thermal conductivity forging using the same
JP2005288519A (en) Electrode material and its production method
JP6317966B2 (en) Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP2004183102A (en) Steel for machine structure, hot forming method for component consisting of the steel, and component obtained thereby
JP2005081371A (en) Electrode material and its production method
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JPH1180876A (en) Production of aluminum-zinc-magnesium series aluminum alloy excellent in extrudability and the series aluminum alloy extruded material
US10821559B2 (en) Method for obtaining a welding electrode