JP2013007063A - TITANIUM ALLOY THICK PLATE FOR DRUM FOR MANUFACTURING ELECTROLYTIC Cu FOIL, AND METHOD OF MANUFACTURING THE SAME - Google Patents

TITANIUM ALLOY THICK PLATE FOR DRUM FOR MANUFACTURING ELECTROLYTIC Cu FOIL, AND METHOD OF MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2013007063A
JP2013007063A JP2011138314A JP2011138314A JP2013007063A JP 2013007063 A JP2013007063 A JP 2013007063A JP 2011138314 A JP2011138314 A JP 2011138314A JP 2011138314 A JP2011138314 A JP 2011138314A JP 2013007063 A JP2013007063 A JP 2013007063A
Authority
JP
Japan
Prior art keywords
rolling
titanium alloy
plate
axis
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011138314A
Other languages
Japanese (ja)
Other versions
JP5609784B2 (en
Inventor
Hiroaki Otsuka
広明 大塚
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011138314A priority Critical patent/JP5609784B2/en
Publication of JP2013007063A publication Critical patent/JP2013007063A/en
Application granted granted Critical
Publication of JP5609784B2 publication Critical patent/JP5609784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material which is a titanium material for a drum for manufacturing copper foil used for a multilayer wiring board of an electronic component, a flexible wiring board, a negative electrode collector of a lithium ion battery and the like, and having a uniform and dense plate surface metal structure, and a method of manufacturing the same.SOLUTION: The titanium alloy thick plate includes 0.4-1.8% of Al, and has a plate thickness ≥4 mm, an average crystal grain size ≥8.2 at 1.0 mm below a surface and at a part parallel to the plate surface at the 1/2 plate thickness, and a Vickers hardness of 115-145, wherein, in a texture at a part parallel to the plate surface from 1 mm below the surface to the 1/2 plate thickness part, when it is assumed that a final rolling direction, the normal of a rolling surface, the rolling width direction and the normal of the (0001) plane are RD, ND, TD and a c-axis, respectively, the total area of crystal grains in each of which the c-axis exists in an ellipsoidal area where the fall angle in the TD direction of the c-axis is -45° to 45°, and the fall angle in the RD direction of the c-axis is -25° to 25° is A in a (0001) plane pole figure of the α phase from the normal direction from the rolling surface, the total area of crystal grains other than those is B, and the area ratio A/B is ≥3.0.

Description

本発明は、電子部品の多層配線板、フレキシブル配線板やリチウムイオン電池の負極集電体などに使用される銅箔(Cu箔と記す)を製造するためのドラム用チタン材であって、均一でかつ緻密な板面金属組織を有するチタン合金厚板およびその製造方法に関するものである。   The present invention is a drum titanium material for producing a copper foil (referred to as Cu foil) used for a multilayer wiring board of an electronic component, a flexible wiring board, a negative electrode current collector of a lithium ion battery, etc. Further, the present invention relates to a titanium alloy thick plate having a dense plate surface metallographic structure and a method for producing the same.

これらの用途に用いられるCu箔は、Cu原料を硫酸溶液に溶解させた硫酸銅溶液中で、Pbやチタンなどの不溶性金属を陽極、幅1m以上、直径数mのドラムを陰極とし、ドラムを回転させつつドラム上にCuを連続的に電析させ、これを連続的に剥離させ、ロール状に巻き取るという方法で製造されている。ドラムの材料としては、耐食性に優れること、Cu箔の剥離性に優れること、などの観点から、チタンが使用されている。   Cu foil used for these applications is a copper sulfate solution in which a Cu raw material is dissolved in a sulfuric acid solution. An insoluble metal such as Pb or titanium is used as an anode, a drum having a width of 1 m or more and a diameter of several meters is used as a cathode. It is manufactured by a method in which Cu is continuously electrodeposited on a drum while being rotated, and this is continuously peeled off and wound into a roll. As a material for the drum, titanium is used from the viewpoints of excellent corrosion resistance and excellent peelability of the Cu foil.

しかし、いかに高耐食性のチタン材といえども、使用中に電解液中で徐々に腐蝕を受けて、新たに出現した面の状態がCu箔に転写されるようになる。金属の腐蝕というのは、その金属材料の有する組織、結晶方位、欠陥、偏析、加工歪み、残留歪みなど様々な内質要因によってその程度が異なることが知られており、このような不均質な内質状態の材料からなるドラムが使用中に腐蝕を受けると、均質な面状態が維持できなくなる。   However, even a highly corrosion-resistant titanium material is gradually corroded in the electrolyte during use, and the newly appearing surface state is transferred to the Cu foil. It is known that the degree of metal corrosion varies depending on various internal factors such as the structure, crystal orientation, defects, segregation, processing strain and residual strain of the metal material. If a drum made of an internal material is corroded during use, a uniform surface state cannot be maintained.

このような不均質な組織のうち、肉眼で判別できるものを「マクロ模様」と呼ぶ。Cu箔製造用チタンドラムの場合、マクロ組織は、表面を600番のサンドペーパーで研磨した後、硝酸約10%、沸酸約5%、残り水のエッチング液に数十秒〜数分間浸漬することにより観察できる。何らかの原因により、数ミリメートル長さでも不均質な組織があると、それらの部分はエッチング状態が異なるため、肉眼で判別される。したがって、素材チタン材のマクロ組織を均質にすること、すなわちマクロ組織中に生ずるいわゆる「マクロ模様」を低減することが、ドラムの均質な腐蝕を達成し、高精度かつ均質な厚さのCu箔を製造するための必須事項である。   Among such heterogeneous tissues, those that can be discriminated with the naked eye are called “macro patterns”. In the case of a titanium drum for producing Cu foil, the macro structure is dipped in an etching solution of about 10% nitric acid, about 5% boiling acid, and the remaining water for several tens of seconds to several minutes after polishing the surface with sandpaper No. 600. Can be observed. For some reason, if there is an inhomogeneous structure even several millimeters in length, these portions are different from each other in the etching state, and thus are discriminated with the naked eye. Therefore, homogenizing the macro structure of the raw material titanium material, that is, reducing the so-called “macro pattern” that occurs in the macro structure, achieves uniform corrosion of the drum, and highly accurate and uniform thickness Cu foil. Is essential for manufacturing.

これに対して、特許文献1には、チタン及びチタン合金板の製造方法として、950℃以上の加熱温度で粗熱延し、仕上げ圧延における加熱温度を700℃以下とし、仕上げ圧延を粗熱延の方向にほぼ直角な方向に変えるクロス熱延を実施する方法が記載されている。
特許文献2には、最表面から1/3板厚にわたる板面に平行な表層部において、平均粒径が40μm以下であり、さらに、集合組織が[0001]0°〜±45°TD、かつ、[0001]0°〜±25°RD(ただし、[0001]はc軸方位、TDは板幅方向、RDは圧延方向)であることを特徴とする表層部組織に優れた純チタン製銅箔製造ドラム用チタンが提案されている。
On the other hand, in Patent Document 1, as a method for producing titanium and a titanium alloy plate, rough hot rolling is performed at a heating temperature of 950 ° C. or higher, and the heating temperature in finish rolling is set to 700 ° C. or lower. A method of performing cross hot rolling in a direction substantially perpendicular to the direction of is described.
In Patent Document 2, in the surface layer portion parallel to the plate surface extending from the outermost surface to 1/3 plate thickness, the average particle size is 40 μm or less, and the texture is [0001] 0 ° to ± 45 ° TD, and , [0001] 0 ° to ± 25 ° RD (where [0001] is the c-axis orientation, TD is the sheet width direction, and RD is the rolling direction) Titanium for foil manufacturing drums has been proposed.

また、特許文献3には、結晶粒度7.0以上、かつ初期水素含有量が35ppm以下であることを特徴とする電解銅箔製造用のチタン材とその製造方法として、圧延開始温度を200℃以上550℃未満、圧延終止温度を200℃以上で圧下率40%以上の圧延を行う方法が提案されている。
特許文献4には、Cuを質量%で0.15%以上、0.5%未満、特許文献5には、Cuを0.5%以上、2.1%以下含むCu箔製造ドラム用チタン板が提案されている。
Patent Document 3 discloses a titanium material for producing an electrolytic copper foil characterized by having a crystal grain size of 7.0 or more and an initial hydrogen content of 35 ppm or less, and a rolling start temperature of 200 ° C. There has been proposed a method of rolling at a rolling reduction of less than 550 ° C., a rolling end temperature of 200 ° C. or more, and a rolling reduction of 40% or more.
Patent Document 4 discloses Cu in mass% by 0.15% or more and less than 0.5%. Patent Document 5 discloses Cu foil production drum titanium plate containing Cu by 0.5% or more and 2.1% or less. Has been proposed.

特開昭60−9866号公報Japanese Patent Laid-Open No. 60-9866 特開2002−285267号公報JP 2002-285267 A 特開2002−194585号公報JP 2002-194585 A 特開2009−41064号公報JP 2009-41064 A 特開2005−298853号公報Japanese Patent Laid-Open No. 2005-298753

近年、電子部品で使用されるCu箔の表面品質は、Cu箔の薄肉化に伴いさらに厳しく問われるようになり、肉眼で判別できる「マクロ模様」のみならず、研磨時の表面の毟れの不均一に起因する直径数十μm以下のミクロサイズの欠陥も問題となる場合が出てきている。   In recent years, the surface quality of Cu foils used in electronic parts has become more severe as the thickness of Cu foils becomes thinner, and not only the “macro pattern” that can be discerned with the naked eye, but also the roughness of the surface during polishing. In some cases, micro-sized defects having a diameter of several tens of μm or less due to non-uniformity also become a problem.

特許文献1に開示された方法は、仕上げ熱延における加熱温度を低下させることにより、粗大結晶粒起因のマクロ模様の出現を抑制し、仕上げ圧延を粗圧延の方向に直角な方向にクロス圧延を行うことにより、圧延方向に生じるバンド状のマクロ模様を抑制できるが、上記ミクロサイズの欠陥の出現は抑制できない。   The method disclosed in Patent Document 1 suppresses the appearance of macro patterns due to coarse crystal grains by lowering the heating temperature in finish hot rolling, and performs cross rolling in a direction perpendicular to the direction of rough rolling. By carrying out, the band-like macro pattern generated in the rolling direction can be suppressed, but the appearance of the micro-sized defects cannot be suppressed.

また特許文献2では、純チタンにおいて、β温度域における分塊鍛造後急冷、α温度域で粗圧延後、仕上げ圧延を650〜750℃の温度で、粗圧延の方向に直角な方向にクロス圧延し、焼鈍後、冷延、再焼鈍を行うことにより、特徴のある集合組織を得、マクロ的不均一模様のないCu箔製造ドラム用純チタン材を得ている。   Further, in Patent Document 2, in pure titanium, rapid cooling after forging in the β temperature range, rough rolling in the α temperature range, and finish rolling at a temperature of 650 to 750 ° C. in a direction perpendicular to the direction of the rough rolling. Then, after annealing, cold rolling and re-annealing are performed to obtain a characteristic texture, and a pure titanium material for a Cu foil production drum without a macro uneven pattern is obtained.

しかし、この方法は工程が複雑、かつ、製造条件管理も煩雑である。また、集合組織は、c軸が板法線方向とほぼ平行な(傾きは25°以内)、Center−Pole−texture、c軸がTD方向に35〜45°傾く、Split−TD−texture およびc軸がTD方向に35〜45°傾く、Split−RD−textureの単一もしくは複合的集合組織である。この集合組織は、c軸がTD方向に70°以上傾くTransverse−textureの全結晶粒の割合が数十%以上存在するため、隣接する結晶粒の面方位が大きく異なる場合がある。結晶粒の面方位の境界では、研磨時の毟られ方が顕著となり、ミクロレベルの欠陥が生じる場合がある。
また、同特許文献には、「集合組織が[0001]0°〜±45°TD、かつ、[0001]0°〜±25°RD(ただしTDは板幅方向、RDは圧延方向)であることを特徴とする」という定性的な記述はあるが、集合組織の特徴を定量的に記載していない。
However, this method has complicated processes and complicated manufacturing condition management. Further, the texture is such that the c-axis is substantially parallel to the plate normal direction (inclination is within 25 °), the Center-Pole-texture, the c-axis is inclined 35 to 45 ° in the TD direction, Split-TD-texture and c Split-RD-texture single or multiple textures whose axes are inclined 35-45 ° in the TD direction. In this texture, the ratio of the total crystal grains of the Transverse-texture in which the c-axis is tilted by 70 ° or more in the TD direction exists at several tens of percent or more, so that the plane orientations of adjacent crystal grains may differ greatly. At the boundary of the plane orientation of the crystal grains, the manner of squeezing at the time of polishing becomes significant, and micro level defects may occur.
Further, the patent document states that “the texture is [0001] 0 ° to ± 45 ° TD and [0001] 0 ° to ± 25 ° RD (where TD is the sheet width direction and RD is the rolling direction). Although there is a qualitative description that “is characteristic”, the characteristics of the texture are not described quantitatively.

特許文献3では、結晶粒度7.0以上、かつ初期水素含有量が35ppm以下であることを特徴とする電解Cu箔製造用のチタン材とその製造方法として、圧延開始温度を200℃以上550℃未満、圧延終止温度を200℃以上で圧下率40%以上の圧延を行う方法が提案されている。しかし、結晶粒度7.0以上、かつ初期水素含有量35ppm以下の純チタン材は、純チタン製品としては極普通の結晶粒度、かつ、水素含有量であり、この程度の組織微細化と水素含有量抑制による水素化物の生成抑制だけでは、ミクロサイズの欠陥は抑制できない。   In Patent Document 3, as the titanium material for producing an electrolytic Cu foil, characterized in that the crystal grain size is 7.0 or more and the initial hydrogen content is 35 ppm or less, the rolling start temperature is 200 ° C. or more and 550 ° C. A method of rolling at a rolling end temperature of 200 ° C. or higher and a rolling reduction of 40% or higher has been proposed. However, a pure titanium material having a crystal grain size of 7.0 or more and an initial hydrogen content of 35 ppm or less has a crystal grain size and hydrogen content that are extremely normal for pure titanium products. Micro-sized defects cannot be suppressed only by suppressing the generation of hydride by controlling the amount.

特許文献4では、Cuを質量%で0.15%以上、0.5%未満、特許文献5には、Cuを0.5%以上、2.1%以下含むCu箔製造ドラム用チタン板が提案されている。さらに、特許文献5には、α+β二相温度域に加熱し、熱間圧延を行い、500℃以上β変態点以下の温度域で焼鈍、さらに冷間圧延を行い、500℃以上、β変態点以下の温度域で焼鈍するCu箔製造ドラム用チタン板の製造方法が提案されている。しかし、この方法は工程が複雑、かつ、製造条件管理も煩雑である。また、特許文献および特許文献5に記載の技術は、ミクロサイズの欠陥の抑制に関しても不十分である。   In Patent Document 4, Cu is 0.15% or more and less than 0.5% by mass, and Patent Document 5 describes a titanium plate for a Cu foil production drum containing Cu in a range of 0.5% to 2.1%. Proposed. Furthermore, in Patent Document 5, heating is performed in an α + β two-phase temperature range, hot rolling is performed, annealing is performed in a temperature range of 500 ° C. or more and β transformation point or less, and further cold rolling is performed, and 500 ° C. or more, β A method for producing a titanium plate for a Cu foil production drum that is annealed in a temperature range below the transformation point has been proposed. However, this method has complicated processes and complicated manufacturing condition management. In addition, the techniques described in Patent Documents and Patent Documents 5 are insufficient for suppressing micro-sized defects.

以上のような現状に鑑み、本発明は、Cu箔製造ドラム用チタン材で、マクロ模様のみならず、研磨時の毟れに起因するミクロサイズの欠陥(直径数十μm以下の欠陥)がなく均一微細な板面金属組織を有し、複雑な加工熱処理に頼ることなく製造可能で、高品質の電解Cu箔を製造することのできるドラム用チタン材、及びその製造方法を提供しようとするものである。   In view of the present situation as described above, the present invention is a titanium material for a Cu foil production drum, which has not only a macro pattern but also a micro-size defect (a defect having a diameter of several tens of μm or less) caused by wrinkling during polishing. An object of the present invention is to provide a drum titanium material that has a uniform and fine plate surface metallographic structure and can be manufactured without resorting to complex processing heat treatment, and that can manufacture high-quality electrolytic Cu foil, and a method for manufacturing the same. It is.

本発明者らは、Al添加チタン合金について、その表面結晶方位と研磨時の表面の毟れ状態、およびミクロサイズの欠陥発生の関係を調査し、その製造方法について鋭意検討を重ねた結果、マクロ模様だけでなく、ミクロサイズの欠陥を抑制可能な集合組織を見出し、その製造プロセスを見出すにいたった。
本発明はかかる知見に基づいて完成させたものであり、その要旨とするところは以下の通りである。
As a result of investigating the relationship between the surface crystal orientation of the Al-added titanium alloy, the surface wrinkling state during polishing, and the generation of micro-sized defects, We found a texture that can suppress not only patterns but also micro-sized defects, and found the manufacturing process.
The present invention has been completed based on such findings, and the gist thereof is as follows.

(1)質量%で、Al:0.4〜1.8%を含み、残部チタンと不可避不純物からなり、板厚が4mm以上で、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、平均結晶粒度が8.2以上、かつ、ビッカース硬度が115以上、145以下であり、表面下1mmから1/2板厚部にわたる板面に平行な部位において、集合組織が、最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、圧延面より法線方向からのα相の(0001)面極点図において、c軸のTD方向への倒れの角度が−45〜45°、また、c軸のRD方向への倒れの角度が−25〜25°である楕円の領域にc軸が存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であることを特徴とする電解Cu箔製造ドラム用チタン合金厚板。 (1) Mass%, Al: 0.4 to 1.8%, consisting of remaining titanium and inevitable impurities, with a plate thickness of 4 mm or more, 1.0 mm below the surface, and 1/2 plate thickness plate surface The average grain size is 8.2 or more, the Vickers hardness is 115 or more and 145 or less, and the texture is parallel to the plate surface extending from 1 mm below the surface to 1/2 plate thickness. , Final rolling direction RD, rolling surface normal ND, rolling width direction TD, (0001) plane normal to c axis, (0001) plane pole figure of α phase from rolling surface normal direction , The c-axis tilt angle in the TD direction is −45 to 45 °, and the c-axis tilt angle in the RD direction is −25 to 25 °. The total area of A is A, the total area of the other crystal grains is B, and the area ratio A / B is 3.0. Electrolytic Cu foil building drum for titanium alloy thick plate, which is a top.

(2)(1)記載の電解Cu箔製造ドラム用チタン合金厚板の製造方法であって、(1)の成分からなるチタン合金を800〜900℃に加熱し、圧下率60%以上の熱間圧延を行い、600〜750℃の熱処理を施すことを特徴とするチタン合金厚板の製造方法。 (2) The method for producing a titanium alloy thick plate for an electrolytic Cu foil production drum according to (1), wherein the titanium alloy comprising the component (1) is heated to 800 to 900 ° C., and the reduction rate is 60% or more. A method for producing a titanium alloy thick plate, comprising performing hot rolling and performing heat treatment at 600 to 750 ° C.

(3)(1)記載の電解Cu箔製造ドラム用チタン合金厚板の製造方法であって、(1)の成分からなるチタン合金を800〜900℃に加熱し、圧下率60%以上の熱間圧延を行い、600〜750℃の熱処理を施した後、圧下率30%以上の冷間圧延を行い、その後600〜750℃で熱処理を行うことを特徴とするチタン合金厚板の製造方法。 (3) A method for producing a titanium alloy thick plate for an electrolytic Cu foil production drum according to (1), wherein the titanium alloy comprising the component (1) is heated to 800 to 900 ° C., and the reduction rate is 60% or more. A method for producing a titanium alloy thick plate, comprising performing hot rolling, performing heat treatment at 600 to 750 ° C, performing cold rolling with a reduction rate of 30% or more, and thereafter performing heat treatment at 600 to 750 ° C.

以上説明したように、本発明により、ミクロサイズの欠陥発生が少なく均一微細な板面金属組織を有し、高品質の電解Cu箔を製造するに適した、電解Cu箔製造ドラム用チタン合金厚板及びその製造方法を、複雑な加工熱処理工程を経ることなく提供することができる。   As described above, according to the present invention, the thickness of the titanium alloy for an electrolytic Cu foil production drum suitable for producing a high quality electrolytic Cu foil having a uniform and fine plate surface metallographic structure with few micro-size defects. A board and its manufacturing method can be provided without going through a complicated thermomechanical process.

従来のチタン製ドラム材の表面に生じた毟れの写真。A photograph of dripping on the surface of a conventional titanium drum material. c軸のTD方向への倒れの角度が、TD方向に±45°、c軸のRD方向への倒れの角度が±25°であるような楕円の領域を示す模式図。The schematic diagram which shows the area | region of an ellipse where the angle of inclination to the TD direction of c-axis is +/- 45 degrees in TD direction, and the angle of inclination to the RD direction of c-axis is +/- 25 degrees. (0001)極点図の例。Example of (0001) pole figure. TD方向に−45〜45°、RD方向に−25〜25°となる楕円を示すウルフネット。A wolf net showing an ellipse having −45 to 45 ° in the TD direction and −25 to 25 ° in the RD direction.

本発明のチタン合金厚板は、電解Cu箔製造ドラムに用いられるものである。電解Cu箔製造ドラムは、電解Cu箔製造用のカソード電極として用いることが好ましい。
本発明(1)のチタン合金厚板は、質量%で、Al:0.4〜1.8%と残部チタン、不可避不純物からなる。
まず、各組成を上記範囲に限定した理由について説明する。
The titanium alloy thick plate of the present invention is used for an electrolytic Cu foil production drum. The electrolytic Cu foil production drum is preferably used as a cathode electrode for producing electrolytic Cu foil.
The titanium alloy thick plate of the present invention (1) is mass%, and consists of Al: 0.4 to 1.8%, the remaining titanium, and inevitable impurities.
First, the reason why each composition is limited to the above range will be described.

本発明のAl濃度範囲(0.4〜1.8%)を含むチタン合金は、変態温度より低いα単相温度域で圧延することにより、純チタン材に比べて結晶粒成長が抑制されるため、より微細な組織となる。加工再結晶組織は、加工前の組織が微細であるほど均質微細となる。均質微細組織とするためには、Alの添加量は0.4〜1.8%であることが必要である。Alの含有量が0.4%未満の場合、結晶粒微細化の効果はなく、一方、1.8%を超えて含有すると、硬度が高くなりすぎて、ドラム製造時に行う表面の研削、研磨、及び、電解Cu箔生成の合間に行う研磨に要する時間が著しく増えるとともに、研磨斑を起因とするマクロ模様が発生しやすくなる。   In the titanium alloy including the Al concentration range (0.4 to 1.8%) of the present invention, grain growth is suppressed as compared with a pure titanium material by rolling in an α single phase temperature range lower than the transformation temperature. Therefore, it becomes a finer structure. The processed recrystallized structure becomes more homogeneous and finer as the structure before processing becomes finer. In order to obtain a homogeneous microstructure, the amount of Al needs to be 0.4 to 1.8%. When the Al content is less than 0.4%, there is no effect of crystal grain refining. On the other hand, when the Al content exceeds 1.8%, the hardness becomes too high, and surface grinding and polishing performed during drum production. In addition, the time required for polishing performed during the production of the electrolytic Cu foil is remarkably increased, and a macro pattern caused by polishing spots is likely to occur.

不可避不純物とは、精錬、溶解等の製造工程で、材料中への混入が避けられない不純物元素を指すものであり、例えば0.1%以下の酸素、0.05%以下の鉄、窒素、炭素、Ni、Cr、Mn、Mg、Sn、Al、V、Si、0.012%以下の水素等を指す。この内、酸素はドラムへの成形性の観点から0.06%以下、鉄は耐腐食性の観点から0.04%以下、水素は対衝撃性の観点から0.006%以下が望ましい。
また、電解Cu箔製造用ドラムとしての使用に伴い、板厚の若干の減少が発生するため、板厚は4mm以上であることが必要である。
Inevitable impurities refer to impurity elements that are inevitable to be mixed into the material in the manufacturing process such as refining and melting. For example, oxygen of 0.1% or less, iron, nitrogen of 0.05% or less, Carbon, Ni, Cr, Mn, Mg, Sn, Al, V, Si, hydrogen of 0.012% or less, and the like. Of these, oxygen is preferably 0.06% or less from the viewpoint of moldability to the drum, iron is 0.04% or less from the viewpoint of corrosion resistance, and hydrogen is preferably 0.006% or less from the viewpoint of impact resistance.
In addition, since the plate thickness slightly decreases with use as a drum for producing electrolytic Cu foil, the plate thickness needs to be 4 mm or more.

本発明のチタン合金厚板においては、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、平均結晶粒度が8.2以上であり、かつ、ビッカース硬度が115以上、145以下であると規定した。
本発明で問題とするのは、肉眼で判別できる「マクロ模様」のみならず、研磨時の表面の毟れの不均一に起因する直径数十μm以下のミクロサイズの欠陥である。毟れは、結晶粒が微細であるほど微小となる。十分に微小な毟れは、欠陥ではない。微細な結晶粒による毟れの抑制効果は平均結晶粒度が8.2以上で顕著となる。結晶粒は微細なほど良いが、実質的には平均結晶粒度8.2〜10.5の範囲のものが望ましい。
In the titanium alloy thick plate of the present invention, the average crystal grain size is 8.2 or more and the Vickers hardness is 115 or more in a portion parallel to the plate surface of 1.0 mm below the surface and 1/2 plate thickness part, 145 or less.
The problem in the present invention is not only a “macro pattern” that can be discriminated with the naked eye, but also a micro-sized defect having a diameter of several tens of μm or less due to unevenness of the surface curvature during polishing. The wrinkles become finer as the crystal grains become finer. A sufficiently small wrinkle is not a defect. The effect of suppressing wrinkles due to fine crystal grains becomes significant when the average crystal grain size is 8.2 or more. The finer the crystal grains, the better. However, it is desirable that the average grain size is in the range of 8.2 to 10.5.

また、研磨時の毟れを小さく、または、毟れそのものを発生しにくくするため、表面の硬度はある程度の硬さを有することが望ましい。ビッカース硬度が115以上であれば、毟れは微小となり、毟れを効果的に抑制できる。ただし硬すぎると研磨そのものが困難となるためビッカース硬度の上限を145以下とする。   In addition, it is desirable that the surface has a certain degree of hardness in order to reduce wrinkles during polishing or to prevent wrinkles themselves from occurring. If the Vickers hardness is 115 or more, the wrinkles become minute and the wrinkles can be effectively suppressed. However, if it is too hard, polishing itself becomes difficult, so the upper limit of Vickers hardness is set to 145 or less.

本発明のチタン合金厚板では、表面下1mmから1/2板厚部にわたる板面に平行な部位において、集合組織が、最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、圧延面より法線方向からのα相の(0001)面極点図において、c軸のTD方向への倒れの角度が−45〜45°、また、c軸のRD方向への倒れの角度が−25〜25°である楕円の領域にc軸が存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であることを規定した。   In the titanium alloy thick plate of the present invention, the texture is the final rolling direction RD, the normal line ND of the rolling surface, and the rolling width direction TD, in a region parallel to the plate surface extending from 1 mm below the surface to 1/2 plate thickness part. When the normal of the (0001) plane is the c-axis, in the (0001) plane pole figure of the α phase from the normal to the rolling surface, the angle of inclination of the c-axis in the TD direction is −45 to 45 °, Further, the total area of crystal grains in which the c-axis exists in an elliptical region where the angle of inclination of the c-axis in the RD direction is −25 to 25 ° is A, and the total area of the other crystal grains is B, It was specified that the ratio A / B was 3.0 or more.

これにより、大部分の結晶粒のc軸が板面に対して垂直に近い集合組織を有し、最終的にマクロ不均一組織はもとより、ミクロサイズの欠陥もない均質微細な結晶組織、同欠陥の原因となる表面の毟れが微小または発生しにくい組織が得られる。
チタン製ドラム材表面の毟れとは、図1のaに示す部分のこと、である。c軸のTD方向への倒れの角度が、TD方向に±45°、また、c軸のRD方向への倒れの角度が±25°であるような楕円の領域というのは、図2の模式図に示す楕円の部分である。
As a result, the c-axis of most of the crystal grains has a texture almost perpendicular to the plate surface, and finally a homogeneous fine crystal structure having no micro-size defects as well as a macro-uniform texture, Thus, a structure in which the surface wrinkles that cause the above-described phenomenon is minute or hardly occurs can be obtained.
The sag on the surface of the titanium drum material is the portion shown in FIG. The elliptical region in which the c-axis tilt angle is ± 45 ° in the TD direction and the c-axis tilt angle in the RD direction is ± 25 ° is the model shown in FIG. It is an ellipse part shown in the figure.

集合組織を上記のように規定した理由は以下のとおりである。
Cu箔製造ドラム用チタン材でこれまで問題になっていたのは主にマクロ不均一模様に関するものである。マクロ不均一模様は肉眼で容易に識別できる程度、大きさで言うと数mmレベルの表面欠陥で、粗大粒の残存や、熱間圧延時に残留した筋状の圧延組織等に起因するものであるため、熱間圧延時にクロス圧延を行うことや、α温度域での加工量を十分取ること等により解決されていた。
The reason for defining the texture as described above is as follows.
What has been a problem with titanium materials for Cu foil production drums so far is mainly related to macro-inhomogeneous patterns. The macro uneven pattern is a surface defect of several millimeters to the extent that it can be easily identified with the naked eye, and is caused by residual coarse grains or a streak rolling structure remaining during hot rolling. Therefore, it has been solved by performing cross rolling at the time of hot rolling or taking a sufficient amount of processing in the α temperature range.

一方、直径数十μm以下のミクロサイズの欠陥は、隣接する結晶粒の方位が関係している。α型チタン材料の各結晶粒はHCP構造(六方最密充填構造)をしているが、HCPの底面(0001)面は最稠密であるため、柱面(10−10)面に比べ硬度が高く、研磨条件によっては、表面の毟られ方が異なる。したがって、これらの面が隣接して存在すると一方はあまり毟られず、一方は顕著に毟られるため、境界部分の差が顕著となり、直径数十μm(結晶粒径と同等サイズ)以下のミクロサイズの欠陥として認識されるようになるのである。ドラム材の各結晶粒が完全にランダムだとしても、上記のような組み合わせはどこかに生じるため、局所的に欠陥が生じることになる。   On the other hand, micro-sized defects having a diameter of several tens of μm or less are related to the orientation of adjacent crystal grains. Each crystal grain of the α-type titanium material has an HCP structure (hexagonal close-packed structure), but since the bottom surface (0001) surface of HCP is the most densely packed, the hardness is higher than that of the column surface (10-10) surface. It is high, and depending on the polishing conditions, the method of scratching the surface is different. Therefore, if these faces exist adjacent to each other, one of them will not be scratched very much, and one of them will be scratched remarkably, so the difference in the boundary will be significant, and the micro size will be several tens of μm (size equivalent to the crystal grain size) or less. It will be recognized as a defect. Even if the crystal grains of the drum material are completely random, such a combination occurs somewhere, so that a defect is locally generated.

このような事実に鑑み、発明者らは、結晶粒のほとんどが底面(0001)面か、それに近い方位の面に揃っていれば、研磨時の欠陥は抑制できることを見出した。
すなわち、最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、圧延面より法線方向からのα相の(0001)面極点図において、c軸のTD方向への倒れの角度が−45〜45°、また、c軸のRD方向への倒れの角度が−25〜25°であるような楕円の領域にc軸が存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上である集合組織とする。
In view of such facts, the inventors have found that defects at the time of polishing can be suppressed if most of the crystal grains are aligned on the bottom (0001) plane or a plane with an orientation close thereto.
That is, when the final rolling direction RD, the normal ND of the rolled surface, the rolling width direction TD, and the normal of the (0001) plane as the c axis, the (0001) plane pole of the α phase from the normal direction to the rolled surface In the figure, the c-axis exists in an elliptical region where the angle of c-axis tilt in the TD direction is −45 to 45 ° and the angle of c-axis tilt in the RD direction is −25 to 25 °. The total area of crystal grains to be processed is A, the total area of other crystal grains is B, and the area ratio A / B is a texture of 3.0 or more.

チタン材のc軸はRD方向に比べTD方向には倒れ方が大きい。c軸のTD方向への倒れの角度は0〜45°とした。上限を45°としたのは、これを超えると角度0°の結晶粒表面との硬度差が顕著となるため、研磨時の毟れの差が大きくなるためである。c軸のRD方向への倒れの角度は0〜25°である。c軸はRD方向へはTD方向に比べ倒れないため、上限は25°とした。   The c-axis of the titanium material is more inclined in the TD direction than in the RD direction. The tilt angle of the c-axis in the TD direction was 0 to 45 °. The reason why the upper limit is set to 45 ° is that, if the upper limit is exceeded, the difference in hardness from the crystal grain surface at an angle of 0 ° becomes remarkable, so that the difference in wrinkling during polishing increases. The tilt angle of the c-axis in the RD direction is 0 to 25 °. Since the c-axis is not tilted in the RD direction as compared with the TD direction, the upper limit is set to 25 °.

本発明(1)に記載した、c軸のTD方向への倒れの角度が0〜45°、また、c軸のRD方向への倒れの角度が0〜25°であるような楕円の領域にc軸が存在する結晶粒の総面積A、それ以外の結晶粒の総面積B、面積比A/Bは以下のようにして算出する。
まず、当該試料の観察表面を化学研磨し、電子線後方散乱回折法;EBSP(Electron Back Scattering Diffraction Pattern)を用いて結晶方位解析する。1mm×1mmの領域を、ステップ1〜2μmでスキャンし、(0001)極点図(図3)を作図する。
In the elliptical region described in the present invention (1), the c-axis tilt angle in the TD direction is 0 to 45 °, and the c-axis tilt angle in the RD direction is 0 to 25 °. The total area A of crystal grains where the c-axis is present, the total area B of other crystal grains, and the area ratio A / B are calculated as follows.
First, the observation surface of the sample is chemically polished, and crystal orientation analysis is performed using an electron beam backscattering diffraction method; EBSP (Electron Back Scattering Diffraction Pattern). An area of 1 mm × 1 mm is scanned in steps 1 to 2 μm, and a (0001) pole figure (FIG. 3) is drawn.

図中の黒い点は(0001)面の法線、すなわちc軸の板面に対して傾斜した角度を示している。その角度は、図4に示すウルフネットに重ね合わせることにより読み取ることができる。ウルフネットでTD方向に−45〜45°、RD方向に−25〜25°となる楕円(図4中のb)内にある黒点の密度とそれ以外の部分にある黒点の密度の比が、本発明(3)で規定する、c軸が楕円bの領域にある結晶粒の総面積Aと、c軸が楕円b以外の部分にある結晶粒の総面積Bの比A/Bに相当する。   The black dots in the figure indicate the normal of the (0001) plane, that is, the angle inclined with respect to the c-axis plate surface. The angle can be read by overlapping the wolf net shown in FIG. The ratio of the density of black spots in the ellipse (b in FIG. 4) that is −45 to 45 ° in the TD direction and −25 to 25 degrees in the RD direction and the density of black spots in the other portions in the wolfnet is This corresponds to the ratio A / B of the total area A of the crystal grains in the region where the c-axis is in the ellipse b and the total area B of the crystal grains in the portion other than the ellipse b defined in the present invention (3). .

図4中の楕円bの領域及びそれ以外の領域にある黒点の密度は、それぞれ画像解析により読み取ることにより得る。A/B3.0以上は、観察範囲の結晶粒の中で75%以上の結晶粒のc軸が、中央付近の領域に集まっていることを意味する。
面積比A/Bを3.0以上とするのは、3.0未満だと中央付近への集積が少なく、c軸が板面に対して倒れた結晶粒が多くなり、研磨時の毟れが顕著となるためである。面積比A/Bの上限はAが100%で、Bがゼロとなる場合であるが、実際にはそのような場合はなく、面積比A/Bは3.0〜19.0であることが好ましい。
The density of black spots in the area of the ellipse b and other areas in FIG. 4 is obtained by reading each through image analysis. A / B of 3.0 or more means that the c-axis of 75% or more of the crystal grains in the observation range is gathered in a region near the center.
The area ratio A / B is set to 3.0 or more. When the area ratio is less than 3.0, the accumulation near the center is small, and the number of crystal grains whose c-axis is tilted with respect to the plate surface increases. This is because of the conspicuousness. The upper limit of the area ratio A / B is the case where A is 100% and B is zero, but this is not actually the case, and the area ratio A / B is 3.0 to 19.0. Is preferred.

本発明(2)記載の製造方法は、(1)記載の電解Cu箔製造ドラム用チタン合金厚板の製造方法であって、(1)の成分からなるチタン合金を800〜900℃に加熱し、圧下率60%以上の熱間圧延を行い、600〜750℃の熱処理を施すことを特徴とするチタン合金厚板の製造方法である。
(1)の成分からなるチタン合金を800〜900℃に加熱後圧延することにより、α単相温度域において圧延を行うことが可能となる。(1)記載の成分からなるチタン合金をα単相温度域で圧延し、600〜750℃の熱処理を施し再結晶させることにより、粒成長を抑制し、微細結晶粒組織を得ることができる。
The production method according to the present invention (2) is a method for producing a titanium alloy thick plate for an electrolytic Cu foil production drum as described in (1), wherein the titanium alloy comprising the component (1) is heated to 800 to 900 ° C. The titanium alloy thick plate manufacturing method is characterized by performing hot rolling at a rolling reduction of 60% or more and performing heat treatment at 600 to 750 ° C.
By heating and rolling the titanium alloy composed of the component (1) to 800 to 900 ° C., it becomes possible to perform rolling in the α single phase temperature range. (1) A titanium alloy composed of the components described above is rolled in an α single phase temperature range, subjected to heat treatment at 600 to 750 ° C. and recrystallized, thereby suppressing grain growth and obtaining a fine grain structure.

圧延時の加熱温度が800℃を下回ると材料に疵が多くなり、疵取りのため多くの切削が必要となるため、圧延時の加熱温度は800℃以上とした。一方、加熱温度が900℃を超えると、β単相温度域となり、粒成長が著しく進み、Cu箔製造用ドラム材料として不適である。   When the heating temperature at the time of rolling is less than 800 ° C., the material has a lot of wrinkles, and a lot of cutting is necessary for removing wrinkles. On the other hand, when the heating temperature exceeds 900 ° C., it becomes a β single-phase temperature range, the grain growth remarkably progresses, and it is not suitable as a drum material for producing Cu foil.

圧下率60%未満では加工が不十分で、再結晶時十分微細とならないため、圧下率は60%以上とした。圧下率は高いほど微細組織が得られるが、95%を超えると圧延荷重が増大し圧延機への負荷が高くなりすぎるため、95%程度までが適当である。
熱処理温度は600℃未満では再結晶が不十分であり、750℃以上では粒成長により粗粒となるため、600〜750℃とした。
If the rolling reduction is less than 60%, the processing is insufficient and does not become sufficiently fine during recrystallization, so the rolling reduction is set to 60% or more. As the rolling reduction is higher, a fine structure is obtained. However, if it exceeds 95%, the rolling load increases and the load on the rolling mill becomes too high.
When the heat treatment temperature is less than 600 ° C., recrystallization is insufficient, and when the heat treatment temperature is 750 ° C. or more, coarse grains are formed by grain growth.

本発明(3)では、(2)記載の熱処理後、圧下率30%以上の冷間圧延を行い、その後600〜750℃で熱処理を行うことを特徴とする。
結晶粒度が8.2より著しく大きな結晶粒を得るにはα温度域での熱間加工、熱処理の後に冷間圧延を行うことがより効果的である。圧下率は30%より小さいと結晶組織微細化の効果が得られないため、圧下率30%以上とした。圧下率は高いほど微細組織が得られ、(1)記載の集合組織を十分形成させるためには40%以上の圧下を行うことが望ましい。冷間圧延後の熱処理温度は600℃未満では再結晶が不十分であり、750℃以上では粒成長により粗粒となるため、600〜750℃とした。
The present invention (3) is characterized in that after the heat treatment described in (2), cold rolling at a reduction rate of 30% or more is performed, and then heat treatment is performed at 600 to 750 ° C.
In order to obtain crystal grains having a crystal grain size significantly larger than 8.2, it is more effective to perform cold rolling after hot working and heat treatment in the α temperature range. If the rolling reduction is less than 30%, the effect of refining the crystal structure cannot be obtained, so the rolling reduction is set to 30% or more. The higher the reduction ratio, the finer the structure is obtained. In order to sufficiently form the texture described in (1), it is desirable to perform reduction of 40% or more. When the heat treatment temperature after cold rolling is less than 600 ° C., recrystallization is insufficient, and when it is 750 ° C. or more, coarse grains are formed by grain growth.

本発明を、実施例を用いてさらに詳しく説明する。
(実験1)
表1に示した成分からなるインゴット200kgを、真空アーク2回溶解により準備し、これを熱間鍛造後、スケール除去し、表2に示す厚さのスラブとした。このスラブについて、表2に示す加熱温度、熱間圧延圧下率、熱処理温度の条件により、加熱して熱間圧延を行い、熱処理を施してCu箔製造ドラム用のチタン板を作製した。
The present invention will be described in more detail with reference to examples.
(Experiment 1)
A 200 kg ingot composed of the components shown in Table 1 was prepared by melting by vacuum arc twice, and after hot forging, the scale was removed to obtain a slab having a thickness shown in Table 2. About this slab, it heated and hot-rolled by the conditions of the heating temperature shown in Table 2, a hot rolling reduction rate, and heat processing temperature, it heat-processed, and produced the titanium plate for Cu foil manufacture drums.

これらのチタン板の表面下1mm、および1/2板厚部の表面を機械研磨し鏡面にした後、コロイダルシリカを用いて研磨した。その後、FE−SEM(Field Emission−Scanning Electron Microscope)/EBSPを用いて結晶方位解析を実施した。なお、EBSP測定については、試料の平均的な情報を得るため、試料ごとに1mm×1mmの範囲、5視野をステップ2μmで測定し、(0001)極点図を作図、ウルフネットでTD方向に−45〜45°、RD方向に−25〜25°となる楕円(図4中のb)内にある黒点の密度とそれ以外の部分にある黒点の密度を画像解析により求め、その比(A/B)を求めた。   1 mm below the surface of these titanium plates and the surface of the 1/2 plate thickness portion were mechanically polished to a mirror surface, and then polished with colloidal silica. Then, crystal orientation analysis was performed using FE-SEM (Field Emission-Scanning Electron Microscope) / EBSP. For EBSP measurement, in order to obtain the average information of the sample, the range of 1 mm x 1 mm for each sample, 5 fields of view were measured at step 2 μm, the (0001) pole figure was drawn, and the wolf net in the TD direction- The density of black spots in an ellipse (b in FIG. 4) that is 45 to 45 degrees and −25 to 25 degrees in the RD direction and the density of black spots in other portions are obtained by image analysis, and the ratio (A / B) was determined.

また、これらのチタン板から50mm×70mmの試験片を切り出し、表面下1mmの面と板厚1/2の面をフライス加工により表出し、サンドペーパー研磨600番で研磨した後、ポリビニール・アルコールのアセタール化物を結合剤とする弾性砥石(砥粒はSiC、粒度#600、以下PVA砥石と称す)により研磨し、SEM観察により、表面の状態を観察した。尚、潤滑油は石油を使用した。表面の状態は、PVA研磨後の毟れの状態を観察した。100×130μmの領域に毟れが、5個以上あれば、「やや多い」、2〜4個であれば「微少」、1個以下を「ほぼ無し」と評価した。   In addition, a 50 mm × 70 mm test piece was cut out from these titanium plates, and a surface 1 mm below the surface and a surface having a thickness of 1/2 were exposed by milling, polished with sandpaper polishing No. 600, and then polyvinyl alcohol. The surface state was observed by SEM observation with an abrasive wheel (abrasive grains were SiC, particle size # 600, hereinafter referred to as PVA grindstone) using an acetalized product as a binder. The lubricating oil used was petroleum. As for the surface state, the state of dripping after PVA polishing was observed. If there were 5 or more wrinkles in a 100 × 130 μm region, it was evaluated as “somewhat”, 2 to 4 “small”, and 1 or less “nearly absent”.

また、マクロ不均一模様に関しては、同じくチタン板から50mm×70mmの試験片を切り出し、表面下1mmの面と板厚1/2の面をフライス加工により表出し、サンドペーパー研磨600番で研磨した後、硝酸10%、フッ酸5%の水溶液に約4分間浸漬し、肉眼で筋模様の発生有無を調査した。   In addition, regarding the macro non-uniform pattern, a 50 mm × 70 mm test piece was similarly cut out from the titanium plate, and a 1 mm lower surface and a 1/2 thickness surface were exposed by milling and polished with sandpaper polishing No. 600. Then, it was immersed in an aqueous solution of 10% nitric acid and 5% hydrofluoric acid for about 4 minutes, and the presence or absence of a streak pattern was examined with the naked eye.

結晶粒度は小片の表層下1mmと1/2板厚部の表面のそれぞれ任意の5箇所のミクロ組織を光学顕微鏡観察し、ミクロ組織よりJISG0551に準拠して測定した。ビッカース硬度についても同様の面の硬度を荷重1kgで5点測定し、平均した。   The crystal grain size was measured in accordance with JISG0551 from the microstructure by observing the microstructure of each of five arbitrary locations on the surface of the surface layer of the small piece 1 mm below and the surface of the 1/2 plate thickness portion. Regarding Vickers hardness, the hardness of the same surface was measured at 5 points with a load of 1 kg and averaged.

表2に製造条件と各測定値、および研磨時毟れ等の評価結果をまとめた。
No.2−1〜14は、本発明の実施例である。電解Cu箔製造ドラムの板厚は10mm以下程度であるため、熱間圧延後の板厚は7、8、9、10mmとし、熱間圧延前の板厚を20〜150mmにすることにより、熱間圧延の圧下率60%以上を確保した。
Table 2 summarizes the manufacturing conditions, measured values, and evaluation results such as wobbling during polishing.
No. 2-1 to 14 are examples of the present invention. Since the plate thickness of the electrolytic Cu foil production drum is about 10 mm or less, the plate thickness after hot rolling is 7, 8, 9, 10 mm, and the plate thickness before hot rolling is 20 to 150 mm. The rolling reduction of 60% or more was ensured.

本発明のいずれの試作材についても、表面下1mm、1/2板厚部のいずれの表面においても、結晶粒度も8.2以上、ビッカース硬度も115以上、145以下であり、また、c軸の板面法線方向への集積を示すA/Bは3.0以上であり、マクロ不均一模様は発生しなかった。また、表面下1mmをPVA研磨した際の毟れの発生は、「ほぼ無し」または「微少」であり、毟れを起因とするミクロ欠陥の発生が抑制された電解Cu箔製造ドラム用チタン材料が製造できた。   In any of the prototype materials of the present invention, the crystal grain size is 8.2 or more, the Vickers hardness is 115 or more and 145 or less, and the c axis The A / B indicating accumulation in the normal direction of the plate surface was 3.0 or more, and no macro-uniform pattern was generated. Further, the occurrence of wrinkling when PVA polishing 1 mm below the surface is “nearly none” or “small”, and the titanium material for an electrolytic Cu foil production drum in which the generation of micro defects due to wrinkles is suppressed. Could be manufactured.

一方、熱間圧延時の加熱温度が、770℃と低温のNo.2−15では、熱間圧延時に温度の低下が著しく、圧延後表面に疵が発生し、疵を除去するためには製品厚さよりも切削加工する必要が生じ、使用不可となった。
また、熱間圧延時の加熱温度が、920℃とβ温度域にはずれたNo.2−16では、粒成長が顕著となり、結晶粒度が7.3前後と小さく、ビッカース硬度も110未満で低め、なおかつ研磨時の毟れもやや多かった。
On the other hand, the heating temperature at the time of hot rolling is 770 ° C., a low temperature No. In No. 2-15, the temperature was remarkably lowered during hot rolling, so that wrinkles were generated on the surface after rolling, and in order to remove the wrinkles, it was necessary to perform cutting work rather than the product thickness, and the use became impossible.
Moreover, the heating temperature at the time of hot rolling was 920 ° C., which was shifted to the β temperature range. In No. 2-16, the grain growth was remarkable, the crystal grain size was as small as around 7.3, the Vickers hardness was low at less than 110, and the wrinkle during polishing was slightly high.

圧延時の圧下率が50%、または33%と低いNo.2−17、18では、粒成長がやや顕著で、結晶粒度がいずれも8.2よりも低く、表面下1mm、および1/2板厚部ともに硬度は115に満たなかった。さらに1/2板厚部のA/Bが3.0に満たず、集合組織が十分発達しなかった。
熱処理温度が本発明より低いNo.2−19では、再結晶せず筋状のマクロ模様が残り不適、熱処理温度が本発明より高いNo.2−20では、結晶粒度が小さく、集合組織の発達が不十分であった。
The rolling reduction during rolling is as low as 50% or 33%. In Nos. 2-17 and 18, the grain growth was slightly remarkable, the crystal grain sizes were both lower than 8.2, and the hardness was less than 115 for both 1 mm below the surface and 1/2 plate thickness. Further, the A / B of the ½ plate thickness portion was less than 3.0, and the texture was not sufficiently developed.
The heat treatment temperature is lower than that of the present invention. In No. 2-19, no recrystallization occurs and a streak-like macro pattern remains unsuitable, and the heat treatment temperature is higher than that of the present invention. In No. 2-20, the crystal grain size was small, and the texture development was insufficient.

また、Alを構成成分に含まないNo.2−21、Alの含有量が0.3%と少ないNo.2−22では結晶粒度が小さく、硬度も低く、集合組織の発達も不十分であった。
一方、Alの含有量が本発明よりも多いNo.2−23では、研磨斑を起因とするマクロ模様が発生し、使用不可であった。
In addition, no. 2-21, No. 2 with a low Al content of 0.3% In 2-22, the crystal grain size was small, the hardness was low, and the texture development was insufficient.
On the other hand, no. In 2-23, the macro pattern resulting from a polishing spot generate | occur | produced and it was unusable.

(実験2)
表1に示したNo.1−1〜10の成分からなるインゴット200kgを、真空アーク2回溶解により準備し、これを熱間鍛造後、スケール除去し、表3に示す厚さのスラブとした。このスラブについて、表3に示す加熱温度、熱間圧延圧下率、熱処理(I)温度、冷間圧延圧下率、熱処理(II)温度の条件により、加熱して熱間圧延を行い、熱処理(I)を施した後、冷間圧延を行い、熱処理(II)を施してCu箔製造ドラム用のチタン板を作製した。実験1と同じく表3に各測定値、および研磨毟れ、マクロ模様等の評価をまとめた。
(Experiment 2)
No. shown in Table 1. 200 kg of an ingot composed of components 1-1 to 10 was prepared by melting by vacuum arc twice, and after hot forging, the scale was removed to obtain a slab having a thickness shown in Table 3. About this slab, it heats and hot-rolls by the conditions of the heating temperature shown in Table 3, hot rolling reduction rate, heat processing (I) temperature, cold rolling reduction rate, and heat processing (II) temperature, and heat processing (I ), Followed by cold rolling and heat treatment (II) to produce a titanium plate for a Cu foil production drum. As in Experiment 1, Table 3 summarizes the measured values, and evaluation of polishing wrinkles, macro patterns, and the like.

No.3−1〜7は、本発明の実施例である。本発明のいずれの試作材についても、表面下1mm、1/2板厚部のいずれの表面においても、結晶粒度も8.2以上、ビッカース硬度も115以上、145以下であり、また、c軸の板面法線方向への集積を示すA/Bは3.0以上であり、マクロ不均一模様は発生しなかった。また、表面下1mmをPVA研磨した際の毟れの発生は、「ほぼ無し」であり、毟れを起因とするミクロ欠陥の発生が抑制された電解Cu箔製造ドラム用チタン材料が製造できた。   No. 3-1 to 7 are examples of the present invention. In any of the prototype materials of the present invention, the crystal grain size is 8.2 or more, the Vickers hardness is 115 or more and 145 or less, and the c axis The A / B indicating accumulation in the normal direction of the plate surface was 3.0 or more, and no macro-uniform pattern was generated. Moreover, the occurrence of wrinkling when PVA polishing of 1 mm below the surface was “almost none”, and a titanium material for an electrolytic Cu foil production drum in which the occurrence of micro defects due to wrinkles was suppressed could be produced. .

一方、Alを構成成分に含まないNo.3−8、Alの含有量が0.3%と少ないNo.3−9では結晶粒度が小さく、硬度も低く、集合組織の発達も不十分であった。一方、Alの含有量が本発明よりも多いNo.3−10では、研磨斑を起因とするマクロ模様が発生し、使用不可であった。   On the other hand, no. 3-8, No. 3 with a low Al content of 0.3%. In 3-9, the crystal grain size was small, the hardness was low, and the texture development was insufficient. On the other hand, no. In 3-10, the macro pattern resulting from a polishing spot generate | occur | produced and it was unusable.

冷間圧延時の圧下率が23%と低いNo.3−11では、粒成長が顕著で、結晶粒度がいずれも8.2よりも低く、表面下1mm、および1/2板厚部ともに硬度は115に満たなかった。さらに1/2板厚部のA/Bが3.0に満たず、集合組織が十分発達しなかった。その結果、研磨時の毟れがやや多く発生した。   The rolling reduction during cold rolling is as low as 23%. In 3-11, the grain growth was remarkable, the crystal grain sizes were all lower than 8.2, and the hardness was less than 115 in both 1 mm below the surface and 1/2 plate thickness part. Further, the A / B of the ½ plate thickness portion was less than 3.0, and the texture was not sufficiently developed. As a result, a little amount of wrinkling during polishing occurred.

また、熱処理(II)の温度が本発明より高いNo.3−12でも、粒成長が顕著で、結晶粒度がいずれも8.2よりも低く、表面下1mm、および1/2板厚部ともに硬度は115に満たなかった。さらに1/2板厚部のA/Bが3.0に満たず、集合組織が十分発達しなかった。その結果、研磨時の毟れがやや多く発生した。   In addition, the heat treatment (II) temperature is higher than that of the present invention. In 3-12, the grain growth was remarkable, the crystal grain sizes were all lower than 8.2, and the hardness was less than 115 for both 1 mm below the surface and 1/2 plate thickness. Further, the A / B of the ½ plate thickness portion was less than 3.0, and the texture was not sufficiently developed. As a result, a little amount of wrinkling during polishing occurred.

Claims (3)

質量%で、Al:0.4〜1.8%を含み、残部チタンと不可避不純物からなり、
板厚が4mm以上で、表面下1.0mmおよび1/2板厚部の板面に平行な部位において、平均結晶粒度が8.2以上、かつ、ビッカース硬度が115以上、145以下であり、
表面下1mmから1/2板厚部にわたる板面に平行な部位において、集合組織が、最終圧延方向RD、圧延面の法線ND、圧延幅方向をTD、(0001)面の法線をc軸としたとき、圧延面より法線方向からのα相の(0001)面極点図において、c軸のTD方向への倒れの角度が−45〜45°、また、c軸のRD方向への倒れの角度が−25〜25°である楕円の領域にc軸が存在する結晶粒の総面積をA、それ以外の結晶粒の総面積をBとし、面積比A/Bが3.0以上であることを特徴とする電解Cu箔製造ドラム用チタン合金厚板。
% By mass, including Al: 0.4-1.8%, consisting of the remainder titanium and inevitable impurities,
The plate thickness is 4 mm or more, 1.0 mm below the surface, and the portion parallel to the plate surface of the 1/2 plate thickness part, the average crystal grain size is 8.2 or more, and the Vickers hardness is 115 or more and 145 or less,
In a portion parallel to the plate surface extending from 1 mm below the surface to a ½ plate thickness portion, the texture is the final rolling direction RD, the rolling surface normal ND, the rolling width direction TD, and the (0001) surface normal c In the (0001) plane pole figure of the α phase from the normal direction from the rolling surface, the angle of inclination of the c axis in the TD direction is −45 to 45 °, and the c axis is in the RD direction. The total area of crystal grains in which the c-axis is present in an elliptical region having an inclination angle of −25 to 25 ° is A, the total area of other crystal grains is B, and the area ratio A / B is 3.0 or more. A titanium alloy thick plate for an electrolytic Cu foil production drum.
請求項1記載の電解Cu箔製造ドラム用チタン合金厚板の製造方法であって、請求項1の成分からなるチタン合金を800〜900℃に加熱し、圧下率60%以上の熱間圧延を行い、600〜750℃の熱処理を施すことを特徴とするチタン合金厚板の製造方法。   It is a manufacturing method of the titanium alloy thick board for electrolytic Cu foil manufacturing drums of Claim 1, Comprising: The titanium alloy which consists of a component of Claim 1 is heated at 800-900 degreeC, and hot rolling with a reduction rate of 60% or more is carried out. And producing a titanium alloy thick plate, characterized by performing heat treatment at 600 to 750 ° C. 請求項1記載の電解Cu箔製造ドラム用チタン合金厚板の製造方法であって、請求項1の成分からなるチタン合金を800〜900℃に加熱し、圧下率60%以上の熱間圧延を行い、600〜750℃の熱処理を施した後、圧下率30%以上の冷間圧延を行い、その後600〜750℃で熱処理を行うことを特徴とするチタン合金厚板の製造方法。   It is a manufacturing method of the titanium alloy thick board for electrolytic Cu foil manufacturing drums of Claim 1, Comprising: The titanium alloy which consists of a component of Claim 1 is heated at 800-900 degreeC, and hot rolling with a reduction rate of 60% or more is carried out. And a heat treatment at 600 to 750 ° C., followed by cold rolling at a rolling reduction of 30% or more, and then heat treatment at 600 to 750 ° C.
JP2011138314A 2011-06-22 2011-06-22 Titanium alloy thick plate for electrolytic Cu foil production drum and its production method Active JP5609784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138314A JP5609784B2 (en) 2011-06-22 2011-06-22 Titanium alloy thick plate for electrolytic Cu foil production drum and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138314A JP5609784B2 (en) 2011-06-22 2011-06-22 Titanium alloy thick plate for electrolytic Cu foil production drum and its production method

Publications (2)

Publication Number Publication Date
JP2013007063A true JP2013007063A (en) 2013-01-10
JP5609784B2 JP5609784B2 (en) 2014-10-22

Family

ID=47674651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138314A Active JP5609784B2 (en) 2011-06-22 2011-06-22 Titanium alloy thick plate for electrolytic Cu foil production drum and its production method

Country Status (1)

Country Link
JP (1) JP5609784B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061731A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Titanium made substrate, titanium material and cell member for solid polymer type fuel cell
JP2018031057A (en) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 Titanium alloy plate for electrodes
WO2020213719A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium alloy plate, manufacturing method for titanium alloy plate, copper foil manufacturing drum, and manufacturing method for copper foil manufacturing drum
KR20210094026A (en) 2019-04-17 2021-07-28 닛폰세이테츠 가부시키가이샤 Titanium plate and copper foil manufacturing drum
WO2022024180A1 (en) * 2020-07-27 2022-02-03 日本製鉄株式会社 Titanium material for manufacturing metal foil, method for manufacturing titanium material for manufacturing metal foil, and metal foil manufacturing drum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234266A (en) * 2000-02-16 2001-08-28 Kobe Steel Ltd Titanium alloy material for muffler and muffler
JP2002317234A (en) * 2001-02-16 2002-10-31 Kobe Steel Ltd Titanium sheet having excellent ductility and production method therefor
JP2003055725A (en) * 2001-08-15 2003-02-26 Kobe Steel Ltd Titanium alloy with excellent cold workability and fatigue strength after brazing
JP2004250753A (en) * 2003-02-20 2004-09-09 Nippon Steel Corp Titanium alloy used for cathode electrode for manufacturing electrolytic copper foil, and manufacturing method therefor
JP2005298853A (en) * 2004-04-07 2005-10-27 Nippon Steel Corp TITANIUM PLATE FOR DRUM IN MANUFACTURING ELECTROLYTIC Cu FOIL, AND MANUFACTURING METHOD THEREFOR
JP2009041064A (en) * 2007-08-08 2009-02-26 Nippon Steel Corp TITANIUM PLATE FOR DRUM FOR USE IN PRODUCING ELECTROLYTIC Cu FOIL AND MANUFACTURING METHOD THEREFOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234266A (en) * 2000-02-16 2001-08-28 Kobe Steel Ltd Titanium alloy material for muffler and muffler
JP2002317234A (en) * 2001-02-16 2002-10-31 Kobe Steel Ltd Titanium sheet having excellent ductility and production method therefor
JP2003055725A (en) * 2001-08-15 2003-02-26 Kobe Steel Ltd Titanium alloy with excellent cold workability and fatigue strength after brazing
JP2004250753A (en) * 2003-02-20 2004-09-09 Nippon Steel Corp Titanium alloy used for cathode electrode for manufacturing electrolytic copper foil, and manufacturing method therefor
JP2005298853A (en) * 2004-04-07 2005-10-27 Nippon Steel Corp TITANIUM PLATE FOR DRUM IN MANUFACTURING ELECTROLYTIC Cu FOIL, AND MANUFACTURING METHOD THEREFOR
JP2009041064A (en) * 2007-08-08 2009-02-26 Nippon Steel Corp TITANIUM PLATE FOR DRUM FOR USE IN PRODUCING ELECTROLYTIC Cu FOIL AND MANUFACTURING METHOD THEREFOR

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061731A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Titanium made substrate, titanium material and cell member for solid polymer type fuel cell
KR102190540B1 (en) * 2016-08-24 2020-12-14 가부시키가이샤 고베 세이코쇼 Titanium alloy plate for electrode
EP3505646A4 (en) * 2016-08-24 2020-02-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium alloy sheet for electrode
JP2018031057A (en) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 Titanium alloy plate for electrodes
CN109642273A (en) * 2016-08-24 2019-04-16 株式会社神户制钢所 Titanium alloy plate for electrode
WO2018038061A1 (en) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 Titanium alloy sheet for electrode
RU2719233C1 (en) * 2016-08-24 2020-04-17 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Titanium alloy plate for electrode
KR20190039219A (en) * 2016-08-24 2019-04-10 가부시키가이샤 고베 세이코쇼 Titanium alloy plate for electrodes
CN113165032A (en) * 2019-04-17 2021-07-23 日本制铁株式会社 Titanium alloy sheet, method for producing titanium alloy sheet, copper foil production drum, and method for producing copper foil production drum
WO2020213719A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium alloy plate, manufacturing method for titanium alloy plate, copper foil manufacturing drum, and manufacturing method for copper foil manufacturing drum
KR20210080520A (en) 2019-04-17 2021-06-30 닛폰세이테츠 가부시키가이샤 A titanium alloy plate, a manufacturing method of a titanium alloy plate, a copper foil manufacturing drum, and a manufacturing method of a copper foil manufacturing drum
JPWO2020213719A1 (en) * 2019-04-17 2021-05-06 日本製鉄株式会社 Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing drum and copper foil manufacturing drum manufacturing method
KR20210094026A (en) 2019-04-17 2021-07-28 닛폰세이테츠 가부시키가이샤 Titanium plate and copper foil manufacturing drum
TWI739398B (en) * 2019-04-17 2021-09-11 日商日本製鐵股份有限公司 Titanium plate and roller for manufacturing copper foil
KR102532976B1 (en) * 2019-04-17 2023-05-16 닛폰세이테츠 가부시키가이샤 Titanium alloy plate, manufacturing method of titanium alloy plate, manufacturing method of copper foil manufacturing drum and copper foil manufacturing drum
WO2022024180A1 (en) * 2020-07-27 2022-02-03 日本製鉄株式会社 Titanium material for manufacturing metal foil, method for manufacturing titanium material for manufacturing metal foil, and metal foil manufacturing drum
CN116134165A (en) * 2020-07-27 2023-05-16 日本制铁株式会社 Titanium material for producing metal foil, method for producing titanium material for producing metal foil, and metal foil production drum
CN116134165B (en) * 2020-07-27 2024-10-22 日本制铁株式会社 Titanium material for producing metal foil, method for producing titanium material for producing metal foil, and metal foil production drum

Also Published As

Publication number Publication date
JP5609784B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP6901049B2 (en) Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing drum and copper foil manufacturing drum manufacturing method
JP6863531B2 (en) Titanium plate and copper foil manufacturing drum
JP5609784B2 (en) Titanium alloy thick plate for electrolytic Cu foil production drum and its production method
TWI450985B (en) Co-Si copper alloy plate
JP5531931B2 (en) Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof
JP4094395B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
TWI747237B (en) Titanium plate, titanium rolled coil and drum for manufacturing copper foil
JP2013119639A (en) Co-Si-BASED COPPER ALLOY SHEET
JP3500072B2 (en) Titanium material for drum for producing electrolytic metal foil and method for producing the same
JP2004250753A (en) Titanium alloy used for cathode electrode for manufacturing electrolytic copper foil, and manufacturing method therefor
JP2017190480A (en) Titanium sheet
JP3488076B2 (en) Method for producing titanium for Cu foil production drum and titanium slab used for the production
WO2019082352A9 (en) Production method for hot-rolled titanium plate
JP3967897B2 (en) Titanium for copper foil production drum having uniform metal structure and production method thereof
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure
JP5650099B2 (en) Rolled copper foil for superconducting film formation
TW202204644A (en) Titanium material for metal foil production, method for producing titanium material for metal foil production, and metal foil production roller The plurality of the voltage ratio of two adjacent positions among the positions is 0.95 or more and 1.05 or less
JP2002012931A (en) Titanium sheet excellent in surface property and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R151 Written notification of patent or utility model registration

Ref document number: 5609784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350