JP4094395B2 - Titanium plate for electrolytic Cu foil production drum and production method thereof - Google Patents

Titanium plate for electrolytic Cu foil production drum and production method thereof Download PDF

Info

Publication number
JP4094395B2
JP4094395B2 JP2002289451A JP2002289451A JP4094395B2 JP 4094395 B2 JP4094395 B2 JP 4094395B2 JP 2002289451 A JP2002289451 A JP 2002289451A JP 2002289451 A JP2002289451 A JP 2002289451A JP 4094395 B2 JP4094395 B2 JP 4094395B2
Authority
JP
Japan
Prior art keywords
phase
electrolytic
foil
titanium plate
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002289451A
Other languages
Japanese (ja)
Other versions
JP2004002953A (en
Inventor
広明 大塚
秀樹 藤井
満男 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002289451A priority Critical patent/JP4094395B2/en
Publication of JP2004002953A publication Critical patent/JP2004002953A/en
Application granted granted Critical
Publication of JP4094395B2 publication Critical patent/JP4094395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品のプリント配線板などに使用される銅箔(Cu箔と記す)を製造するためのドラム用チタン材であって、均一でかつ緻密な板面金属組織を有する材料およびその製造方法に関するものである。
【0002】
【従来の技術】
電子部品に組込まれて使用されるプリント配線板は、絶縁基板上に導電性のCu箔を貼り合わせ、その表面に配線パターンをプリントし、不要部分をエッチングにより除去して作られる。
【0003】
このプリント配線板に用いられるCu箔は、高品位のCu原料を硫酸溶液に溶解させた硫酸銅溶液中で、Pbなどの不溶性金属を陽極に、ドラムを陰極にし、ドラムを回転させつつ電気化学的にドラム上にCuを連続的に電析させ、これを連続的に剥離させ、ロール状に巻き取るという方法で製造されている。ドラムの材料としては、耐食性に優れること、Cu箔の剥離性に優れること、などの観点から、近年チタンが多用されるようになってきた。
【0004】
ところで、電子部品の配線パターンは極めて微細で(幅0.1〜0.5mm)高い精度や再現性が要求されることから、プリント配線に使用されるCu箔の面粗さも極めて高い精度・均質性が要求される。この面粗さは、Cu箔が電着していたチタン製陰極ドラムの面状態を継承していることから、チタン製ドラムの表面は高度に研磨・整面した後使用される。
【0005】
しかし、いかに高耐食性のチタン材といえども、使用中に電解液中で徐々に腐食を受けて、新たに出現した面の状態がCu箔に転写されるようになる。金属の腐蝕というのは、その金属材料の有する組織、結晶方位、欠陥、偏析、加工歪み、残留歪みなど様々な内質状態によってその程度が異なることが知られており、このような不均質な内質状態の材料からなるドラムが使用中に腐蝕を受けると、必ずしも均質な面状態が維持できなくなる。そして、不均一な面状態が出現すると、それが銅箔に転写されるため、高精度かつ均質な厚さのCu箔が製造できなくなるという問題が発生する。
【0006】
上述のような不均質な腐蝕面状態を生ずる可能性のあるチタン材は、ドラム用チタン材原板中のマクロ組織を調べることで判別できる。金属組織学でいうマクロ組織は、鋳造組織や加工組織の現出に使用される適当な金属組織現出用酸液 (例えばチタンの場合、硝弗酸)を用いてエッチングすることで得られるが、これは、ドラム使用中に発生する不均質組織と全く同様に、組織、結晶方位、欠陥、偏析、加工歪み、残留歪みなど様々な内質状態によって出現する組織である。
【0007】
このような不均質な組織のうち、肉眼で判別できるものを「マクロ模様」と呼ぶ。銅箔製造用チタンドラムの場合、マクロ組織は、表面を600番のサンドペーパーで研磨した後、硝酸約10%、沸酸約5%、残り水のエッチング液に数十秒〜数分間浸漬することにより得られる。何らかの原因により、数ミリメートル長さでも不均質な組織があると、それらの部分はエッチングのされ方が異なるため、肉眼で判別される。
したがって、素材チタン材のマクロ組織を均質にすること、すなわちマクロ組織中に生ずるいわゆる「マクロ模様」を低減することが、ドラムの均質な腐蝕を達成し、高精度かつ均質な厚さのCu箔を製造するための必須事項である。
【0008】
ドラム用チタン材のマクロ組織を均質化し、マクロ模様を低減する試みとしては、下記特許文献1に開示された方法がある。この方法では、加工熱処理条件を工夫し、細粒かつ整粒の組織を得、マクロ模様を低減しようとする方法であるが、工程が複雑で、また加熱温度や時間を厳密に制御しないと粒成長が起こり、所望の効果が得難いという課題があった。さらに、材料のハンドリングが煩雑で、作業性も良くないという課題もあった。
【0009】
【特許文献1】
特開平8−144033号公報
【0010】
また下記特許文献2にも、やはり加工熱処理条件を工夫することにより、マクロ模様を低減しようとする試みが開示されている。しかし、この方法も工程が複雑であり、その条件管理も煩雑である。
【0011】
【特許文献2】
特公平3−28505号公報
【0012】
また下記特許文献3には、組織を微細化・均一化するために、再結晶組織分率が90%超であるようなスラブを、総圧下比15超で熱間圧延し、焼鈍を行うことを特徴とする方法が開示されている。しかしこの方法では、マクロ模様は改善されるものの、結晶粒がやや粗粒化し、外観がややざらついた様に見えるという問題があり、結晶粒径の微細化という観点からはさらなる改善が要求されていた。
【0013】
【特許文献3】
特開平11−226608号公報
【0014】
また下記特許文献4には、均一かつ緻密な金属組織を得る方法として、冷間圧延により機械的双晶を十分に導入し、焼鈍再結晶によりコロニー組織の少ない組織とすることが開示されている。しかし、この方法による冷延・焼鈍の組合せは、マクロ模様の低減には効果はあるものの、大型の厚板の冷間圧延を必須の工程とするため、設備的、技術的にも難易度が高く、冷延・焼鈍なしでも微細かつ均一な組織が得られるような新たな材料が求められていた。
【0015】
【特許文献4】
特開2000−45091号公報
【0016】
また加工熱処理に頼らず、組成の観点から、マクロ模様の少ない均質微細な金属組織を得る試みも考えられる。例えば、マトリクスとは異質の第2相が存在すると、これがマトリクス主相の結晶粒成長を抑制するため、微細な組織が得やすくなる。例えば、Feをチタンへの固溶限である0.04質量%以上添加しβ相を生成させると、この微細化効果が達成される。しかし、Feの濃化したβ相は耐食性が著しく劣化し、この部分が腐蝕環境下ではピット状に優先溶解し、Cu箔製品にこれが転写されるため、この技術はCu箔ドラム用チタン材には適用できない。また、Niを添加するとTi2 Ni相が生成し、耐食性を向上させると同時に、結晶粒微細化も達成されるが、腐蝕環境下で溶出したNiがCu箔に混入するという問題があり、好ましくない。
【0017】
【発明が解決しようとする課題】
以上のような現状に鑑み、本発明は、マクロ模様が少なく均一微細な板面金属組織を有し、複雑な加工熱処理に頼ることなく製造可能で、高品質の電解Cu箔を製造することのできるドラム用チタン材、及びその製造方法を提供しようとするものである。
【0018】
【課題を解決するための手段】
本発明者らは、各種チタン材の熱延板に生ずるマクロ組織の形成に及ぼす添加元素の影響について、またCu箔製造用溶液と各種チタン材の反応挙動について鋭意研究を重ねた結果、マクロ模様が少なく、かつCu箔製造用液中で腐蝕しても、均質な面状態を維持することの可能なチタン材を見いだすに至った。
【0019】
本発明はかかる知見に基づいて完成させたものであり、その要旨とするところは以下の通りである。
(1)質量%で、Cu:0.5〜2.1%、Fe:0.04%以下、酸素:0.1%以下を含み、残部チタンと不可避不純物からなり、平均結晶粒径が40μm未満である均質微細再結晶組織を有することを特徴とする、電解Cu箔製造ドラム用チタン板。
(2)前記チタン板がα単相からなることを特徴とする、前項(1)に記載の電解Cu箔製造ドラム用チタン板。
(3)質量%で、Cu:0.5〜2.1%、Fe:0.04%以下、酸素:0.1%以下を含み、残部チタンと不可避不純物からなるスラブを、α+βの二相温度域に加熱し、熱間圧延し、さらにβ変態点以下の温度で焼鈍することを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。
(4)質量%で、Cu:0.5〜2.1%、Fe:0.04%以下、酸素:0.1%以下を含み、残部チタンと不可避不純物からなるスラブを、α+βの二相温度域に加熱し、熱間圧延し、さらにα単相温度域にて焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。
(5)前記(3)または(4)に記載の方法に引き続いて、さらに冷間圧延を行い、その後、β変態点以下の温度で焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。
(6)前記(3)または(4)に記載の方法に引き続いて、さらに冷間圧延を行い、その後、α単相温度域で焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。
【0020】
(7)質量%で、Cu:0.1〜2.1%、Cr:0.1〜0.9%の1種または2種を含有し、Fe:0.04%以下、酸素:0.1%以下を含み、残部チタンと不可避不純物からなり、平均結晶粒径が40μm未満である均質微細再結晶組織を有することを特徴とする、電解Cu箔製造ドラム用チタン板。
(8)質量%でさらに、Mo、Ta、V、Zr、Nb、Hf、Wの1種または2種以上を合計で1%以下含有することを特徴とする、前記(7)に記載の電解Cu箔製造ドラム用チタン板。
(9)α単相からなることを特徴とする、前記(7)または(8)に記載の電解Cu箔製造ドラム用チタン板。
10)前記(7)または(8)に記載の成分からなるスラブを、α+βの二相温度域に加熱し、熱間圧延し、さらにβ変態点以下の温度で焼鈍することを特徴とする、前記(7)〜()のいずれか1項に記載の電解Cu箔製造ドラム用チタン板の製造方法。
11)前記(7)または(8)に記載の成分からなるスラブを、α+βの二相温度域に加熱し、熱間圧延し、さらにα単相温度域にて焼鈍を行うことを特徴とする、前記(7)〜()のいずれか1項に記載の電解Cu箔製造ドラム用チタン板の製造方法。
12)前記(10)または(11)に記載の方法に引き続いて、さらに冷間圧延を行い、その後、β変態点以下の温度で焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。
13)前記(10)または(11)に記載の方法に引き続いて、さらに冷間圧延を行い、その後、α単相温度域で焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。
【0021】
【発明の実施の形態】
まず、本発明の含有成分について説明する。成分含有量は質量%である。
本発明(1)では、Cu:0.5〜2.1%、Fe:0.04%以下、酸素:0.1%以下、残部チタンと不可避不純物からなることとした。
まず、Feと酸素を上記範囲に限定した理由について説明する。
純チタンや主要なチタン合金は、hcp構造のα相を主相としており、酸素はこれを強化する合金元素である。電解Cu箔製造ドラムは、板を冷間で曲げて円筒状のドラムに成形するため、軟質の方が成形しやすく、また成形後の残留応力も小さく、均質となる。この残留応力もマクロ模様発生の一因であり、これを低減するために、本発明では酸素の含有量を0.1%以下とした。酸素量の下限は特に規定しないが、不純物として通常0.005%以上含有している。
【0022】
Feは、β相を安定化する元素であり、α相中への固溶量は極めて小さく最も多量に固溶する温度においても高々0.04%である。これを超えてFeが添加されると、Feの濃化したβ相が出現するようになるが、前記[従来の技術]の項でも述べたように、このβ相は腐蝕環境下で優先的に溶解し、ピット状の窪みとなりやすい。このような窪みが面上に存在すると、電析するCu箔に転写されるため、高品質のCu箔が製造できなくなる。したがって、Fe含有量は0.04%以下であることが必要である。Fe量の下限は特に規定しないが、不純物として通常0.005%以上含有している。
【0023】
次にCuを0.5〜2.1%の範囲に限定した理由について説明する。
Cuは、図1の二元系平衡状態図に示すように、本発明のCu濃度範囲(0.5〜2.1%)では、チタン材の一般的な熱間圧延温度である850℃付近でα+βの二相となる。二相組織は単相組織に比べて著しく結晶粒成長が抑制されるため、より微細な組織となる。また、加工再結晶組織は、加工前の組織が微細であるほど均質微細となることは良く知られた事実である。本発明ではCuを適量添加することにより、二相温度域で主たる熱間圧延を可能ならしめ、最終的な組織を均質微細な再結晶組織とし、マクロ模様を低減しようとする技術である。
【0024】
これを実現するためには、Cuの添加量は0.5〜2.1%であることが必要である。それは、Cuが0.5%未満の場合、通常のチタンの熱間圧延加熱温度である850℃付近で二相とならないからであり、また2.1%を超えてCuを添加すると、凝固偏析が大きくなり、この偏析に起因したマクロ模様が発生したり、Ti2 Cu相の増加にともない材料強度が増し、冷間成形による加工歪みが不均質となり、これに起因したマクロ模様が発生するようになるためである。
【0025】
もちろん、一旦二相温度域に加熱し熱間圧延するために、その後の冷却条件や焼鈍条件によっては、Cuが濃化したβ相が少量室温まで残留したり、図1の平衡状態図にも示されているように、低温では平衡相であるTi2 Cu相がβ相から少量生成する可能性もある。しかし、これらCuの濃化した相は、Feの濃化したβ相とは異なり高い耐食性を有しており、Cu箔製造用電解液のような腐蝕環境に曝されても、Feの濃化したβ相のように激しい優先溶解は起こさず、Cu箔製品の品質を大きく低下させるようなことはない。
また、これらの相の量は僅かであり、ドラムを冷間成形する際の加工性に及ぼす影響も僅かである。さらに、ドラムは硫酸銅電解液でCuを電析させる目的で使用されるものであるから、たとえCuを含むチタン材からCuが溶出してもそのCuは製品Cu箔に取り込まれるため、製品Cu箔には何ら悪影響を及ぼさない。
【0026】
また本発明(1)では、均質微細再結晶組織であることも必須である。マクロ模様低減のためには均質微細組織であることが必須条件であるが、再結晶させておかないと、加工歪み分布の不均一性や未再結晶延伸粗大粒を反映したマクロ模様が発生する。
ここで再結晶組織とは、結晶粒内に黒い線状や網目状の未再結晶組織がなく粒界以外はほとんど見られない組織のことであり、微細組織とは、平均結晶粒径40μm未満の結晶粒を示す。均質とはドラム製品寸法の大きさに相当する、例えば1.5m×8mの板の任意の部位より試料を採取してミクロ組織を観察した際に、いずれの試料の光学顕微鏡組織も微細な再結晶組織であることを意味する。均質であることの確認は、ドラム製品の長手方向に隣接するトップ側及びボトム側の幅方向の端部または中央部の3〜4箇所から1cm×1.5cm程度の試験片を採取し、板面のミクロ組織を光学顕微鏡で観察することによって行う。
【0027】
以上のような理由で、本発明のCuを添加したチタン材は、まさに電解Cu箔を製造するドラムにふさわしい材料である。
なお、不可避不純物とは、精錬、溶解、鍛造、熱延、冷延、熱処理、精整等の製造工程で、材料中への混入が避けられない不純物元素を指すものであり、例えば0.05%以下の窒素、炭素、水素、Ni、Cr、Mn、Mg、Sn、Al、V、Siなどを指す。
【0028】
本発明(2)では、本発明(1)の電解Cu箔製造ドラム用チタン板がα単相からなることとした。本発明(1)の説明で述べたように、Cuの濃化したβ相やTi2 Cu相が少量存在しても、高品質のCu箔の製造が可能なドラムを製造することができるが、これらを完全に消失させ、完全にα単相とすると、冷間成型時のごく僅かな応力・歪み分布も均質化し、電解液による腐蝕は著しく均質となり、大変高品質なCu箔が製造できるようになる。
【0029】
以上述べたような、電解Cu箔製造ドラム用チタン板は、例えば本発明(3)〜(6)に記載の方法で製造することができる。次にこの製造方法について説明する。
まず、本発明(3)記載の方法では、当該チタン材のα+β二相温度域に当該チタンのスラブを加熱し、α+β二相温度域で熱間圧延することとした。本発明(1)、(2)におけるCu添加の目的は、均質微細組織を得るために十分な二相温度域を出現させることである。したがって、圧延途中でこの温度域に入れば当初の目的は達成できるが、最初からスラブをこの温度域に加熱すると、確実にこの目的は達成される。
【0030】
また、熱間圧延後は、当該チタン材のβ変態点以下の温度域で焼鈍することとした。これは、二相状態での熱間圧延により高度に蓄積した歪みを核として再結晶を促進させ、均質微細再結晶組織を得るための工程である。したがって、焼鈍温度の下限は、再結晶温度であることが好ましい。
【0031】
β変態点とは、それ以上の温度ではβ単相となる温度であり、これを超えて著しく拡散の速いβ単相域に加熱すると、せっかく蓄積した歪みが一挙に開放されて粒成長してしまい、折角のα+β二相域圧延の効果が消失してしまい、均質微細組織が得られない。しかし、β変態点以下のα+β二相域では、粒成長が抑制されるため均質微細再結晶組織が達成できる。この場合、焼鈍後の冷却中にα単相域を材料が通過する際に、β相の大部分はα相に変態するが、均質微細組織は保持される。また、特に冷却速度が速い場合、β相が残留したり、冷却途中でTi2 Cu相が生成することがあるが、これらは生成しても少量であり、先にも説明したように、Cu箔製造用電解液で激しい優先溶出を起こすことはなく、ドラムを成形する際の加工性への影響も僅かである。したがって、Cu箔製品の品質を著しく低下させるようなことはない。
【0032】
また、焼鈍をα単相域よりも低いα+Ti2 Cu二相温度域で行った場合も同様である。すなわち、熱間圧延後の冷却中にα単相域を通過する際に、大部分のβ相はすでにα相に変態しており、また、α相からTi2 Cuが析出する反応は極めて遅く、100時間以上を要することから、実際の焼鈍中にはこの反応は起こらない。したがって、α+Ti2 Cu二相温度域で焼鈍した場合もα相が大部分を占め、極少量のβ相が混在する程度である。そして、Cu箔製造用電解液で激しい優先溶出を起こすこともなく、ドラムを成形する際の加工性への影響も僅かであり、Cu箔製品品質を著しく低下させるようなことはない。
【0033】
上記、α+β二相域とα+Ti2 Cu二相域の中間のα単相域で焼鈍した場合は、熱延後に混在していたβ相やTi2 Cu相はすべてα相となり、完全なα単相組織が実現する。この状態は、α+β域やα+Ti2 Cu域での焼鈍に比べ、単相状態であることから結晶粒成長しやすいが、先にα+β二相域で高度に歪みが蓄積されているため、不必要に焼鈍時間を長くしない限り、均質微細再結晶組織が達成できる。
また、冷却中にα+Ti2 Cu二相域を通過するが、先にも述べたとおり、α相からのTi2 Cu相の析出は極めて遅いため、実質的にα単相状態が室温で達成できる。そのため、本発明(2)の電解Cu箔製造ドラム用チタン板が製造でき、電解液による腐蝕が極めて均質となり、大変高品質なCu箔が製造可能となる。この方法は本発明(4)に記載の製造方法である。
【0034】
本発明(5)では、本発明(3)または(4)記載の方法で製造したチタン板に対し、さらに冷間圧延を行い、その後、β変態点以下の温度で焼鈍を行うこととした。これは、本発明(3)または(4)で製造したチタン板に対し、冷間加工歪みをさらに与え、再度再結晶させることにより、より均質で微細な組織を達成しようとする技術である。焼鈍をβ変態点以下の温度で行うこととしたのは、本発明(3)、(4)の場合と同じである。特に、焼鈍をα単相温度域で行うと、本発明(4)の場合と同様、α単相状態が室温で達成できる。そのため、本発明(2)の電解Cu箔製造ドラム用チタン板が製造でき、電解液による腐蝕がきわめて均質となり、大変高品質なCu箔が製造可能となる。この方法は本発明(6)に記載の製造方法である。
【0035】
本発明(7)では、Cu:0.1〜2.1%、Crを0.1〜0.9%の1種または2種、Fe:0.04%以下、酸素:0.1%以下、残部チタンと不可避不純物からなることとした。
Feと酸素の限定理由は、本発明(1)と同様である。
Cuを0.1〜2.1%の範囲に限定した理由も、本発明(1)と同様に、二相温度域で主たる熱間圧延を可能ならしめ、最終的な組織を均質微細な再結晶組織とするためである。Cuは、図2の二元系平衡状態図に示すように、本発明のCu濃度範囲(0.1〜2.1%)では、790〜880℃でα+βの二相となる。Cuが0.1%未満の場合、α+βの二相温度範囲が狭く、温度制御が極めて困難となる。また2.1%を超えてCuを添加すると、本発明(1)と同様、凝固偏析および冷間成形による加工歪みの不均質に起因したマクロ模様が発生するようになるためである。
【0036】
Crを0.1〜0.9%に限定したのも、同様の理由である。図3にTi−Cr二元系状態図を示すが、本発明のCr濃度範囲(0.1〜0.9%)では、α+β二相温度域は660〜870℃の範囲である。Cr濃度が0.1%未満では、α+β二相域の温度範囲が狭いため、温度制御が極めて困難となる。一方、0.9%を超えるCrを添加すると、凝固偏析およびTiCr2 相の増加による冷間加工歪の不均質化に起因したマクロ模様が発生する。
また、CuとCrを同時に含有した場合、結晶粒の細粒、均一化は一層顕著になる。両者を含有する場合の合計は、3%を超えると凝固偏析が大きくなり、この偏析に起因したマクロ模様が発生したり、硬さが増大しすぎ、研磨が困難となるため、3%以下とすることが好ましい。
【0037】
本発明(8)で、Mo、Ta、V、Zr、Nb、Hf、Wの1種または2種以上を含有するのは、適当な硬さと塑性変形能を得るためであり、合計で0.1%以上を含有することが好ましい。これらの元素を添加して硬さを適度に増すことにより、研磨後の粗度が減少し、ミクロな凹凸の少ないドラム素材を作ることができる。また、Mo、Ta、V、Zrは、硫酸溶液に対する耐食性を改善する働きも有する。Mo、Ta、V、Zr、Nb、Hf、Wの1種または2種以上の合計の含有量を1%以下とする理由は、これより多く含有すると、含有成分元素の偏析を起因とするマクロ模様が発生し、さらに、硬さが増大しすぎ、研磨が困難となるためである。
【0038】
本発明(9)では、本発明(2)と同様に、電解Cu箔製造ドラム用チタン板がα単相からなることとした。本発明(7)または(8)の電解Cu箔製造ドラム用チタン板は、本発明(1)の説明と同様に、成分および製造条件によっては、少量のβ相および/または析出相が生じる可能性がある。すなわち、CuとCrのうち、Cuを添加した場合は、Cuの濃化したβ相および/またはTi2 Cu相、Crを添加した場合はCrの濃化したβ相および/またはTiCr2 相が生じる。また、CuおよびCrの2種を添加した場合は、CuおよびCrの濃化したβ相並びに/またはTi、CuおよびCrの複合析出相(以下、Tix Cuy Crz 相と記す)が生じる。
これらのβ相および/または析出相が少量存在しても、高品質のCu箔の製造が可能なドラムを製造することができるが、これらを完全に消失させ、完全にα単相とすると、本発明(2)と同様に、大変高品質なCu箔が製造できるようになる。
【0039】
ここで、α単相は図4に示した等軸晶の組織である。β相は図5の矢印1で示したように、写真の横方向に伸長した黒い筋状の相であり、析出相は図5の矢印2で示したように、等軸晶のα相の粒界に生じた黒い点状の相である。組織がα単相であることは、以下のようにして確認する。
まず、製品板のトップ側及びボトム側に隣接する部分の幅方向端部及び中央部から10〜20mm角の試料を3〜4枚採取し、表面をフライス加工した後、サンドペーパー研磨600番で仕上げ、硝酸10%および沸酸3%からなる硝沸酸溶液で数十秒間エッチングして観察を行い、それぞれの試料を光学顕微鏡にて100倍で5視野程度観察し、面積3〜5mm2 の範囲における組織が図4に示したα単相で、図5の矢印1および2で示した黒い筋状の相および黒い点状の相が観察されないことをいう。
ここで等軸とは、アスペクト比が1.4以内であるような結晶粒を持つ組織のことを言う。測定方法は、上述した方法で採取した試験片の平均結晶粒径を圧延方向及び幅方向及び圧延方向に対して45°の方向に測定し、それぞれの比が1.4以内であることによる。
【0040】
本発明(1)および(7)で、平均結晶粒径を40μm未満としたのは、40μm以上では、電析した銅箔のチタンドラムと接触している表面がややざらついたように見え、特に厚さ10μm以下の薄手の銅箔では、形状に影響を及ぼすためである。平均結晶粒径は好ましくは30μm未満、最適な上限は20μm未満である。なお、結晶粒径の測定は、切断法で行うことが好ましい。
【0041】
本発明(7)〜()の電解Cu箔製造ドラム用チタン板の製造方法について以下に説明する。
スラブの熱間圧延は、本発明(3)および(4)と同様に、当該チタン材のα+β二相温度域に加熱し、α+β二相温度域で熱間圧延する。圧延途中でこの温度域に入れば当初の目的は達成できるが、最初からスラブをこの温度域に加熱すると、確実にこの目的は達成される。
【0042】
また、本発明(10)では、本発明(3)と同様、均質微細再結晶組織を得るために、熱間圧延後、当該チタン材のβ変態点以下の温度域で焼鈍することとした。焼鈍温度の下限は、再結晶温度であることが好ましい。なお、β変態点は、Ti−Cuの計算状態図(図2)、及びTi−Crの計算状態図(図3)中に示したβ相とα+β相の境界温度のことである。
β変態点以下のα+β二相域では、粒成長が抑制されるため均質微細再結晶組織が達成できる。焼鈍後の冷却中にβ相の大部分はα相に変態するが、冷却速度が速い場合、β相が残留したり、冷却途中で、成分によって、Ti Cu相、TiCr 相またはTi Cu Cr 相が生成することがある。しかし、これらは生成しても少量であり、先にも説明したように、Cu箔製品の品質を著しく低下させるようなことはない。
【0043】
また、焼鈍をα単相域よりも低い二相温度域、すなわちα+Ti2 Cu二相域、α+TiCr2 二相域またはα+Tix Cuy Crz 二相域で行っても良い。この二相温度域は、平衡状態ではα相中に析出相が存在する温度域であり、成分によってTi2 Cu相、TiCr2 相またはTix Cuy Crz 相が存在するが、これらがα相から析出する反応は極めて遅く、100時間以上を要することから、実際の焼鈍中にはこの反応は起こらない。したがって、この二相温度域で焼鈍した場合も、α相が大部分を占め、極少量のβ相が混在する程度であり、Cu箔製品の品質を著しく低下させるようなことはない。
【0044】
本発明(11)では、本発明(4)と同様、熱延後、α単相域で焼鈍することとした。この場合は、熱延後に混在していたβ相やTi Cu相、TiCr 相またはTi Cu Cr 相はすべてα相となり、完全なα単相組織が実現する。この状態は、単相状態であることから結晶粒成長しやすいが、α+β二相域での熱間圧延により歪みが蓄積されているため、不必要に焼鈍時間を長くしない限り、均質微細再結晶組織が達成できる。
また、冷却中にα+Ti Cu、α+TiCr またはα+Ti Cu Cr の二相域を通過するが、先にも述べたとおり、α相からのTi Cu相、TiCr 相またはTi Cu Cr 相の析出は極めて遅いため、実質的に、α単相状態が室温で達成できる。そのため、α単相の電解Cu箔製造ドラム用チタン板が製造でき、大変高品質なCu箔が製造可能となる。
【0045】
本発明(12)では、本発明(10)または(11)記載の方法で製造したチタン板に対し、さらに冷間圧延を行い、その後、β変態点以下の温度で焼鈍を行うこととした。これは、本発明(5)または(6)と同様、冷間加工歪みをさらに与え、再度再結晶させることにより、より均質で微細な組織を達成しようとする技術である。焼鈍をβ変態点以下の温度で行うこととしたのは、本発明(10)の場合と同じである。また、焼鈍をα単相温度域で行うと、本発明(11)の場合と同様、α単相状態が室温で達成できる。そのため、α単相の電解Cu箔製造ドラム用チタン板が製造でき、電解液による腐蝕がきわめて均質となり、大変高品質なCu箔が製造可能となる。この方法は本発明(13)に記載の製造方法である。
【0046】
【実施例】
本発明を実施例を用いてさらに詳しく説明する。
(実験1)
表1に示した成分からなるインゴットを、真空アーク2回溶解により準備し、これを分塊圧延して厚さ150mmのスラブとした。このスラブを850℃に加熱し、850〜700℃の範囲で熱間圧延を行い、温度厚さ10mmの板に熱間圧延し、630℃で焼鈍した。この焼鈍は、真空クリープ矯正機(VCF)を用いて、形状矯正を兼ねて行った。
【0047】
上記の厚板から切り出した検査用試験片を、板面に平行に黒皮部を含めて2mm研削し、更に#600の研磨を行なって硝沸酸系のマクロ腐食液でエッチングし、結晶粒径を測定すると共に、マクロ模様の観察を行った。また、SEM観察により、ピット状の窪みの有無を観察した。マクロ模様の良好であった板については、脱スケール後、冷間で直径2.7mの円筒ドラム状に曲げ成形し、この一部から切り出した試験片を硝沸酸系のマクロ腐食液でエッチングし、マクロ模様の観察を行った。
なお、マクロ模様観察は、10cm,8cmの領域3箇所に対して実施し、目視で観察されたマクロ模様の数で評価した。すなわち、0〜1個の場合:◎、2〜5個の場合:○、6〜10個の場合:△、11個以上の場合:×、の4段階評価である。
【0048】
表1において、試験番号1は、通常の純チタンの場合であり、通常の厚板製造工程により製造しているため、マクロ模様は×判定であった。これに対し、Feをやや多めに添加した試験番号2では、△判定に改善している。しかしながら、まだ不十分なレベルであり、この材料ではFeの濃化したβ相が優先溶解したため、ピット状の窪みも観察されており、電解Cu箔製造ドラム用チタン板としては好ましいものではなかった。
また、Niを添加した試験番号3および試験番号4では、Ti2 Niの粒成長抑制効果により微細結晶粒が得られ、マクロ模様評価結果は○判定であった。しかし、このTi2 Ni相の生成のため、素材強度が高くなり、ドラムに成型した際の歪みが不均一となり、ドラムにおけるマクロ模様評価は△になってしまった。また、腐蝕環境下で溶出したNiがCu箔に混入するという問題もあり、好ましくない。
【0049】
一方、本発明の実施例である、試験番号6,7,8,11は、いずれも均質微細再結晶粒が得られ、マクロ模様評価も、板では◎、ドラムでは○の良好な結果であり、本発明の効果が十分に達成された。
【0050】
これに対し、試験番号5は、△のマクロ模様判定しか得られなかった。これはCu添加量が本発明の下限値より低く、熱間圧延時に十分な二相状態が達成されなかったことによる。また試験番号9では、Cuの添加量が本発明の上限値を超えたため、凝固偏析が激しくなり、平均粒径こそ小さかったが、部分的に粗大粒が混入し、またCu偏析による腐蝕むらにより、マクロ模様は×の判定となってしまった。また試験番号10では、Feの添加量が本発明で規定された0.04%を超えたため、腐蝕時にピット状の窪みが発生してしまった。また試験番号13は、焼鈍を省略し十分な再結晶組織としなかったため、加工歪み分布の不均一性や延伸粗大粒を反映したマクロ模様が発生してしまい、×判定となってしまった。
【0051】
【表1】

Figure 0004094395
【0052】
(実験2)
実験1の試験番号7と全く同じ成分(Ti−1.1%Cu−0.03%Fe−0.05%酸素)からなる150mm厚のスラブを、表2のスラブ加熱温度の欄に示す温度に加熱し、厚さ10mmの板に熱間圧延し、表2の焼鈍温度の欄に示す種々の温度で焼鈍した。
その後、実験1と全く同じ方法で、結晶粒径、マクロ模様等を評価した。その結果を表2に示す。ここで、比較のため、実験1の試験番号7の結果も一緒に示してある。この成分のβ変態点、α+β二相温度域とα単相域の境界温度、α単相域とα+Ti2 Cu二相温度域の境界温度は、いずれも試験番号7と同じで各々、865℃、825℃、730℃である。
【0053】
表2において、本発明(3)または(4)に記載の方法、すなわちα+β二相域にスラブ加熱し圧延し、β変態点以下の温度で焼鈍した、試験番号14,17,18,19,20は、いずれも細粒が得られており、板のマクロ模様は◎の判定であった。またピッティングも無く、ドラムに成形後のマクロ模様も○ないし◎の良好な結果であった。特に本発明(4)に記載の、α単相温度域での焼鈍を行った試験番号18,19は、ドラムに成形後も◎のマクロ模様判定となっており、本発明2および4の効果が遺憾無く発揮されている。
【0054】
ここで、試験番号14および15は、スラブ加熱温度が本発明(3)に記載の温度範囲からはずれていたが、試験番号14では、熱間圧延途中に温度が降下し、また試験番号15では、熱間圧延初期の加工発熱により、いずれもα+β二相温度域となり、本発明(1)の製品が製造できた。しかし、スラブ加熱をα+β域で確実に行った試験番号7が◎のマクロ模様判定であったのに対し、これらはいずれも○判定であり、若干品質は劣っていた。
また、焼鈍をβ変態点を超える温度で行った試験番号16は、著しく拡散の速いβ単相域に加熱されたため、折角α+β域加熱圧延で蓄積した歪みが一挙に開放されて粒成長してしまい、均質微細組織が得られず、マクロ模様評価は×の判定であった。
【0055】
【表2】
Figure 0004094395
【0056】
(実験3)
実験1および2において製造した熱延焼鈍板の中から、Ti−1.1%Cu−0.03%Fe−0.05%酸素の成分を有する試験番号7,17,19を選定し、これらを脱スケール後、さらに冷間圧延を行い、5mm厚の板とした。その後、表3の、冷延後の焼鈍温度の欄に記載した温度で焼鈍を行い、実験1,2と同じ方法で、結晶粒径やマクロ模様評価を行った。その結果を表3に示す。
【0057】
表3において、本発明(5)または(6)に記載の方法で製造した板は、いずれも熱延焼鈍板の場合よりも結晶粒径が小さくなっており、板のマクロ模様評価はいずれも◎判定であった。熱延焼鈍板においても◎判定が得られているが、より微細な結晶粒が得られていることから、本材料にて製造したドラムを用いると、さらに緻密で高品質の電解Cu箔が製造できる。
【0058】
ここで、試験番号19は、冷延前の熱延焼鈍板がα単相からなるが、冷延後の焼鈍をα+Ti2 Cu二相域で行っても、α相からTi2 Cu相の析出は著しく遅いためα単相の状態が保持される。そのため本発明(2)が達成され、ドラムに加工しても、なお◎の判定の高品質が得られた。
また試験番号26,27は、冷延前には若干の第2相が存在していたが、冷延後の最終焼鈍をα単相域で行ったため、本発明(2)が達成され、ドラムに加工しても、なお◎の判定の高品質が得られた。
【0059】
【表3】
Figure 0004094395
【0060】
(実験4)
表4に示した成分からなるインゴットを、実験1と全く同じ方法で厚さ150mmのスラブとした。このスラブを表4に示すスラブ加熱温度に加熱し、この温度から700℃までの範囲内で熱間圧延を行い、厚さ10mmの熱延板とした。さらに、表4に示す焼鈍温度で、真空クリープ矯正機(VCF)を用いて、形状矯正を兼ねて焼鈍を行った。計算状態図から推定した加熱温度及び焼鈍温度における相状態も表4に示した。
【0061】
上記の厚板の結晶粒径の測定およびマクロ模様の観察を、実験1と全く同じ方法で行った。また、マクロ模様判定が◎、○、△のものについては、SEM観察により、ピット状の窪みの有無を観察した。ピット状の窪みとは、直径数μmの円形または多角形状の孔のことである。マクロ模様判定が◎、○、△であった板については、脱スケール後、冷間で直径2.7mの円筒ドラム状に曲げ成形し、この一部から切り出した試験片を、硝沸酸系のマクロ腐食液でエッチングし、マクロ模様の観察を行った。マクロ模様判定が、◎または○で、ピット状の窪みも観察されない良好な材料については、溶接性の試験も行い、研磨後に溶接線が見えるかどうか観察した。
【0062】
表1の試験番号5と同一成分の表4の試験番号29は、α+βニ相域に加熱し、α+βニ相域温度で熱延したため、板におけるマクロ判定は◎であった。試験番号30、31についても、α+β二相の温度域で熱延を行ったため、板によるマクロ判定は、◎であった。
試験番号32は、通常の純チタンの場合であり、熱間圧延(スラブ加熱温度850℃)、焼鈍(焼鈍温度630℃)による製造方法では、板のマクロ模様は×判定であった。また、Crを0.03%しか含まない試験番号33では、熱延時に十分な二相状態が達成されず、マクロ模様判定は△であった。このように通常の純チタンやCr含有量が0.1%未満の場合、α+β相での熱延が困難であるため、未再結晶部が多く残存し、マクロ模様判定が不十分である。
【0063】
これに対し、Crを0.19%,0.41%,0.58%および0.81%含む、試験番号34,36,38,40および41は、いずれも微細均質微細組織が得られ、マクロ評価も◎または○の良好な結果であり、本発明の効果が十分に達成された。
このように、Crを0.1〜0.9%含有し、α+β相で熱延すると、熱延後も材料全体が均一な再結晶組織となるため、マクロ模様判定が良好である。
【0064】
一方、試験番号35では、Feの添加量が本発明で規定された0.04%を超えたため、腐蝕時にピット状の窪みが発生してしまった。試験番号37では、酸素添加量が本発明で規定された0.1%を超えたため、溶接後、研磨しても溶接線が消えなかった。試験番号39では、熱延時の温度がβ域であったため、粒成長が著しく結晶粒が粗大化し、均質微細組織が得られず、マクロ模様判定は×であった。焼鈍をβ域で行った試験番号42についても、同様に結晶粒が粗大化し、均質微細組織が得られず、マクロ判定は×であった。試験番号43は、Crの含有量が1.17%と高い場合であり、マクロ模様判定は△であった。
【0065】
試験番号44および45は、CuとCrの両者を含む場合の本発明の実施例であり、α+β二相域での熱延とα域での焼鈍後、板のマクロ模様判定は◎、ドラムのマクロ模様判定は○であった。試験番号46は、Crの含有量が本発明の範囲よりも多く、マクロ模様判定は△であった。
試験番号47〜52は、それぞれMo、V、Nb、Wの1種とCuを含有する場合の実施例である。いずれの材料も硬度が若干上昇したことによると思われる研磨後の光沢が多く、表面粗度が小さい材料が得られた。α+β二相域で熱延後、α域で焼鈍を施した試験番号47〜50のマクロ模様は○判定であった。
比較例の試験番号51および52では、それぞれMoおよびNbの添加量が1%を超え、それらの元素の偏析によるマクロ模様が発生し、いずれもマクロ模様は△判定であった。
【0066】
試験番号53〜55は、Mo、V、Nb、Wの2種とCuを含有する場合の実施例である。これらについても硬度が若干上昇したことによるものと思われる研磨後の光沢が多く、表面粗度が小さい材料が得られた。α+β二相域で熱延後、α域で焼鈍を施した試験番号53、54のマクロ模様は○判定であった。
比較例の試験番号55では、MoとNbの合計添加量が1%を超え、それらの元素の偏析によるマクロ模様が発生し、マクロ模様は△判定であった。
試験番号56〜61は、それぞれMo、Ta、V、Nb、W、Hfの1種とCrを含有する場合の実施例である。いずれの材料も硬度の若干の上昇に起因すると思われる研磨後の光沢が多く、表面粗度が小さい材料が得られた。α+β二相域で熱延後、α域で焼鈍を施した試験番号56〜59のマクロ模様は○判定であった。比較例の試験番号60、61では、それぞれTa、Hfの添加量が1%を超え、それらの元素の偏析によるマクロ模様が発生し、いずれもマクロ模様は△判定であった。
【0067】
試験番号62〜64は、Mo、Ta、Nb、Wの2種とCrを含有する場合の実施例である。これらについても硬度が若干上昇したことによるものと思われる、研磨後の光沢が多く、表面粗度が小さい材料が得られた。α+β二相域で熱延後、α域で焼鈍を施した試験番号62、63のマクロ模様は○判定であった。
比較例の試験番号64では、MoとNbの合計添加量が1%を超え、それらの元素の偏析によるマクロ模様が発生し、いずれもマクロ模様は△判定であった。
【0068】
【表4】
Figure 0004094395
【0069】
(実験5)
表5に示した成分からなるインゴットを、実験1と全く同じ方法で厚さ150mmのスラブとした。このスラブを表5に示すスラブ加熱温度に加熱し、厚さ10mmの板に熱間圧延した。さらに、表5の焼鈍1の欄に示す焼鈍温度で、真空クリープ矯正機(VCF)を用いて、形状矯正を兼ねて焼鈍を行った。計算状態図から推定した焼鈍温度における相状態も表5の焼鈍1の欄に示した。これらを脱スケール後、さらに冷間圧延を行い、5mm厚の板とした。その後、表5の焼鈍2に示した温度で焼鈍を行い、実験1同じ方法で、結晶粒径、マクロ模様判定を行った。表5の焼鈍2の欄に計算状態図から推定した焼鈍温度における相状態も示した。
マクロ模様判定が◎、○、△であったサンプルは、SEM観察により、ピット状の窪みの有無を観察し、また冷間で直径2.7mの円筒ドラム状に曲げ成形して、試験片を切り出し、マクロ模様の観察を行った。さらに、マクロ模様判定が、◎または○で、ピット状の窪みも観察されない良好な材料については、溶接性の試験も行い、研磨後に溶接線が見えるかどうか観察した。
【0070】
試験番号65〜71、73〜75、77、79〜81、83は、いずれも板のマクロ模様評価、およびドラムのマクロ模様評価ともに◎であり、ピッティングも無く、さらに溶接後の溶接線についても観察されなかった。一方、CuとCrの含有量が本発明の規定値よりも多い試験番号72では、板のマクロ模様評価は△であった。また、試験番号76、78、82、84では、それぞれVの添加量、TaとHfの合計添加量、Zrの添加量、ZrとHfの合計添加量が本発明の規定値を超えているため、板のマクロ模様評価は△であった。
【0071】
【表5】
Figure 0004094395
【0072】
【発明の効果】
以上説明したように、本発明により、マクロ模様が少なく均一微細な板面金属組織を有し、高品質の電解Cu箔を製造するに適した、電解Cu箔製造ドラム用チタン板及びその製造方法を、複雑な加工熱処理工程を経ることなく提供することができる。
【図面の簡単な説明】
【図1】TiとCuの二元系平衡状態図の一部を示す図である。
【図2】TiとCuの二元系平衡状態図の一部を示す図である。
【図3】TiとCrの二元系平衡状態図の一部を示す図である。
【図4】α単相のチタン板のミクロ組織を示す図である。
【図5】β相および析出相を有するチタン板のミクロ組織を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drum titanium material for producing a copper foil (referred to as Cu foil) used for a printed wiring board of an electronic component and the like, and a material having a uniform and dense plate surface metallographic structure It relates to a manufacturing method.
[0002]
[Prior art]
A printed wiring board used by being incorporated in an electronic component is manufactured by bonding a conductive Cu foil on an insulating substrate, printing a wiring pattern on the surface, and removing unnecessary portions by etching.
[0003]
The Cu foil used for this printed wiring board is an electrochemical solution in which a high-grade Cu raw material is dissolved in a sulfuric acid solution, an insoluble metal such as Pb as the anode, the drum as the cathode, and the drum rotating. In particular, it is manufactured by a method in which Cu is continuously electrodeposited on a drum, this is continuously peeled off and wound into a roll. As a material for the drum, titanium has been frequently used in recent years from the viewpoint of excellent corrosion resistance and excellent peelability of Cu foil.
[0004]
By the way, the wiring pattern of electronic parts is extremely fine (width 0.1 to 0.5 mm) and requires high precision and reproducibility, so the surface roughness of Cu foil used for printed wiring is also extremely high precision and homogeneity. Sex is required. Since this surface roughness inherits the surface state of the titanium cathode drum on which the Cu foil was electrodeposited, the surface of the titanium drum is used after highly polished and leveled.
[0005]
However, even a highly corrosion-resistant titanium material is gradually corroded in the electrolyte during use, and the newly appearing surface state is transferred to the Cu foil. It is known that the degree of metal corrosion varies depending on various internal states such as the structure, crystal orientation, defects, segregation, processing strain and residual strain of the metal material. If a drum made of an internal material is corroded during use, a uniform surface state cannot always be maintained. When a non-uniform surface state appears, it is transferred to the copper foil, which causes a problem that Cu foil having a high accuracy and a uniform thickness cannot be manufactured.
[0006]
Titanium materials that can cause inhomogeneous corrosion surface states as described above can be identified by examining the macrostructure in the drum titanium plate. The macro structure in metallography can be obtained by etching using an appropriate acid solution (eg, nitric hydrofluoric acid in the case of titanium) used to reveal a cast or processed structure. This is a structure that appears due to various internal states such as structure, crystal orientation, defects, segregation, processing strain, and residual strain, just like the inhomogeneous structure that occurs during drum use.
[0007]
Among such heterogeneous tissues, those that can be discriminated with the naked eye are called “macro patterns”. In the case of a titanium drum for producing copper foil, the macro structure is dipped in an etching solution of about 10% nitric acid, about 5% boiling acid, and the remaining water for several tens of seconds to several minutes after polishing the surface with sandpaper No. 600. Can be obtained. For some reason, if there is a heterogeneous structure even with a length of several millimeters, these portions are differently etched, and thus are discriminated with the naked eye.
Therefore, homogenizing the macro structure of the raw material titanium material, that is, reducing the so-called “macro pattern” that occurs in the macro structure, achieves uniform corrosion of the drum, and highly accurate and uniform thickness Cu foil. Is essential for manufacturing.
[0008]
As an attempt to homogenize the macro structure of the drum titanium material and reduce the macro pattern, there is a method disclosed in Patent Document 1 below. In this method, the heat treatment conditions are devised to obtain a fine and sized structure, and the macro pattern is reduced. However, the process is complicated, and if the heating temperature and time are not strictly controlled, the grain size must be controlled. There was a problem that growth occurred and it was difficult to obtain a desired effect. Furthermore, there is a problem that handling of the material is complicated and workability is not good.
[0009]
[Patent Document 1]
JP-A-8-144033
[0010]
Patent Document 2 below also discloses an attempt to reduce the macro pattern by devising the thermomechanical processing conditions. However, this method is also complicated in the process, and its condition management is also complicated.
[0011]
[Patent Document 2]
Japanese Patent Publication No. 3-28505
[0012]
Further, in Patent Document 3 below, in order to refine and homogenize the structure, a slab having a recrystallized structure fraction exceeding 90% is hot-rolled at a total reduction ratio exceeding 15 and annealed. Is disclosed. However, with this method, the macro pattern is improved, but there is a problem that the crystal grains become slightly coarser and the appearance looks somewhat rough. Further improvement is required from the viewpoint of making the crystal grain size finer. It was.
[0013]
[Patent Document 3]
JP-A-11-226608
[0014]
Patent Document 4 listed below discloses a method for obtaining a uniform and dense metal structure by sufficiently introducing mechanical twins by cold rolling and forming a structure having less colony structure by annealing recrystallization. . However, although the combination of cold rolling and annealing by this method is effective in reducing the macro pattern, it requires cold rolling of large-sized thick plates, so it is difficult in terms of equipment and technology. There has been a demand for a new material that is high and can obtain a fine and uniform structure without cold rolling or annealing.
[0015]
[Patent Document 4]
JP 2000-45091 A
[0016]
Also, an attempt to obtain a homogeneous and fine metal structure with few macro patterns can be considered from the viewpoint of composition without relying on thermomechanical processing. For example, if a second phase that is different from the matrix is present, this suppresses crystal grain growth of the matrix main phase, making it easy to obtain a fine structure. For example, when the β phase is generated by adding 0.04% by mass or more, which is a solid solubility limit in titanium, this fine effect is achieved. However, the corrosion resistance of the β-phase enriched with Fe deteriorates significantly, and this part preferentially dissolves in the form of pits in a corrosive environment and is transferred to a Cu foil product. Is not applicable. When Ni is added, Ti2Ni phase is generated and corrosion resistance is improved, and at the same time, crystal grain refinement is achieved. However, there is a problem that Ni eluted in a corrosive environment is mixed into the Cu foil, which is not preferable.
[0017]
[Problems to be solved by the invention]
In view of the present situation as described above, the present invention has a uniform and fine plate surface metallographic structure with few macro patterns, can be manufactured without relying on complicated processing heat treatment, and can produce high-quality electrolytic Cu foil. It is an object of the present invention to provide a drum titanium material that can be produced and a method for producing the same.
[0018]
[Means for Solving the Problems]
The inventors of the present invention have conducted extensive research on the influence of additive elements on the formation of macrostructures that occur in hot-rolled sheets of various titanium materials, and on the reaction behavior of Cu foil production solutions and various titanium materials. Thus, the present inventors have found a titanium material that can maintain a uniform surface state even when it is corroded in a Cu foil manufacturing solution.
[0019]
  The present invention has been completed based on such findings, and the gist thereof is as follows.
(1) In mass%, Cu: 0.5 to 2.1%, Fe: 0.04% or less, oxygen: 0.1% or less, and the balance consisting of titanium and inevitable impurities,The average crystal grain size is less than 40 μmA titanium plate for an electrolytic Cu foil production drum, characterized by having a homogeneous fine recrystallized structure.
(2) The titanium plate for an electrolytic Cu foil production drum as described in (1) above, wherein the titanium plate comprises an α single phase.
(3) A slab containing Cu: 0.5 to 2.1%, Fe: 0.04% or less, oxygen: 0.1% or less, and the balance of titanium and inevitable impurities in a mass%, α + β two-phase A method for producing a titanium plate for an electrolytic Cu foil production drum, comprising heating to a temperature range, hot rolling, and annealing at a temperature not higher than the β transformation point.
(4) By mass%, a slab containing Cu: 0.5 to 2.1%, Fe: 0.04% or less, oxygen: 0.1% or less, and the balance titanium and inevitable impurities, α + β two-phase A method for producing a titanium plate for an electrolytic Cu foil production drum, comprising heating to a temperature range, hot rolling, and further annealing in an α single phase temperature range.
(5) Subsequent to the method described in (3) or (4) above, further cold rolling is performed, and then annealing is performed at a temperature equal to or lower than the β transformation point. A method for producing a titanium plate.
(6) Following the method described in (3) or (4) above, further cold rolling is performed, and then annealing is performed in an α single phase temperature range, and the titanium for electrolytic Cu foil production drums A manufacturing method of a board.
[0020]
(7) By mass%, containing one or two of Cu: 0.1 to 2.1% and Cr: 0.1 to 0.9%, Fe: 0.04% or less, oxygen: 0.0. Contains less than 1%, the balance is titanium and inevitable impurities,The average crystal grain size is less than 40 μmA titanium plate for an electrolytic Cu foil production drum, characterized by having a homogeneous fine recrystallized structure.
(8) The electrolysis as described in (7) above, further containing 1% or less of one or more of Mo, Ta, V, Zr, Nb, Hf, and W in total by mass% Titanium plate for Cu foil production drum.
(9) The titanium plate for an electrolytic Cu foil production drum as described in (7) or (8) above, comprising an α single phase.
(10) The slab comprising the component described in (7) or (8) is heated to a two-phase temperature range of α + β, hot-rolled, and further annealed at a temperature equal to or lower than the β transformation point. (7) to (9The manufacturing method of the titanium plate for electrolytic Cu foil manufacture drums of any one of 1).
(11) A slab composed of the component described in (7) or (8) above is heated to a two-phase temperature range of α + β, hot-rolled, and further annealed in an α single-phase temperature range. (7) to (9The manufacturing method of the titanium plate for electrolytic Cu foil manufacture drums of any one of 1).
(12) (10) Or (11The method for producing a titanium plate for an electrolytic Cu foil production drum, which is further subjected to cold rolling and subsequently annealing at a temperature not higher than the β transformation point.
(13) (10) Or (11The method for producing a titanium plate for an electrolytic Cu foil production drum, which is further subjected to cold rolling after the method described in) and then annealing in an α single phase temperature range.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
First, the components contained in the present invention will be described. The component content is% by mass.
In the present invention (1), Cu: 0.5 to 2.1%, Fe: 0.04% or less, oxygen: 0.1% or less, and the balance titanium and inevitable impurities.
First, the reason why Fe and oxygen are limited to the above range will be described.
Pure titanium and main titanium alloys have an α phase of hcp structure as the main phase, and oxygen is an alloying element that strengthens this. Since the electrolytic Cu foil production drum is formed into a cylindrical drum by bending the plate cold, the softer one is easier to mold, and the residual stress after molding is smaller and uniform. This residual stress also contributes to the generation of the macro pattern, and in order to reduce this, the oxygen content is set to 0.1% or less in the present invention. The lower limit of the amount of oxygen is not particularly specified, but is usually 0.005% or more as an impurity.
[0022]
Fe is an element that stabilizes the β phase, and the amount of solid solution in the α phase is extremely small and is 0.04% at most even at the temperature at which the most solid solution is formed. If Fe is added in excess of this, a β-phase enriched with Fe will appear, but as described in the section [Prior Art], this β-phase is preferential in a corrosive environment. It dissolves easily in pit-shaped depressions. If such a dent exists on the surface, it is transferred to the Cu foil to be electrodeposited, so that a high-quality Cu foil cannot be produced. Therefore, the Fe content needs to be 0.04% or less. The lower limit of the amount of Fe is not particularly specified, but is usually 0.005% or more as an impurity.
[0023]
Next, the reason why Cu is limited to the range of 0.5 to 2.1% will be described.
As shown in the binary equilibrium diagram of FIG. 1, Cu is around 850 ° C. which is a general hot rolling temperature of titanium material in the Cu concentration range (0.5 to 2.1%) of the present invention. Becomes two phases of α + β. The two-phase structure has a finer structure because crystal grain growth is significantly suppressed as compared with the single-phase structure. Further, it is a well-known fact that the processed recrystallized structure becomes homogeneous and finer as the structure before processing becomes finer. In the present invention, by adding an appropriate amount of Cu, the main hot rolling is possible in a two-phase temperature range, and the final structure is made into a homogeneous fine recrystallized structure to reduce the macro pattern.
[0024]
In order to realize this, the amount of Cu needs to be 0.5 to 2.1%. This is because when Cu is less than 0.5%, it does not become a two-phase around 850 ° C., which is the normal hot rolling heating temperature of titanium, and when Cu exceeds 2.1%, solidification segregation occurs. The macro pattern due to this segregation occurs or Ti2This is because the material strength increases with the increase of the Cu phase, the processing distortion due to cold forming becomes inhomogeneous, and a macro pattern resulting from this is generated.
[0025]
Of course, once heated to the two-phase temperature range and hot-rolled, depending on the subsequent cooling and annealing conditions, a small amount of Cu-concentrated β phase may remain up to room temperature, or the equilibrium diagram of FIG. As shown, Ti is an equilibrium phase at low temperatures.2There is also a possibility that a small amount of Cu phase is generated from the β phase. However, these Cu-enriched phases have high corrosion resistance unlike the Fe-enriched β phase, and even when exposed to a corrosive environment such as an electrolytic solution for producing Cu foil, As in the case of the β phase, vigorous preferential dissolution does not occur and the quality of the Cu foil product is not greatly deteriorated.
Further, the amount of these phases is small, and the influence on the workability when the drum is cold-formed is also small. Furthermore, since the drum is used for the purpose of electrodepositing Cu with a copper sulfate electrolyte, even if Cu elutes from the titanium material containing Cu, the Cu is taken into the product Cu foil. The foil is not adversely affected.
[0026]
In the present invention (1), it is essential to have a homogeneous fine recrystallized structure. In order to reduce the macro pattern, it is essential to have a homogeneous microstructure, but if it is not recrystallized, a macro pattern reflecting non-uniform processing strain distribution and unrecrystallized stretch coarse grains will occur. .
Here, the recrystallized structure refers to a structure in which there is no black linear or network-like unrecrystallized structure in the crystal grains, and is hardly seen except at the grain boundaries. The fine structure is an average crystal grain size of less than 40 μm. The crystal grains are shown. Homogeneity corresponds to the size of the drum product, for example, when a sample is taken from an arbitrary part of a 1.5 m × 8 m plate and the microstructure is observed, the optical microscope structure of any sample is finely reconstructed. It means a crystal structure. To confirm that it is homogeneous, test pieces of about 1 cm × 1.5 cm are collected from 3 to 4 places in the width direction end or center on the top and bottom sides adjacent to the longitudinal direction of the drum product. This is done by observing the microstructure of the surface with an optical microscope.
[0027]
For the reasons described above, the titanium material to which Cu of the present invention is added is a material suitable for a drum for producing electrolytic Cu foil.
The inevitable impurities refer to impurity elements that are unavoidable to be mixed into the material in manufacturing processes such as refining, melting, forging, hot rolling, cold rolling, heat treatment, and refining. For example, 0.05 % Or less of nitrogen, carbon, hydrogen, Ni, Cr, Mn, Mg, Sn, Al, V, Si and the like.
[0028]
In the present invention (2), the titanium plate for electrolytic Cu foil production drum of the present invention (1) is made of α single phase. As described in the description of the present invention (1), the Cu-rich β phase and Ti2Even if a small amount of Cu phase is present, a drum capable of producing a high-quality Cu foil can be produced. The stress / strain distribution is also homogenized, and the corrosion by the electrolytic solution is remarkably uniform, so that a very high quality Cu foil can be manufactured.
[0029]
The titanium plate for an electrolytic Cu foil production drum as described above can be produced, for example, by the method described in (3) to (6) of the present invention. Next, this manufacturing method will be described.
First, in the method described in the present invention (3), the titanium slab was heated in the α + β two-phase temperature range of the titanium material, and hot-rolled in the α + β two-phase temperature range. The purpose of Cu addition in the present inventions (1) and (2) is to make a two-phase temperature range sufficient to obtain a homogeneous microstructure. Therefore, the initial purpose can be achieved by entering this temperature range in the middle of rolling, but if the slab is heated to this temperature range from the beginning, this purpose is surely achieved.
[0030]
Moreover, after hot rolling, it was decided to anneal in a temperature range below the β transformation point of the titanium material. This is a process for obtaining a homogeneous fine recrystallized structure by accelerating recrystallization with a strain accumulated highly by hot rolling in a two-phase state as a nucleus. Therefore, the lower limit of the annealing temperature is preferably the recrystallization temperature.
[0031]
The β transformation point is the temperature at which the β single phase becomes higher at higher temperatures, and when heated to a β single phase region where diffusion is extremely fast, the accumulated strain is released at once and the grains grow. As a result, the effect of α + β two-phase rolling at the corner is lost, and a homogeneous microstructure cannot be obtained. However, in the α + β two-phase region below the β transformation point, since the grain growth is suppressed, a homogeneous fine recrystallized structure can be achieved. In this case, when the material passes through the α single phase region during cooling after annealing, most of the β phase is transformed into the α phase, but the homogeneous microstructure is maintained. Also, especially when the cooling rate is fast, the β phase remains or Ti during the cooling2Cu phase may be generated, but even if these are generated, the amount is small, and as explained earlier, no severe preferential elution occurs in the electrolytic solution for producing Cu foil, and when the drum is formed, The effect on processability is also minimal. Therefore, the quality of the Cu foil product is not significantly reduced.
[0032]
Also, annealing is performed at α + Ti lower than the α single phase region.2The same is true when performed in the Cu two-phase temperature range. That is, when passing through the α single phase region during cooling after hot rolling, most of the β phase has already transformed into the α phase, and from the α phase to the Ti phase2The reaction in which Cu precipitates is extremely slow and requires 100 hours or more, so this reaction does not occur during actual annealing. Therefore, α + Ti2Even when annealing is performed in the Cu two-phase temperature range, the α phase occupies the majority, and a very small amount of β phase is mixed. In addition, no vigorous preferential elution occurs in the electrolytic solution for producing Cu foil, and the influence on the workability when forming a drum is slight, and the quality of the Cu foil product is not significantly lowered.
[0033]
Α + β two-phase region and α + Ti2When annealed in the α single phase region in the middle of the Cu two phase region, the β phase and Ti that were mixed after hot rolling2All the Cu phases become α phases, and a complete α single phase structure is realized. This state is the α + β region and α + Ti2Compared to annealing in the Cu region, it is easy to grow crystal grains because it is in a single phase state, but because the strain is accumulated in the α + β two-phase region first, it is homogeneous unless the annealing time is unnecessarily prolonged. A fine recrystallized structure can be achieved.
In addition, α + Ti during cooling2Although passing through the Cu two-phase region, as described above, Ti from the α phase2Since the precipitation of the Cu phase is very slow, a substantially α single phase state can be achieved at room temperature. Therefore, the titanium plate for the electrolytic Cu foil production drum of the present invention (2) can be produced, and the corrosion by the electrolytic solution becomes extremely homogeneous, and a very high quality Cu foil can be produced. This method is the manufacturing method according to the present invention (4).
[0034]
In the present invention (5), the titanium plate produced by the method described in the present invention (3) or (4) is further cold-rolled and then annealed at a temperature equal to or lower than the β transformation point. This is a technique for achieving a more homogeneous and fine structure by further imparting cold working strain to the titanium plate produced in the present invention (3) or (4) and recrystallizing it again. The annealing is performed at a temperature equal to or lower than the β transformation point as in the case of the present inventions (3) and (4). In particular, when annealing is performed in the α single phase temperature range, the α single phase state can be achieved at room temperature as in the case of the present invention (4). Therefore, the titanium plate for the electrolytic Cu foil production drum of the present invention (2) can be produced, the corrosion by the electrolytic solution becomes very homogeneous, and a very high quality Cu foil can be produced. This method is the production method according to the present invention (6).
[0035]
In the present invention (7), Cu: 0.1 to 2.1%, Cr: one or two of 0.1 to 0.9%, Fe: 0.04% or less, oxygen: 0.1% or less The remainder is composed of titanium and inevitable impurities.
The reasons for limiting Fe and oxygen are the same as in the present invention (1).
The reason for limiting Cu to the range of 0.1 to 2.1% is that, as in the case of the present invention (1), the main hot rolling can be performed in the two-phase temperature range, and the final structure can be homogenously refined. This is to obtain a crystal structure. As shown in the binary equilibrium diagram of FIG. 2, Cu becomes α + β two-phase at 790 to 880 ° C. in the Cu concentration range (0.1 to 2.1%) of the present invention. When Cu is less than 0.1%, the two-phase temperature range of α + β is narrow, and temperature control becomes extremely difficult. Further, when Cu is added in excess of 2.1%, as in the case of the present invention (1), a macro pattern is generated due to solidification segregation and heterogeneity of processing strain due to cold forming.
[0036]
The reason for limiting Cr to 0.1 to 0.9% is the same reason. FIG. 3 shows a Ti—Cr binary phase diagram. In the Cr concentration range (0.1 to 0.9%) of the present invention, the α + β two-phase temperature range is 660 to 870 ° C. If the Cr concentration is less than 0.1%, the temperature range in the α + β two-phase region is narrow, and thus temperature control becomes extremely difficult. On the other hand, when Cr exceeding 0.9% is added, solidification segregation and TiCr2A macro pattern is generated due to inhomogeneous cold working strain due to an increase in phase.
In addition, when Cu and Cr are contained at the same time, the crystal grains become finer and more uniform. When the total amount of both components exceeds 3%, solidification segregation increases, and macro patterns resulting from this segregation occur, hardness increases excessively, and polishing becomes difficult. It is preferable to do.
[0037]
In the present invention (8), one or more of Mo, Ta, V, Zr, Nb, Hf, and W are contained in order to obtain appropriate hardness and plastic deformability. It is preferable to contain 1% or more. By adding these elements and increasing the hardness moderately, the roughness after polishing is reduced, and a drum material with less micro unevenness can be produced. Mo, Ta, V, and Zr also have a function of improving the corrosion resistance against the sulfuric acid solution. The reason why the total content of one or more of Mo, Ta, V, Zr, Nb, Hf, and W is 1% or less is that if the content is more than this, the macro is caused by segregation of the constituent elements. This is because a pattern is generated, the hardness is excessively increased, and polishing becomes difficult.
[0038]
In the present invention (9), as in the present invention (2), the titanium plate for the electrolytic Cu foil production drum is made of α single phase. In the titanium plate for an electrolytic Cu foil production drum of the present invention (7) or (8), a small amount of β phase and / or precipitated phase may be produced depending on the components and production conditions, as in the description of the present invention (1). There is sex. That is, among Cu and Cr, when Cu is added, the β-phase and / or Ti enriched in Cu2Cu phase, Cr-rich β phase and / or TiCr when Cr is added2A phase occurs. In addition, when two types of Cu and Cr are added, a β phase enriched in Cu and Cr and / or a composite precipitated phase of Ti, Cu and Cr (hereinafter referred to as TixCuyCrzPhase)).
Even if these β phases and / or precipitated phases are present in a small amount, it is possible to produce a drum capable of producing high-quality Cu foil. Similar to the present invention (2), a very high quality Cu foil can be produced.
[0039]
Here, the α single phase is the structure of the equiaxed crystal shown in FIG. The β phase is a black streak-like phase extending in the lateral direction of the photograph as shown by the arrow 1 in FIG. 5, and the precipitated phase is an equiaxed α phase as shown by the arrow 2 in FIG. It is a black dot-like phase generated at the grain boundary. It is confirmed as follows that the structure is α single phase.
First, 3 to 4 samples of 10 to 20 mm square were collected from the width direction end and center of the part adjacent to the top side and the bottom side of the product plate, the surface was milled, and then sandpaper polishing No. 600 Finishing, observing by etching for several tens of seconds with a nitric acid solution consisting of 10% nitric acid and 3% hydrofluoric acid, and observing each sample for about 5 fields of view at 100 times with an optical microscope, area 3-5 mm2The structure in the range is the α single phase shown in FIG. 4, and the black streak-like phase and the black dot-like phase shown by arrows 1 and 2 in FIG. 5 are not observed.
Here, equiaxed means a structure having crystal grains whose aspect ratio is within 1.4. The measuring method is based on the fact that the average crystal grain size of the test piece collected by the above-described method is measured in a direction of 45 ° with respect to the rolling direction, the width direction, and the rolling direction, and the respective ratios are within 1.4.
[0040]
  The present invention(1) and (7)The average crystal grain size is less than 40 μm because the surface of the electrodeposited copper foil in contact with the titanium drum appears to be slightly rough at 40 μm or more, and is particularly thin copper foil having a thickness of 10 μm or less. This is because the shape is affected. The average grain size is preferably less than 30 μm and the optimum upper limit is less than 20 μm. The crystal grain size is preferably measured by a cutting method.
[0041]
  The present invention (7) to (9The method for producing a titanium plate for an electrolytic Cu foil production drum of) will be described below.
  In the hot rolling of the slab, as in the present inventions (3) and (4), the titanium material is heated to the α + β two-phase temperature region and hot-rolled in the α + β two-phase temperature region. The initial purpose can be achieved if this temperature range is entered during rolling, but if the slab is heated to this temperature range from the beginning, this purpose is surely achieved.
[0042]
  The present invention (10), In the same manner as in the present invention (3), in order to obtain a homogeneous fine recrystallized structure, it was decided to anneal in the temperature range below the β transformation point of the titanium material after hot rolling. The lower limit of the annealing temperature is preferably the recrystallization temperature. The β transformation point is the boundary temperature between the β phase and the α + β phase shown in the Ti—Cu calculation state diagram (FIG. 2) and the Ti—Cr calculation state diagram (FIG. 3).
  In the α + β two-phase region below the β transformation point, since the grain growth is suppressed, a homogeneous fine recrystallization structure can be achieved. During the cooling after annealing, most of the β phase is transformed into the α phase. However, when the cooling rate is fast, the β phase remains, or during the cooling, depending on the components,2 Cu phase, TiCr2 Phase or TiX CuY CrZ A phase may form. However, even if these are produced, they are in a small amount, and as described above, the quality of the Cu foil product is not significantly deteriorated.
[0043]
Also, annealing is performed in a two-phase temperature range lower than the α single phase range, that is, α + Ti.2Cu two-phase region, α + TiCr2Two-phase region or α + TixCuyCrzIt may be performed in a two-phase region. This two-phase temperature range is a temperature range in which a precipitated phase is present in the α phase in an equilibrium state.2Cu phase, TiCr2Phase or TixCuyCrzAlthough a phase is present, the reaction in which these precipitate from the α phase is extremely slow and takes 100 hours or more, so this reaction does not occur during actual annealing. Therefore, even when annealing is performed in this two-phase temperature range, the α phase occupies most and a very small amount of β phase is mixed, and the quality of the Cu foil product is not significantly reduced.
[0044]
  The present invention (11), In the same manner as in the present invention (4), after hot rolling, annealing was performed in the α single phase region. In this case, the β phase and Ti that were mixed after hot rolling2 Cu phase, TiCr2 Phase or TiX CuY CrZ All phases are α phases, and a complete α single phase structure is realized. Since this state is a single-phase state, it is easy to grow crystal grains, but since strain is accumulated by hot rolling in the α + β two-phase region, uniform fine recrystallization unless the annealing time is unnecessarily prolonged. The organization can achieve.
  In addition, α + Ti during cooling2 Cu, α + TiCr2 Or α + TiX CuY CrZ As mentioned above, Ti from the α phase2 Cu phase, TiCr2 Phase or TiX CuY CrZ Since the precipitation of the phase is very slow, an α single phase state can be substantially achieved at room temperature. Therefore, a titanium plate for an α single phase electrolytic Cu foil production drum can be produced, and a very high quality Cu foil can be produced.
[0045]
  The present invention (12) In the present invention (10) Or (11) Further, cold rolling was performed on the titanium plate manufactured by the method described above, and then annealing was performed at a temperature equal to or lower than the β transformation point. This is a technique which, like the present invention (5) or (6), attempts to achieve a more homogeneous and fine structure by further applying cold work strain and recrystallizing again. It was decided that the annealing was performed at a temperature below the β transformation point in the present invention (10). Further, when annealing is performed in the α single phase temperature range, the present invention (11As in the case of), the α single phase state can be achieved at room temperature. Therefore, a titanium plate for an α single-phase electrolytic Cu foil production drum can be produced, and the corrosion by the electrolytic solution becomes very homogeneous, and a very high quality Cu foil can be produced. This method is the present invention (13).
[0046]
【Example】
The present invention will be described in more detail with reference to examples.
(Experiment 1)
An ingot composed of the components shown in Table 1 was prepared by melting by vacuum arc twice, and this was ingot rolled into a slab having a thickness of 150 mm. This slab was heated to 850 ° C., hot-rolled in the range of 850 to 700 ° C., hot-rolled to a plate having a temperature thickness of 10 mm, and annealed at 630 ° C. This annealing was performed using a vacuum creep straightener (VCF) as well as shape correction.
[0047]
The test specimen cut out from the above thick plate is ground 2mm in parallel with the plate surface including the black skin part, polished # 600, etched with a nitric acid-based macro corrosive solution, and crystal grains While measuring the diameter, the macro pattern was observed. Moreover, the presence or absence of the pit-shaped hollow was observed by SEM observation. For a plate with a good macro pattern, after descaling, it was bent into a cylindrical drum with a diameter of 2.7 m in the cold, and a test piece cut out from this part was etched with a nitric acid-based macro corrosive solution. The macro pattern was observed.
In addition, macro pattern observation was implemented with respect to three 10cm and 8cm area | regions, and evaluated by the number of macro patterns observed visually. That is, it is a four-stage evaluation: 0 to 1: ◎, 2 to 5: ◯, 6 to 10: Δ, 11 or more: x.
[0048]
In Table 1, test number 1 is the case of normal pure titanium, and the macro pattern was x judgment because it was manufactured by a normal thick plate manufacturing process. On the other hand, in the test number 2 in which Fe is added in a slightly larger amount, the Δ judgment is improved. However, this level is still inadequate. In this material, the β phase enriched with Fe was preferentially dissolved, so pit-like depressions were also observed, which was not preferable as a titanium plate for an electrolytic Cu foil production drum. .
In Test No. 3 and Test No. 4 with Ni added, Ti2Fine crystal grains were obtained due to the effect of suppressing grain growth of Ni, and the macro pattern evaluation result was ◯. However, this Ti2Due to the generation of the Ni phase, the strength of the material was increased, the distortion when molded into a drum became non-uniform, and the macro pattern evaluation on the drum was Δ. Further, there is a problem that Ni eluted in a corrosive environment is mixed into the Cu foil, which is not preferable.
[0049]
On the other hand, test numbers 6, 7, 8, and 11, which are examples of the present invention, all obtained homogeneous fine recrystallized grains, and the macro pattern evaluation was a good result of ◎ for the plate and ○ for the drum. Thus, the effects of the present invention have been sufficiently achieved.
[0050]
On the other hand, in test number 5, only a macro pattern determination of Δ was obtained. This is because the Cu addition amount is lower than the lower limit of the present invention, and a sufficient two-phase state was not achieved during hot rolling. Moreover, in test number 9, since the addition amount of Cu exceeded the upper limit of the present invention, solidification segregation became severe and the average particle size was small, but coarse particles were partially mixed, and due to uneven corrosion due to Cu segregation. The macro pattern has been judged as x. In Test No. 10, since the addition amount of Fe exceeded 0.04% defined in the present invention, pit-shaped depressions were generated during corrosion. In Test No. 13, annealing was omitted and a sufficient recrystallized structure was not obtained, and therefore, a macro pattern reflecting non-uniformity in processing strain distribution and stretched coarse grains was generated, resulting in x determination.
[0051]
[Table 1]
Figure 0004094395
[0052]
(Experiment 2)
The temperature shown in the column of slab heating temperature in Table 2 for a slab having a thickness of 150 mm made of exactly the same component (Ti-1.1% Cu-0.03% Fe-0.05% oxygen) as in Test No. 7 of Experiment 1 Then, it was hot-rolled to a 10 mm thick plate and annealed at various temperatures shown in the column of annealing temperature in Table 2.
Thereafter, the crystal grain size, macro pattern, and the like were evaluated in exactly the same manner as in Experiment 1. The results are shown in Table 2. Here, for comparison, the result of test number 7 of Experiment 1 is also shown. Β transformation point of this component, boundary temperature between α + β two-phase temperature region and α single phase region, α single phase region and α + Ti2The boundary temperatures in the Cu two-phase temperature range are all the same as in test number 7 and are 865 ° C., 825 ° C., and 730 ° C., respectively.
[0053]
In Table 2, the method described in the present invention (3) or (4), that is, slab heating to α + β two-phase region, rolling, annealing at a temperature not higher than β transformation point, test numbers 14, 17, 18, 19, In No. 20, fine grains were obtained, and the macro pattern of the plate was judged as ◎. Moreover, there was no pitting, and the macro pattern after molding on the drum was a good result of ◯ to ◎. In particular, Test Nos. 18 and 19 in which annealing was performed in the α single phase temperature range described in the present invention (4) are macro pattern determinations of ◎ even after forming into a drum, and the effects of the present inventions 2 and 4 Has been demonstrated without regret.
[0054]
Here, in test numbers 14 and 15, the slab heating temperature was out of the temperature range described in the present invention (3), but in test number 14, the temperature dropped during hot rolling, and in test number 15 In the initial stage of hot rolling, both of them were in the α + β two-phase temperature range, and the product of the present invention (1) could be manufactured. However, while the test number 7 in which the slab heating was reliably performed in the α + β region was the macro pattern determination of “◎”, these were all “◯” determination, and the quality was slightly inferior.
In addition, test number 16 in which annealing was performed at a temperature exceeding the β transformation point was heated in the β single phase region where diffusion was extremely fast, so that the strain accumulated in the bending α + β region heating rolling was released all at once and grain growth occurred. As a result, a homogeneous microstructure was not obtained, and the macro pattern evaluation was judged as x.
[0055]
[Table 2]
Figure 0004094395
[0056]
(Experiment 3)
Test numbers 7, 17, and 19 having components of Ti-1.1% Cu-0.03% Fe-0.05% oxygen were selected from the hot-rolled annealed plates produced in Experiments 1 and 2, and these were selected. After descaling, cold rolling was further performed to obtain a 5 mm thick plate. Then, annealing was performed at the temperature described in the column of annealing temperature after cold rolling in Table 3, and the crystal grain size and macro pattern evaluation were performed in the same manner as in Experiments 1 and 2. The results are shown in Table 3.
[0057]
In Table 3, all the plates produced by the method according to the present invention (5) or (6) have a smaller crystal grain size than the case of the hot-rolled annealed plate, and the macro pattern evaluation of the plate is all ◎ It was a judgment. Even in the hot-rolled annealed sheet, ◎ is obtained, but finer crystal grains are obtained. Therefore, when a drum manufactured with this material is used, a denser and higher quality electrolytic Cu foil is manufactured. it can.
[0058]
Here, in test number 19, the hot-rolled annealed plate before cold rolling is composed of an α single phase, but the annealing after cold-rolling is performed by α + Ti.2Even in the Cu two-phase region, Ti2Since the precipitation of the Cu phase is extremely slow, the α single phase state is maintained. Therefore, the present invention (2) has been achieved, and even when processed into a drum, a high quality of の is obtained.
In Test Nos. 26 and 27, there was a slight second phase before cold rolling, but since the final annealing after cold rolling was performed in the α single phase region, the present invention (2) was achieved, and the drum Even when processed into high quality, a high quality of ◎ was obtained.
[0059]
[Table 3]
Figure 0004094395
[0060]
(Experiment 4)
An ingot composed of the components shown in Table 4 was made into a slab having a thickness of 150 mm in exactly the same manner as in Experiment 1. This slab was heated to a slab heating temperature shown in Table 4 and hot-rolled within a range from this temperature to 700 ° C. to obtain a hot-rolled sheet having a thickness of 10 mm. Furthermore, annealing was performed at the annealing temperature shown in Table 4 using a vacuum creep straightener (VCF) as well as shape correction. Table 4 also shows the phase states at the heating temperature and annealing temperature estimated from the calculated phase diagram.
[0061]
The measurement of the crystal grain size of the above-mentioned thick plate and the observation of the macro pattern were performed in exactly the same manner as in Experiment 1. In addition, for macro pattern judgments of ◎, ○, and Δ, the presence or absence of pit-like depressions was observed by SEM observation. A pit-shaped depression is a circular or polygonal hole having a diameter of several μm. For the plates with macro pattern judgments of ◎, ○, △, after descaling, they were bent into a cylindrical drum shape with a diameter of 2.7 m in the cold, and a test piece cut out from this part was cut into a nitric acid type The macro pattern was observed by etching with a macro corrosive solution. For a good material having a macro pattern judgment of “◎” or “○” and no pit-like depressions were observed, a weldability test was also conducted to observe whether a weld line could be seen after polishing.
[0062]
Test No. 29 in Table 4 having the same components as Test No. 5 in Table 1 was heated in the α + β two-phase region and hot rolled at the α + β two-phase region temperature. Regarding test numbers 30 and 31, since the hot rolling was performed in the α + β two-phase temperature range, the macro judgment by the plate was “あ っ た”.
The test number 32 is a case of normal pure titanium, and in the manufacturing method by hot rolling (slab heating temperature 850 ° C.) and annealing (annealing temperature 630 ° C.), the macro pattern of the plate was X judgment. In test number 33 containing only 0.03% of Cr, a sufficient two-phase state was not achieved during hot rolling, and the macro pattern judgment was Δ. Thus, when normal pure titanium or Cr content is less than 0.1%, hot rolling in the α + β phase is difficult, so that many unrecrystallized portions remain and the macro pattern determination is insufficient.
[0063]
On the other hand, the test numbers 34, 36, 38, 40 and 41 containing 0.19%, 0.41%, 0.58% and 0.81% Cr each obtained a fine homogeneous microstructure. The macro evaluation was also a good result of ま た は or ○, and the effect of the present invention was sufficiently achieved.
Thus, when Cr is contained in an amount of 0.1 to 0.9% and hot rolled in the α + β phase, the entire material becomes a uniform recrystallized structure even after hot rolling, so that the macro pattern determination is good.
[0064]
On the other hand, in Test No. 35, the amount of Fe added exceeded 0.04% defined in the present invention, and thus pit-shaped depressions were generated during corrosion. In Test No. 37, the amount of oxygen added exceeded 0.1% defined in the present invention, so the weld line did not disappear even after polishing after welding. In Test No. 39, since the temperature at the time of hot rolling was in the β region, the grain growth was remarkable and the crystal grains were coarsened, a homogeneous microstructure was not obtained, and the macro pattern judgment was x. For test number 42 in which annealing was performed in the β region, the crystal grains were similarly coarsened, a homogeneous microstructure was not obtained, and the macro judgment was x. Test No. 43 was when the Cr content was as high as 1.17%, and the macro pattern determination was Δ.
[0065]
Test numbers 44 and 45 are examples of the present invention in the case of containing both Cu and Cr. After hot rolling in the α + β two-phase region and annealing in the α region, the macro pattern judgment of the plate is ◎, The macro pattern judgment was ○. In test number 46, the Cr content was larger than the range of the present invention, and the macro pattern judgment was Δ.
Test numbers 47 to 52 are examples in the case of containing one of Mo, V, Nb, and W and Cu, respectively. Each material had a high gloss after polishing, which was probably due to a slight increase in hardness, and a material with low surface roughness. Macro patterns of test numbers 47 to 50, which were annealed in the α region after hot rolling in the α + β two-phase region, were evaluated as “good”.
In the test numbers 51 and 52 of the comparative examples, the addition amounts of Mo and Nb exceeded 1%, respectively, and a macro pattern due to segregation of those elements was generated, and the macro pattern was a Δ determination.
[0066]
Test numbers 53 to 55 are examples in the case of containing two kinds of Mo, V, Nb, and W and Cu. In these cases, a material having a high gloss after polishing and a small surface roughness, which is considered to be due to a slight increase in hardness, was obtained. The macro patterns of Test Nos. 53 and 54 that were annealed in the α region after hot rolling in the α + β two-phase region were evaluated as “good”.
In test number 55 of the comparative example, the total addition amount of Mo and Nb exceeded 1%, and a macro pattern due to segregation of those elements occurred, and the macro pattern was Δ.
Test numbers 56 to 61 are examples in the case of containing one of Mo, Ta, V, Nb, W, and Hf and Cr. All the materials had a high gloss after polishing, which seems to be caused by a slight increase in hardness, and a material with a small surface roughness. The macro patterns of test numbers 56 to 59 that were annealed in the α region after hot rolling in the α + β two-phase region were evaluated as “good”. In the test numbers 60 and 61 of the comparative examples, the addition amounts of Ta and Hf exceeded 1%, respectively, and a macro pattern due to segregation of those elements was generated.
[0067]
Test numbers 62 to 64 are examples in the case of containing Mo, Ta, Nb, and W and Cr. In these cases, a material having a high gloss after polishing and a small surface roughness, which is considered to be due to a slight increase in hardness, was obtained. The macro patterns of Test Nos. 62 and 63 that were annealed in the α region after hot rolling in the α + β two-phase region were evaluated as “good”.
In the test number 64 of the comparative example, the total addition amount of Mo and Nb exceeded 1%, and a macro pattern due to segregation of those elements occurred.
[0068]
[Table 4]
Figure 0004094395
[0069]
(Experiment 5)
An ingot comprising the components shown in Table 5 was made into a slab having a thickness of 150 mm in exactly the same manner as in Experiment 1. This slab was heated to the slab heating temperature shown in Table 5 and hot-rolled to a 10 mm thick plate. Furthermore, annealing was performed at the annealing temperature shown in the column of annealing 1 in Table 5 using a vacuum creep straightening machine (VCF) also for shape correction. The phase state at the annealing temperature estimated from the calculated phase diagram is also shown in the column of annealing 1 in Table 5. These were descaled and further cold-rolled to form 5 mm thick plates. Then, annealing was performed at the temperature shown in annealing 2 of Table 5, and the crystal grain size and macro pattern were determined by the same method as in Experiment 1. The column of annealing 2 in Table 5 also shows the phase state at the annealing temperature estimated from the calculated phase diagram.
Samples with macro pattern judgments of ◎, ○, and △ were observed by SEM for the presence or absence of pit-like depressions, and were bent into a cylindrical drum shape with a diameter of 2.7 m in a cold manner. Cutting out and observing the macro pattern. Furthermore, for a good material in which the macro pattern judgment was “◎” or “○” and no pit-like depression was observed, a weldability test was also conducted to observe whether a weld line could be seen after polishing.
[0070]
Test numbers 65-71, 73-75, 77, 79-81, 83 are all ◎ for both the macro pattern evaluation of the plate and the macro pattern evaluation of the drum, there is no pitting, and the weld line after welding Was also not observed. On the other hand, in the test number 72 where the contents of Cu and Cr are larger than the specified values of the present invention, the macro pattern evaluation of the plate was Δ. In addition, in Test Nos. 76, 78, 82, and 84, the addition amount of V, the total addition amount of Ta and Hf, the addition amount of Zr, and the total addition amount of Zr and Hf exceed the specified values of the present invention. The macro pattern evaluation of the plate was Δ.
[0071]
[Table 5]
Figure 0004094395
[0072]
【The invention's effect】
As described above, according to the present invention, a titanium plate for an electrolytic Cu foil production drum having a uniform and fine plate surface metallographic structure with few macro patterns and suitable for producing high-quality electrolytic Cu foil and a method for producing the same. Can be provided without going through a complicated heat treatment process.
[Brief description of the drawings]
FIG. 1 shows a part of a binary equilibrium diagram of Ti and Cu.
FIG. 2 is a diagram showing a part of a binary system equilibrium diagram of Ti and Cu.
FIG. 3 is a diagram showing a part of a binary system equilibrium diagram of Ti and Cr.
FIG. 4 is a view showing a microstructure of an α single-phase titanium plate.
FIG. 5 is a view showing a microstructure of a titanium plate having a β phase and a precipitated phase.

Claims (13)

質量%で、
Cu:0.5〜2.1%、
Fe:0.04%以下、
酸素:0.1%以下
を含み、残部チタンと不可避不純物からなり、平均結晶粒径が40μm未満である均質微細再結晶組織を有することを特徴とする、電解Cu箔製造ドラム用チタン板。
% By mass
Cu: 0.5 to 2.1%,
Fe: 0.04% or less,
A titanium plate for an electrolytic Cu foil production drum, comprising oxygen: 0.1% or less, comprising a balance of titanium and inevitable impurities, and having a homogeneous fine recrystallized structure having an average crystal grain size of less than 40 μm .
前記チタン板がα単相からなることを特徴とする、請求項1に記載の電解Cu箔製造ドラム用チタン板。  The titanium plate for an electrolytic Cu foil production drum according to claim 1, wherein the titanium plate is composed of an α single phase. 質量%で、
Cu:0.5〜2.1%、
Fe:0.04%以下、
酸素:0.1%以下
を含み、残部チタンと不可避不純物からなるスラブを、α+βの二相温度域に加熱し、熱間圧延し、さらにβ変態点以下の温度で焼鈍することを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。
% By mass
Cu: 0.5 to 2.1%,
Fe: 0.04% or less,
Oxygen: A slab containing 0.1% or less and the balance titanium and inevitable impurities is heated to a two-phase temperature range of α + β, hot-rolled, and further annealed at a temperature below the β transformation point. The manufacturing method of the titanium plate for electrolytic Cu foil manufacturing drums.
質量%で、
Cu:0.5〜2.1%、
Fe:0.04%以下、
酸素:0.1%以下
を含み、残部チタンと不可避不純物からなるスラブを、α+βの二相温度域に加熱し、熱間圧延し、さらにα単相温度域にて焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。
% By mass
Cu: 0.5 to 2.1%,
Fe: 0.04% or less,
Oxygen: The slab containing 0.1% or less and the balance titanium and inevitable impurities is heated to the α + β two-phase temperature range, hot-rolled, and further annealed in the α single-phase temperature range. A method for producing a titanium plate for an electrolytic Cu foil production drum.
請求項3または4に記載の方法に引き続いて、さらに冷間圧延を行い、その後、β変態点以下の温度で焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。  A method for producing a titanium plate for an electrolytic Cu foil production drum, wherein the method further comprises cold rolling after the method according to claim 3 or 4 and then annealing at a temperature not higher than the β transformation point. 請求項3または4に記載の方法に引き続いて、さらに冷間圧延を行い、その後、α単相温度域で焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。  5. A method for producing a titanium plate for an electrolytic Cu foil production drum, comprising performing cold rolling after the method according to claim 3 or 4 and then performing annealing in an α single phase temperature range. 質量%で、
Cu:0.1〜2.1%、
Cr:0.1〜0.9%
の1種または2種を含有し、
Fe:0.04%以下、
酸素:0.1%以下
を含み、残部チタンと不可避不純物からなり、平均結晶粒径が40μm未満である均質微細再結晶組織を有することを特徴とする、電解Cu箔製造ドラム用チタン板。
% By mass
Cu: 0.1 to 2.1%
Cr: 0.1-0.9%
1 type or 2 types of
Fe: 0.04% or less,
A titanium plate for an electrolytic Cu foil production drum, comprising oxygen: 0.1% or less, comprising a balance of titanium and inevitable impurities, and having a homogeneous fine recrystallized structure having an average crystal grain size of less than 40 μm .
質量%でさらに、Mo、Ta、V、Zr、Nb、Hf、Wの1種または2種以上を合計で1%以下含有することを特徴とする、請求項7に記載の電解Cu箔製造ドラム用チタン板。  8. The electrolytic Cu foil production drum according to claim 7, further comprising 1% or less in total of one or more of Mo, Ta, V, Zr, Nb, Hf, and W by mass%. Titanium plate. α単相からなることを特徴とする、請求項7または8に記載の電解Cu箔製造ドラム用チタン板。  The titanium plate for an electrolytic Cu foil production drum according to claim 7 or 8, comprising an α single phase. 請求項7または8に記載の成分からなるスラブを、α+βの二相温度域に加熱し、熱間圧延し、さらにβ変態点以下の温度で焼鈍することを特徴とする、請求項7〜のいずれか1項に記載の電解Cu箔製造ドラム用チタン板の製造方法。The slab containing components according to claim 7 or 8, a second heat phase temperature range of the alpha + beta, and hot rolling, characterized by further annealed at beta transformation point temperature, claim 7-9 The manufacturing method of the titanium plate for electrolytic Cu foil manufacture drums of any one of these. 請求項7または8に記載の成分からなるスラブを、α+βの二相温度域に加熱し、熱間圧延し、さらにα単相温度域にて焼鈍を行うことを特徴とする、請求項7〜のいずれか1項に記載の電解Cu箔製造ドラム用チタン板の製造方法。The slab composed of the component according to claim 7 or 8 is heated to an α + β two-phase temperature range, hot-rolled, and further annealed in an α single-phase temperature range. 10. A method for producing a titanium plate for an electrolytic Cu foil production drum according to any one of 9 above. 請求項10または11に記載の方法に引き続いて、さらに冷間圧延を行い、その後、β変態点以下の温度で焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。A method for producing a titanium plate for an electrolytic Cu foil production drum, characterized in that, following the method according to claim 10 or 11 , further cold rolling is performed and then annealing is performed at a temperature not higher than the β transformation point. 請求項10または11に記載の方法に引き続いて、さらに冷間圧延を行い、その後、α単相温度域で焼鈍を行うことを特徴とする、電解Cu箔製造ドラム用チタン板の製造方法。The manufacturing method of the titanium plate for electrolytic Cu foil manufacturing drums which performs cold rolling further after the method of Claim 10 or 11 , and then anneals in alpha single phase temperature range.
JP2002289451A 2002-04-10 2002-10-02 Titanium plate for electrolytic Cu foil production drum and production method thereof Expired - Lifetime JP4094395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289451A JP4094395B2 (en) 2002-04-10 2002-10-02 Titanium plate for electrolytic Cu foil production drum and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002107468 2002-04-10
JP2002289451A JP4094395B2 (en) 2002-04-10 2002-10-02 Titanium plate for electrolytic Cu foil production drum and production method thereof

Publications (2)

Publication Number Publication Date
JP2004002953A JP2004002953A (en) 2004-01-08
JP4094395B2 true JP4094395B2 (en) 2008-06-04

Family

ID=30446828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289451A Expired - Lifetime JP4094395B2 (en) 2002-04-10 2002-10-02 Titanium plate for electrolytic Cu foil production drum and production method thereof

Country Status (1)

Country Link
JP (1) JP4094395B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170120183A (en) 2015-03-02 2017-10-30 신닛테츠스미킨 카부시키카이샤 Titanium foil and method of making it
WO2019043882A1 (en) 2017-08-31 2019-03-07 新日鐵住金株式会社 Titanium sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486530B2 (en) 2004-03-19 2010-06-23 新日本製鐵株式会社 Heat-resistant titanium alloy plate excellent in cold workability and method for producing the same
JP4987614B2 (en) * 2007-08-08 2012-07-25 新日本製鐵株式会社 Titanium plate for electrolytic Cu foil production drum and production method thereof
JP4987640B2 (en) * 2007-09-10 2012-07-25 新日本製鐵株式会社 Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same
JP5365266B2 (en) * 2009-03-05 2013-12-11 新日鐵住金株式会社 Titanium alloy sheet excellent in press formability and manufacturing method thereof
US10581081B1 (en) * 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
JP6901049B2 (en) * 2019-04-17 2021-07-14 日本製鉄株式会社 Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing drum and copper foil manufacturing drum manufacturing method
JP7140275B2 (en) * 2019-04-17 2022-09-21 日本製鉄株式会社 Titanium plate, titanium rolled coil and copper foil manufacturing drum
CN113352060A (en) * 2021-06-28 2021-09-07 宁波江丰电子材料股份有限公司 Method for improving deformation of titanium attachment plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170120183A (en) 2015-03-02 2017-10-30 신닛테츠스미킨 카부시키카이샤 Titanium foil and method of making it
US10480050B2 (en) 2015-03-02 2019-11-19 Nippon Steel Corporation Titanium sheet and method for producing the same
WO2019043882A1 (en) 2017-08-31 2019-03-07 新日鐵住金株式会社 Titanium sheet
US11459649B2 (en) 2017-08-31 2022-10-04 Nippon Steel Corporation Titanium sheet

Also Published As

Publication number Publication date
JP2004002953A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
KR101419149B1 (en) Copper alloy sheet
JP4761586B1 (en) High-strength titanium copper plate and manufacturing method thereof
JP6901049B2 (en) Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing drum and copper foil manufacturing drum manufacturing method
JP4171735B2 (en) Chromium-containing copper alloy manufacturing method, chromium-containing copper alloy and copper products
TWI485272B (en) Pure copper plate manufacturing methods and pure copper plate
CN113260727B (en) Titanium plate and copper foil manufacturing roller
JP4094395B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JP2008081767A (en) Titanium-copper for electronic part
JP5531931B2 (en) Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof
JP5225645B2 (en) Titanium copper for precision press working and manufacturing method thereof
JP5609784B2 (en) Titanium alloy thick plate for electrolytic Cu foil production drum and its production method
CN113710825B (en) Titanium plate, titanium roll and copper foil manufacturing roller
JP3500072B2 (en) Titanium material for drum for producing electrolytic metal foil and method for producing the same
JP4061211B2 (en) Titanium alloy used for cathode electrode for producing electrolytic copper foil and method for producing the same
JP3802683B2 (en) High purity titanium plate for titanium target material and method for producing the same
JP4094244B2 (en) Titanium for copper foil production drum excellent in surface layer structure and production method thereof
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP4264377B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JP3488076B2 (en) Method for producing titanium for Cu foil production drum and titanium slab used for the production
JP2017190480A (en) Titanium sheet
JP3967897B2 (en) Titanium for copper foil production drum having uniform metal structure and production method thereof
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure
CN117488118B (en) Preparation method of Hastelloy C-276 precise baseband for high-temperature superconductivity and Hastelloy C-276 precise baseband
JP3711196B2 (en) Method for producing titanium for sputtering target and titanium slab used for the production
JP3951564B2 (en) Hot rolled titanium plate for surface member of electrolytic deposition drum and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4094395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term