JPH08187731A - Mold for molding synthetic resin and manufacture thereof - Google Patents

Mold for molding synthetic resin and manufacture thereof

Info

Publication number
JPH08187731A
JPH08187731A JP9747995A JP9747995A JPH08187731A JP H08187731 A JPH08187731 A JP H08187731A JP 9747995 A JP9747995 A JP 9747995A JP 9747995 A JP9747995 A JP 9747995A JP H08187731 A JPH08187731 A JP H08187731A
Authority
JP
Japan
Prior art keywords
mold
metal layer
layer
heat insulating
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9747995A
Other languages
Japanese (ja)
Inventor
Hiroshi Kataoka
紘 片岡
Isao Umei
勇雄 梅井
Masafumi Shibachi
正履 芝地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9747995A priority Critical patent/JPH08187731A/en
Publication of JPH08187731A publication Critical patent/JPH08187731A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a molded form having excellent external appearance by providing a specific heat insulation layer and a metal layer on the wall of a main mold, and forming the metal layer of a metal layer thin part having half or more of the wall and a metal layer thick part having less than the half in such a manner that the thickness of the thin part is a predetermined value or less of the insulation layer thickness. CONSTITUTION: A mold comprises a heat insulation layer 2 made of a heat resistant polymer and a thickness of 0.1 to 2mm and existed at a mold wall for forming the mold cavity of a main mold 1 made of a metal, a metal layer having an embossed surface on the front surface in such a manner that the metal layer has a thin part 3 of a recess for occupying the half or more of the wall and a thick part 4 of a protrusion for occupying less than half and the thickness of the part 3 is 1/3 or less of the thickness of the layer 2. As a result, the mold is used, the uppermost surface of the mold is reduced to damage on the surface during molding as compared with the mold having the embossed heat insulation layer on the uppermost surface of the mold, further mold releasability is improved, and the mold durability at the time of molding for a long period, or particularly the durability of the part having small pattern draft is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成樹脂用の金型及びそ
の製法に関する。更に詳しくは、しぼ状表面を有する金
属層を有し、且つ、数万回の成形に耐える合成樹脂の射
出成形あるいはブロー成形等に用いる断熱層被覆金型及
びその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for synthetic resin and a method for producing the same. More specifically, the present invention relates to a heat-insulating layer-covering mold having a metal layer having a grain surface and used for injection molding or blow molding of a synthetic resin that can withstand molding of tens of thousands of times, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】熱可塑性樹脂を金型キャビティへ射出し
て成形し、成形品に型表面の形状状態の付与における再
現性を良くし、成形品の外観を良くするには、通常、樹
脂温度や金型温度を高くしたり、射出圧力を高くする等
の成形条件を選ぶことによりある程度達成できる。
2. Description of the Related Art In order to improve the reproducibility in giving the shape condition of the mold surface to the molded product and to improve the appearance of the molded product, it is usually necessary to inject the thermoplastic resin into the mold cavity for molding. It can be achieved to some extent by selecting molding conditions such as increasing the mold temperature or increasing the injection pressure.

【0003】これらの要因の中で最も大きな影響がある
のは金型温度であり、金型温度を高くする程好ましい。
しかし、金型温度を高くすると、可塑化された樹脂の冷
却固化に必要な冷却時間が長くなり成形能率が下がる、
金型温度を高くすることなく型表面の再現性を良くし、
又金型温度を高くしても必要な冷却時間が長くならない
方法が要求されている。金型に加熱用、冷却用の孔をそ
れぞれとりつけておき交互に熱媒、冷媒を流して金型の
加熱、冷却を繰り返す方法も行われているが、この方法
は熱の消費量も多く、冷却時間が長くなる。
The mold temperature has the greatest influence among these factors, and the higher the mold temperature, the more preferable.
However, if the mold temperature is increased, the cooling time required for cooling and solidifying the plasticized resin becomes longer, and the molding efficiency decreases.
Improves mold surface reproducibility without raising mold temperature,
There is also a demand for a method which does not lengthen the required cooling time even if the mold temperature is raised. There is also a method in which heating and cooling holes are attached to the mold and heating and cooling of the mold are repeated by alternately flowing a heat medium and a refrigerant, but this method also consumes a lot of heat, Cooling time becomes longer.

【0004】金型キャビティを形成する型壁面を熱伝導
率の小さい物質、すなわち断熱層で被覆した金型につい
てはWO 93/06980等で開示されている。
A mold in which the mold wall forming the mold cavity is coated with a substance having a small thermal conductivity, that is, a heat insulating layer is disclosed in WO 93/06980 and the like.

【0005】更に、米国特許第3,734,449号及
び特開昭53−86754号公報には金属製の金型壁面
に断熱層を被覆し、更にその断熱層表面に薄肉金属層を
被覆した金型が示されている。
Further, in US Pat. No. 3,734,449 and JP-A-53-86754, a metal mold wall surface is coated with a heat insulating layer, and the surface of the heat insulating layer is further coated with a thin metal layer. The mold is shown.

【0006】[0006]

【発明が解決しようとする課題】近年、合成樹脂の射出
成形品やブロー成形品に塗装等の後加工を省略する要求
が強くなってきた。製造コストの低下、塗装時の溶剤蒸
発等による環境破壊の低減等のため、塗装を無くしたい
という希望が極めて強い。電気機器、電子機器、事務機
器等の合成樹脂製ハウジングについてこの後加工省略の
要望が極めて強い。また、これらの合成樹脂製ハウジン
グの表面はしぼ状のものが多い。これらのしぼ状表面を
有し、且つ、ウエルドラインの目立ちの少ない、塗装等
の後加工を不要とする成形品が要求されている。
In recent years, there has been a strong demand for omitting post-processing such as coating on injection molded products and blow molded products of synthetic resins. There is a strong desire to eliminate painting because of reduction in manufacturing costs and reduction of environmental damage due to solvent evaporation during painting. There is a strong demand for omitting post-processing of synthetic resin housings for electrical equipment, electronic equipment, office equipment, etc. The surface of these synthetic resin housings is often grain-shaped. There is a demand for a molded product having such a grainy surface and having less conspicuous weld lines and requiring no post-processing such as painting.

【0007】更に、金型の最表面の断熱層として重合体
を用いた場合、断熱層は使用中に傷がつきやすく、ま
た、成形される合成樹脂の種類によっては、成形時に金
型からの離型が困難になる場合があり、その改良が要求
されている。この改良法として断熱層表面に薄肉金属層
を被覆することが考えられる。しかしながら、断熱層表
面に薄肉金属層を被覆した金型にも種々の問題がある。
例えば、金属層の厚みと断熱層の厚みの関係が不適当で
あると、成形時の型表面再現性が不良になる。
Furthermore, when a polymer is used as the heat insulating layer on the outermost surface of the mold, the heat insulating layer is easily scratched during use, and depending on the type of synthetic resin to be molded, the heat insulating layer may be easily removed from the mold. Mold release may be difficult, and its improvement is required. As an improved method, it is possible to coat the surface of the heat insulating layer with a thin metal layer. However, a mold in which the surface of the heat insulating layer is coated with a thin metal layer also has various problems.
For example, if the relationship between the thickness of the metal layer and the thickness of the heat insulating layer is inappropriate, the reproducibility of the mold surface during molding will be poor.

【0008】更に、これまで該金属層はメッキ加工によ
り数μm厚につけることが一般に行われてきた。型表面
をしぼ状の凹凸状にする場合も、これまでは断熱層をし
ぼ状の凹凸状にし、その上にほぼ均一厚みの数μm厚の
金属層をメッキにより被覆することによりしぼ状の凹凸
状にすることが考えられてきた。すなわち、型表面がし
ぼ状の凹凸状の場合でも、最表面の金属層はほぼ均一厚
みであった。しかし、この様な均一厚みの金属層を有す
るしぼ状型表面の場合、本発明が目的としている外観良
好なしぼ状表面を長期にわたって成形することに難点が
あった。
Further, it has been a general practice to deposit the metal layer to a thickness of several μm by plating. Even when the mold surface is made to have a grain-shaped unevenness, the heat-insulating layer has been made to have a grain-shaped unevenness, and a metal layer having a uniform thickness of several μm is coated on the heat-insulating layer by plating to form the grain-shaped unevenness. It has been considered to make a state. That is, even when the mold surface had a concave-convex shape, the outermost metal layer had a substantially uniform thickness. However, in the case of the wrinkle-shaped surface having such a metal layer having a uniform thickness, there is a problem in forming the wrinkle-shaped surface having a good appearance, which is the object of the present invention, for a long period of time.

【0009】合成樹脂製ハウジング等の表面につけられ
ているしぼ状は、革しぼ、木目しぼ等各種あるが、一般
にこれ等のハウジングのしぼは表面凹凸の凸部の面積が
大きく、凹部の面積が小さい。その理由は、凹凸外観が
好まれることの他に、凸部の面積を大きくすることによ
りしぼ表面に傷がつき難くなるからである。この様な形
状のしぼの場合、このしぼ面を成形する金型壁面は逆に
凸部の面積が小さく、凹部の面積が大きくなる。金型表
面を耐熱性重合体からなる断熱層で被覆して、このしぼ
状表面にした場合、断熱材からなる凸部が型表面に飛び
出した形状をしている。金属に比べ強靭性に劣る断熱材
が型表面に飛び出した形状は、傷がつきやすく、更に長
期間成形時の型表面の耐久性でも劣る。断熱層表面を均
一な厚みの薄肉金属層で被覆したしぼ状金型の場合で
も、ほぼ同様な問題があり、型表面の凸部の耐久性が問
題である。また、断熱層表面を均一な厚みの厚肉金属層
で被覆したしぼ状金型では、厚肉金属層により断熱層被
覆効果が低減され、型表面再現性が悪くなる。
There are various types of creases formed on the surface of a synthetic resin housing or the like, such as leather grain and grain grain. Generally, the crevices of these housings have a large area of convex portions of surface irregularities and an area of concave portions. small. The reason for this is that, in addition to the appearance of irregularities being preferred, increasing the area of the convexes makes it difficult to scratch the grain surface. In the case of the grain having such a shape, on the contrary, the mold wall surface for molding the grain surface has a small area of the convex portion and a large area of the concave portion. When the mold surface is covered with a heat-insulating layer made of a heat-resistant polymer to form a grain-like surface, a convex portion made of a heat-insulating material has a shape protruding from the mold surface. A shape in which a heat insulating material, which is inferior in toughness compared to metal, pops out on the surface of the mold is likely to be scratched, and the durability of the surface of the mold during long-term molding is also poor. Even in the case of a grain-shaped mold in which the surface of the heat insulating layer is covered with a thin metal layer having a uniform thickness, there are almost the same problems, and the durability of the convex portions on the mold surface is a problem. Further, in the grain-shaped mold in which the surface of the heat insulating layer is covered with a thick metal layer having a uniform thickness, the thick metal layer reduces the effect of covering the heat insulating layer, resulting in poor mold surface reproducibility.

【0010】[0010]

【課題を解決しようとする手段】本発明者らはこれらの
問題点を解決するため、断熱層で被覆した金型について
検討を行い、主金型表面を被覆する断熱物質、その被覆
状態、主金型材質との組み合わせ、更に最表面に被覆す
る金属層について検討を行い、本発明に至った。すなわ
ち本発明は、金属からなる主金型の型キャビティを構成
する型壁面に、耐熱性重合体からなる0.1〜2mm厚
の断熱層が存在し、更にその表面にしぼ状表面を有する
金属層が存在し、該金属層が型壁面の半分以上を占める
凹部の金属層薄肉部と、半分未満を占める凸部の金属層
厚肉部から成り、金属層薄肉部の厚みが断熱層厚みの1
/3以下である合成樹脂成形用金型である。
In order to solve these problems, the present inventors have studied a mold covered with a heat insulating layer, and have investigated the heat insulating substance for covering the surface of the main mold, its coating state, The present invention was accomplished by studying the combination with the mold material and the metal layer covering the outermost surface. That is, the present invention provides a metal having a heat-insulating layer made of a heat-resistant polymer and having a thickness of 0.1 to 2 mm on a mold wall forming a mold cavity of a main mold made of metal, and further having a wrinkled surface on the surface thereof. There is a layer, and the metal layer is composed of a recessed metal layer thin-walled portion that occupies more than half of the mold wall surface, and a convex metal layer thick-walled portion that occupies less than half the thickness of the metal layer thin-walled portion 1
It is a synthetic resin molding die of / 3 or less.

【0011】更に本発明は、金属からなる主金型の型キ
ャビティを構成する型壁面に、耐熱性重合体からなる断
熱層を被覆し、更にその表面に金属層を被覆し、次いで
その金属層の最表面をエッチング法によりしぼ状表面に
する合成樹脂成形用金型の製法である。
Further, in the present invention, the mold wall surface of the mold cavity of the main mold made of metal is coated with a heat insulating layer made of a heat-resistant polymer, the surface thereof is further coated with a metal layer, and then the metal layer is coated. Is a method for producing a synthetic resin molding die in which the outermost surface of the is made a grain surface by an etching method.

【0012】以下に本発明について詳しく説明する。The present invention will be described in detail below.

【0013】本発明の金型を用いて成形される合成樹脂
は一般の射出成形やブロー成形に使用できる熱可塑性樹
脂であり、ポリエチレン、ポリプロピレン等のポリオレ
フィン、ポリスチレン、スチレン−アクリロニトリル共
重合体、ゴム強化ポリスチレン、ABS樹脂等のスチレ
ン系樹脂、ポリアミド、ポリエステル、ポリカーボネー
ト、メタクリル樹脂、塩化ビニール樹脂等である。合成
樹脂には1〜60%の樹脂強化物が含有されていること
が好ましい。樹脂強化物とは各種ゴム、ガラス繊維、カ
ーボン繊維等の各種繊維、タルク、炭酸カルシウム、カ
オリン等の無機粉末等である。特に良好に使用できるの
はゴム強化合成樹脂であり、その中で更に良好に使用で
きるのはゴム強化スチレン系樹脂である。ここに述べる
ゴム強化スチレン系合成樹脂とは、樹脂相中にゴム相が
島状に分布した、ゴム強化ポリスチレン、ABS樹脂、
AAS樹脂、MBS樹脂等をいう。ゴム強化ポリスチレ
ンは、スチレンを主体とした重合体の樹脂相中にポリブ
タジエン、SBR等のゴム相が島状に分散している。A
BS樹脂はスチレンとアクリロニトリルを主体とした共
重合体の樹脂相中にポリブタジエン、SBR等のゴム相
が島状に分散している。AAS樹脂はスチレンとアクリ
ロニトリルを主体とした共重合体の樹脂相中にアクリル
ゴムのゴム相が島状に分散している樹脂であり、MBS
樹脂は、スチレンとメチルメタアクリレートを主体とし
た共重合体からなる樹脂相中にゴムが島状に分散してい
る樹脂である。更に、これ等樹脂を主体としたブレンド
物等も本発明に使用することができる。例えば、ポリフ
ェニレンエーテルを配合したゴム強化ポリスチレン樹脂
等は良好に使用できる。これ等の樹脂の射出成形品は性
能と経済性のバランスが極めて良く、弱電機器、事務機
器等のハウジング等に好適である。
The synthetic resin molded using the mold of the present invention is a thermoplastic resin that can be used in general injection molding and blow molding, and includes polyolefins such as polyethylene and polypropylene, polystyrene, styrene-acrylonitrile copolymer, and rubber. Examples include reinforced polystyrene, styrene resins such as ABS resin, polyamide, polyester, polycarbonate, methacrylic resin, vinyl chloride resin, and the like. It is preferable that the synthetic resin contains 1 to 60% of a resin reinforcement. The resin reinforced material includes various rubbers, various fibers such as glass fibers and carbon fibers, and inorganic powders such as talc, calcium carbonate and kaolin. The rubber-reinforced synthetic resin is particularly preferably used, and the rubber-reinforced styrene resin is more preferably used. The rubber-reinforced styrene-based synthetic resin described here means rubber-reinforced polystyrene, ABS resin, in which the rubber phase is distributed in an island shape in the resin phase,
Refers to AAS resin, MBS resin and the like. In the rubber-reinforced polystyrene, a rubber phase such as polybutadiene and SBR is dispersed in an island shape in a resin phase of a polymer mainly containing styrene. A
The BS resin has a rubber phase such as polybutadiene and SBR dispersed in an island shape in a resin phase of a copolymer mainly composed of styrene and acrylonitrile. AAS resin is a resin in which a rubber phase of acrylic rubber is dispersed in an island shape in a resin phase of a copolymer mainly composed of styrene and acrylonitrile.
The resin is a resin in which rubber is dispersed in an island shape in a resin phase composed of a copolymer mainly composed of styrene and methyl methacrylate. Furthermore, blends and the like containing these resins as the main components can also be used in the present invention. For example, a rubber-reinforced polystyrene resin containing polyphenylene ether can be favorably used. Injection-molded products of these resins have a very good balance between performance and economy, and are suitable for housings of light electric appliances, office equipment and the like.

【0014】本発明の金型で成形される良好な成形品は
弱電機器、電子機器、事務機器等のハウジング、各種自
動車部品、各種日用品、各種工業部品等の一般に使用さ
れる合成樹脂射出成形品である。特に好ましくは、ウエ
ルドラインが多い電子機器、電気機器、事務機器のハウ
ジング等である。更に、本発明の金型で成形される良好
な成形品はしぼ状外観が要求される各種ブロー成形品で
ある。
Good molded products molded by the mold of the present invention are generally used synthetic resin injection molded products such as housings for light electric appliances, electronic devices, office equipment, various automobile parts, various daily necessities, and various industrial parts. Is. Particularly preferred are housings of electronic equipment, electric equipment, office equipment, etc., which have many weld lines. Further, good molded products molded with the mold of the present invention are various blow-molded products required to have a grainy appearance.

【0015】本発明に述べる金属からなる主金型とは、
鉄又は鉄を主成分とする鋼材、アルミニウム、又はアル
ミニウムを主成分とする合金、ZAS等の亜鉛合金、ベ
リリウム−銅合金等の一般に合成樹脂の成形に使用され
ている金属金型を包含する。特に鋼材から成る金型が良
好に使用できる。これらの金属からなる主金型の型キャ
ビティを構成する型表面は硬質クロムやニッケル等でメ
ッキされていることが好ましい。
The main mold made of metal described in the present invention is
It includes metal dies generally used for molding synthetic resins such as iron or steel materials containing iron as a main component, aluminum, alloys containing aluminum as a main component, zinc alloys such as ZAS, and beryllium-copper alloys. Particularly, a mold made of steel can be used favorably. The mold surface of the mold cavity of the main mold made of these metals is preferably plated with hard chromium, nickel or the like.

【0016】本発明で使用される金型の断熱層の表面に
被覆される金属層に用いられる金属は、一般に金属メッ
キや金属溶射等に用いられる金属であり、クロム、ニッ
ケル、銅、亜鉛、鉄、アルミニウム、チタン、あるいは
これらを主体とする合金、錫−コバルト合金、鉄−ニッ
ケル合金等の1種又は2種以上である。金属層は断熱層
の表面に被覆され、その表面はしぼ状である。
The metal used for the metal layer coated on the surface of the heat insulating layer of the mold used in the present invention is a metal generally used for metal plating, metal spraying and the like, and chromium, nickel, copper, zinc, One or more of iron, aluminum, titanium, alloys mainly containing these, tin-cobalt alloys, iron-nickel alloys, and the like. The metal layer is coated on the surface of the heat insulating layer, and the surface has a grain shape.

【0017】本発明に述べる金属層の厚みは成形品にし
ぼ状外観が要求される部分を成形する型壁面の金属層厚
みであり、金属層薄肉部は型壁面の半分以上、好ましく
は60〜90%を占め、その他が金属層厚肉部からな
る。
The thickness of the metal layer described in the present invention is the thickness of the metal layer on the wall surface of the mold for molding the portion of the molded product which is required to have a grainy appearance. The thin portion of the metal layer is more than half of the wall surface of the mold, preferably 60 to It accounts for 90%, and the others consist of thick metal layer portions.

【0018】金属層厚肉部と金属層薄肉部の厚みの差は
0.01mm以上が好ましく、更に好ましくは0.02
〜0.1mmの範囲から選択される。
The difference in thickness between the metal layer thick portion and the metal layer thin portion is preferably 0.01 mm or more, more preferably 0.02.
Is selected from the range of 0.1 mm.

【0019】金属層薄肉部の厚みは断熱層厚みの1/3
以下であり、好ましくは1/4以下、更に好ましくは1
/5以下であり、最も好ましくは1/20〜1/5であ
る。また、その厚みの絶対値は0〜0.1mmの厚みが
好ましく、更に好ましくは0.001〜0.05mm、
最も好ましくは0.005〜0.03mmである。金属
層薄肉部が厚すぎると主金型表面に断熱層を被覆した効
果がなくなり、型表面再現性が悪くなる。本発明におい
ては、金属層薄肉部は0.001mm以上の金属層がつ
いている方が金属層厚肉部の剥離を抑える効果があり好
ましいが、金属層薄肉部がほとんど無い場合も本発明に
含まれる。
The thickness of the thin portion of the metal layer is 1/3 of the thickness of the heat insulating layer.
Or less, preferably 1/4 or less, more preferably 1
/ 5 or less, and most preferably 1/20 to 1/5. The absolute value of the thickness is preferably 0 to 0.1 mm, more preferably 0.001 to 0.05 mm,
Most preferably, it is 0.005-0.03 mm. If the thin portion of the metal layer is too thick, the effect of coating the heat insulating layer on the surface of the main mold is lost and the reproducibility of the mold surface deteriorates. In the present invention, it is preferable that the metal layer thin portion has a metal layer of 0.001 mm or more because it has an effect of suppressing peeling of the metal layer thick portion, but the present invention also includes a case where there is almost no metal layer thin portion. Be done.

【0020】本発明で断熱層に用いる耐熱性重合体と
は、成形される合成樹脂の成形温度より高い軟化温度を
有する重合体であり、好ましくは、ガラス転移温度が1
40℃以上、好ましくは160℃以上、及び/又は融点
が200℃以上、更に好ましくは250℃以上の耐熱性
重合体である。耐熱性重合体の熱伝導率は一般に0.0
001〜0.002cal/cm・sec・℃であり、
金属より大幅に小さい。又、該耐熱性重合体の破断伸度
は5%以上、好ましくは10%以上、更に好ましくは1
5%以上の靭性のある重合体が好ましい。破断伸度の測
定法はASTMD638に準じて行い、測定時の引っ張
り速度は5mm/分である。
The heat-resistant polymer used in the heat insulating layer in the present invention is a polymer having a softening temperature higher than the molding temperature of the synthetic resin to be molded, and preferably has a glass transition temperature of 1 or less.
It is a heat-resistant polymer having a temperature of 40 ° C. or higher, preferably 160 ° C. or higher, and / or a melting point of 200 ° C. or higher, more preferably 250 ° C. or higher. The thermal conductivity of heat resistant polymers is generally 0.0
001 to 0.002 cal / cm · sec · ° C.,
Significantly smaller than metal. Further, the elongation at break of the heat resistant polymer is 5% or more, preferably 10% or more, more preferably 1
A polymer having a toughness of 5% or more is preferable. The breaking elongation is measured according to ASTM D638, and the tensile speed at the time of measurement is 5 mm / min.

【0021】本発明で断熱層として良好に使用できる重
合体は、主鎖に芳香環を有する耐熱性重合体であり、例
えば、有機溶剤に溶解する各種非結晶性耐熱重合体、各
種ポリイミド等が良好に使用できる。非結晶性耐熱性重
合体としては、ポリスルホン、ポリエーテルスルホン、
ポリエーテルイミド等である。これらの非結晶性耐熱性
重合体にはカーボン繊維等の充填材を配合することによ
り熱膨張係数を低下させて本発明の断熱層として使用す
ることができる。ポリイミドは各種あるが、直鎖型高分
子量ポリイミド、ポリアミドイミド、一部架橋型のポリ
イミドが良好に使用できる。一般に直鎖型高分子量ポリ
イミドは破断伸度が大きく強靭であり、耐久性に優れて
おり特に良好に使用できる。
Polymers which can be favorably used as the heat insulating layer in the present invention are heat resistant polymers having an aromatic ring in the main chain, and examples thereof include various amorphous heat resistant polymers soluble in organic solvents and various polyimides. It can be used well. As the amorphous heat resistant polymer, polysulfone, polyether sulfone,
Polyetherimide and the like. By blending a filler such as carbon fiber with these non-crystalline heat-resistant polymers, the coefficient of thermal expansion can be lowered and used as the heat insulating layer of the present invention. There are various types of polyimide, but linear high-molecular-weight polyimide, polyamide-imide, and partially cross-linked polyimide can be favorably used. Generally, the straight chain type high molecular weight polyimide has a large breaking elongation and is tough, has excellent durability, and can be used particularly favorably.

【0022】更に、本発明では熱膨張係数を小さくした
エポキシ樹脂、すなわち各種充填材を適量配合したエポ
キシ樹脂等も使用できる。エポキシ樹脂は一般に熱膨張
係数が大きく、金属金型との熱膨張係数の差は大きい。
しかし、熱膨張係数が小さいガラス、シリカ、タルク、
クレー、珪酸ジルコニウム、珪酸リチウム、炭酸カルシ
ウム、アルミナ、マイカ等の粉体や粒子、ガラス繊維、
ウイスカー、炭素繊維等の適量をエポキシ樹脂に配合
し、金属金型との熱膨張係数の差を小さくした充填材配
合エポキシ樹脂は本発明の断熱層として良好に使用でき
る。又、エポキシ樹脂あるいは充填材配合エポキシ樹脂
に、更にナイロン、ゴム等の強靭性を与える各種配合物
を加え、強靭性を与えた配合エポキシ樹脂は良好に使用
できる。特に、エポキシ樹脂にポリエーテルスルホンや
ポリエーテルイミドを配合して硬化したポリマーアロイ
は強靭性に優れ良好に使用できる。
Further, in the present invention, an epoxy resin having a small coefficient of thermal expansion, that is, an epoxy resin in which various fillers are mixed in appropriate amounts can be used. Epoxy resin generally has a large coefficient of thermal expansion, and the difference in coefficient of thermal expansion with the metal mold is large.
However, glass, silica, talc, which has a small coefficient of thermal expansion,
Clay, zirconium silicate, lithium silicate, calcium carbonate, alumina, powder and particles of mica, glass fiber,
A filler-containing epoxy resin in which an appropriate amount of whiskers, carbon fibers or the like is mixed with an epoxy resin to reduce the difference in coefficient of thermal expansion from the metal mold can be favorably used as the heat insulating layer of the present invention. Further, to the epoxy resin or the filler-blended epoxy resin, various blends such as nylon and rubber which give the toughness are further added, and the blended epoxy resin to which the toughness is given can be favorably used. In particular, a polymer alloy obtained by blending an epoxy resin with polyether sulfone or polyether imide and curing it has excellent toughness and can be used favorably.

【0023】射出成形やブロー成形等では成形される加
熱樹脂に接触する型表面は各成形毎に厳しい冷熱サイク
ルにさらされる。又、従来技術では、メッキ等で断熱層
表面に形成される金属層は一般に重合体からなる断熱層
より熱膨張係数が小さく、断熱層と金属層の熱膨張係数
が大きく異なるため、その界面で応力が繰り返し発生
し、1万回の成形を行えば1万回の応力が繰り返し発生
し、ついにはその界面で剥離が発生する。本発明では、
断熱層と接する主金型及び/又は金属層の熱膨張係数と
断熱層の熱膨張係数との差を小さくすることにより、剥
離を引き起こす応力を低減することができる。本発明に
おいて、断熱層と接する主金型及び/又は金属層の熱膨
張係数と断熱層の熱膨張係数の差は3×10-5/℃未満
であることが好ましい。更に好ましくは差が2×10-5
/℃未満である。一般に金属は重合体より熱膨張係数が
小さく、従って、熱膨張係数が小さい耐熱性重合体を選
択することが好ましい。
In injection molding, blow molding, etc., the mold surface that comes into contact with the heated resin to be molded is exposed to a severe cooling and heating cycle for each molding. Further, in the prior art, the metal layer formed on the surface of the heat insulating layer by plating or the like generally has a smaller coefficient of thermal expansion than the heat insulating layer made of a polymer, and the coefficient of thermal expansion of the heat insulating layer and that of the metal layer are largely different. The stress is repeatedly generated, and if the molding is performed 10,000 times, the stress is repeatedly generated 10,000 times, and finally peeling occurs at the interface. In the present invention,
By reducing the difference between the coefficient of thermal expansion of the main mold and / or the metal layer in contact with the heat insulating layer and the coefficient of thermal expansion of the heat insulating layer, the stress that causes peeling can be reduced. In the present invention, the difference between the coefficient of thermal expansion of the main mold and / or the metal layer in contact with the heat insulating layer and the coefficient of thermal expansion of the heat insulating layer is preferably less than 3 × 10 −5 / ° C. More preferably, the difference is 2 × 10 -5
/ ° C. Generally, the metal has a smaller coefficient of thermal expansion than the polymer, and therefore it is preferable to select a heat resistant polymer having a smaller coefficient of thermal expansion.

【0024】ここに述べる熱膨張係数は線膨張係数であ
る。断熱層の熱膨張係数は断熱層の面方向の線膨張係数
であり、JIS K7197−1991に示される方法
で測定し、50℃と250℃の温度間の平均値、あるい
は断熱層のガラス転移温度が250℃以下の場合には、
50℃と該ガラス転移温度間の平均値で示す。すなわ
ち、平滑な平板状金属の上に断熱層を形成し、次いで該
断熱層を剥離し、その断熱層の50℃と250℃の間、
あるいは50℃とガラス転移温度の間の平均熱膨張係数
を測定する。
The coefficient of thermal expansion described here is a coefficient of linear expansion. The thermal expansion coefficient of the heat insulating layer is a linear expansion coefficient in the surface direction of the heat insulating layer, and is measured by the method shown in JIS K7197-1991, and is the average value between the temperatures of 50 ° C. and 250 ° C., or the glass transition temperature of the heat insulating layer. If the temperature is below 250 ℃,
The average value between 50 ° C. and the glass transition temperature is shown. That is, a heat insulating layer is formed on a smooth flat metal, and then the heat insulating layer is peeled off, and the heat insulating layer is heated between 50 ° C. and 250 ° C.
Alternatively, the average coefficient of thermal expansion between 50 ° C and the glass transition temperature is measured.

【0025】本発明では2層以上の断熱層からなる金型
も良好に使用できる。この場合には少なくとも断熱層に
接する主金型及び/又は金属層の熱膨張係数と断熱層の
熱膨張係数の差が小さいことが好ましく、3×10-5
℃未満であることが好ましい。主金型に断熱層及び金属
を被覆する時、あるいは、本発明金型で射出成形等を行
う時には、主金型と断熱層の界面、及び/又は金属層と
断熱層の界面に最も激しい応力が発生する。この界面を
形成する両層に熱膨張係数が近い物を選択して使用する
ことにより、発生する応力を低減できる。
In the present invention, a mold comprising two or more heat insulating layers can also be used favorably. In this case, it is preferable that at least the difference between the coefficient of thermal expansion of the main mold and / or the metal layer in contact with the heat insulating layer and the coefficient of thermal expansion of the heat insulating layer is small, 3 × 10 −5 /
It is preferably lower than ° C. When the main mold is coated with the heat insulating layer and the metal, or when the mold of the present invention is used for injection molding, the most severe stress is applied to the interface between the main mold and the heat insulating layer and / or the interface between the metal layer and the heat insulating layer. Occurs. The stress generated can be reduced by selecting and using a material having a thermal expansion coefficient close to both layers forming the interface.

【0026】断熱層と主金型の間、あるいは断熱層と金
属層の間の剥離の原因は熱膨張係数の差だけではない。
しかし、熱膨張係数の差が極めて大きな要因である。断
熱層と主金型及び/又は金属層との密着力が大きく、断
熱層の引っ張り弾性率が小さく、破断伸度が大きい、い
わゆるゴム状の軟質材質の断熱層であれば、熱膨張係数
の差が若干大きくても剥離は生じない。しかし、断熱層
に適した材質、すなわち、耐熱性が高く、硬度が大き
く、研磨により鏡面になりやすい等を満たす断熱材は、
一般に弾性率が大きい主鎖に芳香環を有する耐熱性硬質
合成樹脂であり、この耐熱性合成樹脂層を主金型及び/
又は金属層に密着させ、剥離を起こさせない様にするに
は、熱膨張係数の差が小さいことが好ましい。
The cause of the peeling between the heat insulating layer and the main mold or between the heat insulating layer and the metal layer is not only the difference in the coefficient of thermal expansion.
However, the difference in the coefficient of thermal expansion is an extremely large factor. If the heat insulating layer is a so-called rubber-like heat insulating layer having a large adhesive force between the heat insulating layer and the main mold and / or the metal layer, a small tensile elastic modulus of the heat insulating layer, and a large breaking elongation, Peeling does not occur even if the difference is slightly large. However, a material suitable for the heat insulating layer, that is, a heat insulating material having high heat resistance, high hardness, and easily becoming a mirror surface by polishing,
Generally, it is a heat-resistant hard synthetic resin having an aromatic ring in the main chain, which has a large elastic modulus.
Alternatively, it is preferable that the difference in the coefficient of thermal expansion is small in order to bring the metal layer into close contact with the metal layer and prevent peeling.

【0027】金型壁面を断熱層で被覆する場合、その断
熱層には種々の性能が要求される。主金型との密着性の
他に、強靭性、表面硬さ、表面を研磨した時の光沢の出
やすさ等も要求される。熱膨張係数が小さいことの他
に、これらの性能を全て満たす重合体が得られにくいこ
ともあり、2層以上の断熱層を用いることが好ましい。
When the wall surface of the mold is covered with a heat insulating layer, the heat insulating layer is required to have various performances. In addition to the adhesion to the main mold, toughness, surface hardness, and ease of gloss when the surface is polished are required. In addition to having a small coefficient of thermal expansion, it is difficult to obtain a polymer satisfying all of these properties, and thus it is preferable to use two or more heat insulating layers.

【0028】本発明に良好に使用できる主金型の金属、
及び最表面に被覆する金属層の金属、断熱層の耐熱性重
合体、及び一般の合成樹脂の熱膨張係数を表1に示す。
A metal of the main mold which can be favorably used in the present invention,
Table 1 shows the coefficients of thermal expansion of the metal of the metal layer coated on the outermost surface, the heat-resistant polymer of the heat insulating layer, and general synthetic resins.

【0029】[0029]

【表1】 ※ これらの樹脂にはカーボン繊維を配合することによ
る熱膨張係数を4×10-5/℃付近まで低下できる。
[Table 1] * The coefficient of thermal expansion by blending carbon fibers into these resins can be reduced to around 4 × 10 -5 / ° C.

【0030】主金型及び/又は金属層の熱膨張係数が大
きくなれば、相対的に熱膨張係数の大きい断熱層が使用
できる様になる。金型材質として鋼鉄が最も多く使用さ
れているが、最近アルミニウム合金や亜鉛合金も使用さ
れる様になってきた。本発明では熱膨張係数が近ければ
近い程好ましく、主金型に鋼鉄を使用した場合には熱膨
張係数が極めて小さい低熱膨張型ポリイミド等は良好に
使用できる。表2に各種低熱膨張型ポリイミドの熱膨張
係数を示す。
If the coefficient of thermal expansion of the main mold and / or the metal layer is increased, a heat insulating layer having a relatively large coefficient of thermal expansion can be used. Steel is most often used as the mold material, but recently aluminum alloys and zinc alloys have also been used. In the present invention, the closer the coefficient of thermal expansion is, the more preferable, and when steel is used for the main mold, a low coefficient of thermal expansion polyimide having an extremely small coefficient of thermal expansion can be favorably used. Table 2 shows the thermal expansion coefficient of various low thermal expansion polyimides.

【0031】[0031]

【表2】 [Table 2]

【0032】表中、BifixとFreeは、ポリイミ
ド前駆体をイミド化してポリイミドフィルムをつくると
きに、フィルムを自由に収縮できる様にしたか(Fre
e)、四角の枠に固定して、イミド化時に起こる収縮を
抑えてその応力でポリマー鎖を面内配向させたか(Bi
fix)の違いである。ポリイミド前駆体溶液を主金型
に塗布後、加熱して形成したポリイミドの熱膨張係数は
Bifixに近い値となる。低熱膨張型ポリイミドはポ
リマー鎖が剛直で、真っすぐに伸びているポリマー鎖構
造の重合体である。
In the table, Bifix and Free did not allow the film to shrink freely when the polyimide precursor was imidized to form a polyimide film.
e) Is the polymer chain fixed in a square frame to suppress the shrinkage that occurs during imidization and to cause the polymer chains to be in-plane oriented by the stress (Bi
fix). After the polyimide precursor solution is applied to the main mold, the polyimide formed by heating has a thermal expansion coefficient close to that of Bifix. The low thermal expansion type polyimide is a polymer having a polymer chain structure in which the polymer chain is rigid and extends straight.

【0033】表3に本発明に良好に使用できる耐熱性重
合体の構造とガラス転移温度(Tg)を示す。
Table 3 shows the structure and glass transition temperature (Tg) of the heat resistant polymer which can be favorably used in the present invention.

【0034】[0034]

【表3】 [Table 3]

【0035】射出成形は複雑な形状の成形品を一度の成
形で得られるところに経済的価値がある。この複雑な金
型表面を耐熱性重合体で被覆し、且つ強固に密着させる
には、耐熱性重合体溶液、及び/又は耐熱性重合体前駆
体溶液を塗布し、次いで加熱して耐熱性重合体の断熱層
を形成させることが最も好ましい。従って、本発明の耐
熱性重合体、あるいは耐熱性重合体の前駆体は溶剤に溶
解できることが好ましい。ポリイミドの前駆体であるポ
リアミド酸の溶液を型壁面に塗布し、次いで加熱キュア
を行い型壁面上にポリイミドを形成する方法は良好に使
用できる。化1にポリアミド酸からポリイミドを形成す
る式を示す。
Injection molding has an economic value in that a molded product having a complicated shape can be obtained by molding once. In order to coat the surface of this complicated mold with the heat-resistant polymer and firmly adhere it, the heat-resistant polymer solution and / or the heat-resistant polymer precursor solution is applied and then heated to heat-resistant polymer. Most preferably, a coalescing heat insulating layer is formed. Therefore, the heat-resistant polymer of the present invention or the precursor of the heat-resistant polymer is preferably soluble in a solvent. A method of applying a solution of a polyamic acid, which is a precursor of polyimide, to a mold wall surface and then performing heat curing to form a polyimide on the mold wall surface can be favorably used. Formula 1 shows a formula for forming a polyimide from a polyamic acid.

【0036】[0036]

【化1】 Embedded image

【0037】ポリイミドの前駆体のポリアミド酸溶液を
型壁面に塗布し、次いで加熱キュアを行いポリイミドを
形成した場合、加熱キュア温度、及び/又は加熱キュア
雰囲気によりポリイミドのガラス転移温度や熱膨張係数
が異なる。一般に加熱キュア温度が高い程ガラス転移温
度が高くなり、又熱膨張係数が小さくなる。ポリアミド
酸は一般に250℃以上にすればほとんどイミド化が1
00%進行しポリイミドが形成されるが、ポリイミドに
なってからの分子の動きが熱膨張係数に影響を与えると
考えられている。
When a polyamic acid solution of a polyimide precursor is applied to the mold wall surface and then heated and cured to form a polyimide, the glass transition temperature and the coefficient of thermal expansion of the polyimide may vary depending on the heating and curing temperature and / or the heating and curing atmosphere. different. Generally, the higher the heating and curing temperature, the higher the glass transition temperature and the smaller the coefficient of thermal expansion. Generally, polyamic acid shows almost 1 imidization at 250 ° C or higher.
Although it progresses by 100% to form a polyimide, it is considered that the movement of molecules after becoming a polyimide affects the thermal expansion coefficient.

【0038】本発明の断熱層と主金型、及び/又は断熱
層と金属層との密着力は大きいことが必要であり、室温
で0.5kg/10mm巾以上が好ましく、更に好まし
くは0.8kg/10mm巾以上、最も好ましくは1k
g/10mm巾以上である。これは密着した金属層、あ
るいは金属層と断熱層を10mm巾に切り、接着面と直
角方向に20mm/分の速度で引張った時の剥離力であ
る。この剥離力は測定場所、測定回数によりかなりバラ
ツキが見られるが、最小値が大きいことが重要であり、
安定して大きい剥離力であることが好ましい。本発明に
述べる密着力は金型の主要部の密着力の最小値である。
密着力を向上させるため、主金型の表面を微細な凹凸状
にしたり、各種メッキをしたり、プライマー処理をする
ことは適宜実施できる。 射出成形は複雑な形状の型物
が一度の成形でできることが最大の長所であり、そのた
め金型キャビティは一般に複雑な形状をしている。しか
し、この複雑な形状の金型キャビティ表面に鏡面状に被
覆物質を塗布することは極めて困難でり、そのため塗布
された被覆層を後から表面研磨して鏡面状に仕上げるこ
とは最も良好な方法である。
It is necessary that the heat-insulating layer of the present invention and the main mold and / or the heat-insulating layer and the metal layer have a high adhesion, and the width at room temperature is preferably 0.5 kg / 10 mm or more, more preferably 0. 8kg / 10mm width or more, most preferably 1k
g / 10 mm width or more. This is the peeling force when the adhered metal layer or the metal layer and the heat insulating layer are cut into a width of 10 mm and pulled at a speed of 20 mm / min in the direction perpendicular to the adhesive surface. This peeling force varies considerably depending on the measurement location and the number of measurements, but it is important that the minimum value is large.
A stable and large peeling force is preferable. The adhesion force described in the present invention is the minimum value of the adhesion force of the main part of the mold.
In order to improve the adhesion, it is possible to appropriately form the surface of the main mold into fine irregularities, perform various kinds of plating, and perform a primer treatment. Injection molding has the greatest merit that a mold having a complicated shape can be formed by one molding, and therefore, a mold cavity generally has a complicated shape. However, it is extremely difficult to apply the coating material to the surface of the mold cavity of this complicated shape in a mirror surface, and therefore it is the best method to polish the applied coating layer afterwards to make it a mirror surface. Is.

【0039】断熱層の全厚みは0.1mm〜2mmの範
囲で適度に選択される。好ましくは、射出成形において
は0.1mmから0.5mmであり、ブロー成形では
0.3mmから1.0mmであり、更に好ましくは、射
出成形では0.12mmから0.4mm、ブロー成形で
は0.3mmから0.6mmである。0.1mm未満の
薄い断熱層では、成形品の外観改良効果が少ない。2m
mを越える断熱層厚みでは金型内冷却時間が長くなり、
経済的観点から好ましくない。本発明に述べる断熱層表
面はほぼ平滑状、あるいは金属層との密着力を上げるた
めの微細な凹凸状であり、これは本発明で最表面の金属
層表面に形成しようとしている外観に優れたしぼ状程の
大きな凹凸ではない。
The total thickness of the heat insulating layer is appropriately selected within the range of 0.1 mm to 2 mm. It is preferably 0.1 mm to 0.5 mm in injection molding, 0.3 mm to 1.0 mm in blow molding, and more preferably 0.12 mm to 0.4 mm in injection molding and 0.1 mm in blow molding. It is 3 mm to 0.6 mm. With a thin heat insulating layer of less than 0.1 mm, the effect of improving the appearance of the molded product is small. 2m
If the thickness of the heat insulation layer exceeds m, the cooling time in the mold will increase,
Not preferable from an economic point of view. The surface of the heat insulating layer described in the present invention is almost smooth or has fine irregularities for increasing the adhesion with the metal layer, which is excellent in the appearance to be formed on the outermost metal layer surface in the present invention. It is not as big as a grain.

【0040】本発明に述べるしぼ状とは、本発明の金型
で成形される成形品表面が一般の家電機器、事務機器等
の合成樹脂製ハウジング等の表面に一般に付与されてい
るしぼ状になるものであり、皮革の皺模様、布模様、木
目模様、ヘアーライン模様等の凹凸状である。本発明の
金型のしぼ面の凸部の面積は凹部の面積より小さい。
The term "crimped" as used in the present invention means that the surface of a molded article molded with the mold of the present invention is generally given to the surface of a synthetic resin housing or the like of general household appliances, office equipment and the like. It is an uneven shape such as a wrinkle pattern of leather, a cloth pattern, a wood grain pattern, and a hairline pattern. The area of the convex portion of the grain surface of the mold of the present invention is smaller than the area of the concave portion.

【0041】本発明の金属層は種々の方法で被覆できる
が、メッキや溶射等により被覆される。ここに述べるメ
ッキは化学メッキ、電気メッキのいずれの方法のもので
も良い。例えば、まず断熱層表面を適度な粗面にし、そ
の表面に銅等の導体を析出させて電導性を付与し、次い
でニッケル等の各種金属を電気メッキする方法、化学メ
ッキでニッケルを被覆する方法等が使用できる。一般に
は次の工程のいくつかを経てメッキされる。
The metal layer of the present invention can be coated by various methods, but it is coated by plating, thermal spraying or the like. The plating described here may be either chemical plating or electroplating. For example, first the surface of the heat insulating layer is made a moderately rough surface, a conductor such as copper is deposited on the surface to impart electrical conductivity, and then various metals such as nickel are electroplated, and nickel is coated by chemical plating. Etc. can be used. Generally, plating is performed through some of the following steps.

【0042】前処理(バリ取り、樹脂)→化学腐食(酸
やアルカリによる化学エッチング:表面を適度な凹凸に
する)→中和→感受性化処理(合成樹脂表面に還元力の
ある金属塩を吸着させて活性化を効果あらしめる)→活
性化処理(触媒作用を有する貴金属を樹脂表面に付与)
→化学ニッケルメッキ(ニッケルの化学メッキ)→電気
ニッケルメッキ(ニッケルの電気メッキ)(詳細は「プ
ラスチックのメッキ」呂茂辰著、昭49年、日刊工業新
聞社刊等を参照)。
Pretreatment (deburring, resin) → Chemical corrosion (chemical etching with acid or alkali: making the surface have a suitable unevenness) → Neutralization → Sensitization treatment (adsorption of reducing metal salts on the surface of synthetic resin) The activation effect) → Activation treatment (providing a noble metal with a catalytic action on the resin surface)
→ Chemical nickel plating (chemical plating of nickel) → Electrolytic nickel plating (electroplating of nickel) (For details, refer to "Plastic plating", written by Tatsumu Romo, published in Nikkan Kogyo Shimbun, etc.)

【0043】最も好ましいのは、ニッケル合金(ニッケ
ルとリンの合金)の化学メッキを薄層につけ、その上に
電気ニッケルを厚くつける方法である。
The most preferable method is to apply a chemical plating of a nickel alloy (nickel-phosphorus alloy) to a thin layer, and to apply electrolytic nickel thickly thereon.

【0044】断熱層とメッキ層の密着力を増大させるた
め、断熱層の最表面を形成する断熱材に炭酸カルシウム
や酸化珪素の粉末を配合し、化学腐食で該粉末を溶かし
出して表面を適度な凹凸にすることは極めて良好に使用
できる。
In order to increase the adhesion between the heat insulating layer and the plating layer, calcium carbonate or silicon oxide powder is mixed with the heat insulating material forming the outermost surface of the heat insulating layer, and the powder is melted by chemical corrosion to bring the surface to an appropriate level. It can be used very well if it is made to have irregularities.

【0045】本発明の金属層は溶射法でも被覆される。
溶射法は一回の操作で厚肉に塗布できる長所があり、金
属層を厚肉につけたい場合には良好な方法である。溶射
法として、ガス法、アーク法、プラズマ法、レーザー法
等の溶射方法が適度に選択して使用できる。
The metal layer of the present invention is also coated by the thermal spraying method.
The thermal spraying method has an advantage that it can be applied to a thick wall in a single operation, and is a good method when a thick metal layer is desired. As the thermal spraying method, a gas spraying method, an arc method, a plasma method, a laser method or the like can be appropriately selected and used.

【0046】本発明の金型の金属層表面をしぼ状にする
方法は種々の方法で行うことができる。エッチング法は
良好に使用できる。酸によるエッチング法は最も良好に
使用できる。金型の最表面層が金属であれば一般の金型
のエッチング法と同様の方法でしぼ化ができる。すなわ
ち、金属層表面を紫外線硬化樹脂を用いてしぼ状にマス
キングし、次いで酸エッチングでしぼ化する方法は良好
に使用できる。
Various methods can be used to make the surface of the metal layer of the mold of the present invention grain-shaped. The etching method can be used well. The acid etching method is best used. If the outermost surface layer of the mold is a metal, it can be grained by the same method as a general mold etching method. That is, a method in which the surface of the metal layer is masked with an ultraviolet curable resin in a grain shape and then grained by acid etching can be favorably used.

【0047】ニッケルとリンの合金は酸でエッチングさ
れ難く、純粋なニッケルはエッチングされ易い。この様
にエッチングされ易い金属層と酸エッチングされ難い金
属層を適度に使用することが好ましい。ニッケル合金の
化学メッキで薄層ニッケル層をまず形成し、その上に純
粋なニッケルの電気メッキで形成した厚肉金属層を酸エ
ッチングでしぼ状にすることは良好に実施できる。更
に、しぼ状金属層の表面に化学メッキでニッケル合金の
薄層を形成し、金型の耐蝕性を向上させることもでき
る。
An alloy of nickel and phosphorus is difficult to be etched by acid, and pure nickel is easily etched. It is preferable to appropriately use a metal layer that is easily etched and a metal layer that is not easily acid-etched. It is good practice to first form a thin nickel layer by chemical plating of a nickel alloy and then acid etch a thick metal layer formed by electroplating of pure nickel onto the grain. Further, it is possible to improve the corrosion resistance of the mold by forming a thin layer of nickel alloy on the surface of the grain-shaped metal layer by chemical plating.

【0048】主金型表面を耐熱性樹脂からなる断熱層で
被覆し、その断熱層表面に射出された加熱樹脂が接触す
ると、型表面は樹脂の熱を受けて昇温する。断熱層の熱
伝導率が小さいほど、断熱層が厚いほど、また、金属層
が薄いほど型表面温度は高くなる。一般の金属からなる
主金型の型表面に断熱層が無い場合には、0.01秒後
には型表面温度は殆ど主金型温度と同一温度となるが、
型表面を0.1mm〜2mmの厚みの断熱層で被覆する
ことで型表面を一定時間軟化温度以上の状態にすること
ができる。
When the surface of the main mold is covered with a heat insulating layer made of a heat resistant resin, and the heated resin injected into contact with the surface of the heat insulating layer, the mold surface receives the heat of the resin and rises in temperature. The lower the thermal conductivity of the heat insulating layer, the thicker the heat insulating layer, and the thinner the metal layer, the higher the mold surface temperature becomes. When there is no heat insulating layer on the mold surface of the main mold made of general metal, the mold surface temperature becomes almost the same as the main mold temperature after 0.01 seconds.
By covering the mold surface with a heat insulating layer having a thickness of 0.1 mm to 2 mm, the mold surface can be kept at the softening temperature or higher for a certain period of time.

【0049】本発明を図面を用いて説明する。The present invention will be described with reference to the drawings.

【0050】図1に本発明の合成樹脂成形用金型の断面
図を示す。図1に示すように、本発明の金型は、金属か
らなる主金型1の型キャビティを構成する型壁面に、耐
熱性重合体からなる0.1〜2mm厚の断熱層2が存在
し、更にその表面にしぼ状表面を有する金属層が存在
し、該金属層が型壁面の半分以上を占める薄肉部3と、
半分未満を占める厚肉部4からなる。本発明には、金属
層薄肉部3の厚みBが極めて薄肉の場合、あるいは金属
層薄肉部が殆ど無い場合も含まれる(1−2)。
FIG. 1 shows a sectional view of a synthetic resin molding die of the present invention. As shown in FIG. 1, the mold of the present invention has a heat insulating layer 2 made of a heat resistant polymer and having a thickness of 0.1 to 2 mm, which is present on the mold wall surface of the mold cavity of the main mold 1 made of metal. A thin layer 3 having a metal layer having a grain surface on its surface, the metal layer occupying more than half of the wall surface of the mold;
The thick portion 4 occupies less than half. The present invention also includes the case where the thickness B of the thin metal layer portion 3 is extremely thin, or the case where there is almost no thin metal layer portion (1-2).

【0051】また、金属層厚肉部4が表面に突き出した
形状のものが本発明の効果が大きい。すなわち、金属層
厚肉部4の高さFが巾Gより大きい形状の凹凸が多く存
在するしぼ形状の場合が好ましく、更に好ましくは高さ
Fが巾Gの2倍より大きい形状の凹凸が存在するしぼ形
状の場合である。
Further, the effect of the present invention is great when the thick metal layer portion 4 has a shape protruding from the surface. That is, it is preferable that the metal layer thick portion 4 has many irregularities having a height F larger than the width G, and more preferably, the irregularities have a shape having a height F larger than twice the width G. This is the case of a grain shape.

【0052】また、金属層薄肉部3や金属層圧肉部4の
表面が艶消し状の微細な凹凸状であっても良い。金属層
薄肉部3の表面と金属層圧肉部4の表面のうち、片方が
艶消し状の微細な凹凸状で、他方が鏡面状であることが
好ましい。片方を艶消し状、他方を鏡面状にすることに
より、成形品表面のしぼ模様が良好に表現できることに
なる。ここに述べる艶消し状微細凹凸は、本発明のしぼ
状凹凸の凹凸度よりはるかに小さいものであり、十点平
均粗さ(JIS B 0601)で1/10以下、好ま
しくは1/20以下の小さいものである。
The surfaces of the thin metal layer portion 3 and the thin metal layer portion 4 may be matte fine irregularities. It is preferable that one of the surface of the thin metal layer portion 3 and the surface of the thin metal layer portion 4 has a matt fine unevenness and the other has a mirror surface. A matt pattern on one side and a mirror-like surface on the other side allow good expression of the grain pattern on the surface of the molded product. The matte fine unevenness described here is much smaller than the unevenness of the grain-like unevenness of the present invention, and the ten-point average roughness (JIS B 0601) is 1/10 or less, preferably 1/20 or less. It's a small one.

【0053】図2に合成樹脂成形品のしぼ状表面の断面
図を示す。図2に示すように、合成樹脂成形品6のしぼ
状表面では凸部7の面積が凹部8の面積より大きい表面
が一般に使用される(2−1)。凸部9の面積が小さ
く、該凸部9が成形品より飛び出した形状では成形品表
面に傷がつきやすい(2−2)。本発明は(2−1)に
示すしぼ状表面が多くを占める合成樹脂成形品を成形す
る金型であるが、金型表面に(2−2)に示すしぼ状表
面を成形する金型表面が局部的に存在するものも含まれ
るものとする。
FIG. 2 shows a sectional view of the grain surface of the synthetic resin molded product. As shown in FIG. 2, in the grain-shaped surface of the synthetic resin molded product 6, a surface where the area of the convex portion 7 is larger than the area of the concave portion 8 is generally used (2-1). If the area of the convex portion 9 is small and the convex portion 9 protrudes from the molded product, the surface of the molded product is easily scratched (2-2). The present invention relates to a mold for molding a synthetic resin molded product occupying most of the grain surface shown in (2-1), and a mold surface for molding the grain surface shown in (2-2) on the mold surface. Is also included locally.

【0054】図3に金型のしぼ状表面の断面図を示す。
(3−1)は断熱層2のしぼ状表面に均一厚みの薄肉金
属層10が被覆された場合である。すなわち、凸部の金
属層の厚みEと凹部の金属層の厚みDの差が小さく、且
つ、その厚みが極めて薄肉の場合であり、この場合には
金属層に凸部を補強する効果はない。
FIG. 3 shows a sectional view of the grain surface of the mold.
(3-1) is a case where the grainy surface of the heat insulating layer 2 is covered with the thin metal layer 10 having a uniform thickness. That is, the difference between the thickness E of the metal layer of the convex portion and the thickness D of the metal layer of the concave portion is small and the thickness is extremely thin. In this case, there is no effect of reinforcing the convex portion on the metal layer. .

【0055】(3−2)は断熱層2のしぼ状表面に均一
厚みの厚肉金属層11が被覆された場合である。すなわ
ち、凸部の金属層の厚みEと凹部の金属層の厚みDの差
が小さく、且つ、その厚みが大きい場合であり、この場
合には金属層が厚いために合成樹脂成形時の凹部の型表
面再現性が悪くなる。この凹部は成形される合成樹脂成
形品の表面に出るため型表面再現性が要求されるため、
型表面再現性が良くなることが必要であり、金属層が厚
くなることは好ましくない。
(3-2) is the case where the grain-shaped surface of the heat insulating layer 2 is covered with the thick metal layer 11 having a uniform thickness. That is, the difference between the thickness E of the metal layer of the convex portion and the thickness D of the metal layer of the concave portion is small and the thickness is large. In this case, since the metal layer is thick, Mold surface reproducibility deteriorates. Since this recess appears on the surface of the molded synthetic resin molded product, mold surface reproducibility is required,
It is necessary to improve mold surface reproducibility, and it is not preferable that the metal layer is thick.

【0056】図4、図5及び図6には、鋼鉄からなる主
金型の温度を50℃、ゴム強化ポリスチレンの温度が2
40℃で射出成形したときの金型壁面付近の温度分布の
変化の計算値を示している。図中の各曲線の数値は加熱
された合成樹脂が冷却された金型壁に接触してからの時
間(秒)を示してる。加熱された合成樹脂は型壁面に接
触して、急速に冷却される(図4)。主金型表面を断熱
層で被覆すると、型表面は加熱された合成樹脂から熱を
受けて昇温する。図に示すように、金型表面を0.1m
mと0.5mmの断熱層(ポリイミド)で被覆すると
(図5及び図6)、合成樹脂と接触する断熱層表面の温
度上昇は大きくなり、温度低下速度も小さくなる。
In FIGS. 4, 5 and 6, the temperature of the main mold made of steel is 50.degree. C. and the temperature of the rubber reinforced polystyrene is 2.
The calculated value of the change in temperature distribution near the mold wall surface when injection molding is performed at 40 ° C is shown. The numerical value of each curve in the figure indicates the time (seconds) after the heated synthetic resin comes into contact with the cooled mold wall. The heated synthetic resin comes into contact with the mold wall surface and is rapidly cooled (FIG. 4). When the surface of the main mold is covered with the heat insulating layer, the mold surface receives heat from the heated synthetic resin and its temperature rises. As shown in the figure, the mold surface is 0.1m
When coated with a heat insulating layer (polyimide) of m and 0.5 mm (FIGS. 5 and 6), the temperature rise of the surface of the heat insulating layer in contact with the synthetic resin increases and the temperature decreasing rate also decreases.

【0057】図7、図8、図9、図10、図11及び図
12に、鋼鉄からなる主金型の表面にポリイミド層、更
にその表面にニッケル層が被覆された金型と、比較とし
てポリイミド層のみが被覆された金型を用い、主金型の
温度を50℃に設定し、該金型でゴム強化ポリスチレン
樹脂の温度が240℃で射出成形した時の、該樹脂が金
型最表面に接触してからの樹脂表面の温度(これは樹脂
表面とニッケル表面の界面の温度、あるいは樹脂表面と
ポリイミド表面の界面の温度である)の経時変化を示
す。
7, FIG. 8, FIG. 9, FIG. 10, FIG. 11 and FIG. 12 are compared with a mold in which the surface of the main mold made of steel is coated with a polyimide layer and the surface is coated with a nickel layer. When a mold coated only with a polyimide layer is used, the temperature of the main mold is set to 50 ° C., and when the temperature of the rubber-reinforced polystyrene resin is injection molded at 240 ° C. The change with time of the temperature of the resin surface (this is the temperature of the interface between the resin surface and the nickel surface or the temperature of the interface between the resin surface and the polyimide surface) after contact with the surface is shown.

【0058】図7はポリイミド(以後、図ではPIで示
す)層の厚みを0.30mm、ニッケル(以後、図では
Niで示す)層の厚みを0.02mmにした場合の樹脂
表面温度の経時変化を示す。図中で実線はポリイミド層
とニッケル層を被覆した場合であり、破線はポリイミド
層のみを被覆した場合である。ポリイミドのみを被覆し
た場合には、樹脂表面温度は時間経過とともに低下する
のに対して、ポリイミド層とニッケル層を被覆した場合
には、一旦温度が大きく低下した後に再び上昇してから
次第に低下する。これは表層のニッケルの熱容量が大き
いために樹脂の熱がニッケル層に吸収されて低下するも
のである。従って、ニッケル層の厚みが大きくなる程、
一旦低下する温度幅は大きくなり、再び上昇する温度も
低くなる。
FIG. 7 shows the resin surface temperature with time when the thickness of the polyimide (hereinafter referred to as PI in the figure) layer is 0.30 mm and the thickness of the nickel (hereinafter referred to as Ni in the figure) layer is 0.02 mm. Show changes. In the figure, the solid line shows the case where the polyimide layer and the nickel layer are covered, and the broken line shows the case where only the polyimide layer is covered. When only polyimide is coated, the resin surface temperature decreases with the passage of time, whereas when polyimide and nickel layers are coated, the temperature drops once and then rises again and then gradually decreases. . This is because the heat of the resin is absorbed by the nickel layer and decreases due to the large heat capacity of nickel in the surface layer. Therefore, as the thickness of the nickel layer increases,
The temperature range in which the temperature once drops increases, and the temperature in which the temperature rises again decreases.

【0059】図8はニッケル層の厚みを0.1mmと厚
くした場合であり、ニッケル層が厚くなると一旦低下す
る温度幅は大きく、再び上昇する温度も低くなる。
FIG. 8 shows a case in which the thickness of the nickel layer is as thick as 0.1 mm. When the thickness of the nickel layer becomes thick, the temperature range that once drops is large and the temperature that rises again becomes low.

【0060】図9と10は、図7と図8の場合と同様の
層構成でポリイミド層の厚みを0.15mmとした場合
を示す。ポリイミド層の厚みが0.15mmの場合でも
図7、図8と同様な傾向がみられる。
FIGS. 9 and 10 show the case where the thickness of the polyimide layer is 0.15 mm with the same layer structure as in FIGS. 7 and 8. Even when the thickness of the polyimide layer is 0.15 mm, the same tendency as in FIGS. 7 and 8 is observed.

【0061】図11と図12は、図7〜図10の結果を
まとめて示したものである。図11と図12から、ニッ
ケル層を被覆したこの金型の場合には、ニッケル層の厚
みが0.1mmになると、一旦低下した表面温度が再び
上昇する温度は低くなり、射出成形時の型表面再現性が
悪くなることが推定できる。ニッケル層の厚みが0.0
2mmの場合には樹脂表面温度は一旦低下しても急速に
回復し、その温度も高いために、射出成形時の型表面再
現性は良好である。これらのことから、型表面再現性を
良くするには断熱層表面に被覆する金属層の厚みは限界
があり、本発明では成形品の外観が特に要求される金属
層薄肉部の厚みを薄くして、外観良好な成形品を成形す
る金型を提供するものである。
11 and 12 collectively show the results of FIGS. 7 to 10. From FIG. 11 and FIG. 12, in the case of this metal mold coated with a nickel layer, when the thickness of the nickel layer becomes 0.1 mm, the surface temperature once lowered once rises again and the temperature becomes lower. It can be estimated that the surface reproducibility becomes poor. Thickness of nickel layer is 0.0
In the case of 2 mm, the resin surface temperature recovers rapidly even if it once drops, and since the temperature is high, the mold surface reproducibility during injection molding is good. From these, the thickness of the metal layer coated on the surface of the heat insulating layer is limited in order to improve the mold surface reproducibility, and in the present invention, the thickness of the thin portion of the metal layer, which particularly requires the appearance of the molded product, is reduced. And a mold for molding a molded product having a good appearance.

【0062】図に示す射出成形時の型表面温度の変化
は、合成樹脂、主金型、断熱層の温度、比熱、熱伝導
率、密度、結晶化潜熱等から計算できる。例えば、AD
INA及びADINAT(マサチューセッツ工科大学で
開発されたソフトウェア)等を用い、非線形有限要素法
による非定常熱伝導解析により計算でき、図に示す温度
もそれで計算したものである。
The change of the mold surface temperature at the time of injection molding shown in the figure can be calculated from the temperature of the synthetic resin, the main mold, the heat insulating layer, the specific heat, the thermal conductivity, the density, the latent heat of crystallization and the like. For example, AD
Using INA and ADINAT (software developed at Massachusetts Institute of Technology) and the like, it is possible to calculate by unsteady heat conduction analysis by the nonlinear finite element method, and the temperature shown in the figure is also calculated by it.

【0063】図13及び図14に本発明の断熱材に使用
できるポリイミドの構造を示す。図13に示す様にポリ
マー鎖が屈曲しているポリマーは熱膨張係数が大きく、
これに対して図14に示す様にポリマー鎖がまっすぐな
ポリマーは熱膨張係数が小さい。本発明では熱膨張係数
が小さいポリマーが好ましい。
13 and 14 show the structure of polyimide that can be used for the heat insulating material of the present invention. As shown in FIG. 13, a polymer having a bent polymer chain has a large coefficient of thermal expansion,
On the other hand, as shown in FIG. 14, a polymer having a straight polymer chain has a small coefficient of thermal expansion. In the present invention, a polymer having a small coefficient of thermal expansion is preferable.

【0064】図15にエッチング法により、金型の最表
面層の金属層をしぼ状化する方法を示す。図15に於い
て、金属からなる主金型1の型キャビティを構成する型
壁面を断熱層2で被覆する(15−1)。次いで、該断
熱層2の表面に金属層12を被覆する(15−2)。次
いで、該金属層12の表面に感光性樹脂13を被覆する
(15−3)。次いで、しぼ状パターンのマスキング1
4を行い。紫外線が照射された部分の感光性樹脂が硬化
される(15−4)。次いで、硬化されなかった部分の
感光性樹脂を洗浄して取り去り、しぼ状パターンの硬化
樹脂15を残す(15−5)。次いで、酸エッチングで
硬化樹脂15が被覆していない部分の金属層を溶解し、
しぼ状表面の薄肉金属層3と厚肉金属層4有する金属層
を形成し本発明の金型を得る(15−6)。
FIG. 15 shows a method of forming the metal layer of the outermost surface layer of the mold into a grain shape by the etching method. In FIG. 15, the heat-insulating layer 2 covers the wall surface of the mold forming the mold cavity of the main mold 1 made of metal (15-1). Next, the surface of the heat insulating layer 2 is coated with the metal layer 12 (15-2). Then, the surface of the metal layer 12 is coated with the photosensitive resin 13 (15-3). Then, masking of grain pattern 1
Do 4. The photosensitive resin in the portion irradiated with ultraviolet rays is cured (15-4). Next, the non-cured portion of the photosensitive resin is washed and removed to leave the grain-shaped pattern of the cured resin 15 (15-5). Next, by acid etching, the metal layer in the portion not covered with the cured resin 15 is dissolved,
A metal layer having a thin metal layer 3 having a grain surface and a thick metal layer 4 is formed to obtain a mold of the present invention (15-6).

【0065】本発明の金型を使用することにより、金型
の最表面がしぼ状の断熱層からなる金型を使用する場合
に比較して、成形中に型表面に傷がつくことを低減で
き、更に、離型性を改良でき、更に、長期間成形時の金
型耐久性、特に抜き勾配が小さい部分の耐久性が改良で
きる。更に、合成樹脂成形品のウエルドラインの目立ち
を低減し、型表面の再現性を良くし、成形後に行う後加
工を省略できる。
By using the mold of the present invention, it is possible to reduce scratches on the mold surface during molding, as compared with the case of using a mold in which the outermost surface of the mold is a grain-shaped heat insulating layer. Further, the mold releasability can be improved, and further, the durability of the mold at the time of molding for a long period of time, particularly the durability of a portion having a small draft can be improved. Furthermore, the conspicuousness of the weld line of the synthetic resin molded product can be reduced, the reproducibility of the mold surface can be improved, and post-processing performed after molding can be omitted.

【0066】[0066]

【実施例】次の主金型、断熱層および金属層を使用す
る。
EXAMPLE The following main mold, heat insulating layer and metal layer are used.

【0067】主金型:鋼鉄(S55C)製の射出成形用
の金型である。該金型の熱膨張係数は1.1×10-5
℃である。図16に示す成形品16の型キャビティを有
する。成形品サイズは100mm×100mmで厚みは
2mmであり、中央に30mm×30mmの穴17が空
いている。ゲート18は図16に示す様にサイドゲート
であり、成形品16にはウエルドライン19が発生す
る。型表面は鏡面状である。この金型を2個用意する。
Main mold: A steel (S55C) mold for injection molding. The thermal expansion coefficient of the mold is 1.1 × 10 -5 /
° C. It has a mold cavity for the molded product 16 shown in FIG. The molded product has a size of 100 mm × 100 mm and a thickness of 2 mm, and has a hole 17 of 30 mm × 30 mm in the center. The gate 18 is a side gate as shown in FIG. 16, and a weld line 19 is generated in the molded product 16. The mold surface is mirror-like. Two molds are prepared.

【0068】断熱層:主金型表面をプライマー処理した
後、ポリイミドワニス「トレニース#3000」(東レ
(株)製)を塗布し、160℃で加熱し、次いでこの塗
布、加熱を繰り返して所定の厚みにし、最後に290℃
に加熱してポリイミド層を形成する。該ポリイミドの熱
膨張係数は3.3×10-5/℃である。断熱層の表面に
金属層をメッキでつける場合には、断熱層の最表面だけ
に炭酸カルシウム粉末配合ポリイミドワニスを使用す
る。
Thermal insulation layer: After the surface of the main mold has been treated with a primer, a polyimide varnish “Trenis # 3000” (manufactured by Toray Industries, Inc.) is applied and heated at 160 ° C., and then this application and heating are repeated to obtain a predetermined amount. Thickness, and finally 290 ℃
To form a polyimide layer. The coefficient of thermal expansion of the polyimide is 3.3 × 10 -5 / ° C. When a metal layer is plated on the surface of the heat insulating layer, the calcium carbonate powder-containing polyimide varnish is used only on the outermost surface of the heat insulating layer.

【0069】金属層:炭酸カルシウム粉末を配合した断
熱層表面をエッチングして凹凸状にし、次いでニッケル
の無電解メッキ(化学メッキ)でニッケル層を形成し、
更にその表面に電解ニッケルメッキを形成する。該ニッ
ケルの熱膨張係数は1.3×10-5/℃である。
Metal layer: The surface of the heat insulation layer containing calcium carbonate powder is etched to make it uneven, and then a nickel layer is formed by electroless plating (chemical plating) of nickel.
Further, electrolytic nickel plating is formed on the surface. The coefficient of thermal expansion of the nickel is 1.3 × 10 -5 / ° C.

【0070】[実施例]主金型に、平滑状断熱層を0.
3mmの厚みに被覆し、次いで平滑状金属層を0.06
mmの厚みに被覆する。該金属層を図15に示す工程に
より、皮しぼ状にエッチングを行う。0.05mmの深
さに酸エッチングを行い、図1の(1−1)に示す、皮
しぼ状の本発明の金型を製作する。該金型の金属層の薄
肉部の厚みは0.01mm、厚肉部の厚みは0.06m
mであり、薄肉部が金属層表面の75%を占めている。
[Embodiment] A smooth heat-insulating layer was added to the main mold.
Coated to a thickness of 3 mm and then coated with a smooth metal layer 0.06
Coat to a thickness of mm. The metal layer is etched into a skin grain shape by the process shown in FIG. Acid etching is performed to a depth of 0.05 mm to produce a skin grain-like mold of the present invention shown in (1-1) of FIG. The thin portion of the metal layer of the mold has a thickness of 0.01 mm and the thick portion has a thickness of 0.06 m.
m, and the thin portion occupies 75% of the metal layer surface.

【0071】該金型を用いてゴム強化ポリスチレン樹脂
を射出成形し、ウエルドライン19の目立ちがない皮し
ぼ状表面を有する射出成形品を得る。
A rubber-reinforced polystyrene resin is injection-molded by using the mold to obtain an injection-molded article having a welded line 19 with a conspicuous leather grain surface.

【0072】[比較例]主金型の型壁面を一般の酸エッ
チングにより皮しぼ状表面とする。該金型を用いてゴム
強化ポリスチレンを射出成形する。この成形品にはウエ
ルドライン19の目立ちが大きい。
[Comparative Example] The mold wall surface of the main mold is made a skin grain surface by general acid etching. Rubber-reinforced polystyrene is injection-molded using the mold. The weld line 19 is highly visible in this molded product.

【0073】[0073]

【発明の効果】本発明の断熱層被覆金型を使用して合成
樹脂の射出成形やブロー成形を行うことにより、外観良
好な成形品を得る。特に、従来ウェルドラインが多数発
生し、塗装等の後加工を必要としてきた弱電機器や事務
機器のハウジング等の射出成形品を、本発明の金型を使
用することによりウエルドラインの目立ちを少なくし、
塗装を省略することができる。
EFFECTS OF THE INVENTION A molded article having a good appearance is obtained by injection molding or blow molding a synthetic resin using the heat insulating layer-coated mold of the present invention. In particular, by using the mold of the present invention, it is possible to reduce the conspicuousness of the weld line for injection-molded products such as housings for light electrical equipment and office equipment that have conventionally required a large number of weld lines and require post-processing such as painting. ,
Painting can be omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合成樹脂成形用金型の断面図を示す。FIG. 1 shows a sectional view of a synthetic resin molding die of the present invention.

【図2】合成樹脂成形品のしぼ状表面の断面図を示す。FIG. 2 shows a cross-sectional view of a grain surface of a synthetic resin molded product.

【図3】金型のしぼ状表面の断面図を示す。FIG. 3 shows a cross-sectional view of the grain surface of the mold.

【図4】鋼鉄製の主金型に、加熱された合成樹脂が接触
した時の金型壁面付近の温度分布の変化(計算値)を示
す。
FIG. 4 shows changes (calculated values) in the temperature distribution near the mold wall surface when the heated synthetic resin comes into contact with the steel main mold.

【図5】鋼鉄製の主金型の型表面に0.1mmのポリイ
ミドを被覆した金型に、加熱された合成樹脂が接触した
時の金型壁面付近の温度分布の変化(計算値)を示す。
FIG. 5 shows changes in temperature distribution (calculated values) near the mold wall surface when a heated synthetic resin comes into contact with a mold in which the mold surface of a steel main mold is coated with 0.1 mm of polyimide. Show.

【図6】鋼鉄製の主金型の型表面に0.5mmのポリイ
ミドを被覆した金型に、加熱された合成樹脂が接触した
時の金型壁面付近の温度分布の変化(計算値)を示す。
FIG. 6 shows changes in temperature distribution (calculated values) near the wall surface of a mold when a synthetic resin heated to contact a mold surface of a steel main mold with 0.5 mm of polyimide. Show.

【図7】鋼鉄製の主金型の型表面に0.3mmのポリイ
ミドを被覆し、更にその表面に0.02mmのニッケル
を被覆した金型に、加熱された合成樹脂が接触した時の
合成樹脂表面(樹脂表面と金型表面の界面)の温度変化
(計算値)を示す。
FIG. 7: Synthesis when heated synthetic resin comes into contact with a mold in which the surface of a steel main mold is coated with 0.3 mm of polyimide, and the surface of which is further coated with nickel of 0.02 mm The temperature change (calculated value) of the resin surface (interface between the resin surface and the mold surface) is shown.

【図8】鋼鉄製の主金型の型表面に0.3mmのポリイ
ミドを被覆し、更にその表面に0.1mmのニッケルを
被覆した金型に、加熱された合成樹脂が接触した時の合
成樹脂表面(樹脂表面と金型表面の界面)の温度変化
(計算値)を示す。
FIG. 8: Synthesis when heated synthetic resin comes into contact with a die in which 0.3 mm of polyimide is coated on the die surface of a steel main die and 0.1 mm of nickel is further coated on the surface. The temperature change (calculated value) of the resin surface (interface between the resin surface and the mold surface) is shown.

【図9】鋼鉄製の主金型の型表面に0.15mmのポリ
イミドを被覆し、更にその表面に0.02mmのニッケ
ルを被覆した金型に、加熱された合成樹脂が接触した時
の合成樹脂表面(樹脂表面と金型表面の界面)の温度変
化(計算値)を示す。
FIG. 9: Synthesis when heated synthetic resin comes into contact with a mold in which the surface of a steel main mold is coated with 0.15 mm of polyimide, and the surface of which is further coated with 0.02 mm of nickel The temperature change (calculated value) of the resin surface (interface between the resin surface and the mold surface) is shown.

【図10】鋼鉄製の主金型の型表面に0.15mmのポ
リイミドを被覆し、更にその表面に0.1mmのニッケ
ルを被覆した金型に、加熱された合成樹脂が接触した時
の合成樹脂表面(樹脂表面と金型表面の界面)の温度変
化(計算値)を示す。
FIG. 10: Synthesis when heated synthetic resin comes into contact with a mold in which the surface of a steel main mold is coated with 0.15 mm of polyimide and the surface of which is further coated with 0.1 mm of nickel The temperature change (calculated value) of the resin surface (interface between the resin surface and the mold surface) is shown.

【図11】鋼鉄製の主金型の型表面に0.3mmのポリ
イミドを被覆し、更にその表面に0.0005mm、
0,02mm、0.1mmの各厚みのニッケルを被覆し
た金型に、加熱された合成樹脂が接触した時の合成樹脂
表面(樹脂表面と金型表面の界面)の温度変化(計算
値)を示す。
FIG. 11: The surface of the main mold made of steel is coated with 0.3 mm of polyimide, and the surface is further covered with 0.0005 mm,
The temperature change (calculated value) of the surface of the synthetic resin (the interface between the resin surface and the die surface) when the heated synthetic resin comes into contact with the die coated with nickel of each thickness of 0.02 mm and 0.1 mm Show.

【図12】鋼鉄製の主金型の型表面に0.15mmのポ
リイミドを被覆し、更にその表面に0.0005mm、
0.02mm、0.1mmの各厚みのニッケルを被覆し
た金型に、加熱された合成樹脂が接触した時の合成樹脂
表面(樹脂表面と金型表面の界面)の温度変化(計算
値)を示す。
FIG. 12: The surface of a steel main mold is coated with 0.15 mm of polyimide, and the surface is further covered with 0.0005 mm;
The temperature change (calculated value) of the synthetic resin surface (the interface between the resin surface and the mold surface) when the heated synthetic resin comes into contact with the mold coated with nickel of 0.02 mm and 0.1 mm in thickness Show.

【図13】本発明の金型の断熱層に適した断熱材の構造
を示す。
FIG. 13 shows a structure of a heat insulating material suitable for the heat insulating layer of the mold of the present invention.

【図14】本発明の金型の断熱層に適した断熱材の構造
を示す。
FIG. 14 shows a structure of a heat insulating material suitable for the heat insulating layer of the mold of the present invention.

【図15】本発明の金型を製作する方法の一つを示す。FIG. 15 shows one of the methods for producing the mold of the present invention.

【図16】射出成形品を示す。FIG. 16 shows an injection molded product.

【符号の説明】[Explanation of symbols]

1 主金型 2 断熱層 3 金属層薄肉部 4 金属層厚肉部 6 合成樹脂成形品 7 しぼ状表面の凸部 8 しぼ状表面の凹部 9 しぼ状表面の凸部 10 薄肉金属層 11 厚肉金属層 12 金属層 13 感光性樹脂 14 マスク 15 硬化樹脂 16 成形品 17 穴 18 ゲート 19 ウエルドライン DESCRIPTION OF SYMBOLS 1 Main mold 2 Heat insulation layer 3 Metal layer thin-walled part 4 Metal layer thick-walled part 6 Synthetic resin molding 7 Convex part of wrinkled surface 8 Recessed part of wrinkled surface 9 Convex part of wrinkled surface 10 Thin metal layer 11 Thick wall Metal layer 12 Metal layer 13 Photosensitive resin 14 Mask 15 Curing resin 16 Molded product 17 Hole 18 Gate 19 Weld line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属からなる主金型の型キャビティを構
成する型壁面に、耐熱性重合体からなる0.1〜2mm
厚の断熱層が存在し、更にその表面にしぼ状表面を有す
る金属層が存在し、該金属層が型壁面の半分以上を占め
る凹部の金属層薄肉部と、半分未満を占める凸部の金属
層厚肉部から成り、金属層薄肉部の厚みが断熱層厚みの
1/3以下である合成樹脂成形用金型。
1. A heat-resistant polymer of 0.1 to 2 mm on a mold wall surface of a mold cavity of a main mold made of metal.
There is a thick heat insulating layer, and further there is a metal layer having a grain surface on its surface, and the metal layer has a thin metal layer of a concave portion which occupies more than half of the mold wall surface and a metal portion of a convex portion which occupies less than half thereof. A synthetic resin molding die comprising a thick layer portion, and a thin metal layer portion having a thickness of 1/3 or less of a heat insulating layer thickness.
【請求項2】 金属からなる主金型の型キャビティを構
成する型壁面に、耐熱性重合体からなる断熱層を被覆
し、更にその表面に金属層を被覆し、次いでその金属層
の最表面をエッチング法によりしぼ状表面にする合成樹
脂成形用金型の製法。
2. The mold wall of the main mold made of metal is coated with a heat insulating layer made of a heat resistant polymer, the surface of which is further coated with a metal layer, and then the outermost surface of the metal layer. A method for producing a synthetic resin molding die that makes a grainy surface by etching.
JP9747995A 1994-11-09 1995-03-31 Mold for molding synthetic resin and manufacture thereof Withdrawn JPH08187731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9747995A JPH08187731A (en) 1994-11-09 1995-03-31 Mold for molding synthetic resin and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27533094 1994-11-09
JP6-275330 1994-11-09
JP9747995A JPH08187731A (en) 1994-11-09 1995-03-31 Mold for molding synthetic resin and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08187731A true JPH08187731A (en) 1996-07-23

Family

ID=26438639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9747995A Withdrawn JPH08187731A (en) 1994-11-09 1995-03-31 Mold for molding synthetic resin and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08187731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032268A1 (en) * 1997-12-19 1999-07-01 Taiyo Manufacturing Co., Ltd. Metal mold for molding resin, method of manufacturing the same metal mold, and molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032268A1 (en) * 1997-12-19 1999-07-01 Taiyo Manufacturing Co., Ltd. Metal mold for molding resin, method of manufacturing the same metal mold, and molded product

Similar Documents

Publication Publication Date Title
KR100186660B1 (en) Delustered injection molded product of synthetic resin and molding method for the same
KR970000922B1 (en) Mold for synthetic resin molding
JPH08187731A (en) Mold for molding synthetic resin and manufacture thereof
JPH08187732A (en) Mold for molding synthetic resin and manufacture thereof
JP2727303B2 (en) Molding method for synthetic resin molded products
JPH0872086A (en) Low-pressure injection molding method
JP3396254B2 (en) Mold and its manufacturing method
JPH09141757A (en) Synthetic resin molded product having high transmissivity and high diffusibility and its molding method
JP3363500B2 (en) Mold and injection molding method using the same
JPH0929753A (en) Heat insulating layer coated mold for molding synthetic resin
JPH09262837A (en) Production of matte mold and molding method using matte mold
JPH09155876A (en) Heat insulating mold and production thereof
JPH0919928A (en) Heat insulating layer clad mold and manufacture thereof
JPH10175222A (en) Manufacture of heat insulating layer coated mold and method for molding synthetic resin using the mold
CN1167458A (en) Synthetic resin molding method
JPH1034663A (en) Insulated mold and resin molding method using the same
JPH0839572A (en) Manufacture of mold for molding synthetic resin
JPH07178765A (en) Insert molding method
JPH09220746A (en) Injection molding of synthetic resin
JPH09234740A (en) Molding of synthetic resin
JPH06143294A (en) Mold for molding synthetic resin and manufacture thereof
JP2715357B2 (en) Mold for synthetic resin molding
JPH1016001A (en) Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming
JP3387578B2 (en) Manufacturing method of synthetic resin mold
JPH06328549A (en) New extrusion blow molding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604