JPH0919928A - Heat insulating layer clad mold and manufacture thereof - Google Patents

Heat insulating layer clad mold and manufacture thereof

Info

Publication number
JPH0919928A
JPH0919928A JP17170395A JP17170395A JPH0919928A JP H0919928 A JPH0919928 A JP H0919928A JP 17170395 A JP17170395 A JP 17170395A JP 17170395 A JP17170395 A JP 17170395A JP H0919928 A JPH0919928 A JP H0919928A
Authority
JP
Japan
Prior art keywords
heat
insulating layer
mold
resistant polymer
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17170395A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Umeniwa
信義 梅庭
Isao Umei
勇雄 梅井
Mutsumi Maeda
睦 前田
Hiroshi Kataoka
紘 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17170395A priority Critical patent/JPH0919928A/en
Publication of JPH0919928A publication Critical patent/JPH0919928A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a molded article having an excellent surface by a method wherein a heat insulating layer having a substantially uniform thickness ranging to the end of a mold wall surface is formed by applying a heat-resistant polymer solution, a heat-resistant polymer precursor solution or a heat-resistant polymeric monomer on the mold wall surface. SOLUTION: In order to make a heat insulating layer clad mold, firstly an auxiliary 7 is pasted to the edge face of a mold insert 1. The auxiliary 7 is made, for example, of an epoxy resin and, after being mixed with a hardener, applied to the edge face of the mold insert 1 and then machined to be flush with the surface of the mold insert 1. Next, by applying a heat-resistant polymer solution, a heat-resistant polymer precursor solution or a heat-resistant polymeric monomer and hardening, a heat insulating layer 3 is formed. Thus, a thin walled portion 9 and a thick walled portion 10 are formed on the surface portion of the auxiliary 7. Then, by heating up to the temperature, which is higher than the glass transition temperature of an epoxy resin of the auxiliary 7 and lower than the glass transition temperature of the heat insulating layer 3, the auxiliary 7 is removed. After that, through machining and polishing, the heat insulating layer 3, which is uniform in thickness to the end part 11, is finished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成樹脂成形用の金型の
製法に関する。更に詳しくは、合成樹脂の射出成形、ブ
ロー成形、真空成形、圧縮成形等に用いる断熱層被覆金
型の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mold for molding synthetic resin. More specifically, the present invention relates to a method for producing a heat-insulating layer-coated mold used for injection molding, blow molding, vacuum molding, compression molding, and the like of a synthetic resin.

【0002】[0002]

【従来の技術】熱可塑性樹脂を金型キャビティへ射出し
て成形するに際し、成形品に型表面の形状状態の付与に
おける再現性を良くし、成形品の外観を良くするには、
通常、樹脂温度や金型温度を高くしたり、射出圧力を高
くする等の成形条件を選ぶことによりある程度達成でき
る。
2. Description of the Related Art When a thermoplastic resin is injected into a mold cavity for molding, it is necessary to improve reproducibility in imparting a shape state of a mold surface to a molded product and to improve the appearance of the molded product.
Generally, it can be achieved to some extent by selecting molding conditions such as increasing the resin temperature and the mold temperature, and increasing the injection pressure.

【0003】これらの要因の中で最も大きな影響がある
のは金型温度であり、金型温度を高くする程好ましい。
しかし、金型温度を高くすると、可塑化された樹脂の冷
却固化に必要な冷却時間が長くなり成形能率が下がるこ
とから、金型温度を高くすることなく型表面の再現性を
良くし、又金型温度を高くしても必要な冷却時間が長く
ならない方法が要求されている。金型に加熱用、冷却用
の孔をそれぞれとりつけておき交互に熱媒、冷媒を流し
て金型の加熱、冷却を繰り返す方法も行われているが、
この方法は熱の消費量も多く、冷却時間が長くなる。
[0003] Among these factors, the mold temperature has the greatest effect, and it is preferable to increase the mold temperature.
However, when the mold temperature is increased, the cooling time required for cooling and solidifying the plasticized resin is prolonged and the molding efficiency is reduced, so that the reproducibility of the mold surface is improved without increasing the mold temperature, and There is a demand for a method in which the required cooling time is not prolonged even when the mold temperature is increased. There is also a method in which heating and cooling holes are attached to the mold, and heating medium and cooling medium are alternately flowed to heat and cool the mold.
This method also consumes a lot of heat and prolongs the cooling time.

【0004】金型キャビティを形成する型壁面を熱伝導
率の小さい物質、すなわち断熱層で被覆した金型につい
てはWO 93/06980等で開示されており、更
に、断熱材としてポリイミド前駆体溶液を型壁面に塗布
し、次いでイミド化して断熱層を形成することが示され
ている。
A mold in which the mold wall forming the mold cavity is coated with a substance having a small thermal conductivity, that is, a heat insulating layer is disclosed in WO 93/06980, and a polyimide precursor solution is used as a heat insulating material. It has been shown to be applied to the mold wall and then imidized to form a thermal insulation layer.

【0005】[0005]

【発明が解決しようとする課題】近年、合成樹脂の射出
成形品やブロー成形品等に塗装等の後加工を省略する要
求が強くなってきた。製造コストの低下、塗装時の溶剤
蒸発等による環境破壊の低減、成形品のリサイクルを容
易にする等のため、塗装を無くしたいという希望が極め
て強い。電気機器、電子機器、事務機器等の合成樹脂製
ハウジングについてこの後加工省略の要望が極めて強
い。生産性が良く、型表面再現性が良い成形品を成形す
る方法として、断熱層被覆金型を用いて成形する方法は
最も良好な方法である。金型の表面に断熱層を被覆する
方法は各種あるが、断熱材を型表面に塗布する方法は良
好な方法である。
In recent years, there has been an increasing demand for omitting post-processing such as painting on injection molded products and blow molded products of synthetic resins. There is an extremely strong desire to eliminate painting in order to reduce manufacturing costs, reduce environmental destruction due to solvent evaporation during painting, and facilitate the recycling of molded products. There is a strong demand for omitting post-processing of synthetic resin housings for electrical equipment, electronic equipment, office equipment, etc. As a method for molding a molded product having good productivity and good mold surface reproducibility, a method of molding using a heat insulating layer-coated mold is the best method. There are various methods for coating the heat insulating layer on the surface of the mold, but the method of applying a heat insulating material to the surface of the mold is a good method.

【0006】しかしながら、断熱材溶液などを金型表面
に均一に塗布することは極めて困難である。例えば、主
金型の固定側を1個以上の金型入れ子で構成する場合、
各金型入れ子は別々に断熱材を塗布して断熱層を形成し
た後、金型に組み立てる方法がとられる。その場合、各
金型入れ子間で、又は金型入れ子と固定側主金型の間
で、合わせ部に段差が生じ、該金型で射出成形を行う
と、良好な成形品が得られないという問題がある。即
ち、各金型入れ子の端部には断熱材塗料の表面張力の作
用で均一厚みに断熱層が被覆されず、端部の断熱層厚み
が薄くなり、これを解決することが要求されている。
However, it is extremely difficult to uniformly apply the heat insulating material solution or the like to the surface of the mold. For example, when the fixed side of the main mold is composed of one or more mold nests,
A method is employed in which each mold insert is separately coated with a heat insulating material to form a heat insulating layer and then assembled into a mold. In that case, between the mold inserts, or between the mold insert and the fixed-side main mold, there is a step in the mating portion, and if injection molding is performed with the mold, a good molded product cannot be obtained. There's a problem. That is, the end portion of each mold insert is not covered with the heat insulating layer to a uniform thickness due to the effect of the surface tension of the heat insulating material coating, and the thickness of the heat insulating layer at the end portion becomes thin. It is required to solve this problem. .

【0007】この問題点を図1と図2を用いて説明す
る。図1は金型入れ子1の型表面2に断熱層3を均一に
被覆した本発明が目的とする断熱層被覆金型である。図
2は金型入れ子1の表面2に断熱材を塗布し、加熱して
断熱層3を形成すると、金型入れ子の端部4に薄肉の断
熱層5が発生し、場合により端部より若干内部に入った
位置に厚肉の断熱層6が発生する(2−1)。この断熱
層を研磨して平滑状にすると、端部の断熱層5が薄肉の
断熱層になり(2−2)、図1に示す断熱層被覆金型は
得られない。この断熱層被覆金型入れ子を射出成形に使
用すると、端部の断熱層5の部分の成形品表面が膨れた
形状になる。断熱材を通常の方法で塗布することにより
断熱層を形成すればこの不良が発生することから、その
解決が要求されている。
This problem will be described with reference to FIGS. 1 and 2. FIG. 1 shows a heat-insulating-layer-covered mold in which the mold surface 2 of the mold insert 1 is uniformly covered with a heat-insulating layer 3, which is the object of the present invention. FIG. 2 shows that when a heat insulating material is applied to the surface 2 of the mold insert 1 and heated to form the heat insulating layer 3, a thin heat insulating layer 5 is generated at the end 4 of the mold insert, and in some cases, a little from the end. A thick heat insulating layer 6 is generated at a position inside (2-1). When this heat insulating layer is polished to be smooth, the heat insulating layer 5 at the end portion becomes a thin heat insulating layer (2-2), and the heat insulating layer-covering mold shown in FIG. 1 cannot be obtained. When this heat insulation layer-covered mold insert is used for injection molding, the surface of the molded product at the end of the heat insulation layer 5 has a swollen shape. If the heat insulating layer is formed by applying a heat insulating material by an ordinary method, this defect occurs. Therefore, a solution is required.

【0008】[0008]

【課題を解決するための手段】本発明者らはこれらの問
題点を解決するため、断熱層で被覆した金型の製法につ
いて検討を行い、本発明に至った。すなわち、本発明は
以下のとおりである。 1.金属からなる金型の型キャビティを構成する型壁面
に、耐熱性重合体からなる所定寸法の断熱層を被覆した
金型であり、耐熱性重合体の溶液、耐熱性重合体前駆体
溶液、又は耐熱性重合体モノマーを型壁面に塗布して形
成された、実質的に型壁面の端部まで均一な厚みの断熱
層を有する断熱層被覆金型。 2.型壁面の端面に補助具を貼り付け、該型壁面と該補
助具表面に同時に耐熱性重合体の溶液、耐熱性重合体前
駆体溶液、又は耐熱性重合体モノマーを塗布し、加熱硬
化して耐熱性重合体からなる断熱層を形成し、次いで該
補助具の取り外しと、塗布した断熱層の切削、研磨を行
い、所定寸法の断熱層に仕上げる断熱層被覆金型を製
法。 3.型壁面の端部に断熱層と熱伝導率がほぼ同一の耐熱
性樹脂フィルムを貼り付けた後に、型壁面に耐熱性重合
体の溶液、耐熱性重合体前駆体溶液、又は耐熱性重合体
モノマーを塗布し、加熱硬化して耐熱性重合体からなる
断熱層を形成し、次いで塗布した断熱層の切削、研磨を
行い、所定寸法の断熱層に仕上げる断熱層被覆金型の製
法。 4.型壁面の端部に主金型の突起を設け、該突起は、形
成される断熱層とほぼ同一高さで、かつ突起の上面の幅
は実質的に0であり、この型壁面に耐熱性重合体の溶
液、耐熱性重合体前駆体溶液、又は耐熱性重合体モノマ
ーを塗布し、加熱硬化して耐熱性重合体からなる断熱層
を形成し、次いで塗布した断熱層の切削、研磨を行い、
所定寸法の断熱層に仕上げる断熱層被覆金型の製法。 5. 製作する金型より若干大きな金型材に耐熱性重合
体の溶液、耐熱性重合体前駆体溶液、又は耐熱性重合体
モノマーを塗布し、加熱硬化して耐熱性重合体からなる
断熱層を形成し、次いで断熱層の被覆された金型材を製
作する金型寸法に切削、研磨して、所定寸法に仕上げる
断熱層被覆金型の製法。
In order to solve these problems, the present inventors have conducted a study on a method for producing a mold covered with a heat insulating layer, and arrived at the present invention. That is, the present invention is as follows. 1. A mold wall forming a mold cavity of a mold made of metal is a mold in which a heat-insulating layer of a predetermined size made of a heat-resistant polymer is coated, a heat-resistant polymer solution, a heat-resistant polymer precursor solution, or A heat-insulating layer-coated mold having a heat-insulating layer formed by applying a heat-resistant polymer monomer to a mold wall surface and having a substantially uniform thickness up to the end of the mold wall surface. 2. An auxiliary tool is attached to the end surface of the mold wall surface, and a heat-resistant polymer solution, a heat-resistant polymer precursor solution, or a heat-resistant polymer monomer is applied to the mold wall surface and the auxiliary tool surface at the same time, followed by heat curing. A method for producing a heat-insulating layer-coated mold, which comprises forming a heat-insulating layer made of a heat-resistant polymer, then removing the auxiliary tool, cutting and polishing the applied heat-insulating layer, and finishing the heat-insulating layer to a predetermined size. 3. After a heat-resistant resin film having almost the same thermal conductivity as that of the heat insulating layer is attached to the end of the mold wall, a heat-resistant polymer solution, heat-resistant polymer precursor solution, or heat-resistant polymer monomer is applied to the mold wall. Is applied and heat-cured to form a heat-insulating layer made of a heat-resistant polymer, and then the applied heat-insulating layer is cut and polished to obtain a heat-insulating layer-coated mold for finishing into a heat-insulating layer having a predetermined size. 4. A protrusion of the main mold is provided at the end of the mold wall surface, the protrusion has substantially the same height as the heat insulating layer to be formed, and the width of the upper surface of the protrusion is substantially 0. A polymer solution, a heat-resistant polymer precursor solution, or a heat-resistant polymer monomer is applied, heat-cured to form a heat-insulating layer made of the heat-resistant polymer, and then the applied heat-insulating layer is cut and polished. ,
A method for manufacturing a heat insulation layer-covering mold that finishes a heat insulation layer of a specified size. 5. A heat-resistant polymer solution, heat-resistant polymer precursor solution, or heat-resistant polymer monomer is applied to a mold material slightly larger than the mold to be manufactured, and heat-cured to form a heat-insulating layer made of the heat-resistant polymer. Then, a method for producing a heat-insulating layer-covered mold, in which a mold material coated with a heat-insulating layer is cut to a mold size and polished to a predetermined size.

【0009】以下に本発明について詳しく説明する。本
発明の金型を用いて成形される合成樹脂は一般の射出成
形やブロー成形に使用できる熱可塑性樹脂であり、ポリ
エチレン、ポリプロピレン等のポリオレフィン、ポリス
チレン、スチレン−アクリロニトリル共重合体、ゴム強
化ポリスチレン、ABS樹脂等のスチレン系樹脂、ポリ
アミド、ポリエステル、ポリカーボネート、メタクリル
樹脂、塩化ビニール樹脂等である。合成樹脂には1〜6
0%の樹脂強化物が含有されていることが好ましい。樹
脂強化物とは各種ゴム、ガラス繊維、カーボン繊維等の
各種繊維、タルク、炭酸カルシウム、カオリン等の無機
粉末等である。特に良好に使用できるのはゴム強化合成
樹脂であり、その中で更に良好に使用できるのはゴム強
化スチレン系樹脂である。
The present invention will be described in detail below. Synthetic resin molded using the mold of the present invention is a thermoplastic resin that can be used for general injection molding and blow molding, and polyethylene, polyolefin such as polypropylene, polystyrene, styrene-acrylonitrile copolymer, rubber-reinforced polystyrene, Styrene resins such as ABS resin, polyamide, polyester, polycarbonate, methacrylic resin, vinyl chloride resin and the like. 1-6 for synthetic resin
It is preferable to contain 0% of resin reinforcement. The resin-reinforced material includes various fibers such as various rubbers, glass fibers, and carbon fibers, and inorganic powders such as talc, calcium carbonate, and kaolin. Particularly preferred are rubber-reinforced synthetic resins, and among them, rubber-reinforced styrene-based resins are more preferably used.

【0010】本発明の金型で成形される良好な成形品は
弱電機器、電子機器、事務機器等のハウジング、各種自
動車部品、各種日用品、各種工業部品等の一般に使用さ
れる合成樹脂射出成形品である。特に好ましくは、ウエ
ルドラインが多い電子機器、電気機器、事務機器のハウ
ジング等である。更に、本発明の金型で成形される良好
な成形品は外観が要求される各種ブロー成形品である。
Good molded products molded by the mold of the present invention are generally used synthetic resin injection molded products such as housings for light electric appliances, electronic devices, office equipment, various automobile parts, various daily necessities and various industrial parts. Is. Particularly preferred are housings of electronic equipment, electric equipment, office equipment, etc., which have many weld lines. Further, good molded products molded by the mold of the present invention are various blow molded products that are required to have an appearance.

【0011】本発明に述べる金属からなる金型とは、鉄
又は鉄を主成分とする鋼材、アルミニウム、又はアルミ
ニウムを主成分とする合金、ZAS等の亜鉛合金、ベリ
リウム−銅合金等の一般に合成樹脂の成形に使用されて
いる金属金型を包含する。特に鋼材から成る金型が良好
に使用できる。これらの金属からなる金型の型キャビテ
ィを構成する型表面は硬質クロムやニッケル等でメッキ
されていることが好ましい。
The metal mold described in the present invention is generally composed of iron or a steel material containing iron as a main component, aluminum, an alloy containing aluminum as a main component, a zinc alloy such as ZAS, or a beryllium-copper alloy. Includes metal molds used to mold resins. Particularly, a mold made of a steel material can be used favorably. The mold surface of the mold cavity made of these metals is preferably plated with hard chromium, nickel or the like.

【0012】本発明で断熱層に用いる耐熱性重合体と
は、成形される合成樹脂の成形温度より高い軟化温度を
有する重合体であり、好ましくは、ガラス転移温度が1
40℃以上、好ましくは160℃以上、更に好ましくは
200℃以上、及び/又は融点が200℃以上、更に好
ましくは250℃以上の耐熱性重合体である。耐熱性重
合体の熱伝導率は一般に0.0001〜0.002ca
l/cm・sec・℃であり、金属より大幅に小さい。
又、該耐熱性重合体の破断伸度は5%以上、好ましくは
10%以上の靭性のある重合体が好ましい。破断伸度の
測定法はASTMD638に準じて行い、測定時の引っ
張り速度は5mm/分である。
The heat resistant polymer used in the heat insulating layer in the present invention is a polymer having a softening temperature higher than the molding temperature of the synthetic resin to be molded, and preferably has a glass transition temperature of 1 or less.
It is a heat resistant polymer having a temperature of 40 ° C. or higher, preferably 160 ° C. or higher, more preferably 200 ° C. or higher, and / or a melting point of 200 ° C. or higher, more preferably 250 ° C. or higher. The heat conductivity of the heat resistant polymer is generally 0.0001 to 0.002 ca.
1 / cm · sec · ° C, which is significantly smaller than metal.
Further, a tough polymer having a breaking elongation of 5% or more, preferably 10% or more is preferable for the heat resistant polymer. The elongation at break is measured according to ASTM D638, and the tensile speed at the time of measurement is 5 mm / min.

【0013】本発明で断熱層として良好に使用できる耐
熱性重合体は、主鎖に芳香環を有する耐熱性重合体であ
り、例えば、有機溶剤に溶解する各種非結晶性耐熱重合
体、各種ポリイミド等が良好に使用できる。非結晶性耐
熱性重合体としては、ポリスルホン、ポリエーテルスル
ホン、ポリエーテルイミド等である。これらの非結晶性
耐熱性重合体にはカーボン繊維等の充填材を配合するこ
とにより熱膨張係数を低下させて本発明の断熱層として
使用することができる。ポリイミドは各種あるが、直鎖
型高分子量ポリイミド、ポリアミドイミド、一部架橋型
のポリイミドが良好に使用できる。一般に直鎖型高分子
量ポリイミドは破断伸度が大きく強靭であり、耐久性に
優れており特に良好に使用できる。
The heat-resistant polymer which can be favorably used as the heat insulating layer in the present invention is a heat-resistant polymer having an aromatic ring in its main chain, and for example, various amorphous heat-resistant polymers and various polyimides which are soluble in an organic solvent. Etc. can be used satisfactorily. Examples of the non-crystalline heat resistant polymer include polysulfone, polyether sulfone and polyether imide. These amorphous heat-resistant polymers can be used as the heat-insulating layer of the present invention by lowering the coefficient of thermal expansion by adding a filler such as carbon fiber. There are various types of polyimides, and linear high molecular weight polyimides, polyamideimides, and partially crosslinked polyimides can be used favorably. In general, straight-chain high molecular weight polyimides have large breaking elongation, are tough, have excellent durability, and can be used particularly favorably.

【0014】更に、本発明では熱膨張係数の小さいエポ
キシ樹脂、すなわち熱膨張係数が小さくなるエポキシ樹
脂と硬化剤を組み合わせたエポキシ樹脂硬化物、あるい
は各種充填材を適量配合したエポキシ樹脂等も使用でき
る。本発明では、エポキシ樹脂硬化物もエポキシ樹脂と
略称する。又、エポキシ樹脂あるいは充填材配合エポキ
シ樹脂に、更にナイロン等の強靭な熱可塑性樹脂、ゴム
等の強靭性を与える各種配合物を加えて強靭性を与えた
配合エポキシ樹脂は良好に使用できる。特に、エポキシ
樹脂にポリエーテルスルホンやポリエーテルイミドを配
合して硬化したポリマーアロイは破断伸度が大きくな
り、強靭性に優れ良好に使用できる。
Further, in the present invention, an epoxy resin having a small coefficient of thermal expansion, that is, an epoxy resin cured product obtained by combining an epoxy resin having a small coefficient of thermal expansion and a curing agent, or an epoxy resin containing an appropriate amount of various fillers can be used. . In the present invention, the cured epoxy resin is also referred to as epoxy resin. Further, a compounded epoxy resin having toughness obtained by adding toughness thermoplastic resin such as nylon, and various compounds such as rubber to provide toughness to the epoxy resin or filler-containing epoxy resin can be preferably used. In particular, a polymer alloy cured by mixing polyethersulfone or polyetherimide with an epoxy resin has a large elongation at break, has excellent toughness, and can be used favorably.

【0015】本発明の断熱層被覆金型は、金型の型壁面
に断熱層を被覆し、更にその表面に断熱層の厚みの1/
5以下、好ましくは1/7以下の薄肉金属層を被覆して
使用することが好ましい。射出成形やブロー成形等では
成形される加熱樹脂に接触する型表面は各成形毎に厳し
い冷熱サイクルにさらされる。又、従来技術では、メッ
キ等で断熱層表面に形成される金属層は一般に重合体か
らなる断熱層より熱膨張係数が小さく、断熱層と金属層
の熱膨張係数が大きく異なるため、その界面で応力が繰
り返し発生し、その界面で剥離が発生する。断熱層と接
する金型及び/又は金属層の熱膨張係数と断熱層の熱膨
張係数との差を小さくすることにより、剥離を引き起こ
す応力を低減することができる。本発明において、断熱
層と接する金型及び/又は金属層の熱膨張係数と断熱層
の熱膨張係数の差は4×10-5/℃未満であることが好
ましく、更に好ましくは3×10-5/℃未満である。一
般に金属は重合体より熱膨張係数が小さく、従って、熱
膨張係数が小さい耐熱性重合体を選択することが好まし
い。
The heat-insulating layer-coated mold of the present invention has a mold wall surface coated with a heat-insulating layer, and the surface thereof is 1 / th of the thickness of the heat-insulating layer.
It is preferable to coat and use a thin metal layer of 5 or less, preferably 1/7 or less. In injection molding, blow molding and the like, a mold surface that comes into contact with a heated resin to be molded is subjected to a severe cooling / heating cycle for each molding. Further, in the prior art, the metal layer formed on the surface of the heat insulating layer by plating or the like generally has a smaller coefficient of thermal expansion than the heat insulating layer made of a polymer, and the coefficient of thermal expansion of the heat insulating layer and that of the metal layer are largely different. Stress is repeatedly generated and peeling occurs at the interface. By reducing the difference between the coefficient of thermal expansion of the mold and / or the metal layer in contact with the heat insulating layer and the coefficient of thermal expansion of the heat insulating layer, the stress that causes peeling can be reduced. In the present invention, the difference between the coefficient of thermal expansion of the mold and / or the metal layer in contact with the heat insulating layer and the coefficient of thermal expansion of the heat insulating layer is preferably less than 4 × 10 −5 / ° C., and more preferably 3 × 10 −. It is less than 5 / ° C. In general, metals have a lower coefficient of thermal expansion than polymers, and it is therefore preferable to select a heat-resistant polymer having a smaller coefficient of thermal expansion.

【0016】ここに述べる熱膨張係数は線膨張係数であ
る。断熱層の熱膨張係数は断熱層の面方向の線膨張係数
であり、JIS K7197−1991に示される方法
で測定し、50℃と250℃の温度間の平均値、あるい
は断熱層のガラス転移温度が250℃以下の場合には、
50℃と該ガラス転移温度間の平均値で示す。すなわ
ち、平滑な平板状金属の上に断熱層を形成し、次いで該
断熱層を剥離し、その断熱層の50℃と250℃の間、
あるいは50℃とガラス転移温度の間の平均熱膨張係数
を測定する。
The coefficient of thermal expansion described here is a coefficient of linear expansion. The thermal expansion coefficient of the heat insulating layer is a linear expansion coefficient in the surface direction of the heat insulating layer, and is measured by the method shown in JIS K7197-1991, and is the average value between the temperatures of 50 ° C. and 250 ° C., or the glass transition temperature of the heat insulating layer. If the temperature is below 250 ℃,
It is shown as an average value between 50 ° C. and the glass transition temperature. That is, a heat insulating layer is formed on a smooth flat metal, and then the heat insulating layer is peeled off, and the heat insulating layer is heated between 50 ° C. and 250 ° C.
Alternatively, the average coefficient of thermal expansion between 50 ° C and the glass transition temperature is measured.

【0017】本発明では2層以上の断熱層からなる金型
も良好に使用できる。この場合には少なくとも断熱層に
接する金型及び/又は金属層の熱膨張係数と断熱層の熱
膨張係数の差が小さいことが好ましく、それが4×10
-5/℃未満であることが好ましく、更に好ましくは3×
10-5/℃である。金型に断熱層及び金属を被覆する
時、あるいは射出成形等を行う時には、金属層と断熱層
の界面に最も激しい応力が発生する。この界面を形成す
る両層に熱膨張係数が近い物を選択して使用することに
より、発生する応力を低減できる。
In the present invention, a mold comprising two or more heat insulating layers can be favorably used. In this case, it is preferable that at least the difference between the coefficient of thermal expansion of the mold and / or the metal layer in contact with the heat insulating layer and the coefficient of thermal expansion of the heat insulating layer is small, which is 4 × 10.
It is preferably less than -5 / ° C, more preferably 3x.
10 −5 / ° C. The most severe stress is generated at the interface between the metal layer and the heat insulating layer when the mold is coated with the heat insulating layer and the metal, or when injection molding or the like is performed. The stress generated can be reduced by selecting and using a material having a thermal expansion coefficient close to both layers forming the interface.

【0018】断熱層と金型の間、あるいは断熱層と金属
層の間の剥離の原因は熱膨張係数の差だけではない。し
かし、熱膨張係数の差が極めて大きな要因である。断熱
層と金型及び/又は金属層との密着力が大きく、断熱層
の引っ張り弾性率が小さく、破断伸度が大きい、いわゆ
るゴム状の軟質材質の断熱層であれば、熱膨張係数の差
が若干大きくても剥離は生じない。しかし、断熱層に適
した材質、すなわち、耐熱性が高く、硬度が大きく、研
磨により鏡面になりやすい等を満たす断熱材は、一般に
弾性率が大きい主鎖に芳香環を有する耐熱性硬質合成樹
脂であり、この耐熱性合成樹脂層を金型及び/又は金属
層に密着させ、剥離を起こさせない様にするには、熱膨
張係数の差が小さいことが好ましい。
The cause of peeling between the heat insulating layer and the mold or between the heat insulating layer and the metal layer is not only the difference in the coefficient of thermal expansion. However, the difference in the coefficient of thermal expansion is an extremely large factor. If the heat insulating layer has a large adhesion between the mold and / or metal layer, the heat insulating layer has a small tensile elastic modulus, and the breaking elongation is large, a so-called rubbery soft material heat insulating layer has a difference in thermal expansion coefficient. Does not occur even if is slightly larger. However, a material suitable for the heat insulating layer, that is, a heat insulating material having high heat resistance, high hardness, and easily becoming a mirror surface by polishing is generally a heat resistant hard synthetic resin having an aromatic ring in the main chain with a large elastic modulus. Therefore, in order to bring the heat-resistant synthetic resin layer into close contact with the mold and / or the metal layer so as not to cause peeling, it is preferable that the difference in the coefficient of thermal expansion is small.

【0019】金型壁面を断熱層で被覆する場合、その断
熱層には種々の性能が要求される。主金型との密着性の
他に、強靭性、表面硬さ、表面を研磨した時の光沢の出
やすさ等も要求される。熱膨張係数が小さいことの他
に、これらの性能を全て満たす重合体が得られにくいこ
ともあり、その場合には2層以上の断熱層を用いること
が好ましい。
When the wall surface of the mold is covered with a heat insulating layer, the heat insulating layer is required to have various performances. In addition to adhesion to the main mold, toughness, surface hardness, glossiness when the surface is polished, and the like are required. In addition to having a small coefficient of thermal expansion, it may be difficult to obtain a polymer satisfying all of these properties. In this case, it is preferable to use two or more heat insulating layers.

【0020】本発明に良好に使用できる金型の金属、及
び最表面に被覆する金属層の金属、断熱層の耐熱性重合
体、及び一般の合成樹脂の熱膨張係数を表1に示す。
Table 1 shows the thermal expansion coefficients of the metal of the mold which can be favorably used in the present invention, the metal of the metal layer coated on the outermost surface, the heat resistant polymer of the heat insulating layer, and general synthetic resins.

【0021】[0021]

【表1】 [Table 1]

【0022】金型及び/又は金属層の熱膨張係数が大き
くなれば、相対的に熱膨張係数の大きい断熱層が使用で
きる様になる。金型材質として鋼鉄が最も多く使用され
ているが、最近アルミニウム合金や亜鉛合金も使用され
る様になってきた。表2に本発明に良好に使用できる耐
熱性重合体の構造とガラス転移温度(Tg)を示す。
If the coefficient of thermal expansion of the mold and / or the metal layer is increased, the heat insulating layer having a relatively large coefficient of thermal expansion can be used. Steel is most often used as a mold material, but recently aluminum alloys and zinc alloys have also been used. Table 2 shows the structure and glass transition temperature (Tg) of the heat-resistant polymer which can be favorably used in the present invention.

【0023】[0023]

【表2】 [Table 2]

【0024】射出成形は複雑な形状の成形品を一度の成
形で得られるところに経済的価値がある。この複雑な金
型表面を耐熱性重合体で被覆し、且つ強固に密着させる
には、耐熱性重合体溶液、及び/又は耐熱性重合体前駆
体溶液を塗布し、次いで加熱して耐熱性重合体の断熱層
を形成させることが最も好ましい。従って、本発明の耐
熱性重合体、あるいは耐熱性重合体の前駆体は溶剤に溶
解できることが必要である。ポリイミドの前駆体である
ポリアミド酸の溶液を型壁面に塗布し、次いで加熱キュ
アを行い型壁面上にポリイミドを形成する方法は良好に
使用できる。化1にポリアミド酸からポリイミドを形成
する式を示す。
Injection molding has an economic value in that a molded product having a complicated shape can be obtained by a single molding. In order to coat the complex mold surface with a heat-resistant polymer and make it adhere tightly, a heat-resistant polymer solution and / or a heat-resistant polymer precursor solution is applied, and then heated to heat-resistant polymer. It is most preferable to form a united heat insulating layer. Therefore, the heat resistant polymer of the present invention or the precursor of the heat resistant polymer needs to be soluble in a solvent. A method in which a solution of a polyamic acid, which is a precursor of polyimide, is applied to a mold wall surface and then cured by heating to form polyimide on the mold wall surface can be used favorably. Formula 1 shows a formula for forming a polyimide from a polyamic acid.

【0025】[0025]

【化1】 Embedded image

【0026】本発明の断熱層と金型、及び/又は断熱層
と金属層との密着力は大きいことが必要であり、室温で
0.5kg/10mm巾以上が好ましく、更に好ましく
は0.8kg/10mm巾以上、最も好ましくは1kg
/10mm巾以上である。これは密着した金属層、ある
いは金属層と断熱層を10mm巾に切り、接着面と直角
方向に20mm/分の速度で引張った時の剥離力であ
る。この剥離力は測定場所、測定回数によりかなりバラ
ツキが見られるが、最小値が大きいことが重要であり、
安定して大きい剥離力であることが好ましい。本発明に
述べる密着力は金型の主要部の密着力の最小値である。
密着力を向上させるため、金型の表面を微細な凹凸状に
したり、各種メッキをしたり、プライマー処理をするこ
とは適宜実施できる。プライマー処理の好ましい例とし
て、CO2 基や、SO2 基を多く含むポリイミドは金属
金型表面に密着しやすく、これらの密着性に優れたポリ
イミドの薄層をプライマー層として用い、この上に一般
のポリイミドを被覆する方法は良好に使用できる。
It is necessary that the heat-insulating layer and the mold of the present invention and / or the heat-insulating layer and the metal layer have a high adhesion, and the width at room temperature is preferably 0.5 kg / 10 mm or more, more preferably 0.8 kg. / 10 mm width or more, most preferably 1 kg
/ 10 mm width or more. This is the peeling force when the metal layer or the heat-insulating layer or the metal layer in contact with each other is cut to a width of 10 mm and pulled at a speed of 20 mm / min in a direction perpendicular to the bonding surface. This peeling force varies considerably depending on the measurement location and the number of measurements, but it is important that the minimum value is large.
A stable and large peeling force is preferable. The adhesion described in the present invention is the minimum value of the adhesion of the main part of the mold.
In order to improve the adhesion, it is possible to appropriately form the surface of the mold into fine irregularities, perform various kinds of plating, and perform a primer treatment. As a preferable example of the primer treatment, a polyimide containing a large amount of CO 2 group or SO 2 group easily adheres to the surface of the metal mold, and a thin layer of polyimide having excellent adhesion is used as a primer layer. Can be favorably used.

【0027】射出成形は複雑な形状の型物が一度の成形
でできることが最大の長所であり、そのため金型キャビ
ティは一般に複雑な形状をしている。しかし、この複雑
な形状の金型キャビティ表面に鏡面状に被覆物質を塗布
することは極めて困難でり、そのため塗布された被覆層
を後から表面研磨したり、塗布層を数値制御フライス盤
などの数値制御工作機械で削つた後に表面研磨して鏡面
状に仕上げることは最も良好な方法である。
Injection molding has the greatest merit that a mold having a complicated shape can be formed by one molding, and therefore, the mold cavity generally has a complicated shape. However, it is extremely difficult to apply a coating substance to the surface of this complex-shaped mold cavity in a mirror-like manner.Therefore, the applied coating layer is polished later, and the coating layer is numerically controlled by a numerical control milling machine. The best method is to grind the surface after polishing with a control machine tool and finish it to a mirror surface.

【0028】本発明では、断熱層の全厚みは0.1mm
〜1mmの狭い範囲内で適度に選択されることが好まし
い。更に好ましくは、射出成形においては0.1mmか
ら0.3mmであり、ブロー成形では0.3mmから
0.6mmである。0.1mm未満の薄い断熱層では、
成形品の外観改良効果が少ない。1mmを越える断熱層
厚みでは金型内冷却時間が長くなり、経済的観点から好
ましくない。
In the present invention, the total thickness of the heat insulating layer is 0.1 mm.
It is preferable to select an appropriate value within a narrow range of 1 mm. More preferably, it is 0.1 mm to 0.3 mm in injection molding and 0.3 mm to 0.6 mm in blow molding. For thin insulation layers less than 0.1 mm,
There is little effect of improving the appearance of molded products. If the thickness of the heat insulating layer exceeds 1 mm, the cooling time in the mold becomes long, which is not preferable from an economic viewpoint.

【0029】熱可塑性樹脂の成形では金型温度と成形サ
イクルタイムは密接に関連している。すなわち、成形時
の、金型温度(Td)と金型内必要冷却時間(θ)の関
係は理論的には次式で示される。 θ=−( D2 /2πα)・ln[(π/4){(Tx−
Td)/(Tc−Td)}] θ :冷却時間(sec) D :成形品の最大肉厚(cm) Tc:シリンダー温度(℃) Tx:成形品の軟化温度(℃) α :樹脂の熱拡散率 Td:金型温度(℃) 冷却時間(θ)は、成形品肉厚(D)の2乗に比例し、
(Tx−Td)値の関数である。すなわち、合成樹脂の
軟化温度から金型の温度を減じた値の関数である。この
値が小さいときは、この値の変動が冷却時間に大きな変
動を与えるが、この値が大きくなると冷却時間に与える
変動が小さくなる。
In molding a thermoplastic resin, the mold temperature and the molding cycle time are closely related. That is, the relationship between the mold temperature (Td) and the required cooling time (θ) in the mold during molding is theoretically expressed by the following equation. θ = − (D 2 / 2πα) · ln [(π / 4) {(Tx−
Td) / (Tc−Td)}] θ: Cooling time (sec) D: Maximum thickness of molded article (cm) Tc: Cylinder temperature (° C) Tx: Softening temperature of molded article (° C) α: Heat of resin Diffusivity Td: Mold temperature (° C) Cooling time (θ) is proportional to the square of the molded product thickness (D),
It is a function of the (Tx-Td) value. That is, it is a function of the value obtained by subtracting the mold temperature from the softening temperature of the synthetic resin. When this value is small, a change in this value causes a large change in the cooling time. However, when this value is large, a change in the cooling time becomes small.

【0030】金型に断熱層を被覆することは、成形品肉
厚を厚くして、冷却時間を長くする方向と同様の働きを
するが、一方、金型温度を下げると冷却時間を短くする
方向へ働く。断熱層の厚みは薄肉で外観改良ができるこ
とが成形サイクルタイムの面からは好ましい。金属から
なる金型表面を断熱層で被覆し、その表面に射出された
加熱樹脂が接触すると、型表面は樹脂の熱を受けて昇温
する。断熱層の熱伝導率が小さいほど、また、断熱層が
厚いほど型表面温度は高くなる。
Covering the mold with a heat-insulating layer has the same function as increasing the thickness of the molded product and lengthening the cooling time, while decreasing the mold temperature shortens the cooling time. Work in the direction. It is preferable from the viewpoint of the molding cycle time that the thickness of the heat insulating layer is thin and the appearance can be improved. When the surface of a metal mold is covered with a heat insulating layer, and the heated resin injected into contact with the surface of the mold, the mold surface receives the heat of the resin and rises in temperature. The lower the thermal conductivity of the heat insulating layer and the thicker the heat insulating layer, the higher the mold surface temperature.

【0031】本発明の断熱層被覆金型は各種の方法でつ
くられる。即ち、断熱材を塗布して形成された断熱層被
覆金型の製法であり、次のいずれかを使用する方法であ
る。 (1) 型壁面の端面に補助具を貼り付け、該型壁面と
該補助具表面に同時に断熱材を塗布し、加熱硬化して耐
熱性重合体からなる断熱層を形成し、次いで該補助具の
取り外しと、塗布した断熱層の切削、研磨を行い、所定
寸法の断熱層に仕上げる方法。 (2) 型壁面の端部に断熱層と熱伝導率がほぼ同一の
耐熱性樹脂フィルムを貼り付けた後に、型壁面に断熱材
を塗布し、加熱硬化して耐熱性重合体からなる断熱層を
形成し、次いで塗布した断熱層の切削、研磨を行い、所
定寸法の断熱層に仕上げる方法。 (3) 型壁面の端部に主金型の突起を設け、該突起は
被覆する断熱層とほぼ同一高さであり、突起の上面の幅
は実質的に0であり、この型壁面に断熱材を塗布し、加
熱硬化して耐熱性重合体からなる断熱層を形成し、次い
で塗布した断熱層の切削、研磨を行い、所定寸法の断熱
層に仕上げる方法。 (4) 製作する金型より若干大きな主金型材に断熱材
を塗布し、加熱硬化して耐熱性重合体からなる断熱層を
形成し、次いで主金型と断熱層を製作する金型寸法に切
削、研磨して、所定寸法に仕上げる方法 (1)の方法に述べる補助具とは、断熱層被覆を行う金
型入れ子や固定側金型の端部に貼り付ける物体であり、
金型入れ子や固定側金型を端面側に若干延長する物体で
ある。この補助具は金属や耐熱性樹脂等を用いて金型入
れ子や固定側金型の端部に接着しても良いし、エポキシ
樹脂やその他各種接着剤を盛り付けてそれを補助具にし
ても良い。エポキシ樹脂は本発明の補助具に良好に使用
できる。これらの接着剤や接着物は後で容易に取り除く
ことができることが必要である。エポキシ樹脂は該エポ
キシ樹脂のガラス転移温度以上に加熱すれば容易に剥離
できる。適度なガラス転移温度のエポキシ樹脂を選定す
ることにより、エポキシ樹脂は補助具として、あるいは
補助具の接着剤として良好に使用できる。即ち、断熱材
にポリイミド等の耐熱性樹脂を使用した場合、エポキシ
樹脂のガラス転移温度以上で、ポリイミドのガラス転移
温度より低い温度に加熱すればエポキシ樹脂は接着力を
失い、容易に剥離できる。
The heat-insulating layer-coated mold of the present invention can be manufactured by various methods. That is, it is a method for producing a heat-insulating layer-covering mold formed by applying a heat-insulating material, and is a method using any of the following. (1) An auxiliary tool is attached to an end face of a mold wall surface, a heat insulating material is applied to the mold wall surface and the auxiliary tool surface at the same time, and heat-cured to form a heat insulating layer made of a heat-resistant polymer, and then the auxiliary tool. Is removed, and the applied heat insulation layer is cut and polished to obtain a heat insulation layer of a specified size. (2) After a heat-resistant resin film having substantially the same thermal conductivity as that of the heat insulating layer is attached to the end of the mold wall, a heat insulating material is applied to the mold wall and heat-cured to form a heat-insulating layer made of a heat-resistant polymer. And then cutting and polishing the applied heat-insulating layer to finish it into a heat-insulating layer having a predetermined size. (3) A protrusion of the main mold is provided on the end of the mold wall surface, the protrusion is almost at the same height as the heat insulating layer to be covered, and the width of the upper surface of the protrusion is substantially 0. A method of applying a material, heat-curing it to form a heat-insulating layer made of a heat-resistant polymer, and then cutting and polishing the applied heat-insulating layer to finish it into a heat-insulating layer having a predetermined size. (4) A heat insulating material is applied to a main mold material that is slightly larger than the mold to be manufactured, heat-cured to form a heat insulating layer made of a heat resistant polymer, and then the mold size for manufacturing the main mold and the heat insulating layer is set. The auxiliary tool described in the method (1) of cutting and polishing to finish to a predetermined size is an object to be attached to the end of the mold insert or the fixed-side mold for performing the heat insulating layer coating,
It is an object that extends the mold insert and the stationary mold slightly to the end face side. This auxiliary tool may be adhered to the end of the mold insert or the fixed side mold by using metal or heat resistant resin, or epoxy resin or other various adhesives may be applied and used as the auxiliary tool. . Epoxy resins can be successfully used in the aids of the present invention. It is necessary that these adhesives and adhesives can be easily removed later. The epoxy resin can be easily peeled off by heating the glass transition temperature of the epoxy resin or higher. By selecting an epoxy resin having an appropriate glass transition temperature, the epoxy resin can be favorably used as an auxiliary tool or an adhesive for the auxiliary tool. That is, when a heat-resistant resin such as polyimide is used for the heat insulating material, the epoxy resin loses its adhesive force and can be easily peeled off by heating at a temperature higher than the glass transition temperature of the epoxy resin and lower than the glass transition temperature of the polyimide.

【0032】ここに述べる型壁面の端面とは、金型、及
び/又は金型入れ子の端部まで断熱層を被覆する端部を
構成する端面であり、該端面の部分で断熱層は鋭角に曲
がっているか、断熱層は終わっている。ここに述べる、
型壁面と補助具表面に同時に断熱材を塗布するとは、型
壁面の端面に貼り付けた補助具と型壁面を一体的に同時
に塗布することである。
The end surface of the mold wall surface described here is an end surface that constitutes an end portion that covers the heat insulating layer up to the end portion of the mold and / or the mold nest, and the heat insulating layer has an acute angle at the end surface portion. Bent or the insulation is over. Stated here,
To apply the heat insulating material to the mold wall surface and the auxiliary tool surface at the same time means to simultaneously apply the auxiliary tool attached to the end surface of the mold wall surface and the mold wall surface simultaneously.

【0033】ここに述べる、所定寸法の断熱層に仕上げ
るとは、塗布された断熱層を切削、研磨等により所定寸
法にまで削ることである。切削はフライス盤等の工作機
械を使用することにより行う。(2)に述べる熱伝導率
がほぼ同一の耐熱性樹脂フィルムとは、断熱層に対して
1/2〜2倍の熱伝導率を有する耐熱性樹脂フィルムを
いう。また、耐熱性樹脂フィルムは、塗布されて形成さ
れる断熱層と良く接着できる物であり、好ましくは断熱
材と同質樹脂からなることが好ましい。例えば、断熱材
がポリイミドであれば、耐熱性樹脂フィルムは同質のポ
リイミドのフィルムが好ましい。貼り付ける耐熱性樹脂
フィルムの幅は1〜20mm程度で型形状に応じて適宜
選択される。該フィルムは耐熱性接着剤で接着される。
ポリイミドフィルムの場合、ポリイミド系の耐熱性接着
剤が好ましい。
The finishing of the heat insulating layer having a predetermined size described here is to cut the applied heat insulating layer to a predetermined size by cutting, polishing or the like. Cutting is performed by using a machine tool such as a milling machine. The heat-resistant resin film having substantially the same heat conductivity described in (2) means a heat-resistant resin film having a heat conductivity of 1/2 to 2 times that of the heat insulating layer. Further, the heat resistant resin film is a material that can be well adhered to the heat insulating layer formed by coating, and is preferably made of the same resin as the heat insulating material. For example, when the heat insulating material is polyimide, the heat resistant resin film is preferably a polyimide film of the same quality. The width of the heat resistant resin film to be stuck is about 1 to 20 mm and is appropriately selected according to the shape of the mold. The film is adhered with a heat resistant adhesive.
In the case of a polyimide film, a polyimide heat resistant adhesive is preferable.

【0034】(3)に述べる、上面の幅が実質的に0と
は、該金型を用いて合成樹脂の成形を行った時に、肉眼
で成形品を見て突起部の跡が成形品表面に現れない程度
の幅であり、一般には0.5mm以下が好ましく、更に
好ましくは0.3mm以下の幅である。また、形成され
る断熱層とほぼ同一高さとは、突起と形成される断熱層
とのギャップが±20μm以下であることをいう。
As described in (3), when the width of the upper surface is substantially 0, when the synthetic resin is molded using the mold, when the molded product is viewed with the naked eye, the mark of the protrusion is the surface of the molded product. In general, the width is preferably 0.5 mm or less, and more preferably 0.3 mm or less. Moreover, the height substantially equal to that of the heat insulating layer formed means that the gap between the protrusion and the heat insulating layer formed is ± 20 μm or less.

【0035】(4)に述べる、製作する金型より若干大
きな主金型とは、主金型の型端面に型表面が延長される
形に主金型が張り出した金型であり、張り出し距離は1
〜20mm程度である。これらの方法で製作され、所定
寸法に仕上げられた断熱層表面には、必要に応じて断熱
層厚みの1/5以下の薄肉の金属層をつけることが好ま
しい。金属層は種々の方法で被覆できるが、メッキによ
り良好に被覆される。ここに述べるメッキは化学メッキ
と電解メッキである。一般には次の工程のいくつかを経
てメッキされる。すなわち、まず断熱層に接して化学メ
ッキが行われる。
The main mold described in (4), which is slightly larger than the mold to be manufactured, is a mold in which the main mold is projected so that the mold surface is extended to the mold end face of the main mold. Is 1
It is about 20 mm. It is preferable that a thin metal layer having a thickness of ⅕ or less of the thickness of the heat insulating layer is provided on the surface of the heat insulating layer manufactured by these methods and finished to a predetermined size, if necessary. The metal layer can be coated in various ways, but is better coated by plating. The plating described here is chemical plating and electrolytic plating. Generally, plating is performed through some of the following steps. That is, first, chemical plating is performed in contact with the heat insulating layer.

【0036】前処理(バリ取り、脱脂)→化学腐食(酸
やアルカリによる化学エッチング:表面を適度な凹凸に
する)→中和→感受性化処理(合成樹脂表面に還元力の
ある金属塩を吸着させて活性化を効果あらしめる)→活
性化処理(触媒作用を有するパラジウム等の貴金属を樹
脂表面に付与)→化学メッキ(化学ニッケルメッキ、化
学銅メッキ等)→電解メッキ(電解ニッケルメッキ、電
解銅メッキ、電解クロムメッキ等)(詳細は「プラスチ
ックのメッキ」呂茂辰著、昭和49年、日刊工業新聞社
刊等を参照)。
Pretreatment (deburring, degreasing) → chemical corrosion (chemical etching with acid or alkali: making the surface have appropriate irregularities) → neutralization → sensitization treatment (adsorption of a reducing metal salt on the synthetic resin surface) To activate the effect) → Activation treatment (applying precious metal such as palladium with catalytic action on the resin surface) → Chemical plating (chemical nickel plating, chemical copper plating, etc.) → Electrolytic plating (electrolytic nickel plating, electrolysis) (Copper plating, electrolytic chrome plating, etc.) (For details, refer to "Plastic plating" written by Tatsumu Romo, 1974, published by Nikkan Kogyo Shimbun, etc.).

【0037】本発明を図を用いて説明する。図3、図
4、図5、図6及び図7は本発明の金型製法を示す。図
3に於いて、金型入れ子1の端面に補助具7を貼り付け
る。金型入れ子1は金属であり、補助具7は耐熱性樹
脂、エポキシ樹脂等である。エポキシ樹脂の場合、エポ
キシ樹脂に硬化剤を配合した状態で金型入れ子の端面に
塗り付けて硬化させ、該エポキシ樹脂を金型入れ子1の
表面と面を合わせるまで切削する。この状態で、金型入
れ子1の表面と補助具7の表面に同時にポリイミド等の
耐熱性樹脂からなる断熱材を塗布して硬化させ、断熱層
3を形成する。該断熱層3には補助具7の表面部分で薄
肉部分9と厚肉部分10がある(3−1)。この厚肉部
10及び/又は薄肉部9は塗布される断熱材の表面張力
により常に発生する。次いで、補助具7のエポキシ樹脂
のガラス転移温度より高く、断熱層3の耐熱性樹脂のガ
ラス転移温度より低い温度に加熱して、補助具7を取り
除く(3−2)。次いで、断熱層3の切削と研磨を行
い、所定寸法の断熱層3に仕上げる。断熱層3は本発明
が求める断熱層端部11まで均一な厚みの断熱層になる
(3−3)。
The present invention will be described with reference to the drawings. 3, 4, 5, 6, and 7 show the mold manufacturing method of the present invention. In FIG. 3, an auxiliary tool 7 is attached to the end surface of the mold insert 1. The mold insert 1 is made of metal, and the auxiliary tool 7 is made of heat resistant resin, epoxy resin or the like. In the case of an epoxy resin, the epoxy resin is coated with a curing agent on the end face of the mold insert to be cured, and the epoxy resin is cut until the surface of the mold insert 1 is flush with the surface. In this state, a heat insulating material made of a heat resistant resin such as polyimide is simultaneously applied to the surface of the mold insert 1 and the surface of the auxiliary tool 7 and cured to form the heat insulating layer 3. The heat insulating layer 3 has a thin portion 9 and a thick portion 10 on the surface of the auxiliary tool 7 (3-1). The thick portion 10 and / or the thin portion 9 are always generated due to the surface tension of the applied heat insulating material. Then, the auxiliary tool 7 is removed by heating it to a temperature higher than the glass transition temperature of the epoxy resin of the auxiliary tool 7 and lower than the glass transition temperature of the heat resistant resin of the heat insulating layer 3 (3-2). Next, the heat insulating layer 3 is cut and polished to complete the heat insulating layer 3 having a predetermined size. The heat insulating layer 3 becomes a heat insulating layer having a uniform thickness up to the heat insulating layer end portion 11 required by the present invention (3-3).

【0038】図4は、補助具として固体の物体からなる
補助具12を型表面より上に盛り上がる様に貼り付けた
場合を示す。この状態で、金型入れ子1の表面と補助具
12の表面に同時にポリイミド等の耐熱性樹脂からなる
断熱材を塗布して硬化させ、断熱層3を形成する(4−
1)。次いで同様に、補助具12を取り除く。形成され
た断熱層3には端部に盛り上がった部分が生ずる(4−
2)。次いで、断熱層3の切削と研磨を行い、所定寸法
の断熱層3に仕上げる。断熱層3は本発明が求める断熱
層端部11まで均一な厚みの断熱層になる(4−3)。
FIG. 4 shows a case where an auxiliary tool 12 made of a solid object is attached as an auxiliary tool so as to rise above the mold surface. In this state, a heat insulating material made of a heat resistant resin such as polyimide is simultaneously applied and cured on the surface of the mold insert 1 and the surface of the auxiliary tool 12 to form the heat insulating layer 3 (4-
1). Then, similarly, the auxiliary tool 12 is removed. The formed heat insulating layer 3 has a raised portion at the end (4-
2). Next, the heat insulating layer 3 is cut and polished to complete the heat insulating layer 3 having a predetermined size. The heat insulating layer 3 becomes a heat insulating layer having a uniform thickness up to the heat insulating layer end portion 11 required by the present invention (4-3).

【0039】図5は、金型入れ子1の型表面の端部に断
熱層と熱伝導率がほぼ同一の耐熱性樹脂フィルム13を
貼り付け(5−1)、この状態で金型入れ子1の表面に
ポリイミド等の耐熱性樹脂からなる断熱材を塗布して硬
化させ、断熱層3を形成する(5−2)。次いで、該断
熱層3の切削と研磨を行い、断熱層端部11まで均一な
厚みの断熱層3に仕上げ、本発明の断熱層被覆金型を得
る(5−3)。
In FIG. 5, a heat-resistant resin film 13 having substantially the same thermal conductivity as that of the heat insulating layer is attached to the end of the mold surface of the mold insert 1 (5-1). A heat insulating material made of a heat resistant resin such as polyimide is applied to the surface and cured to form the heat insulating layer 3 (5-2). Then, the heat insulating layer 3 is cut and polished to finish the heat insulating layer 3 up to the end 11 of the heat insulating layer to obtain the heat insulating layer-coated mold of the present invention (5-3).

【0040】図6は、金型入れ子1の型壁面の端部に、
突起14を設け、その突起14の高さ16を形成する断
熱層とほぼ同一高さとし、突起の上面の幅15が実質的
に0とする(6−1)。断熱材を型壁面に塗布して断熱
層3を形成し(6−2)、次いで該断熱層3を切削、研
磨等により実質的に型壁面の端部まで所定厚みで均一厚
みの断熱層3を形成し、本発明の断熱層被覆金型を得る
(6−3)。上面の幅15が実質的に0であるとは、こ
の金型を使用して成形した成形品表面に、この突起14
の跡が肉眼で見えない程度になる幅であり、その幅15
は好ましくは0.5mm以下、更に好ましくは0.3m
m以下である。
FIG. 6 shows that at the end of the mold wall surface of the mold insert 1,
The protrusion 14 is provided, and the height 16 of the protrusion 14 is made substantially the same as that of the heat insulating layer, and the width 15 of the upper surface of the protrusion is substantially 0 (6-1). A heat insulating material is applied to the mold wall surface to form the heat insulating layer 3 (6-2), and then the heat insulating layer 3 is cut or polished to a substantially constant thickness up to the end of the mold wall surface. Is formed to obtain the heat-insulating layer-covering mold of the present invention (6-3). The width 15 of the upper surface being substantially 0 means that the protrusion 14 is formed on the surface of a molded product molded using this mold.
The width is such that the traces of can be invisible to the naked eye.
Is preferably 0.5 mm or less, more preferably 0.3 m
m or less.

【0041】図7は、製作する金型入れ子1より型端面
に張り出した張り出し部分17を設け、型表面と張り出
し部分17に断熱材を塗布し、加熱硬化して断熱層3を
形成する(7−1)。次いで、断熱層13と張り出し部
分17を目的とする金型の寸法に切削、研磨して、断熱
層端部11まで均一な厚みの断熱層3に仕上げ、本発明
の断熱層被覆金型を得る(7−2)。
In FIG. 7, a protruding portion 17 protruding from the mold insert 1 to be produced is provided on the end face of the mold, a heat insulating material is applied to the mold surface and the protruding portion 17, and heat-cured to form a heat insulating layer 3 (7). -1). Next, the heat insulating layer 13 and the overhanging portion 17 are cut and polished to the desired size of the mold, and the heat insulating layer 3 having a uniform thickness is obtained up to the heat insulating layer end 11 to obtain the heat insulating layer-coated mold of the present invention. (7-2).

【0042】本発明の金型を使用することにより、合成
樹脂成形品のウエルドラインの目立ちを低減し、型表面
の再現性を良くし、成形後に行う塗装等の後加工を省略
できる。
By using the mold of the present invention, the conspicuous weld lines of the synthetic resin molded product can be reduced, the reproducibility of the mold surface can be improved, and post-processing such as painting performed after molding can be omitted.

【0043】[0043]

【実施例】次の金型、断熱層および金属層を使用する。 主金型及び金型入れ子:鋼鉄(S55C)製の射出成形
用の金型である。該金型の熱膨張係数は1.1×10-5
/℃である。図8に使用する主金型18の型キャビティ
を構成する部分は図8に示す2つの金型入れ子19、2
0からなる。2つの金型入れ子19、20は合わせ部2
1で接触している。この金型入れ子を3組用意する。各
入れ子の型キャビティを構成する表面には硬質クロムメ
ッキを行う。 断熱層:主金型の入れ子表面をプライマー処理する。プ
ライマーとしてはCO2基を多く含むポリイミド前駆体
溶液を薄層に塗布し、加熱してポリイミド薄層を形成し
てプライマーとする。その上に、ポリイミドワニス(東
レ(株)製 トレニース#3000 商品名)を塗布
し、160℃で加熱し、次いでこの塗布、加熱を繰り返
して所定の厚みにし、次いで290℃に加熱してポリイ
ミド層を形成する。該ポリイミドの熱膨張係数は3.3
×10-5/℃である。
EXAMPLE The following mold, heat insulating layer and metal layer are used. Main mold and mold nest: A steel (S55C) mold for injection molding. The coefficient of thermal expansion of the mold is 1.1 × 10 -5
/ ° C. The portion forming the mold cavity of the main mold 18 used in FIG. 8 is composed of the two mold inserts 19 and 2 shown in FIG.
Consists of zero. The two mold nests 19 and 20 are the mating section 2
1 is in contact. Three sets of these mold inserts are prepared. Hard chrome plating is performed on the surface constituting the mold cavity of each nest. Insulation layer: Prime the inner mold surface of the main mold. As a primer, a polyimide precursor solution containing a large amount of CO 2 groups is applied to a thin layer and heated to form a polyimide thin layer, which is used as a primer. A polyimide varnish (Treney # 3000 trade name manufactured by Toray Industries, Inc.) is applied thereon, and heated at 160 ° C., and then this application and heating are repeated until a predetermined thickness is obtained, and then the polyimide layer is heated at 290 ° C. To form. The coefficient of thermal expansion of the polyimide is 3.3.
× 10 −5 / ° C.

【0044】[0044]

【実施例1】図3に示す工程により本発明の断熱層被覆
金型を製作する。図3に於いて、金型入れ子1の端面に
エポキシ樹脂(アサヒチバ(株)製 ARALDITE
AER260)を塗布して硬化させ、該エポキシ樹脂
を金型入れ子1の表面と面を合わせるまで切削して補助
具7とする。この状態で、金型入れ子1の表面と補助具
7の表面に同時に断熱層3を形成する。該断熱層3には
補助具7の表面部分で薄肉部分9と厚肉部分10がある
(3−1)。次いで、補助具7のエポキシ樹脂のガラス
転移温度より高く、断熱層3のガラス転移温度より低い
250℃に加熱して、補助具7を取り除く(3−2)。
次いで、断熱層3の切削と研磨を行い、所定寸法の断熱
層3に仕上げる。断熱層3は断熱層端部11まで均一な
厚みの断熱層になるまで切削と研磨を行う(3−3)。
Example 1 A heat insulating layer-coated mold of the present invention is manufactured by the process shown in FIG. In FIG. 3, an epoxy resin (ARALDITE manufactured by Asahi Chiba Co., Ltd.) is attached to the end surface of the mold insert 1.
AER 260) is applied and cured, and the epoxy resin is cut until the surface of the mold insert 1 is flush with the surface of the mold insert 1 to form the auxiliary tool 7. In this state, the heat insulating layer 3 is simultaneously formed on the surface of the mold insert 1 and the surface of the auxiliary tool 7. The heat insulating layer 3 has a thin portion 9 and a thick portion 10 on the surface of the auxiliary tool 7 (3-1). Next, the auxiliary tool 7 is removed by heating to 250 ° C. higher than the glass transition temperature of the epoxy resin of the auxiliary tool 7 and lower than the glass transition temperature of the heat insulating layer 3 (3-2).
Next, the heat insulating layer 3 is cut and polished to complete the heat insulating layer 3 having a predetermined size. The heat insulating layer 3 is cut and polished until the heat insulating layer end 11 has a uniform thickness (3-3).

【0045】[0045]

【実施例2】図4に示す方法により本発明が目的とする
断熱層被覆金型を製作する。図4に於いて、金型入れ子
1の端面に固体物体からなる補助具12を型表面より上
に盛り上がる様に貼り付ける。この状態で、金型入れ子
1の表面と補助具12の表面に同時に断熱材を塗布して
加熱硬化させ、断熱層3を形成する(4−1)。次いで
補助具12を取り除く。形成された断熱層3には端部に
盛り上がった部分が生ずる(4−2)。次いで、断熱層
3の切削と研磨を行い、所定寸法の断熱層3に仕上げ
る。断熱層3は本発明が求める断熱層端部11まで均一
な厚みの断熱層にする(4−3)。
[Embodiment 2] A mold coated with a heat insulating layer, which is the object of the present invention, is manufactured by the method shown in FIG. In FIG. 4, an auxiliary tool 12 made of a solid object is attached to the end face of the mold insert 1 so as to rise above the mold surface. In this state, a heat insulating material is simultaneously applied to the surface of the mold insert 1 and the surface of the auxiliary tool 12 and heat-cured to form the heat insulating layer 3 (4-1). Then, the auxiliary tool 12 is removed. The heat insulating layer 3 thus formed has a raised portion at the end (4-2). Next, the heat insulating layer 3 is cut and polished to complete the heat insulating layer 3 having a predetermined size. The heat insulating layer 3 has a uniform thickness up to the heat insulating layer end portion 11 required by the present invention (4-3).

【0046】[0046]

【比較例1】図2に示す方法により断熱層被覆金型を製
作する。図2に於いて、金型入れ子1の表面に断熱材を
塗布して加熱硬化させ、断熱層3を形成する。該断熱層
3を切削、研磨して所定の厚みの断熱層3を形成する。
端部の断熱層5は薄肉の断熱層になり、本発明の断熱層
被覆金型は得られない。
Comparative Example 1 A heat insulating layer-covering mold is manufactured by the method shown in FIG. In FIG. 2, a heat insulating material is applied to the surface of the mold insert 1 and heat-cured to form a heat insulating layer 3. The heat insulating layer 3 is cut and polished to form the heat insulating layer 3 having a predetermined thickness.
The heat insulating layer 5 at the end portion is a thin heat insulating layer, and the heat insulating layer-covering mold of the present invention cannot be obtained.

【0047】[0047]

【発明の効果】型表面に均一に断熱層が形成された、複
数の金型材を組み合わせた金型を提供することを可能に
する。この金型を用いて成形された成形品は優れた表面
を有する。
EFFECT OF THE INVENTION It is possible to provide a mold in which a plurality of mold materials are combined, in which a heat insulating layer is uniformly formed on the mold surface. A molded product molded using this mold has an excellent surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が目的とする断熱層被覆金型の型壁面の
端部の断面図である。
FIG. 1 is a cross-sectional view of an end portion of a mold wall surface of a heat insulating layer-covered mold which is an object of the present invention.

【図2】これまでの断熱層被覆金型の製法の工程を示す
断面説明図である。
FIG. 2 is a cross-sectional explanatory view showing the steps of the conventional method for producing a heat-insulating layer-coated mold.

【図3】本発明の断熱層被覆金型の製法の工程を示す説
明図である。
FIG. 3 is an explanatory view showing steps of a method for producing a heat-insulating layer-coated mold according to the present invention.

【図4】本発明の断熱層被覆金型の製法の工程を示す説
明図である。
FIG. 4 is an explanatory view showing steps of a method for producing a heat-insulating layer-coated mold according to the present invention.

【図5】本発明の断熱層被覆金型の製法の工程を示す説
明図である。
FIG. 5 is an explanatory view showing steps of a method for producing a heat insulating layer-coated mold of the present invention.

【図6】本発明の断熱層被覆金型の製法の工程を示す説
明図である。
FIG. 6 is an explanatory view showing steps of a method for producing a heat-insulating-layer-coated mold according to the present invention.

【図7】本発明の断熱層被覆金型の製法の工程を示す説
明図である。
FIG. 7 is an explanatory view showing the steps of the method for producing a heat insulating layer-coated mold of the present invention.

【図8】入れ子を用いた金型の一部を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing a part of a mold using a nest.

【符号の説明】 1 金型入れ子 2 型表面 3 断熱層 4 断熱層の厚肉部 5 薄肉の断熱層 6 厚肉の断熱層 7 補助具 8 型表面 9 薄肉部分 10 厚肉部分 11 断熱層端部 12 補助具 13 耐熱性樹脂フィルム 14 突起 15 突起の上面の幅 16 突起の高さ 17 張り出し部分 18 主金型 19 金型入れ子 20 金型入れ子 21 金型入れ子の合わせ部[Explanation of Codes] 1 Mold Nesting 2 Surface 3 Heat insulation layer 4 Thick part of heat insulation layer 5 Thin heat insulation layer 6 Thick heat insulation layer 7 Auxiliary equipment 8 Mold surface 9 Thin part 10 Thick part 11 End of heat insulation Part 12 Auxiliary tool 13 Heat-resistant resin film 14 Protrusion 15 Width of the upper surface of the protrusion 16 Height of the protrusion 17 Overhanging part 18 Main mold 19 Mold insert 20 Mold insert 21 Mold insert mating part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片岡 紘 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiro Kataoka 1-3-1 Yokou, Kawasaki-ku, Kawasaki-shi, Kanagawa Asahi Kasei Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属からなる金型の型キャビティを構成
する型壁面に、耐熱性重合体からなる所定寸法の断熱層
を被覆した金型であり、耐熱性重合体の溶液、耐熱性重
合体前駆体溶液、又は耐熱性重合体モノマーを型壁面に
塗布して形成された、実質的に型壁面の端部まで均一な
厚みの断熱層を有する断熱層被覆金型。
1. A mold in which a mold wall forming a mold cavity made of a metal is coated with a heat insulating layer made of a heat resistant polymer and having a predetermined size. A solution of the heat resistant polymer, a heat resistant polymer A heat-insulating layer-coated mold having a heat-insulating layer formed by applying a precursor solution or a heat-resistant polymer monomer to a mold wall surface and having a substantially uniform thickness up to the end of the mold wall surface.
【請求項2】 型壁面の端面に補助具を貼り付け、該型
壁面と該補助具表面に同時に耐熱性重合体の溶液、耐熱
性重合体前駆体溶液、又は耐熱性重合体モノマーを塗布
し、加熱硬化して耐熱性重合体からなる断熱層を形成
し、次いで該補助具の取り外しと、塗布した断熱層の切
削、研磨を行い、所定寸法の断熱層に仕上げる断熱層被
覆金型の製法。
2. An auxiliary tool is attached to an end surface of a mold wall surface, and a heat resistant polymer solution, a heat resistant polymer precursor solution, or a heat resistant polymer monomer is applied to the mold wall surface and the auxiliary tool surface at the same time. A method for producing a heat-insulating layer-coated mold for forming a heat-insulating layer made of a heat-resistant polymer by heating and curing, then removing the auxiliary tool, cutting and polishing the applied heat-insulating layer, and finishing the heat-insulating layer to a predetermined size. .
【請求項3】 型壁面の端部に断熱層と熱伝導率がほぼ
同一の耐熱性樹脂フィルムを貼り付けた後に、型壁面に
耐熱性重合体の溶液、耐熱性重合体前駆体溶液、又は耐
熱性重合体モノマーを塗布し、加熱硬化して耐熱性重合
体からなる断熱層を形成し、次いで塗布した断熱層の切
削、研磨を行い、所定寸法の断熱層に仕上げる断熱層被
覆金型の製法。
3. A heat-resistant polymer solution, a heat-resistant polymer precursor solution, or a solution of a heat-resistant polymer on the mold wall, after a heat-resistant resin film having substantially the same thermal conductivity as that of the heat insulating layer is attached to the end of the mold wall. A heat-insulating layer-coated mold that coats a heat-resistant polymer monomer, heat-cures it to form a heat-insulating layer made of a heat-resistant polymer, and then cuts and polishes the applied heat-insulating layer to form a heat-insulating layer of a predetermined size. Manufacturing method.
【請求項4】 型壁面の端部に金型の突起を設け、該突
起は、形成される断熱層とほぼ同一高さで、突起の上面
の幅は実質的に0であり、この型壁面に耐熱性重合体の
溶液、耐熱性重合体前駆体溶液、又は耐熱性重合体モノ
マーを塗布し、加熱硬化して耐熱性重合体からなる断熱
層を形成し、次いで塗布した断熱層の切削、研磨を行
い、所定寸法の断熱層に仕上げる断熱層被覆金型の製
法。
4. A mold projection is provided at the end of the mold wall surface, the projection having substantially the same height as the heat insulating layer to be formed, and the width of the upper surface of the projection being substantially zero. A solution of a heat-resistant polymer, a heat-resistant polymer precursor solution, or a heat-resistant polymer monomer is applied to form a heat-insulating layer made of a heat-resistant polymer by heat curing, and then cutting the applied heat-insulating layer, A method of manufacturing a heat-insulating layer-covering mold that polishes and finishes a heat-insulating layer of a specified size.
【請求項5】 製作する金型より若干大きな金型材に耐
熱性重合体の溶液、耐熱性重合体前駆体溶液、又は耐熱
性重合体モノマーを塗布し、加熱硬化して耐熱性重合体
からなる断熱層を形成し、次いで断熱層の被覆された金
型材を製作する金型寸法に切削、研磨して、所定寸法に
仕上げる断熱層被覆金型の製法。
5. A heat-resistant polymer solution, a heat-resistant polymer precursor solution, or a heat-resistant polymer monomer is applied to a mold material slightly larger than the mold to be manufactured, and is heat-cured to form a heat-resistant polymer. A method for producing a heat-insulating layer-coated mold, which comprises forming a heat-insulating layer, and then cutting and polishing the mold material to produce a mold material coated with the heat-insulating layer, and finishing it to a predetermined size.
JP17170395A 1995-07-07 1995-07-07 Heat insulating layer clad mold and manufacture thereof Withdrawn JPH0919928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17170395A JPH0919928A (en) 1995-07-07 1995-07-07 Heat insulating layer clad mold and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17170395A JPH0919928A (en) 1995-07-07 1995-07-07 Heat insulating layer clad mold and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0919928A true JPH0919928A (en) 1997-01-21

Family

ID=15928117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17170395A Withdrawn JPH0919928A (en) 1995-07-07 1995-07-07 Heat insulating layer clad mold and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0919928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158881A (en) * 2008-12-12 2010-07-22 Ricoh Co Ltd Heat control mold for injection molding and method for manufacturing the same
JP2010221707A (en) * 2009-03-20 2010-10-07 Arcil Thermoforming mold with thermal insulation and associated method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158881A (en) * 2008-12-12 2010-07-22 Ricoh Co Ltd Heat control mold for injection molding and method for manufacturing the same
JP2010221707A (en) * 2009-03-20 2010-10-07 Arcil Thermoforming mold with thermal insulation and associated method

Similar Documents

Publication Publication Date Title
KR970000922B1 (en) Mold for synthetic resin molding
EP0767038B1 (en) Delustered injection molded product of synthetic resin and molding method for the same
TWI507287B (en) Resin/metal composite laminate, resin/metal composite injection molded article, and method of manufacturing the same
KR20120047873A (en) Metal-clad polymer article
EP0543293B1 (en) Coated article and method for producing same
US20130221569A1 (en) Injection Molding Method for Modifying a Surface of an Apolar Polymer Molded Body, and Multi-layer Foil Suitable for Said Method
JPH0919928A (en) Heat insulating layer clad mold and manufacture thereof
JPH10138252A (en) Mold coated with heat insulating layer and molding method of synthetic resin using this mold
JPH10175222A (en) Manufacture of heat insulating layer coated mold and method for molding synthetic resin using the mold
JP2727303B2 (en) Molding method for synthetic resin molded products
JP3396254B2 (en) Mold and its manufacturing method
JPH1034663A (en) Insulated mold and resin molding method using the same
JPH09262838A (en) Heat insulating mold and resin molding method using the same
JP2627131B2 (en) Molding method for recovered resin
JPH0866927A (en) Matte synthetic resin injection-molded article and manufacture thereof
JPH08169035A (en) Injection molding method for synthetic resin
JPH0929753A (en) Heat insulating layer coated mold for molding synthetic resin
JPH10156835A (en) Insulating mold and manufacture thereof
JPH08187731A (en) Mold for molding synthetic resin and manufacture thereof
CN1167458A (en) Synthetic resin molding method
JPH08187732A (en) Mold for molding synthetic resin and manufacture thereof
JPH09155876A (en) Heat insulating mold and production thereof
JPH079452A (en) Mold for molding synthetic resin
WO1996012599A1 (en) Synthetic resin molding method
JPH09220746A (en) Injection molding of synthetic resin

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001