JP2005081371A - Electrode material and its production method - Google Patents

Electrode material and its production method Download PDF

Info

Publication number
JP2005081371A
JP2005081371A JP2003315170A JP2003315170A JP2005081371A JP 2005081371 A JP2005081371 A JP 2005081371A JP 2003315170 A JP2003315170 A JP 2003315170A JP 2003315170 A JP2003315170 A JP 2003315170A JP 2005081371 A JP2005081371 A JP 2005081371A
Authority
JP
Japan
Prior art keywords
electrode material
less
welding
conductivity
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003315170A
Other languages
Japanese (ja)
Inventor
Masataka Kawazoe
正孝 川添
Hideyuki Hasegawa
英之 長谷川
Katsuyuki Takeya
桂之 竹谷
Hiroyuki Sasaki
浩之 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP2003315170A priority Critical patent/JP2005081371A/en
Publication of JP2005081371A publication Critical patent/JP2005081371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material high in toughness and electric conductivity, suppressed in alloying with the material to be welded and improved in the number of spotting on welding (welding resistance), and to provide its production method. <P>SOLUTION: An alloy stock expressed by general formula: Cu<SB>bal.</SB>X<SB>a</SB>(wherein, X is at least one kind of element selected from Cr, Zr, Fe, P and Ag; a is ≤1.5% by mass%; and the balance Cu with inevitable impurities) is extruded at a heating temperature of 300 to 500°C by applying shear deformation thereto in such a manner that the extrusion direction is changed to the side direction of <180° in an internal angle on the way. Thus, the electrode material with a structure in which fine grains with a mean grain size of ≤50 nm are precipitated into the structure composed of equi-axed crystal grains with a mean crystal grain size of ≤3 μm is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルミニウム、マグネシウム、鉄及びこれらの合金、さらにはその金属めっき材等からなる被溶接材料を溶接する際に用いる電極材料及びその製造方法に関するものである。   The present invention relates to an electrode material used when welding a material to be welded made of aluminum, magnesium, iron and alloys thereof, and further, a metal plating material thereof, and a manufacturing method thereof.

従来、この種の電極材料としてはクロム銅(Cu−Cr)、アルミナ分散銅(Al23分散銅)からなる材料が用いられている。 Conventionally, as this type of electrode material, a material made of chromium copper (Cu—Cr) and alumina-dispersed copper (Al 2 O 3 -dispersed copper) has been used.

例えば特許文献1には、Cr−Cu合金からなる溶接用電極材料は約1000℃の高温で製造されるため合金中の結晶粒が粗大化して耐摩耗性、耐熱性が低くなるという欠点があるが、このCr−Cu合金にホウ素を0.01〜0.2重量%添加することにより合金の結晶粒を微細化して耐熱性、高温硬度を向上させることが記載されている。   For example, Patent Document 1 has a drawback in that a welding electrode material made of a Cr—Cu alloy is manufactured at a high temperature of about 1000 ° C., so that crystal grains in the alloy become coarse and wear resistance and heat resistance become low. However, it is described that by adding 0.01 to 0.2% by weight of boron to this Cr—Cu alloy, crystal grains of the alloy are refined to improve heat resistance and high temperature hardness.

特許文献2には、溶接用電極材料の合金組成をCr0.4〜1.0重量%、Sn0.05〜0.2重量%、残部を不可避不純物を含む銅からなるものとすることにより、電極先端部の変形損耗を減少させて寿命を向上させることが記載されている。   In Patent Document 2, the alloy composition of the welding electrode material is 0.4 to 1.0% by weight of Cr, 0.05 to 0.2% by weight of Sn, and the balance is made of copper containing inevitable impurities. It is described that the life of the tip is improved by reducing deformation and wear of the tip.

特許文献3には、溶接用電極材料の組成を、Zr0.05〜1重量%、Cr3〜20重量%、残部Cuからなる合金組成とすることにより、導電率が高めると共に耐摩耗性を向上させて、スポット溶接の打点数を増大させることが記載されている。   In Patent Document 3, the composition of the welding electrode material is an alloy composition composed of 0.05 to 1% by weight of Zr, 3 to 20% by weight of Cr, and the remaining Cu, thereby increasing the electrical conductivity and improving the wear resistance. Thus, it is described that the number of spot welding spots is increased.

しかしながら、クロム銅からなる電極材料は、Crの固溶量が多いため導電率及び熱伝導率が低く、さらに結晶粒径が数十μmと大きいため、靱性が低いといった問題がある。また、電極材料として用いた場合には、導電率及び熱伝導率が低いため、少ない打点回数で電極先端径が拡大して溶接電流密度が低下するため連続打点性が低く、さらに、導電率、熱伝導率及び靱性が低いため、被溶接材料と合金化しやすく溶着打点数が低いといった問題を有する。   However, the electrode material made of chrome copper has a problem that the electrical conductivity and thermal conductivity are low because of the large amount of Cr dissolved, and the toughness is low because the crystal grain size is as large as several tens of μm. In addition, when used as an electrode material, since the conductivity and thermal conductivity are low, the electrode tip diameter is expanded with a small number of spots and the welding current density is lowered, so the continuous spotting property is low. Since it has low thermal conductivity and toughness, it has a problem that it is easily alloyed with the material to be welded and the number of welding hit points is low.

一方、アルミナ分散銅からなる電極材料は材料自体が脆く、電極材料として使用すると電極先端の損耗が著しい。さらに、導電率及び熱伝導率が低いため、連続打点性と溶着打点数が低いといった問題を有する。   On the other hand, the electrode material made of alumina-dispersed copper is fragile, and when used as an electrode material, the electrode tip is significantly worn. Furthermore, since electrical conductivity and thermal conductivity are low, there is a problem that the continuous spotting property and the number of welding spots are low.

また、近年Cu−0.44%Cr−0.2%Zrからなる合金素材に側方押出(ECAP:equal−channel angular pressing )を施し、結晶粒径を微細化させ、機械的強度、耐熱性、導電率の高い電極材料を提供することが提案されている(非特許文献1参照)。
上記特許文献1に記載の合金は、機械的強度、耐熱性に優れているものの、導電率は75〜80%IACSと低く、被溶接材料と合金化しやすく溶着打点数が低いといった改善の余地を残している。
In recent years, an alloy material composed of Cu-0.44% Cr-0.2% Zr has been subjected to lateral extrusion (ECAP: equal-channel angular pressing) to refine the crystal grain size, mechanical strength and heat resistance. It has been proposed to provide an electrode material with high conductivity (see Non-Patent Document 1).
Although the alloy described in Patent Document 1 has excellent mechanical strength and heat resistance, the electrical conductivity is as low as 75 to 80% IACS, and it is easy to form an alloy with the material to be welded. I'm leaving.

特公昭56−31196号公報Japanese Patent Publication No.56-31196 特開昭62−3885号公報Japanese Patent Application Laid-Open No. 62-3885 特開平6−73473号公報JP-A-6-73473 Acta Materialia 50(2002)1639-1651“Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing”Acta Materialia 50 (2002) 1639-1651 “Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing”

そこで、本発明は上述の問題を解消すべくなされたものであり、結晶粒を微細化させることにより靱性を向上し、さらに微細析出物の析出を促進させることにより導電率を向上させ、電極材料としての連続打点性(電極寿命)と溶着打点数(耐溶着性)の向上を図ることができる電極材料及びその製造方法を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-mentioned problems, and improves the toughness by refining crystal grains, further improves the conductivity by promoting the precipitation of fine precipitates, and provides an electrode material. It is an object of the present invention to provide an electrode material and a method for producing the same that can improve the continuous spotting property (electrode life) and the number of welding points (welding resistance).

本発明は、上記の課題を解決するものであり、その構成は以下に記載する通りである。
(1)一般式:Cubal.(但し、XはCr、Zr、Fe、P、Agから選ばれる少なくとも1種の元素であり、aは質量%で1.5%以下であり、残部が不可避的不純物を含むCuである)で示される組成からなり、平均結晶粒径が3μm以下の等軸状結晶粒からなる組織中に平均粒子径50nm以下の微細粒子が析出してなる組織構造を有することを特徴とする電極材料。
(2)上記微細粒子の析出分散状態が、平均粒子間距離で200nm以下であることを特徴とする上記(1)記載の電極材料。
(3)上記微細粒子が、Cr、Cu3Zr、Cu9Zr2、Fe、Cu3P、Agから選ばれる少なくとも1種であることを特徴とする上記(1)又は(2)記載の電極材料。
The present invention solves the above-described problems, and the configuration thereof is as described below.
(1) General formula: Cu bal. X a (where X is at least one element selected from Cr, Zr, Fe, P, and Ag, a is 1.5% by mass or less, and the balance Is a composition having a composition represented by the following formula: a structure in which fine particles having an average particle diameter of 50 nm or less are precipitated in a structure composed of equiaxed crystal grains having an average crystal grain size of 3 μm or less. An electrode material comprising:
(2) The electrode material according to (1), wherein the fine particles are dispersed and dispersed in an average interparticle distance of 200 nm or less.
(3) The electrode according to (1) or (2), wherein the fine particles are at least one selected from Cr, Cu 3 Zr, Cu 9 Zr 2 , Fe, Cu 3 P, and Ag. material.

(4)一般式:Cubal.(但し、XはCr、Zr、Fe、P、Agから選ばれる少なくとも1種の元素であり、aは質量%で1.5%以下であり、残部が不可避的不純物を含むCuである)で示されるCu系合金素材を、加熱温度300〜500℃でその押出方向を途中で内角180°未満の側方に変化させて剪断変形を与えることによって押出すことを特徴とする電極材料の製造方法。
(5)前記剪断変形により合金素材に220%以上の伸びに相当する塑性変形(歪)を与えることを特徴とする上記(4)記載の電極材料の製造方法。
(6)前記押出しを行うにあたって、事前に合金素材に温度350〜700℃で熱処理を施すことを特徴とする上記(4)又は(5)記載の電極材料の製造方法。
(7)前記押出し後、温度350〜700℃で熱処理を施すことを特徴とする上記(4)〜(6)のいずれかに記載の電極材料の製造方法。
(4) General formula: Cu bal. X a (where X is at least one element selected from Cr, Zr, Fe, P, Ag, a is 1.5% by mass or less, and the balance Is a Cu-based alloy material having a heating temperature of 300 to 500 ° C., and the shearing deformation is applied by changing the extrusion direction to the side with an inner angle of less than 180 ° in the middle. A method for producing an electrode material, wherein:
(5) The method for producing an electrode material according to the above (4), wherein plastic deformation (strain) corresponding to elongation of 220% or more is given to the alloy material by the shear deformation.
(6) The method for producing an electrode material according to the above (4) or (5), wherein the alloy material is preliminarily heat-treated at a temperature of 350 to 700 ° C. before performing the extrusion.
(7) The method for producing an electrode material according to any one of (4) to (6), wherein heat treatment is performed at a temperature of 350 to 700 ° C. after the extrusion.

本発明の電極材料及びその製造方法によれば、結晶粒を微細化させることにより靱性を向上させ、かつ微細析出物の析出を促進させることにより導電率を向上させ、電極材料としての連続打点性(電極寿命)と溶着打点数(耐溶着性)を向上させることができる電極材料を提供することできる。さらに、前記優れた特性を備えた電極材料を容易に製造することができる。   According to the electrode material and the manufacturing method thereof of the present invention, the toughness is improved by refining crystal grains, and the conductivity is improved by promoting the precipitation of fine precipitates. It is possible to provide an electrode material capable of improving (electrode life) and the number of welding hit points (welding resistance). Furthermore, an electrode material having the excellent characteristics can be easily produced.

本発明において、合金素材に剪断変形を与える具体的手段としては側方押出法(ECAE法:equal-channel angular extrusion)が有効である。ECAE法は、合金素材の持つ断面積を変化させずに、その押出方向を途中で内角180°未満(より好ましくは内角60〜120°の範囲)の側方に変化させるものであり、合金素材に220%以上、さらには10000%以上の伸びに相当する塑性変形(歪)を与えることが可能である。これによって、等軸状で平均結晶粒径を3μm以下、更に平均粒子径50nm以下の微細粒子の析出を促進することができ、高強度、耐熱性を材料に付与できるものである。   In the present invention, a lateral extrusion method (ECAE method: equal-channel angular extrusion) is effective as a specific means for imparting shear deformation to the alloy material. The ECAE method changes the extrusion direction to the side of an inner angle of less than 180 ° (more preferably in the range of an inner angle of 60 to 120 °) in the middle without changing the cross-sectional area of the alloy material. It is possible to give plastic deformation (strain) corresponding to elongation of 220% or more, further 10,000% or more. Thereby, precipitation of fine particles having an equiaxed shape with an average crystal grain size of 3 μm or less and an average particle diameter of 50 nm or less can be promoted, and high strength and heat resistance can be imparted to the material.

本発明におけるECAE法は、図1に示すように、内面で同一断面積を持つ2つの押出しコンテナー、又はコンテナー1とダイ2を180°未満の適当な角度(2φ)で接合し、一方のコンテナー1に合金素材Sを挿入し、ラム3によって次のコンテナー1又はダイ2に向けて押出すことによって、材料に側方方向の剪断変形を加える方法であり、好ましくはこの工程を複数回行う。この方法を合金素材に適用することにより、非常に単純な工程で、しかも断面積を減少させることなく、結晶粒が3μm以下に微細化され、靭性を大きく改善することができる(特開平9−137244号公報参照)。   In the ECAE method of the present invention, as shown in FIG. 1, two extruded containers having the same cross-sectional area on the inner surface, or the container 1 and the die 2 are joined at an appropriate angle (2φ) of less than 180 °, and one container is This is a method in which the alloy material S is inserted into 1 and extruded toward the next container 1 or die 2 by the ram 3 to apply a shear deformation in the lateral direction to the material, and this step is preferably performed a plurality of times. By applying this method to the alloy material, the crystal grains can be refined to 3 μm or less by a very simple process and without reducing the cross-sectional area, and the toughness can be greatly improved (Japanese Patent Laid-Open No. 9-1990). No. 133244).

また、そのプロセスは、鋳造組織、合金成分のマクロ、ミクロ的な偏析の破壊、均質化にも効果を持っており、合金素材では一般に行われている高温・長時間の均質化熱処理を省略することも可能である。さらに、たとえダイ2において断面積の減少を伴っても、その効果は変わらない。   The process also has an effect on fracture and homogenization of cast structure, macro of alloy components, micro segregation, and omits high temperature and long time homogenization heat treatment that is generally performed for alloy materials. It is also possible. Furthermore, even if the die 2 is accompanied by a reduction in the cross-sectional area, the effect does not change.

本発明におけるECAE法で合金素材に加えられる剪断変形量は、2つのコンテナー又はコンテナーとダイの接合角度によって異なる。一般に、このような剪断変形による押出し1回当たりの歪量Δεは下記式(1)で与えられる。 The amount of shear deformation applied to the alloy material by the ECAE method in the present invention varies depending on the bonding angle between the two containers or the container and the die. In general, the strain amount Δε i per one extrusion due to such shear deformation is given by the following equation (1).

Δε=(2/√3)・cotanφ ・・・(1)
ERR=(A0/A)=exp(Δε) ・・・(2)
EAR={1−(1/ERR)}×100 ・・・(3)
EE=(ERR−1)×100 ・・・(4)
(但し、Δεは歪量、φは接合角度の1/2、ERRは加工前後の面積比、A0は加工前の断面積、Aは加工後の断面積、EARは加工前後の相当断面減少率、EEは相当歪(伸びと同義)を表す。)
Δε i = (2 / √3) · cotanφ (1)
ERR = (A 0 / A) = exp (Δε i ) (2)
EAR = {1- (1 / ERR)} × 100 (3)
EE = (ERR-1) × 100 (4)
(Where Δε i is the strain amount, φ is 1/2 of the joining angle, ERR is the area ratio before and after processing, A 0 is the cross-sectional area before processing, A is the cross-sectional area after processing, and EAR is the equivalent cross-section before and after processing) (Decrease rate, EE represents equivalent strain (synonymous with elongation).)

即ち、2つのコンテナー又はコンテナーとダイの接合の内角が直角(90°)の場合、1回の側方押出で歪量は1.15(相当伸び:220%)、120°の場合、歪量は0.67(相当伸び:95%)で与えられる。断面積が同一のまま直角に側方押出しすることによって、圧延による圧下率(断面減少率)69%に相当する加工を加えることができる。   In other words, when the inner angle of two containers or container-die joint is a right angle (90 °), the strain amount is 1.15 (equivalent elongation: 220%) by one side extrusion, and when 120 °, the strain amount is 120 °. Is given by 0.67 (equivalent elongation: 95%). By performing side extrusion at a right angle while maintaining the same cross-sectional area, it is possible to add a process corresponding to a rolling reduction (cross-sectional reduction rate) of 69% by rolling.

上記プロセスを繰り返すことによって、材料の断面積を変えずに材料中に無限に歪を蓄積することができる。その繰返しによって材料に与えられる積算歪量εは下記式(5)で与えられる。
ε=Δε×N ・・・(5)
(但し、εは積算歪量、Nは押出回数を表す。)
By repeating the above process, infinite strain can be accumulated in the material without changing the cross-sectional area of the material. The accumulated strain amount ε t given to the material by the repetition is given by the following equation (5).
ε t = Δε i × N (5)
(However, ε t represents the amount of accumulated strain, and N represents the number of extrusions.)

この繰り返し回数(N)は、理論的には多いほどよいが、実際には合金によってある回数でその効果に飽和状態が見られる。一般の展伸用合金素材では、繰り返し回数4回(接合角度が直角の場合、積算歪量:4.6、相当伸び:10000%)で十分な効果を得ることができる。圧延によっても無限に歪を蓄積することができるが、その場合、断面積は無限に小さくなり、この点において側方押出法とは対照的である。   The number of repetitions (N) is theoretically better as much as possible, but in reality, the effect is saturated in a certain number of times depending on the alloy. With a general wrought alloy material, a sufficient effect can be obtained with 4 repetitions (when the joining angle is a right angle, the cumulative strain amount is 4.6 and the equivalent elongation is 10,000%). Infinite strain can also be accumulated by rolling, but in that case, the cross-sectional area becomes infinitely small, which is in contrast to the side extrusion method.

本発明において、上記ECAE法は温度300〜500℃で行うことが重要である。この温度範囲内とするのは、前記温度が300℃未満の場合、機械的強度は向上するものの、微細析出物の析出促進が充分に行えず導電率を向上させることができなくなるためであり、また前記温度が500℃を超える場合、結晶粒の微細化、かつ析出粒子の微細化が行えず、機械的強度等の向上が行えず、さらに析出していた分散粒子の再固溶が起こり、導電率を向上させることができなくなるためである。   In the present invention, it is important that the ECAE method is performed at a temperature of 300 to 500 ° C. This temperature range is because when the temperature is less than 300 ° C., the mechanical strength is improved, but the precipitation cannot be sufficiently promoted to prevent the precipitation of fine precipitates, and the conductivity cannot be improved. When the temperature exceeds 500 ° C., the crystal grains cannot be refined, and the precipitated particles cannot be refined, the mechanical strength and the like cannot be improved, and re-dissolution of the precipitated dispersed particles occurs. This is because the conductivity cannot be improved.

さらに、本発明においては、上記ECAE法を施すにあたって、事前に温度350〜700℃の範囲内で熱処理(以後、事前熱処理ともいう)を施すことが好ましい。この事前熱処理を施すことにより、微細析出物が分散し、ECAE過程で導入された転位等のピンニングに寄与して、結晶粒を微細化させることができる。前記温度が350℃未満の場合、析出が起こらず、また前記温度が700℃を超える場合、結晶粒径及び析出物が粗大化しすぎて、ECAE法を施しても適切な結晶粒径或いは析出物の大きさにコントロールすることができなくなる。事前熱処理時間については、少なくとも30分以上であれば上記効果が期待できる。なお、上限については特に制限はないが、経済性等を考慮した場合、100時間以内であることが望ましい。   Furthermore, in the present invention, it is preferable to perform a heat treatment (hereinafter also referred to as a pre-heat treatment) within a temperature range of 350 to 700 ° C. before performing the ECAE method. By performing this preliminary heat treatment, fine precipitates are dispersed, contributing to pinning such as dislocations introduced in the ECAE process, and crystal grains can be refined. When the temperature is less than 350 ° C., precipitation does not occur, and when the temperature exceeds 700 ° C., the crystal grain size and the precipitate are too coarse, and even if the ECAE method is applied, an appropriate crystal grain size or precipitate is obtained. It becomes impossible to control to the size of. About the prior heat processing time, the said effect can be anticipated if it is at least 30 minutes or more. In addition, although there is no restriction | limiting in particular about an upper limit, when it considers economical efficiency etc., it is desirable that it is less than 100 hours.

また、本発明においては、上記ECAE法を施した後、温度350〜700℃の範囲内で熱処理(以後、事後熱処理ともいう)を施すことが好ましく、この事後熱処理を施すことにより、析出物を均一微細に析出分散させることができるため、電極材料として導電率を向上させることができる。前記温度が350℃未満の場合、前記析出物の析出量が不足し、導電率の向上に繋がらない。また前記温度が700℃を超える場合、析出していた分散粒子の再固溶が起きて導電率の低下を招きやすくなる。熱処理時間については、少なくとも10分以上であれば上記効果が期待できる。なお、上限については特に制限はないが、経済性等を考慮した場合、50時間以内であることが望ましい。   In the present invention, after the ECAE method, it is preferable to perform a heat treatment (hereinafter also referred to as a post-heat treatment) within a temperature range of 350 to 700 ° C. Since it can be uniformly and finely deposited and dispersed, the electrical conductivity can be improved as an electrode material. When the temperature is lower than 350 ° C., the amount of the precipitate deposited is insufficient, and the conductivity is not improved. On the other hand, when the temperature exceeds 700 ° C., the precipitated dispersed particles are re-dissolved and the conductivity tends to decrease. About the heat processing time, the said effect can be anticipated if it is at least 10 minutes or more. In addition, although there is no restriction | limiting in particular about an upper limit, when it considers economical efficiency etc., it is desirable that it is less than 50 hours.

本発明においては、前記事前熱処理及び前記事後熱処理を併用することが、平均結晶粒径及び微細析出物を適切な大きさにコントロールし、また、微細析出物を均一微細分散させ、その析出量をコントロールする上で、特に好ましい。   In the present invention, the combined use of the pre-heat treatment and the post-heat treatment controls the average crystal grain size and fine precipitates to an appropriate size, and uniformly finely disperses the fine precipitates. It is particularly preferable for controlling the amount.

本発明が適用されるCu系合金素材としては、一般式:Cubal.(但し、XはCr、Zr、Fe、P、Agから選ばれる少なくとも1種の元素であり、aは質量%で1.5%以下であり、残部が不可避的不純物を含むCuである)で示される組成からなる合金が好ましい。X元素は、Cr、Zr、Fe、P、Agから選ばれる少なくとも1種の元素であり、これらの元素は1.5質量%以下の添加で本発明の目的である耐熱性の向上に寄与する微細な析出物を析出することができる。なお、下限については特に規定していないが微細析出物を析出させる観点から0.01質量%以上とすることが望ましい。 The Cu-based alloy material to which the present invention is applied has a general formula: Cu bal. X a (where X is at least one element selected from Cr, Zr, Fe, P, and Ag, and a is mass%. 1.5% or less, and the balance is preferably Cu containing inevitable impurities). The X element is at least one element selected from Cr, Zr, Fe, P, and Ag, and these elements contribute to the improvement of heat resistance, which is an object of the present invention, when added in an amount of 1.5% by mass or less. Fine precipitates can be deposited. The lower limit is not particularly specified, but is preferably 0.01% by mass or more from the viewpoint of depositing fine precipitates.

さらに、その具体的組成としては、Cu−(〜1.5%)Cr、Cu−(〜0.2%)Zr、Cu−(〜1.3%)Cr−(〜0.2%)Zr、Cu−(〜1.0%)Fe−(〜0.2%)P、Cu−(〜0.5%)Ag等の合金が特に好ましい。   Further, specific compositions thereof include Cu-(-1.5%) Cr, Cu-(-0.2%) Zr, Cu-(-1.3%) Cr-(-0.2%) Zr. Cu- (˜1.0%) Fe— (˜0.2%) P, Cu— (˜0.5%) Ag and other alloys are particularly preferred.

また、本発明に有効な電極材料の組織構造は、平均結晶粒径が3μm以下の等軸状結晶粒からなる組織中に平均粒子径(分散粒子径)が50nm以下の微細粒子が析出してなる組織構造である。このような組織構造とすることにより室温硬度(Hv)を100以上、導電率(IACS)を90%以上とすることができ、さらには、平均結晶粒径が1μm以下、微細析出物の大きさ(分散粒子径)が25nm以下の組織構造とすることにより室温硬度(Hv)を120以上、導電率(IACS)を90%以上とすることができる。   In addition, the structure of the electrode material effective for the present invention is such that fine particles having an average particle diameter (dispersion particle diameter) of 50 nm or less are precipitated in a structure composed of equiaxed crystal grains having an average crystal grain size of 3 μm or less. It is an organization structure. By adopting such a structure, the room temperature hardness (Hv) can be 100 or more, the conductivity (IACS) can be 90% or more, and the average crystal grain size is 1 μm or less, the size of fine precipitates. By adopting a structure having a (dispersed particle diameter) of 25 nm or less, the room temperature hardness (Hv) can be 120 or more and the conductivity (IACS) can be 90% or more.

また、耐熱性の向上に寄与する微細析出物の分散状態は、平均粒子間距離で200nm以下であり、好ましくは、100nm以下である。直径50nm以下の粒子が、上記間隔で分散することで、600℃数時間保持後の硬度低下を抑制することが可能になる。なお、本発明において、析出する微細析出物の具体的な例としては、Cr、Cu3Zr及びCu9Zr2などのCu−Zr系、Fe、Cu3P、Ag等がある。 Moreover, the dispersion state of fine precipitates that contribute to the improvement of heat resistance is 200 nm or less, preferably 100 nm or less, in terms of the average interparticle distance. Dispersion of particles having a diameter of 50 nm or less at the above intervals makes it possible to suppress a decrease in hardness after being held at 600 ° C. for several hours. In the present invention, specific examples of the fine precipitate to be precipitated include Cu—Zr series such as Cr, Cu 3 Zr and Cu 9 Zr 2 , Fe, Cu 3 P, Ag and the like.

以下、実施例並びに比較例に基づき本発明を具体的に説明するが、本発明が以下の実施例に示した具体的な態様に限定されるものでないことはもとよりである。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, it cannot be overemphasized that this invention is not limited to the specific aspect shown in the following Examples.

高周波溶解炉で電気銅、各地金をアルゴン雰囲気中にて溶解し、黒鉛鋳型に鋳造して、直径40mm、長さ300mmの鋳塊を得た。得られた鋳塊の組成を表1に示す。この鋳塊を900℃の温度で25mm角の棒材に押出加工した。押出後、1000℃で2時間溶体化処理し、表2に示す熱処理(事前熱処理)を行った。事前熱処理後、各材料を図1に示す直角で連結した2つのコンテナーの一方に挿入し、表3に示す条件で側方押出を行い、25mm角の側方押出処理材を得た。側方押出処理後、各材料に対して表4に示す条件で熱処理(事後熱処理)を行い最終処理材を得た。   In a high frequency melting furnace, electrolytic copper and various gold were melted in an argon atmosphere and cast into a graphite mold to obtain an ingot having a diameter of 40 mm and a length of 300 mm. Table 1 shows the composition of the obtained ingot. The ingot was extruded into a 25 mm square bar at a temperature of 900 ° C. After extrusion, solution treatment was performed at 1000 ° C. for 2 hours, and heat treatment (pre-heat treatment) shown in Table 2 was performed. After the preliminary heat treatment, each material was inserted into one of two containers connected at a right angle shown in FIG. 1 and subjected to side extrusion under the conditions shown in Table 3 to obtain a 25 mm square side extruded material. After the side extrusion treatment, each material was subjected to heat treatment (post heat treatment) under the conditions shown in Table 4 to obtain a final treated material.

最終処理材の組織写真を図2に示す。側方押出前の結晶粒径は50〜100 μmであったが、最終処理材の平均結晶粒径は等軸状で3μm以下、微細析出物の大きさは50nm以下まで微細化されていた。また、微細析出物の粒子間距離も200nm以下であり、微細析出物は組織中に均一微細に分散している。   A structural photograph of the final treated material is shown in FIG. The crystal grain size before lateral extrusion was 50 to 100 μm, but the average crystal grain size of the final treated material was equiaxed to 3 μm or less, and the size of fine precipitates was refined to 50 nm or less. Further, the distance between the particles of the fine precipitate is 200 nm or less, and the fine precipitate is uniformly and finely dispersed in the structure.

最終処理材の室温硬度(Hv)と室温での導電率(%IACS)の測定結果を表5(表5−1〜表5−8)に示した。本発明材は、表5−9に示した従来の材料(比較材)と比較すると室温硬度(Hv)は同等もしくは若干低いが、導電率(%IACS)は90%以上まで増加していることがわかる。なお、硬度測定は荷重50gfのマイクロビッカース硬度計にて硬さを測定した結果である。また、導電率測定は上記最終処理材表面を鏡面研磨し、これをデジタル導電率計(オートシグマ3000)の測定プローブを試料表面に接触させてその数値を測定した結果である。   Table 5 (Tables 5-1 to 5-8) shows the measurement results of room temperature hardness (Hv) and electrical conductivity at room temperature (% IACS) of the final treated material. Compared with the conventional material (comparative material) shown in Table 5-9, the material of the present invention has the same or slightly lower room temperature hardness (Hv), but the conductivity (% IACS) is increased to 90% or more. I understand. The hardness measurement is the result of measuring the hardness with a micro Vickers hardness tester with a load of 50 gf. Further, the conductivity measurement is a result of mirror polishing the surface of the final treatment material, measuring the numerical value by bringing the measurement probe of a digital conductivity meter (Auto Sigma 3000) into contact with the sample surface.

<電極寿命評価>
電極寿命を評価するために、先端径φ6mm(40R)の電極に成形し、溶接母材として板厚1mmのAl−Mg系合金板のショットダルフィニッシュ材を酸洗した後、市販の低粘度鉱物油を塗布したものを使用し、単相交流定置式スポット溶接機を使用して、電極を水冷しながらスポット溶接試験を行った。溶接電流は26kA、通電時間は4サイクル、加圧力は400kgfとした。溶接条件はWES7302に準じ、径5mmのナゲットが得られる条件とし、連続溶接速度は1回/2sとした。電極寿命は、溶接部を剥がしてナゲット径(長軸と短軸を足して2で割った値)が5mmを下回った打点回数で評価した。電極寿命は次の評価基準により評価した。
(電極寿命評価基準)
○:連続打点1000回以上
×:連続打点1000回未満
<Electrode life evaluation>
In order to evaluate the life of the electrode, it is molded into an electrode having a tip diameter of 6 mm (40R), and after pickling the shot-dull finish material of an Al-Mg alloy plate having a plate thickness of 1 mm as a welding base material, a commercially available low viscosity mineral The oil-coated one was used, and a spot welding test was performed using a single-phase alternating current stationary spot welder while water cooling the electrodes. The welding current was 26 kA, the energization time was 4 cycles, and the applied pressure was 400 kgf. Welding conditions were in accordance with WES7302 so that a nugget with a diameter of 5 mm was obtained, and the continuous welding speed was 1 time / 2 s. The electrode life was evaluated by the number of hits when the welded part was peeled off and the nugget diameter (the value obtained by adding the major axis and the minor axis divided by 2) was less than 5 mm. The electrode life was evaluated according to the following evaluation criteria.
(Electrode life evaluation criteria)
○: More than 1000 consecutive hit points ×: Less than 1000 consecutive hit points

<耐溶着性評価>
耐溶着性は、次のような方法で評価した。電極寿命評価試験において、電極材と被溶接材料が張り付いた場合、電極材を引張試験機で引張って分離した時の荷重を測定し、その荷重が10kgfを超える時を「溶着」とした。また、溶着に至るまでの打点回数を溶着打点数とし、溶着打点数の平均値を「平均溶着打点数」と称し、溶着の発生頻度を示す指標とした。平均溶着打点数が大きいほど溶着しにくいことを意味する。耐溶着性は以下の評価基準により評価した。
(耐溶着性評価基準)
○:平均溶着打点数500回以上
△:平均溶着打点数100回〜499回
×:平均溶着打点数100回未満
<Evaluation of welding resistance>
The welding resistance was evaluated by the following method. In the electrode life evaluation test, when the electrode material and the material to be welded adhered, the load when the electrode material was pulled and separated by a tensile tester was measured, and when the load exceeded 10 kgf, it was defined as “welding”. Further, the number of hitting points until welding was taken as the number of welding hits, and the average value of the welding hit points was called “average welding hitting point”, which was used as an index indicating the frequency of occurrence of welding. The larger the average number of welding points, the harder it is to weld. The welding resistance was evaluated according to the following evaluation criteria.
(Welding resistance evaluation criteria)
○: Average number of welding hit points 500 times or more Δ: Average number of welding hit points 100 to 499 times ×: Average number of welding hit points 100 times or less

<総合評価>
連続打点性(電極寿命)および耐溶着性について総合的に評価した結果を次のような基準で総合評価し、表5の最下欄に示した。
(総合評価基準)
◎:連続打点性および耐溶着性の評価がともに○
○:連続打点性および耐溶着性の評価が○もしくは△
×:連続打点性および耐溶着性の評価に×を含む
<Comprehensive evaluation>
The results of comprehensive evaluation of continuous spotting property (electrode life) and welding resistance were comprehensively evaluated according to the following criteria, and are shown in the bottom column of Table 5.
(Comprehensive evaluation criteria)
A: Both continuous dot resistance and welding resistance are evaluated.
○: Evaluation of continuous dot resistance and welding resistance is ○ or △
X: x is included in the evaluation of continuous spotting property and welding resistance

本発明材No.15,18,24〜26,29,32,35,37,38,41,43,44,46,47,49〜52,58,61,63,64,67,70,72,73,76,78は、導電率(%IACS)が低い(表中には示されていないが熱伝導率も低い)ためジュール発熱が高く、かつ抜熱速度が低いため結晶粒が成長し、靱性が低下し、かつ被溶接材と合金化しやすくなり、平均溶着間隔が500回未満となった。   Invention material Nos. 15, 18, 24 to 26, 29, 32, 35, 37, 38, 41, 43, 44, 46, 47, 49 to 52, 58, 61, 63, 64, 67, 70, 72 , 73, 76, and 78 have low conductivity (% IACS) (not shown in the table but low thermal conductivity), so Joule heat generation is high, and because the heat removal rate is low, crystal grains grow. The toughness was lowered and it became easy to alloy with the material to be welded, and the average welding interval was less than 500 times.

比較材No.1はCrの固溶量が多く導電率(%IACS)が低過ぎる(表中には示されていないが熱伝導率も低過ぎる)ため、ジュール発熱が非常に高く、かつ冷却効率が悪く電極材の温度が上昇し硬さが著しく低下した。その結果、少ない打点回数で電極材先端径が拡大し溶接電流密度が低下するため、連続打点性は低い。耐溶着性については、導電率(%IACS)が低過ぎる(表中には示されていないが熱伝導率も低過ぎる)ため、また、結晶粒径が数十μmと大きいことにより靱性が低いため、被溶接材と合金化しやすく平均溶着打点数が少ない。   Comparative material No. No. 1 has a large amount of solid solution of Cr and its conductivity (% IACS) is too low (not shown in the table but the thermal conductivity is too low), so Joule heating is very high, and the cooling efficiency is poor. The temperature of the material increased and the hardness decreased significantly. As a result, the electrode material tip diameter is enlarged and the welding current density is lowered with a small number of hitting points, so that the continuous spotting property is low. As for the welding resistance, the electrical conductivity (% IACS) is too low (not shown in the table but the thermal conductivity is too low), and the toughness is low due to the large crystal grain size of several tens of μm. Therefore, it is easy to alloy with the material to be welded, and the average number of welding points is small.

比較材No.2は、脆く電極先端の損耗が著しいため、また、導電率(%IACS)が低過ぎる(表中には示されていないが熱伝導率も低過ぎる)ため溶着しやすい。
以上より、高硬度、高導電率(%IACS)及び微細結晶粒の材料は、溶接特性に優れるということが明らかになった。
Comparative material No. No. 2 is brittle and wears at the tip of the electrode, and the conductivity (% IACS) is too low (not shown in the table, but the thermal conductivity is too low), and is easily welded.
From the above, it has been clarified that a material having high hardness, high conductivity (% IACS) and fine crystal grains is excellent in welding characteristics.

実施例1と同様にCu−1.0%Crからなる棒材を作製し、押出後、1000℃で2時間溶体化処理し、450℃で2時間事前熱処理を行った。
事前熱処理後、室温硬度及び導電率を測定した結果、硬度は160、導電率は80%であった。各材料は図1に示す直角で連結した2つのコンテナーの一方に挿入し、温度350℃の条件で側方押出を行い、25mm角の側方押出処理材を得た。側方押出処理後、室温硬度及び導電率を測定した結果、硬度は143、導電率は90%であった。
さらに、各材料を(1)425℃で10分、(2)425℃で8時間の条件でそれぞれ熱処理を行い最終処理材を得た。
最終処理材は(1)硬度156、導電率90%、平均再結晶粒径1μm以下、微細析出物の平均粒子径1〜20nm、微細析出物Crの平均粒子間距離も100nm以下、(2)硬度120、導電率93%、平均再結晶粒径1μm以下、微細析出物の平均粒子径5〜40nm、微細析出物Crの平均粒子間距離も150nm以下であった。
A bar made of Cu-1.0% Cr was prepared in the same manner as in Example 1, and after extrusion, solution treatment was performed at 1000 ° C. for 2 hours, and pre-heat treatment was performed at 450 ° C. for 2 hours.
After the preliminary heat treatment, the room temperature hardness and conductivity were measured. As a result, the hardness was 160 and the conductivity was 80%. Each material was inserted into one of two containers connected at a right angle shown in FIG. 1 and subjected to side extrusion at a temperature of 350 ° C. to obtain a 25 mm square side extruded material. After the side extrusion treatment, the room temperature hardness and conductivity were measured. As a result, the hardness was 143 and the conductivity was 90%.
Furthermore, each material was heat-treated under the conditions of (1) 425 ° C. for 10 minutes and (2) 425 ° C. for 8 hours to obtain final treated materials.
The final treated material is (1) hardness 156, conductivity 90%, average recrystallized particle size 1 μm or less, fine precipitate average particle size 1-20 nm, fine precipitate Cr average interparticle distance 100 nm or less, (2) The hardness was 120, the conductivity was 93%, the average recrystallization particle size was 1 μm or less, the average particle size of fine precipitates was 5 to 40 nm, and the average interparticle distance of the fine precipitates Cr was 150 nm or less.

実施例1と同様にCu−1.0%Crからなる棒材を作製し、押出後、1000℃で2時間溶体化処理し、450℃で2時間事前熱処理を行った。事前熱処理後、各材料は図1に示す直角で連結した2つのコンテナーの一方に挿入し、温度500℃の条件で側方押出を行い、25mm角の側方押出処理材を得た。得られた側方押出処理材を最終処理材とした。最終処理材は硬度110、導電率95%、平均再結晶粒径3μm以下、微細析出物の平均粒子径5〜40nm、微細析出物Crの平均粒子間距離も150nm以下であった。   A bar made of Cu-1.0% Cr was prepared in the same manner as in Example 1, and after extrusion, solution treatment was performed at 1000 ° C. for 2 hours, and pre-heat treatment was performed at 450 ° C. for 2 hours. After the preliminary heat treatment, each material was inserted into one of two containers connected at right angles shown in FIG. 1 and subjected to side extrusion under the condition of a temperature of 500 ° C. to obtain a 25 mm square side extruded material. The obtained side extrusion processing material was used as the final processing material. The final treated material had a hardness of 110, an electrical conductivity of 95%, an average recrystallized particle size of 3 μm or less, an average particle size of fine precipitates of 5 to 40 nm, and an average interparticle distance of fine precipitates Cr of 150 nm or less.

実施例1と同様の電極材を用い、溶接母材として、板厚0.8mmの溶融亜鉛メッキ鋼板(平均メッキ付着量:60g/m2)を使用し、単相交流定置式スポット溶接機を使用して、電極を水冷しながらスポット溶接試験を行った。溶接電流は8.3kA、通電時間は10サイクル(50Hz)、加圧力は200kgfとした。溶接条件は、径5mmのナゲットが得られる条件とし、連続溶接速度は1回/1sとした。電極寿命、耐溶着性は、実施例1と同様の方法、基準で評価し、また、実施例1と同様な基準で総合的に評価した結果を総合評価としてそれぞれ表6−1〜表6−9に示した。 The same electrode material as in Example 1 was used, and a hot-dip galvanized steel sheet having a thickness of 0.8 mm (average plating adhesion amount: 60 g / m 2 ) was used as the welding base material. In use, spot welding tests were conducted while water cooling the electrodes. The welding current was 8.3 kA, the energization time was 10 cycles (50 Hz), and the applied pressure was 200 kgf. The welding conditions were such that a nugget with a diameter of 5 mm was obtained, and the continuous welding speed was 1 time / 1 s. The electrode life and welding resistance were evaluated by the same method and standard as in Example 1, and the results of comprehensive evaluation by the same standard as in Example 1 were used as comprehensive evaluations. 9 shows.

本発明材18、32、35、38、44、47、49、50、58、64、70、73、76は、導電率(%IACS)が低い(表中には示されていないが熱伝導率も低い)ためジュール発熱が高く、かつ抜熱速度が低いため結晶粒が成長し、靭性が低下し、かつ被溶接材と合金化しやすくなり、平均溶着間隔が500回未満となった。   Inventive materials 18, 32, 35, 38, 44, 47, 49, 50, 58, 64, 70, 73, 76 have low conductivity (% IACS) (not shown in the table, but heat conduction) Since the rate of Joule heat generation is high and the heat removal rate is low, the crystal grains grow, the toughness decreases, and it becomes easy to alloy with the material to be welded, and the average welding interval becomes less than 500 times.

比較材No.1はCrの固溶量が多く導電率(%IACS)が低過ぎる(表中には示されていないが熱伝導率も低過ぎる)ため、ジュール発熱が非常に高く、かつ冷却効率が悪く電極材の温度が上昇し硬さが著しく低下した。その結果、少ない打点回数で電極材先端径が拡大し溶接電流密度が低下するため、連続打点性は低い。耐溶着性については、導電率(%IACS)が低過ぎる(表中には示されていないが熱伝導率も低過ぎる)ため、また、結晶粒径が数十μmと大きいことにより靭性が低いため、被溶接材と合金化しやすく平均溶着打点数が少ない。   Comparative material No. No. 1 has a large amount of solid solution of Cr and its conductivity (% IACS) is too low (not shown in the table but the thermal conductivity is too low), so Joule heating is very high, and the cooling efficiency is poor. The temperature of the material increased and the hardness decreased significantly. As a result, the electrode material tip diameter is enlarged and the welding current density is lowered with a small number of hitting points, so that the continuous spotting property is low. As for the welding resistance, the conductivity (% IACS) is too low (not shown in the table, but the thermal conductivity is too low), and the toughness is low due to the large crystal grain size of several tens of μm. Therefore, it is easy to alloy with the material to be welded, and the average number of welding points is small.

比較材No.2は、脆く電極先端の損耗が著しいため、また、導電率(%IACS)が低過ぎる(表中には示されていないが熱伝導率も低過ぎる)ため溶着しやすい。
以上より、高硬度、高導電率(%IACS)及び微細結晶粒の材料は、溶接特性に優れるということが明らかになった。
Comparative material No. No. 2 is brittle and wears at the tip of the electrode, and the conductivity (% IACS) is too low (not shown in the table, but the thermal conductivity is too low), and is easily welded.
From the above, it has been clarified that a material having high hardness, high conductivity (% IACS) and fine crystal grains is excellent in welding characteristics.

本発明の電極材料は靱性及び導電率が高く、連続打点性(電極寿命)と溶着打点数(耐溶着性)に優れるので、アルミニウム、マグネシウム、鉄及びこれらの合金、さらにはその金属めっき材等からなる被溶接材料を溶接する際に用いる電極材料としての利用性が高い。   The electrode material of the present invention has high toughness and electrical conductivity, and is excellent in continuous spotting performance (electrode life) and number of welding spots (welding resistance), so aluminum, magnesium, iron and alloys thereof, and metal plating materials thereof, etc. It is highly usable as an electrode material used when welding a material to be welded.

ECAE法成形装置の一例を示す図である。It is a figure which shows an example of the ECAE method shaping | molding apparatus. 最終処理材の金属組織を示す図である(EBSPによるもの)。It is a figure which shows the metal structure of a final process material (thing by EBSP).

符号の説明Explanation of symbols

1 コンテナー
2 ダイ
3 ラム
S 合金素材
1 container 2 die 3 ram S alloy material

Claims (7)

一般式:Cubal.(但し、XはCr、Zr、Fe、P、Agから選ばれる少なくとも1種の元素であり、aは質量%で1.5%以下であり、残部が不可避的不純物を含むCuである)で示される組成からなり、平均結晶粒径が3μm以下の等軸状結晶粒からなる組織中に平均粒子径50nm以下の微細粒子が析出してなる組織構造を有することを特徴とする電極材料。 General formula: Cu bal. X a (where X is at least one element selected from Cr, Zr, Fe, P, Ag, a is 1.5% by mass or less, and the remainder is inevitable) (It is Cu containing impurities) and has a structure in which fine particles with an average particle size of 50 nm or less are precipitated in a structure made of equiaxed crystal particles with an average crystal particle size of 3 μm or less. An electrode material characterized by. 上記微細粒子の析出分散状態が、平均粒子間距離で200nm以下であることを特徴とする請求項1記載の電極材料。   2. The electrode material according to claim 1, wherein the fine particles are deposited and dispersed in an average interparticle distance of 200 nm or less. 上記微細粒子が、Cr、Cu3Zr、Cu9Zr2、Fe、Cu3P、Agから選ばれる少なくとも1種であることを特徴とする請求項1又は2記載の電極材料。 The electrode material according to claim 1 or 2, wherein the fine particles are at least one selected from Cr, Cu 3 Zr, Cu 9 Zr 2 , Fe, Cu 3 P, and Ag. 一般式:Cubal.(但し、XはCr、Zr、Fe、P、Agから選ばれる少なくとも1種の元素であり、aは質量%で1.5%以下であり、残部が不可避的不純物を含むCuである)で示されるCu系合金素材を、加熱温度300〜500℃でその押出方向を途中で内角180°未満の側方に変化させて剪断変形を与えることによって押出すことを特徴とする電極材料の製造方法。 General formula: Cu bal. X a (where X is at least one element selected from Cr, Zr, Fe, P, Ag, a is 1.5% by mass or less, and the remainder is inevitable) Extruding a Cu-based alloy material represented by (which is Cu containing impurities) at a heating temperature of 300 to 500 ° C. by changing its extrusion direction to the side with an inner angle of less than 180 ° and applying shear deformation. A method for producing a featured electrode material. 前記剪断変形により合金素材に220%以上の伸びに相当する塑性変形(歪)を与えることを特徴とする請求項4記載の電極材料の製造方法。   5. The method for producing an electrode material according to claim 4, wherein plastic deformation (strain) corresponding to elongation of 220% or more is applied to the alloy material by the shear deformation. 前記押出しを行うにあたって、事前に合金素材に温度350〜700℃で熱処理を施すことを特徴とする請求項4又は5記載の電極材料の製造方法。   6. The method for producing an electrode material according to claim 4, wherein the extruding is performed in advance at a temperature of 350 to 700 [deg.] C. on the alloy material. 前記押出し後、温度350〜700℃で熱処理を施すことを特徴とする請求項4〜6のいずれかに記載の電極材料の製造方法。   The method for producing an electrode material according to claim 4, wherein a heat treatment is performed at a temperature of 350 to 700 ° C. after the extrusion.
JP2003315170A 2003-09-08 2003-09-08 Electrode material and its production method Pending JP2005081371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315170A JP2005081371A (en) 2003-09-08 2003-09-08 Electrode material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315170A JP2005081371A (en) 2003-09-08 2003-09-08 Electrode material and its production method

Publications (1)

Publication Number Publication Date
JP2005081371A true JP2005081371A (en) 2005-03-31

Family

ID=34415517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315170A Pending JP2005081371A (en) 2003-09-08 2003-09-08 Electrode material and its production method

Country Status (1)

Country Link
JP (1) JP2005081371A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513395A (en) * 2011-12-14 2012-06-27 合肥工业大学 Equal channel angular extruding, twisting and deforming mold for large plastic forming process
CN102528336A (en) * 2011-12-13 2012-07-04 浙江亚通焊材有限公司 Method for preparing high-plasticity welding wire by use of brittle Sn-Bi alloy
CN102676868A (en) * 2012-01-10 2012-09-19 河南科技大学 Ultrahigh strength copper alloy and preparation method thereof
CN109136634A (en) * 2018-08-21 2019-01-04 南京理工大学 A kind of high-performance copper alloy material and preparation method thereof
CN110055479A (en) * 2019-05-30 2019-07-26 常州大学 A kind of 800MPa grades of highly conductive novel Cu-Cr-Zr alloy and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528336A (en) * 2011-12-13 2012-07-04 浙江亚通焊材有限公司 Method for preparing high-plasticity welding wire by use of brittle Sn-Bi alloy
CN102528336B (en) * 2011-12-13 2014-04-16 浙江亚通焊材有限公司 Method for preparing high-plasticity welding wire by use of brittle Sn-Bi alloy
CN102513395A (en) * 2011-12-14 2012-06-27 合肥工业大学 Equal channel angular extruding, twisting and deforming mold for large plastic forming process
CN102676868A (en) * 2012-01-10 2012-09-19 河南科技大学 Ultrahigh strength copper alloy and preparation method thereof
CN102676868B (en) * 2012-01-10 2013-11-20 河南科技大学 Ultrahigh strength copper alloy and preparation method thereof
CN109136634A (en) * 2018-08-21 2019-01-04 南京理工大学 A kind of high-performance copper alloy material and preparation method thereof
CN110055479A (en) * 2019-05-30 2019-07-26 常州大学 A kind of 800MPa grades of highly conductive novel Cu-Cr-Zr alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI422691B (en) High strength and high conductivity copper alloy tube, rod, wire
CN101541987B (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
US8273193B2 (en) Lead-free, bismuth-free free-cutting silicon brass alloy
US20040238501A1 (en) Electrode material and method for manufacture thereof
CN106065443B (en) Copper alloy and method for producing same
WO2006016631A1 (en) Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
TW577932B (en) Iron modified tin brass
RU2307000C2 (en) Dispersion hardened copper alloy as material for making casting molds
JP2007126739A (en) Copper alloy for electronic material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
TW200837203A (en) Cu-Ni-Si-based copper alloy for electronic material
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP4930993B2 (en) Copper alloy material, method for producing the same, and electrode member for welding equipment
JP2005081371A (en) Electrode material and its production method
JPS6132386B2 (en)
US6565681B1 (en) Age-hardenable copper alloy casting molds
JP2005288519A (en) Electrode material and its production method
JPH11189834A (en) High strength trolley wire and its manufacture
JP2017128758A (en) Aluminum alloy sheet for conductive member and production method therefor, and electric connection component
JP5130476B2 (en) Spot welding electrode
JPS60149751A (en) Metal composition
JPH1053824A (en) Copper alloy for contact material, and its production
JPH0681057A (en) Cu-fe alloy for welding electrode and soldering iron tip excellent in molten metal corrosion resistance and strength at high temperature and its production