JPH1016001A - Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming - Google Patents

Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming

Info

Publication number
JPH1016001A
JPH1016001A JP18531196A JP18531196A JPH1016001A JP H1016001 A JPH1016001 A JP H1016001A JP 18531196 A JP18531196 A JP 18531196A JP 18531196 A JP18531196 A JP 18531196A JP H1016001 A JPH1016001 A JP H1016001A
Authority
JP
Japan
Prior art keywords
mold
thickness
mold cavity
insulating layer
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18531196A
Other languages
Japanese (ja)
Inventor
Tokuji Ogawa
徳治 小川
Hiroshi Kataoka
紘 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP18531196A priority Critical patent/JPH1016001A/en
Publication of JPH1016001A publication Critical patent/JPH1016001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently injection-mold a synthetic resin molding with a wall of uniform thickness consisting of a thick wall part and a thin wall part. SOLUTION: In a method for forming a molding with a wall of ununiform thickness using a mold with a cavity consisting of a thin wall part and a thick wall part, the difference between the maximum thickness a1 of the thick wall part of a mold cavity and the minimum thickness a2 of the thin wall part is given as A, and the difference between (the thickness a1 of the mold cavity + the thickness b1 of a heat insulating layer) at the maximum thick wall part of the mold cavity and (the thickness a2 of the mold cavity + the thickness b2 of the heat insulating layer) at the minimum thin wall part of the mold cavity is given as B. Then the injection molding is performed using the mold coated with the heat insulating layer which has a relationship of A>=0.5mm, A>=B. Thus it is possible to set the temperature of the mold at a low level and thereby shorten the cooling time of the mold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏肉部を有する各
種合成樹脂成形品の射出成形法及び、これに用いられる
断熱層被覆金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection molding method for various synthetic resin molded articles having uneven thickness portions, and a heat insulating layer coated mold used for the method.

【0002】[0002]

【従来の技術】合成樹脂成形品の射出成形は、金型キャ
ビティ内へ溶融樹脂を射出充填し、ゲート部が冷却固化
するまでスプールの溶融樹脂を介してキャビティ内に圧
力を加えて保圧し、ゲートが固化した後金型内の成形品
を得る方法が通常行われている。一般に、この様な射出
成形における充填、保圧工程では、溶融樹脂の流動抵抗
及び冷却等によりキャビティ内に圧力分布が生じたり、
不均一な冷却が起こり易く、特に偏肉成形品の薄肉部の
成形厚みが1mm以下の極薄成形品で顕著に見られ、更
にゲートから流動末端まで長いと場合によっては充填不
良となる。
2. Description of the Related Art In injection molding of a synthetic resin molded product, a molten resin is injected and filled into a mold cavity, and pressure is applied to the cavity through the molten resin of a spool until the gate portion is cooled and solidified, and the pressure is maintained. It is common practice to obtain a molded article in a mold after the gate has solidified. In general, in such filling and pressure-holding steps in injection molding, pressure distribution occurs in the cavity due to flow resistance and cooling of the molten resin,
Non-uniform cooling is apt to occur, and is particularly noticeable in an ultra-thin molded product having a thin portion having a thickness of 1 mm or less, particularly when the thickness of the thin-walled molded product is 1 mm or less.

【0003】成形品の薄肉部の厚みが1mm以下の極薄
肉偏肉成形品を射出成形する方法について、良流動性樹
脂の使用、高速射出成形、金型温度を高くする方法、高
い射出圧力或いは高い保圧条件を採用する等の条件が使
用されて射出成形されているが、その対応は十分ではな
い。
[0003] With respect to the method of injection molding an ultra-thin uneven thickness molded article having a thin portion of a thickness of 1 mm or less, use of a flowable resin, high-speed injection molding, a method of increasing a mold temperature, a high injection pressure or Injection molding is performed using conditions such as employing high pressure-holding conditions, but this is not sufficient.

【0004】良流動性樹脂の使用は、薄肉成形品の充填
性は改善されやすいが、合成樹脂の分子量が小さくなり
樹脂の機械的強度が低下し、その利用に制限が生じる問
題がある。又、高い射出圧力或いは高い保圧力を採用し
た場合は、厚肉部のヒケは低減するが、冷却速度の大き
い薄肉部の残留応力が大きくなり成形品の変形或いは反
り等が発生しやすくなり外観上の欠点が発生するという
問題がある。これらの要因の中で最も効果に大きな影響
のあるのは金型温度であり、金型温度を高くすることは
非常に有効である。しかし、金型温度を高くすると、可
塑化された樹脂の冷却固化に必要な冷却時間が長くなり
成形能率が下がる。このため、金型温度を高くすること
なく型内樹脂流動性を良くし、又金型温度を高くしても
必要な冷却時間が長くならない方法が要求されている。
金型に加熱用、冷却用の孔をそれぞれ取り付けておき交
互に熱媒、冷媒を流して金型の加熱、冷却を繰り返す方
法も行われているが、この方法は熱の使用量も多く冷却
時間が長くなる。
[0004] The use of a high-flowable resin tends to improve the filling property of a thin-walled molded product, but there is a problem in that the molecular weight of the synthetic resin is reduced, the mechanical strength of the resin is reduced, and its use is restricted. When a high injection pressure or a high holding pressure is adopted, the sink in the thick portion is reduced, but the residual stress in the thin portion having a high cooling rate is increased, and the molded product is likely to be deformed or warped. There is a problem that the above disadvantage occurs. Among these factors, the mold temperature has the greatest effect on the effect, and increasing the mold temperature is very effective. However, when the mold temperature is increased, the cooling time required for cooling and solidifying the plasticized resin increases, and the molding efficiency decreases. For this reason, there is a demand for a method of improving the resin fluidity in the mold without increasing the mold temperature and a method of preventing the required cooling time from being prolonged even if the mold temperature is increased.
There is also a method in which holes for heating and cooling are attached to the mold, and heating and cooling of the mold are repeated by alternately flowing a heat medium and a coolant.However, this method uses a large amount of heat and cools The time gets longer.

【0005】また、金型キャビティを形成する型壁面を
熱伝導率の小さい物質で被覆することにより金型表面再
現性を良くする方法は米国特許第3544518号明細
書で射出成形について開示されている。
A method of improving the mold surface reproducibility by coating the mold wall surface forming the mold cavity with a substance having low thermal conductivity is disclosed in US Pat. No. 3,544,518 regarding injection molding. .

【0006】また、特開昭53−86754号公報に
は、金型壁面に断熱層を被覆し、更にその断面層表面に
薄肉金属層を被覆した金型が示されている。
Japanese Patent Application Laid-Open No. 53-86754 discloses a mold in which a heat insulating layer is coated on a mold wall surface, and a thin metal layer is coated on a cross-sectional surface of the mold.

【0007】更に、本出願人は、先に極薄成形品を良好
に成形する方法として、金型キャビティ厚みは1mm以
下の極薄であり、金型の型壁面に耐熱性重合体からなる
厚さ0.01mm〜1mmの断熱層で被覆された金型を
用い、主金型を所定の温度(熱可塑性樹脂の軟化温度−
20℃)以下に冷却した状態で射出成形する成形法を提
案した(特開平7−178753号公報)。
Further, the present applicant has proposed a method of forming an ultra-thin molded article in a favorable manner. The mold cavity thickness is extremely thin, 1 mm or less, and the thickness of the mold wall surface is made of a heat-resistant polymer. Using a mold covered with a heat insulating layer having a thickness of 0.01 mm to 1 mm, the main mold is heated to a predetermined temperature (softening temperature of thermoplastic resin −
A molding method for injection molding in a state of cooling to 20 ° C. or lower has been proposed (Japanese Patent Application Laid-Open No. 7-178753).

【0008】[0008]

【発明が解決しょうとする課題】金型の型壁面を断熱層
で被覆した前記従来の成形法は、均一な肉厚若しくは肉
厚変化の少ない薄肉成形品の成形には有効でる。しかし
ながら、比較的肉厚変化が大きく、例えば厚肉部と薄肉
部とを有する成形品を成形する場合には、断熱層で被覆
していても各部に充填された樹脂の冷却固化に必要な冷
却時間に差が生じる。このため、薄肉部の樹脂の冷却固
化時間に合わせて離型すると厚肉部にヒケが発生する場
合があり、厚肉部の樹脂の冷却固化時間に合わせて離型
すると、金型の型壁面を断熱層で被覆しない時よりも冷
却固化に必要な時間が長くなり成形能率が下がるといっ
た問題があった。
The conventional molding method in which the mold wall surface of the mold is covered with a heat insulating layer is effective for molding a thin molded article having a uniform thickness or a small change in thickness. However, when a molded article having a relatively large thickness change, for example, a molded article having a thick part and a thin part is formed, the cooling required for cooling and solidifying the resin filled in each part even if it is covered with a heat insulating layer. There is a difference in time. Therefore, if the mold is released in accordance with the cooling and solidification time of the resin in the thin portion, sinks may occur in the thick portion, and if the mold is released in accordance with the cooling and solidification time of the resin in the thick portion, the mold wall surface may be reduced. However, there is a problem that the time required for cooling and solidifying is longer than when the heat-insulating layer is not covered, and the molding efficiency is reduced.

【0009】本発明は、上記問題点を解決し、厚肉部と
薄肉部を有する合成樹脂偏肉成形品を、金型全体の温度
を高くすることなく、経済的で効率の良い成形サイクル
にて成形することを目的とする。更に本発明は、金型面
の転写性を向上させて優れた表面性を有する合成樹脂偏
肉成形品を、経済的で効率の良い成形サイクルにて成形
することを目的とする。
The present invention solves the above-mentioned problems, and provides a synthetic resin uneven thickness molded product having a thick portion and a thin portion in an economical and efficient molding cycle without increasing the temperature of the entire mold. The purpose is to mold. It is a further object of the present invention to improve the transferability of the mold surface and to mold a synthetic resin uneven thickness molded product having excellent surface properties in an economical and efficient molding cycle.

【0010】[0010]

【課題を解決するための手段】本発明者は、厚肉部と薄
肉部を有する合成樹脂偏肉成形品、特に薄肉部の最小の
厚みが1mm以下の合成樹脂偏肉成形品を更に効率よく
良好に成形する方法を鋭意検討した結果、成形品各部の
厚みによって断熱層の被覆厚みをコントロールすること
で、上記目的を達成できることを見出し本発明を完成し
たものである。
Means for Solving the Problems The present inventor has made it more efficient to produce a synthetic resin uneven thickness molded product having a thick portion and a thin portion, particularly a synthetic resin uneven thickness molded product having a minimum thickness of 1 mm or less. As a result of intensive studies on a method of forming well, it has been found that the above object can be achieved by controlling the coating thickness of the heat insulating layer depending on the thickness of each part of the molded product, and the present invention has been completed.

【0011】即ち、本発明第一は、厚肉部と薄肉部を有
する型キャビティを持つ金型を用いて合成樹脂偏肉成形
品を成形する方法に於いて、型キャビティの厚肉部の最
大の厚みと薄肉部の最小の厚みとの差をA、型キャビテ
ィの最大厚肉部における(型キャビティ厚み+断熱層厚
み)と型キャビティの最小薄肉部における(型キャビテ
ィ厚み+断熱層厚み)との差をBとしたとき、A≧0.
5mm、A≧B(特に好ましくはA>B)の関係を有す
る断熱層被覆金型を用いて射出成形することを特徴とす
る合成樹脂偏肉成形品の成形法にある。
That is, a first aspect of the present invention is a method of molding a synthetic resin uneven thickness molded product using a mold having a mold cavity having a thick portion and a thin portion, wherein a maximum thickness of the thick portion of the mold cavity is obtained. The difference between the thickness of the mold and the minimum thickness of the thin portion is A, (the thickness of the mold cavity + thickness of the heat insulating layer) at the thickest portion of the mold cavity and (the thickness of the mold cavity + thickness of the heat insulating layer) at the thinnest portion of the mold cavity. Is B, A ≧ 0.
A method for molding a synthetic resin uneven thickness molded article characterized by injection molding using a heat-insulating layer-coated mold having a relationship of 5 mm and A ≧ B (particularly preferably A> B).

【0012】上記本発明第一の成形法は、更にその特徴
として、「A=0.5〜10mm、0.7A≧Bであ
る」こと、「前記薄肉部の型キャビティの最小の厚み
が、0.1〜1mmである」こと、「前記断熱層被覆金
型は、前記断熱層の上に密着した金属層を有する」こ
と、をも含むものである。
The first molding method of the present invention further has the following features: "A = 0.5 to 10 mm, 0.7A ≧ B"; and "the minimum thickness of the mold cavity of the thin portion is: 0.1 to 1 mm "and" the heat-insulating-layer-coated mold has a metal layer in close contact with the heat-insulating layer ".

【0013】また、本発明第二は、合成樹脂偏肉成形品
の射出成形に用いる金型であって、厚肉部と薄肉部を有
する型キャビティを持ち、型キャビティの厚肉部の最大
の厚みと薄肉部の最小の厚みとの差をA、型キャビティ
の最大厚肉部における(型キャビティ厚み+断熱層厚
み)と型キャビティの最小薄肉部における(型キャビテ
ィ厚み+断熱層厚み)との差をBとしたとき、A≧0.
5mm、A≧Bの関係を有することを特徴とする金型に
ある。
A second aspect of the present invention is a mold used for injection molding of a synthetic resin uneven thickness molded article, which has a mold cavity having a thick portion and a thin portion, and has the largest thickness of the mold cavity. The difference between the thickness and the minimum thickness of the thin portion is A, and the (mold cavity thickness + insulation layer thickness) at the maximum thickness portion of the mold cavity and the (mold cavity thickness + insulation layer thickness) at the minimum thickness portion of the mold cavity. When the difference is B, A ≧ 0.
A mold having a relationship of 5 mm and A ≧ B.

【0014】上記本発明第二の金型は、更にその特徴と
して、「A=0.5〜10mm、0.7A≧Bである」
こと、「前記薄肉部の型キャビティの最小の厚みが、
0.1〜1mmである」こと、「前記断熱層の上に密着
した金属層を有する」こと、をも含むものである。
The second mold of the present invention further has a feature that “A = 0.5 to 10 mm, 0.7A ≧ B”.
That the minimum thickness of the mold cavity of the thin part is
0.1 to 1 mm "and" having a metal layer in close contact with the heat insulating layer ".

【0015】[0015]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0016】本発明の成形法に使用できる合成樹脂は一
般の射出成形に使用できる熱可塑性樹脂である。例え
ば、スチレン系重合体、ABS樹脂、或いはその共重合
体、ポリエチレン、ポリプロピレン等オレフィン重合
体、 変性ポリフェニレンエーテル樹脂、ポリアセタール
樹脂、塩化ビニル重合体又はその共重合体、ポリカーボ
ネート、ポリアミド、ポリエステル、メタクリル樹脂等
である。特に各種電子機器の部品に使用されるポリアセ
タール樹脂、ポリプロピレン、ポリカーボネート等は良
好に使用できる。
The synthetic resin usable in the molding method of the present invention is a thermoplastic resin usable in general injection molding. For example, styrene polymers, ABS resins or copolymers thereof, olefin polymers such as polyethylene and polypropylene, modified polyphenylene ether resins, polyacetal resins, vinyl chloride polymers or copolymers thereof, polycarbonate, polyamide, polyester, methacrylic resin And so on. In particular, polyacetal resin, polypropylene, polycarbonate, and the like used for parts of various electronic devices can be favorably used.

【0017】これらの樹脂に、各種強化材や各種充填物
を配合した場合、或いはポリマーアロイ等とした場合は
特に大きい効果が得られる。例えば、上記の樹脂にゴ
ム、ガラス繊維、炭酸カルシウム、タルク、硫酸カルシ
ウム、木粉等の1種又は2種以上の配合することができ
る。
Particularly great effects are obtained when various reinforcing materials and various fillers are blended with these resins, or when a polymer alloy or the like is used. For example, one or more of rubber, glass fiber, calcium carbonate, talc, calcium sulfate, wood flour and the like can be mixed with the above resin.

【0018】本発明の成形法で成形される成形品は、弱
電機器、電子機器、事務機器等のハウジング、各種自動
車部品、各種日用品、各種工業部品等に一般に使用され
る合成樹脂偏肉成形品である。本発明の成形法は、最も
薄い薄肉部の型キャビティ厚みが0.1〜1mmの合成
樹脂偏肉成形品の成形に極めて有効であり、この様な偏
肉成形品の一例としては、ヒンジ部を有する容器、キャ
プ、或いは液晶ディスプレイのバックライト用楔型薄肉
導光板等が挙げられる。
The molded article molded by the molding method of the present invention is a synthetic resin uneven thickness molded article generally used for housings of light electric equipment, electronic equipment, office equipment, various automobile parts, various daily necessities, various industrial parts, etc. It is. The molding method of the present invention is extremely effective for molding a synthetic resin uneven thickness molded product having a mold cavity thickness of the thinnest thin portion of 0.1 to 1 mm. An example of such an uneven thickness molded product is a hinge portion. And a wedge-shaped thin light guide plate for a backlight of a liquid crystal display.

【0019】本発明に係る金型の材質は、一般の金型に
用いられる金属である。例えば、鉄又は鉄を主成分とす
る鋼材、アルミニウム又はアルミニウムを主成分とする
合金、亜鉛合金、ベリリウム−銅合金等を使用でき、特
に鋼材から成る金型が良好に使用できる。これらの金属
からなる金型の型キャビティを構成する型壁面は、クロ
ムメッキ又はニッケルメッキされていることが好まし
い。クロムメッキ又はニッケルメッキは断熱層との密着
性に優れ、又耐蝕性にも優れている。射出成形には、金
型に加熱と冷却が繰り返し加えられるため密着力が安定
して大きいことが非常に重要であり、数万回の成形に耐
えるためには上記のメッキ効果が大きく好ましいもので
ある。
The material of the mold according to the present invention is a metal used for a general mold. For example, iron or a steel material containing iron as a main component, aluminum or an alloy containing aluminum as a main component, a zinc alloy, a beryllium-copper alloy, or the like can be used. In particular, a mold made of a steel material can be used favorably. It is preferable that the mold wall surface constituting the mold cavity of the mold made of these metals is plated with chrome or nickel. Chromium plating or nickel plating has excellent adhesion to the heat insulating layer and also has excellent corrosion resistance. In injection molding, since heating and cooling are repeatedly applied to the mold, it is very important that the adhesion is stable and large, and in order to withstand tens of thousands of moldings, the above plating effect is large and preferable. is there.

【0020】本発明に係る断熱層に用いられる断熱材
は、金型を形成する金属の熱伝導率の1/10以下の熱
伝導率を有するものが好ましく、特に好ましくは1/2
0以下熱伝導率を有するものである。具体的には、各種
耐熱樹脂重合体、各種セラミック等が挙げられ、最も好
適に用いられるのは耐熱性重合体である。耐熱性重合体
は、ガラス転移温度が150℃以上、好ましくは200
℃以上、更に好ましくは230℃以上、及び/又は融点
が200℃以上、好ましくは250℃以上、更に好まし
くは280℃以上の耐熱性重合体である。耐熱性重合体
の熱伝導率は小さい程好ましく、熱伝導度が0.002
cal/(cm・sec・℃)以下であり、一般の重合
体はこの熱伝導率以下である。又、該耐熱性重合体の破
断伸度は10%以上の強靭な重合体が好ましい。破断伸
度はASTM−D638に準じて行い、測定時の引張り
速度は5mm/minである。
The heat insulating material used in the heat insulating layer according to the present invention preferably has a thermal conductivity of 1/10 or less of the thermal conductivity of the metal forming the mold, particularly preferably 1/2.
It has a thermal conductivity of 0 or less. Specific examples include various heat-resistant resin polymers, various ceramics, and the like, and the most preferably used is a heat-resistant polymer. The heat-resistant polymer has a glass transition temperature of 150 ° C. or higher, preferably 200 ° C.
It is a heat-resistant polymer having a melting point of 200 ° C or higher, more preferably 230 ° C or higher, and / or a melting point of 200 ° C or higher, preferably 250 ° C or higher, more preferably 280 ° C or higher. The heat conductivity of the heat-resistant polymer is preferably as small as possible.
cal / (cm · sec · ° C.) or less, and a general polymer has this thermal conductivity or less. The toughness of the heat-resistant polymer is preferably 10% or more. The elongation at break is performed according to ASTM-D638, and the tensile speed at the time of measurement is 5 mm / min.

【0021】本発明に係る断熱層として良好に使用でき
る重合体は、主鎖に芳香環を有する耐熱性重合体であ
り、有機溶剤に溶解する各種非結晶性耐熱性重合体、各
種ポリイミド、エポキシ樹脂等である。非結晶性耐熱性
重合体としては、ポリスルホン、ポリエーテルスルホ
ン、ポリアリルスルホン、ポリアリレート、ポリフェニ
レンエーテル、ポリベンツイミダゾール等がある。ポリ
イミドは各種有るが、直鎖型と熱硬化型に分けられそれ
ぞれのポリイミド前駆体として各種知られている。本発
明で用いられる断熱層に関しては、熱伝導率が低いこ
と、耐熱性に優れること、引っ張り強度、伸びが大きく
冷熱サイクルに強いこと、金型本体への塗布が良好であ
ること、金型との密着性が良いこと等から直鎖型の高分
子量ポリイミドが好ましい。例えば商品名がカプトン
(東レ製)、ノバックス(三菱化成製)、ユーピレック
スS或いはユーピレックスR(宇部興産製)、Larc
TPI(三井東圧化学製)、等が好ましいものであ
る。ポリイミド層を金型に強固に密着させるには、直鎖
型高分子量ポリイミドの前駆体溶液を金型に塗布し、次
いで加熱してポリイミドを形成させることが最も好まし
い。直鎖型高分子量ポリイミドの前駆体は、例えば芳香
族ジアミンと芳香族テトラカルボン酸二無水物を開環重
付加反応させることにより合成される。これらポリイミ
ド前駆体は、加熱して脱水環化反応させることによりポ
リイミドを形成する。ポリイミド前駆体のポリマーは、
カルボキシル基等の極性基のため金型との密着性が良
い。上記のポリイミド前駆体のポリマーは、N−メチル
ピロリドン等の溶媒に溶かし金型壁面に塗布される。ポ
リイミドの前駆体溶液には、コーティング時の粘度を調
整したり、溶液の表面張力を調整、チキソトロピー性を
調整するための添加物を加えたり、又は/及び金型との
密着性を上げる為の微小の添加物を加えることが出来
る。これらポリイミドの中で、ピロメリット酸ジ無水物
系ポリイミドは、耐熱性、機械的性質等に優れ最も好ま
しい。特に塗布用に変性したワニスは、良好に使用でき
る。
The polymer which can be suitably used as the heat-insulating layer according to the present invention is a heat-resistant polymer having an aromatic ring in the main chain, and various amorphous heat-resistant polymers, various polyimides and epoxy resins dissolved in an organic solvent. It is a resin or the like. Examples of the non-crystalline heat-resistant polymer include polysulfone, polyether sulfone, polyallylsulfone, polyarylate, polyphenylene ether, polybenzimidazole and the like. There are various kinds of polyimides, and they are classified into a linear type and a thermosetting type, and various types are known as respective polyimide precursors. Regarding the heat insulating layer used in the present invention, that the thermal conductivity is low, that the heat resistance is excellent, that the tensile strength, the elongation is large and that it is strong in the cooling and heating cycle, that the application to the mold body is good, that the mold and Is preferred because of its good adhesion. For example, trade names are Kapton (Toray), Novax (Mitsubishi Chemical), Upilex S or Upilex R (Ube Industries), Larc
TPI (manufactured by Mitsui Toatsu Chemicals) and the like are preferred. In order to firmly adhere the polyimide layer to the mold, it is most preferable to apply a precursor solution of linear high molecular weight polyimide to the mold and then heat to form the polyimide. The precursor of the linear high molecular weight polyimide is synthesized by, for example, subjecting an aromatic diamine and an aromatic tetracarboxylic dianhydride to a ring-opening polyaddition reaction. These polyimide precursors are heated to cause a dehydration cyclization reaction to form a polyimide. The polyimide precursor polymer is
Good adhesion to the mold due to polar groups such as carboxyl groups. The above polyimide precursor polymer is dissolved in a solvent such as N-methylpyrrolidone and applied to the mold wall. To the polyimide precursor solution, to adjust the viscosity at the time of coating, to adjust the surface tension of the solution, to add an additive to adjust the thixotropic property, and / or to increase the adhesion with the mold Minor additives can be added. Among these polyimides, pyromellitic dianhydride-based polyimide is most preferable because of its excellent heat resistance and mechanical properties. Particularly, a varnish modified for coating can be used favorably.

【0022】エポキシ樹脂は、硬化剤と組み合わせたエ
ポキシ樹脂硬化物或いは各種充填剤を適量配合したエポ
キシ樹脂等も使用できる(以後、エポキシ樹脂硬化物を
エポキシ樹脂と称する)。エポキシ樹脂は一般に熱膨張
係数が大きく、金属金型との熱膨張係数の差が大きい。
しかし、熱膨張係数の小さいガラス、シリカ、クレー、
タルク、炭酸カルシウム、アルミナ、マイカ等の粉体、
ウィスカー、炭素繊維等の適量をエポキシ樹脂に配合
し、金属金型との熱膨張係数の差を小さくした充填剤配
合エポキシ樹脂は本発明の断熱層として良好に使用でき
る。
As the epoxy resin, an epoxy resin cured product combined with a curing agent or an epoxy resin mixed with various fillers in an appropriate amount can be used (hereinafter, the epoxy resin cured product is referred to as an epoxy resin). Epoxy resins generally have a large coefficient of thermal expansion and a large difference in the coefficient of thermal expansion from a metal mold.
However, glass, silica, clay,
Powder of talc, calcium carbonate, alumina, mica, etc.
A filler-containing epoxy resin in which an appropriate amount of whiskers, carbon fibers, or the like is mixed with an epoxy resin to reduce the difference in thermal expansion coefficient from a metal mold can be used favorably as the heat insulating layer of the present invention.

【0023】また、エポキシ樹脂或いは充填材配合エポ
キシ樹脂に、更にナイロン等の強靱な熱可塑性樹脂、ゴ
ム等の強靱性を与える各種配合物を加えて強靱性を与え
た配合エポキシ樹脂は良好に使用できる。特に、エポキ
シ樹脂にポリエーテルスルホンやポリエーテルイミドを
配合して硬化したポリマーアロイは強靱性に優れ良好に
使用できる。
Also, a compounded epoxy resin having a toughness by adding a tough thermoplastic resin such as nylon and various compounds which provide a toughness such as rubber to an epoxy resin or a compounded epoxy resin with a filler is preferably used. it can. In particular, a polymer alloy cured by blending polyethersulfone or polyetherimide with an epoxy resin has excellent toughness and can be used favorably.

【0024】金型キャビティは、一般に複雑な形状をし
ている。この複雑な形状の金型キャビティ表面、型壁面
に鏡面状に被覆物を塗布して断熱層を形成することは極
めて困難で有り、そのため塗布された被覆層を後から表
面研磨したり、塗布層を数値制御フライス盤等の数値制
御工作機械で削った後に表面研磨して鏡面状に仕上げる
ことが好ましい。
The mold cavity generally has a complicated shape. It is extremely difficult to form a heat insulating layer by applying a coating to the surface of the mold cavity and the mold wall of a complicated shape in a mirror-like manner. Therefore, the applied coating layer is polished later, Is preferably polished by a numerically controlled machine tool such as a numerically controlled milling machine and then polished to a mirror finish.

【0025】本発明においては、型キャビティの厚肉部
と薄肉部の双方の型壁面に渡って、型キャビティの厚み
が薄い部分ほど厚い断熱層を設けることにより、厚肉部
において必要以上に樹脂の冷却固化を遅らせることな
く、成形品全体の冷却時間を短縮できるものである。
In the present invention, by providing a thicker heat insulating layer as the thickness of the mold cavity decreases over both the thick wall and the thin wall of the mold cavity, the resin in the thick wall becomes unnecessary. The cooling time of the whole molded article can be shortened without delaying the cooling and solidification of the molded article.

【0026】本発明に係る型キャビティは、その厚肉部
の最大の厚みと薄肉部の最小の厚みの差Aが0.5mm
以上である。Aが0.5mm未満の場合には、各部にお
ける断熱層の厚みをコントロールするメリットは小さ
い。また、成形品の形状・大きさ等にもよるが、Aが1
0mm以下であるのが好ましい。
In the mold cavity according to the present invention, the difference A between the maximum thickness of the thick portion and the minimum thickness of the thin portion is 0.5 mm.
That is all. When A is less than 0.5 mm, the merit of controlling the thickness of the heat insulating layer in each part is small. Also, depending on the shape and size of the molded product, A is 1
It is preferably 0 mm or less.

【0027】また、本発明においては、型キャビティの
最大厚肉部における(型キャビティ厚み+断熱層厚み)
と型キャビティの最小薄肉部における(型キャビティ厚
み+断熱層厚み)との差Bは、A≧Bの関係を満たして
いるものであり、好ましくは0.7A≧Bである。A<
Bの場合には、溶融樹脂の粘性、成形品の形状・大きさ
等にもよるが、一般的に本発明による効果が少ない。
Also, in the present invention, (the thickness of the mold cavity + the thickness of the heat insulating layer) at the thickest portion of the mold cavity
The difference B between (the thickness of the mold cavity and the thickness of the heat insulating layer) in the minimum thin portion of the mold cavity satisfies the relationship of A ≧ B, and preferably 0.7A ≧ B. A <
In the case of B, although it depends on the viscosity of the molten resin and the shape and size of the molded product, the effect of the present invention is generally small.

【0028】また、型キャビティ厚みと断熱層の厚みの
和は、その最大値がその最小値の3倍以内であることが
好ましく、3倍を超えると金型の冷却効率が低下し易
く、本発明による効果が小さい。
The sum of the thickness of the mold cavity and the thickness of the heat insulating layer is preferably such that the maximum value is within three times the minimum value, and if it exceeds three times, the cooling efficiency of the mold is liable to decrease. The effect of the invention is small.

【0029】断熱層の各部の厚みは、通常は最大5mm
以下に設定するのが好ましく、より好ましくは0.01
mm〜3mmの範囲であり、特に好ましくは0.1mm
〜2mmの範囲である。断熱層の厚みが5mmを超える
と、金型の冷却効果が低下し、成形効率が低下し易い。
また、一般に金型温度が高い程耐熱性重合体から成る断
熱層の厚みを薄く被覆し、金型温度が低いほど断熱層厚
みを厚く被覆するのが好ましい。尚、型キャビティを構
成する上下の型壁面を断熱層で被覆する場合には、上下
の断熱層の厚みの和が、断熱層の厚みとなる。
The thickness of each part of the heat insulating layer is usually up to 5 mm.
It is preferably set to the following, more preferably 0.01
mm to 3 mm, particularly preferably 0.1 mm
22 mm. If the thickness of the heat insulating layer exceeds 5 mm, the cooling effect of the mold decreases, and the molding efficiency tends to decrease.
In general, it is preferable that the higher the mold temperature, the thinner the heat insulating layer made of the heat-resistant polymer is coated, and the lower the mold temperature, the thicker the heat insulating layer. When the upper and lower mold walls forming the mold cavity are covered with a heat insulating layer, the sum of the thicknesses of the upper and lower heat insulating layers is the thickness of the heat insulating layer.

【0030】本発明において、断熱層で被覆された金型
としては、型キャビティを構成する型壁面又は/及びコ
アー金型を構成する型壁面に被覆された断熱層被覆金型
を用いることができる。型キャビティを構成する型壁面
及びコアー両型壁面の双方に断熱層を被覆した金型は、
射出された合成樹脂の流動性支援効果が大きく、好まし
いものである。
In the present invention, as the mold covered with the heat insulating layer, a mold coated with a heat insulating layer coated on the mold wall surface constituting the mold cavity and / or the mold wall surface constituting the core mold can be used. . A mold in which a heat insulating layer is coated on both the mold wall surface and the core mold wall surface that constitute the mold cavity,
The injected synthetic resin has a large flow assisting effect, which is preferable.

【0031】ポリイミド等の断熱層の表面の平滑性等を
更に向上させたり、表面の耐擦傷性を更に向上させた
り、離型性を良くするため、或いは微細加工面を良好に
転写するために、断熱層の上に金属層を密着させて設け
ることができる。金型表面を断熱層で被覆し、その表面
に射出された加熱合成樹脂が接触すると、型表面は合成
樹脂の熱を受けて昇温する。断熱層の熱伝導度が小さい
ほど、又、断熱層が厚いほど型表面温度は高くなる。従
って、断熱層の上に密着させる金属層の厚みは、薄いほ
ど好適である。かかる金属層の厚みは、0.001mm
〜1mmの範囲とすることができる。
In order to further improve the smoothness of the surface of the heat insulating layer of polyimide or the like, to further improve the scratch resistance of the surface, to improve the releasability, or to transfer the finely processed surface favorably. Alternatively, a metal layer can be provided in close contact with the heat insulating layer. When the surface of the mold is covered with a heat insulating layer and the injected synthetic resin comes into contact with the surface, the surface of the mold is heated by the heat of the synthetic resin. The lower the thermal conductivity of the heat insulating layer and the thicker the heat insulating layer, the higher the mold surface temperature. Therefore, it is preferable that the thickness of the metal layer adhered on the heat insulating layer is smaller. The thickness of such a metal layer is 0.001 mm
範 囲 1 mm.

【0032】上記の金属層の厚みは均一であることが好
ましい。金属層の厚みのバラツキが大きいと、金属層の
厚い部分の型表面再現性が悪くなったり、合成樹脂材料
の流動性に変化が起きたりする。
The thickness of the metal layer is preferably uniform. If the thickness variation of the metal layer is large, the mold surface reproducibility of the thick portion of the metal layer is deteriorated, and the fluidity of the synthetic resin material changes.

【0033】金属層は、種々の方法で被覆できるが、メ
ッキによって良好に被覆される。ここに述べるメッキは
化学メッキ(無電解メッキ)と電解メッキである。一般
には次の工程の幾つかを経てメッキされる。すなわち、
前処理(断熱層に接して化学メッキが行われる)→化学
腐食(酸、アルカリによる化学エッチング:表面を適度
な凹凸にする)→中和→感受性化処理(合成樹脂表面に
還元力のある金属塩を吸着させて活性化を効果あらしめ
る)→活性化処理(触媒作用を有するパラジウム等の貴
金属を断熱層樹脂表面に付与)→化学メッキ(化学ニッ
ケルメッキ、化学銅メッキ等)→電解メッキ(電解ニッ
ケルメッキ、電解銅メッキ、電解クロムメッキ等)。
The metal layer can be coated in various ways, but is well coated by plating. The plating described here is chemical plating (electroless plating) and electrolytic plating. Generally, plating is performed through some of the following steps. That is,
Pretreatment (chemical plating is performed in contact with the heat insulation layer) → Chemical corrosion (chemical etching with acid or alkali: making the surface moderately uneven) → Neutralization → Sensitivity treatment (metal that has a reducing power on the synthetic resin surface) Activation is achieved by adsorbing salt → activation treatment (noble metal such as palladium having a catalytic action is applied to the heat insulating layer resin surface) → chemical plating (chemical nickel plating, chemical copper plating, etc.) → electrolytic plating ( Electrolytic nickel plating, electrolytic copper plating, electrolytic chrome plating, etc.).

【0034】また、金属層として薄い金属板を断熱層表
面に貼り付けることもできる。薄い金属板としては、例
えばSUS304H、銅板等であり、SUS304Hの
テンションアニール材は反りが出難く好適に使用でき
る。
Also, a thin metal plate as a metal layer can be attached to the surface of the heat insulating layer. The thin metal plate is, for example, SUS304H, a copper plate, or the like. The SUS304H tension annealing material is preferably used because it hardly warps.

【0035】尚、本発明において断熱層の上に金属層を
密着して設けた場合、その接着層も断熱層とみなすこと
ができる。
In the present invention, when a metal layer is provided in close contact with the heat insulating layer, the adhesive layer can be regarded as a heat insulating layer.

【0036】次に、本発明による作用について説明す
る。
Next, the operation of the present invention will be described.

【0037】一般に、平行板間を流動する流体の圧力損
失は次式で示される。 ΔP=β×LηQ/H2 ΔP:圧力損失 H :平行板間距離(型キャビティ厚み) η :粘度 β :定数 Q :流量 L :流動距離
In general, the pressure loss of a fluid flowing between parallel plates is expressed by the following equation. ΔP = β × LηQ / H 2 ΔP: pressure loss H: distance between parallel plates (mold cavity thickness) η: viscosity β: constant Q: flow rate L: flow distance

【0038】即ち、圧力損失は粘度と流動距離に比例
し、平行板間距離の2乗に比例する。射出成形では上記
数式から明らかなようにゲートから離れるに従って圧力
損失は大きくなり、金型面を押す樹脂圧力が低下する。
That is, the pressure loss is proportional to the viscosity and the flow distance, and is proportional to the square of the distance between the parallel plates. In the injection molding, as is clear from the above equation, the pressure loss increases as the distance from the gate increases, and the resin pressure pressing the mold surface decreases.

【0039】また、上記数式中の粘度ηは、射出された
合成樹脂が金型表面に接した部分で冷却され時間ととも
に上昇する為、経時的にも金型面に押し付けられる力、
及び流動方向への流動性が低下する。
In addition, the viscosity η in the above formula is such that the injected synthetic resin is cooled at a portion in contact with the mold surface and rises with time, so that the force pressed against the mold surface over time,
And the fluidity in the flowing direction decreases.

【0040】従って、流動末端部では金型面の転写性が
低下し易い。特に、上記数式のLとηが大きく、Hが小
さい場合、即ち、大型の薄肉成形品を高粘度の合成樹脂
で射出成形する場合には、流動性及び金型面の転写性に
問題が生じる。
Therefore, the transferability of the mold surface tends to be reduced at the flow end. In particular, when L and η in the above formula are large and H is small, that is, when a large thin molded product is injection-molded with a high-viscosity synthetic resin, problems arise in fluidity and mold surface transferability. .

【0041】本発明は、型キャビティの薄肉部を厚肉部
よりも厚い断熱層で被覆することにより、特に薄肉部で
の冷却速度を遅延させ、合成樹脂の流動性を低下させる
ことなく成形できるものである。
According to the present invention, by molding the thin portion of the mold cavity with a heat insulating layer thicker than the thick portion, the molding speed can be reduced without delaying the cooling rate particularly at the thin portion, thereby reducing the fluidity of the synthetic resin. Things.

【0042】合成樹脂の射出成形では金型温度と成形サ
イクルタイムは密接に関連している。一般に、成形時の
金型温度(Td)と金型内必要冷却時間(θ)の関係は
次式で示される。 θ=−(D2 /2πα)・ln[(π/4){(Tx−
Td)/(Tc−Td)}] θ :冷却時間(sec) D :成形品の最大肉厚(cm) Tc:成形時の加熱樹脂温度(℃) Tx:合成樹脂の軟化温度(℃) α :合成樹脂の熱拡散率 Td:金型温度(℃)
In synthetic resin injection molding, mold temperature and molding cycle time are closely related. Generally, the relationship between the mold temperature (Td) during molding and the required cooling time in the mold (θ) is expressed by the following equation. θ = − (D 2 / 2πα) · ln [(π / 4) {(Tx−
Td) / (Tc−Td)}] θ: Cooling time (sec) D: Maximum thickness of molded product (cm) Tc: Heated resin temperature during molding (° C) Tx: Softening temperature of synthetic resin (° C) α : Thermal diffusivity of synthetic resin Td: Mold temperature (° C)

【0043】即ち、冷却時間(θ)は、成形品の最大肉
厚(D)の2乗に比例し、(Tx−Td)/(Tc−T
d)の関数である。
That is, the cooling time (θ) is proportional to the square of the maximum thickness (D) of the molded product, and is expressed by (Tx−Td) / (Tc−T).
d) is a function.

【0044】金型に断熱層を被覆することは、成形品の
肉厚を厚くして冷却時間を長くする方向と同様の働きを
する。このため、型キャビティ各部に被覆する断熱層の
厚みは、成形品全体の冷却時間が最短となるよう、即ち
厚肉部の冷却時間が必要以上に長くならないよう、型キ
ャビティ全域に渡ってほぼ同程度の冷却時間となるよう
に設定するのが好ましい。これによって成形品全体の成
形効率を低下させることなく、薄肉部における流動性支
援、金型面の転写性等の改良が可能となり、経済的な成
形サイクル(成形品全体の冷却時間の最短化)を実現す
ることができる。
Coating the mold with the heat insulating layer has the same function as increasing the thickness of the molded product and extending the cooling time. For this reason, the thickness of the heat insulating layer covering each part of the mold cavity is almost the same over the entire area of the mold cavity so that the cooling time of the entire molded product is minimized, that is, the cooling time of the thick part is not unnecessarily long. It is preferable to set the cooling time to about the same. This makes it possible to improve the flowability of thin parts and improve the transferability of the mold surface without lowering the molding efficiency of the entire molded product, thereby achieving an economical molding cycle (minimizing the cooling time of the entire molded product). Can be realized.

【0045】次に、図面を用いて本発明の具体例を説明
する。
Next, a specific example of the present invention will be described with reference to the drawings.

【0046】図1〜図5は、本発明に係る断熱層被覆金
型の型キャビティ付近の断面図を示している。これらの
図において、1は固定型、2は移動型、3はコアー金
型、4は断熱層、5は型キャビティ、6は金属層であ
る。また、a1は型キャビティ5の最大厚肉部の厚さ、
a2は型キャビティ5の最小薄肉部の厚さ、b1は型キ
ャビティ5の最大厚肉部における断熱層4の厚さ、b2
は型キャビティ5の最小薄肉部における断熱層4の厚さ
を示しており、前述のA及びBはそれぞれ、A=a1−
a2、B=(a1+b1)−(a2+b2)である。
FIGS. 1 to 5 are sectional views showing the vicinity of the mold cavity of the mold coated with a heat insulating layer according to the present invention. In these figures, 1 is a fixed mold, 2 is a movable mold, 3 is a core mold, 4 is a heat insulating layer, 5 is a mold cavity, and 6 is a metal layer. A1 is the thickness of the thickest part of the mold cavity 5,
a2 is the thickness of the minimum thin portion of the mold cavity 5, b1 is the thickness of the heat insulating layer 4 at the thickest portion of the mold cavity 5, b2
Indicates the thickness of the heat insulating layer 4 at the minimum thin portion of the mold cavity 5, and A and B described above are respectively A = a1−
a2, B = (a1 + b1)-(a2 + b2).

【0047】図1及び図2は、楔状薄肉成形品の成形に
用いられる金型構成例であり、A>B>0の関係にあ
る。コアー金型3は移動型2内に収納され、このコアー
金型3には、型キャビティ5を構成する部分に断熱層4
が設けられている。図2は、図1のコアー金型3の上面
に、断熱層4に密着した金属層6を設けた場合であり、
この金属層6の表面形状は、鏡面状に限らず、シボ状、
凹凸模様及びプリズム状等とすることもできる。
FIGS. 1 and 2 show examples of the configuration of a mold used for molding a wedge-shaped thin-walled molded product, where A>B> 0. The core mold 3 is housed in the movable mold 2, and the core mold 3 has a heat insulating layer 4
Is provided. FIG. 2 shows a case where a metal layer 6 adhered to the heat insulating layer 4 is provided on the upper surface of the core mold 3 of FIG.
The surface shape of the metal layer 6 is not limited to a mirror surface, but may be
An uneven pattern, a prism shape, or the like can also be used.

【0048】図3及び図4は、B=0の場合である。図
3は、ヒンジ部分を有する偏肉成形品の成形に用いられ
る金型構成例であり、型キャビティ5を構成する固定型
1及び移動型2の双方に断熱層4が設けられている。図
4は、左右にテーパ状の傾斜面を有し、中央に極薄肉の
部分を有する成形品の成形に用いられる金型構成例であ
り、図1及び図2と同様、コアー金型3は移動型2内に
収納され、このコアー金型3には、型キャビティ5を構
成する部分に断熱層4が設けられている。
FIGS. 3 and 4 show the case where B = 0. FIG. 3 shows a configuration example of a mold used for molding an uneven thickness molded product having a hinge portion, and a heat insulating layer 4 is provided on both the fixed mold 1 and the movable mold 2 that constitute the mold cavity 5. FIG. 4 shows an example of a mold configuration used for molding a molded product having a tapered inclined surface on the left and right sides and an extremely thin portion in the center. As in FIGS. The core mold 3 is housed in the movable mold 2, and a heat insulating layer 4 is provided in a portion constituting the mold cavity 5.

【0049】図5は、B<0の場合であり、断熱層4の
厚みの増加率を図1の例よりも大きくすることができ
る。即ち、薄肉部の端部における断熱層4の厚みを増す
ことができ、成形品の長さが特に長い場合や、ゲート位
置(不図示)から薄肉部までの距離が遠い場合にも、薄
肉部における流動性支援、金型面の転写性等の改良が可
能となる。
FIG. 5 shows the case where B <0, and the rate of increase in the thickness of the heat insulating layer 4 can be made larger than that in the example of FIG. That is, the thickness of the heat insulating layer 4 at the end of the thin portion can be increased, and even when the length of the molded product is particularly long, or when the distance from the gate position (not shown) to the thin portion is long, the thin portion can be increased. , And the transferability of the mold surface can be improved.

【0050】[0050]

【実施例】本実施例では、図2に示したような金型を用
いて、160mm×220mm、最大厚肉部の厚みa1
=2.5mm、最小薄肉部の厚みa2=0.8mm、の
楔形状(テーパー状)の偏肉成形品を射出成形した。
EXAMPLE In this example, a mold as shown in FIG.
= 2.5 mm, thickness w2 of the minimum thin part a2 = 0.8 mm, and a wedge-shaped (tapered) uneven thickness molded article was injection molded.

【0051】金型の材質は鋼材(S55C)で、型表面
は鏡面状で更に表面は硬質クロムメッキされている。鋼
材の熱伝導率は約0.2cal/cm・sec・℃であ
る。ゲート位置は厚肉部(ロ)のサイドゲートで、ゲー
トの大きさは、幅20mm、高さ2mmである。
The material of the mold is steel (S55C), the surface of the mold is mirror-finished, and the surface is hard chrome plated. The thermal conductivity of the steel material is about 0.2 cal / cm · sec · ° C. The gate position is the side gate of the thick part (b), and the size of the gate is 20 mm in width and 2 mm in height.

【0052】コアー金型3には、以下のようにしてポリ
イミド樹脂からなる断熱層4を被覆した。先ず、コアー
金型3表面をプライマ−処理し、その上に、直鎖型ポリ
イミド前駆体であるポリイミドワニス(商品名トレニー
ス#3000:東レ(株)製)を塗布し、160℃で加
熱して部分イミド化し、次いで該塗布、160℃加熱を
繰り返して所定の偏肉厚みの断熱層とした。型キャビテ
ィの最大厚肉部の断熱層の厚みb1=0.2mm、最小
薄肉部の断熱層の厚みb2=0.7mmとし、次いで2
90℃に加熱してポリイミド層を形成した。該ポリイミ
ド層の軟化温度は300℃、熱伝導率は0.0005c
al/cm・sec・℃、破断伸度は60%であった。
The core mold 3 was covered with a heat insulating layer 4 made of a polyimide resin as follows. First, the surface of the core mold 3 is subjected to a primer treatment, and a polyimide varnish (trade name: Treeneth # 3000: manufactured by Toray Industries, Inc.), which is a straight-chain polyimide precursor, is applied thereon and heated at 160 ° C. After partial imidization, the coating and heating at 160 ° C. were repeated to form a heat insulating layer having a predetermined thickness. The thickness b1 of the heat insulation layer at the thickest part of the mold cavity is set to 0.2 mm, the thickness b2 of the heat insulation layer at the thinnest part is 0.7 mm, and then 2
The polyimide layer was formed by heating to 90 ° C. The polyimide layer has a softening temperature of 300 ° C. and a thermal conductivity of 0.0005 c.
al / cm · sec · ° C., elongation at break was 60%.

【0053】次に、断熱層4の上に金属層6を形成し
た。具体的には、上記ポリイミド層からなる断熱層4の
最表面に硬化型エポキシ樹脂を塗布し、その上に0.0
5mmの金属板(SUS304H)を置き、80℃で加
熱し、接着させた。
Next, a metal layer 6 was formed on the heat insulating layer 4. More specifically, a curable epoxy resin is applied to the outermost surface of the heat insulating layer 4 made of the polyimide layer, and 0.0
A 5 mm metal plate (SUS304H) was placed, heated at 80 ° C., and bonded.

【0054】上記の方法で制作された断熱層被覆金型
を、名機(株)製ダイナメルタ射出成形機(M−150
AII)に取り付け、成形温度:235℃、金型温度設
定値:70℃、成形サイクル:45秒、射出速度:50
mm/sec、保圧力:60kgf/cm2 の成形条件
で、メタクリル樹脂(商品名デルペット80NH:旭化
成工業(株)製)を用いて射出成形した。その結果、薄
肉部において完全不良がなく、厚肉部においてヒケが無
く、且つ優れた表面性を有する偏肉成形板が得られた。
The mold coated with a heat insulating layer produced by the above method was used as a dynamometer injection molding machine (M-150, manufactured by Meiki Co., Ltd.).
AII), molding temperature: 235 ° C, mold temperature set value: 70 ° C, molding cycle: 45 seconds, injection speed: 50
Injection molding was performed using methacrylic resin (trade name: Delpet 80NH, manufactured by Asahi Kasei Kogyo Co., Ltd.) under molding conditions of mm / sec and holding pressure: 60 kgf / cm 2 . As a result, an uneven-thickness molded plate having no defect in the thin portion, no sink in the thick portion, and excellent surface properties was obtained.

【0055】比較例として、型キャビティ5の形状は本
実施例と全く同じであるが、断熱層4を有しない比較用
金型を用いて、同様の成形条件で射出成形を行った。そ
の結果、成形品は薄肉部の端部で未充填となり、良好な
成形品が得られなかった。本成形品は、完全充填に比較
して、15%未充填であった。
As a comparative example, the shape of the mold cavity 5 was exactly the same as that of the present embodiment, but injection molding was performed under the same molding conditions using a comparative mold having no heat insulating layer 4. As a result, the molded product was not filled at the end of the thin portion, and a good molded product was not obtained. This molded product was 15% unfilled as compared to completely filled.

【0056】本実施例の金型と上記比較用金型を用い
て、保圧力を変化させて同様の偏肉成形品を射出成形し
た。各成形品の成形充填性を、成形品の重量で比較した
結果を図6に示す。図6からも判るように、本発明によ
れば樹脂の充填性が増大し、保圧力を高めることなく薄
肉部を良好に成形することがことができる。同様に、金
型全体の温度を低く設定することができ、冷却固化に必
要な冷却時間を短縮することができる。
Using the mold of the present example and the comparative mold described above, the same uneven thickness molded article was injection molded by changing the holding pressure. FIG. 6 shows the result of comparing the mold filling property of each molded article with the weight of the molded article. As can be seen from FIG. 6, according to the present invention, the filling property of the resin is increased, and the thin portion can be favorably formed without increasing the holding pressure. Similarly, the temperature of the entire mold can be set low, and the cooling time required for cooling and solidifying can be reduced.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
厚肉部と薄肉部を有する合成樹脂偏肉成形品を、金型全
体の温度を高くすることなく、経済的で効率の良い成形
サイクルにて成形することができる。また、断熱層の上
に金属層を設けた場合には、上記効果に加え、優れた表
面性を有する合成樹脂偏肉成形品を成形することができ
る。
As described above, according to the present invention,
A synthetic resin uneven thickness molded product having a thick portion and a thin portion can be molded in an economical and efficient molding cycle without increasing the temperature of the entire mold. Further, when a metal layer is provided on the heat insulating layer, a synthetic resin uneven thickness molded article having excellent surface properties in addition to the above effects can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の断熱層被覆金型の一例を示す断面図で
ある。
FIG. 1 is a cross-sectional view illustrating an example of a heat-insulating-layer-coated mold according to the present invention.

【図2】本発明の断熱層被覆金型の一例を示す断面図で
ある。
FIG. 2 is a cross-sectional view illustrating an example of a heat-insulating-layer-coated mold according to the present invention.

【図3】本発明の断熱層被覆金型の一例を示す断面図で
ある。
FIG. 3 is a cross-sectional view illustrating an example of a heat-insulating-layer-coated mold according to the present invention.

【図4】本発明の断熱層被覆金型の一例を示す断面図で
ある。
FIG. 4 is a cross-sectional view illustrating an example of a heat-insulating-layer-coated mold according to the present invention.

【図5】本発明の断熱層被覆金型の一例を示す断面図で
ある。
FIG. 5 is a cross-sectional view illustrating an example of a heat-insulating-layer-coated mold according to the present invention.

【図6】実施例及び比較例における保圧力と樹脂充填性
との関係を示す図である。
FIG. 6 is a diagram showing a relationship between holding pressure and resin filling properties in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 固定型 2 移動型 3 コアー金型 4 断熱層 5 型キャビティ 6 金属層 DESCRIPTION OF SYMBOLS 1 Fixed type 2 Moving type 3 Core mold 4 Heat insulation layer 5 Mold cavity 6 Metal layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 厚肉部と薄肉部を有する型キャビティを
持つ金型を用いて合成樹脂偏肉成形品を成形する方法に
於いて、 型キャビティの厚肉部の最大の厚みと薄肉部の最小の厚
みとの差をA、型キャビティの最大厚肉部における(型
キャビティ厚み+断熱層厚み)と型キャビティの最小薄
肉部における(型キャビティ厚み+断熱層厚み)との差
をBとしたとき、A≧0.5mm、A≧Bの関係を有す
る断熱層被覆金型を用いて射出成形することを特徴とす
る合成樹脂偏肉成形品の成形法。
1. A method of molding a synthetic resin uneven thickness molded product using a mold having a mold cavity having a thick portion and a thin portion, wherein the maximum thickness of the thick portion of the mold cavity and the thickness of the thin portion are reduced. The difference between the minimum thickness is A, and the difference between (mold cavity thickness + insulation layer thickness) at the maximum thickness portion of the mold cavity and (mold cavity thickness + insulation layer thickness) at the minimum thickness portion of the mold cavity is B. A molding method of a synthetic resin uneven thickness molded product, wherein injection molding is performed using a heat-insulating layer-coated mold having a relationship of A ≧ 0.5 mm and A ≧ B.
【請求項2】 A=0.5〜10mm、0.7A≧Bで
あることを特徴とする請求項1に記載の合成樹脂偏肉成
形品の成形法。
2. The method according to claim 1, wherein A = 0.5 to 10 mm and 0.7A ≧ B.
【請求項3】 前記薄肉部の型キャビティの最小の厚み
が、0.1〜1mmであることを特徴とする請求項1又
は2に記載の合成樹脂偏肉成形品の成形法。
3. The method for molding a molded article with uneven thickness of a synthetic resin according to claim 1, wherein the minimum thickness of the mold cavity of the thin portion is 0.1 to 1 mm.
【請求項4】 前記断熱層被覆金型は、前記断熱層の上
に密着した金属層を有することを特徴とする請求項1〜
3のいずれかに記載の合成樹脂偏肉成形品の成形法。
4. The heat-insulating-layer-coated mold has a metal layer adhered on the heat-insulating layer.
3. The method for molding a molded article of uneven thickness of a synthetic resin according to any one of 3.
【請求項5】 合成樹脂偏肉成形品の射出成形に用いる
金型であって、厚肉部と薄肉部を有する型キャビティを
持ち、型キャビティの厚肉部の最大の厚みと薄肉部の最
小の厚みとの差をA、型キャビティの最大厚肉部におけ
る(型キャビティ厚み+断熱層厚み)と型キャビティの
最小薄肉部における(型キャビティ厚み+断熱層厚み)
との差をBとしたとき、A≧0.5mm、A≧Bの関係
を有することを特徴とする金型。
5. A mold used for injection molding of a synthetic resin uneven thickness molded article, comprising a mold cavity having a thick portion and a thin portion, wherein the maximum thickness of the mold cavity and the minimum thickness of the thin portion are provided. Is the difference between the thickness of the mold cavity and the thickness of the mold cavity at the thickest part (mold cavity thickness + insulation layer thickness) and the smallest part of the mold cavity (mold cavity thickness + insulation layer thickness).
A mold having a relationship of A ≧ 0.5 mm and A ≧ B, where B is a difference from the mold.
【請求項6】 A=0.5〜10mm、0.7A≧Bで
あることを特徴とする請求項5に記載の金型。
6. The mold according to claim 5, wherein A = 0.5 to 10 mm and 0.7A ≧ B.
【請求項7】 前記薄肉部の型キャビティの最小の厚み
が、0.1〜1mmであることを特徴とする請求項5又
は6に記載の金型。
7. The mold according to claim 5, wherein a minimum thickness of the mold cavity of the thin portion is 0.1 to 1 mm.
【請求項8】 前記断熱層の上に密着した金属層を有す
ることを特徴とする請求項5〜7のいずれかに記載の金
型。
8. The mold according to claim 5, further comprising a metal layer adhered on said heat insulating layer.
JP18531196A 1996-06-27 1996-06-27 Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming Pending JPH1016001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18531196A JPH1016001A (en) 1996-06-27 1996-06-27 Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18531196A JPH1016001A (en) 1996-06-27 1996-06-27 Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming

Publications (1)

Publication Number Publication Date
JPH1016001A true JPH1016001A (en) 1998-01-20

Family

ID=16168637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18531196A Pending JPH1016001A (en) 1996-06-27 1996-06-27 Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming

Country Status (1)

Country Link
JP (1) JPH1016001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1629957A1 (en) * 2004-08-24 2006-03-01 Hachtel, Friedrich Injection mould
JP2007029736A (en) * 2005-07-27 2007-02-08 Cordis Corp Catheter shaft tube and its manufacture method
JP5858390B1 (en) * 2015-02-05 2016-02-10 ロイアルエンジニアリング株式会社 Injection mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1629957A1 (en) * 2004-08-24 2006-03-01 Hachtel, Friedrich Injection mould
JP2007029736A (en) * 2005-07-27 2007-02-08 Cordis Corp Catheter shaft tube and its manufacture method
JP5858390B1 (en) * 2015-02-05 2016-02-10 ロイアルエンジニアリング株式会社 Injection mold

Similar Documents

Publication Publication Date Title
KR970000922B1 (en) Mold for synthetic resin molding
JPH1016001A (en) Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming
JPH1016009A (en) Method for molding synthetic resin molding with nonuniform wall thickness and mold for method
JP3268067B2 (en) Mold for synthetic resin molding
JPH0872086A (en) Low-pressure injection molding method
JP3396254B2 (en) Mold and its manufacturing method
JP3884105B2 (en) Injection molding method for uneven light guide plate for planar light source.
JPH10296743A (en) Synthetic resin mold
JP2727303B2 (en) Molding method for synthetic resin molded products
JP2715357B2 (en) Mold for synthetic resin molding
JPH10264204A (en) Polyacetal resin molding and its molding method
JPH06198682A (en) Low pressure injection molding method
JPH10175222A (en) Manufacture of heat insulating layer coated mold and method for molding synthetic resin using the mold
JPH1034663A (en) Insulated mold and resin molding method using the same
EP0904925A1 (en) Multi-layered blow molded body and multi-layered blow molding method
JPH07178765A (en) Insert molding method
JPH06198667A (en) Injection molding method of synthetic resin
JPH08187732A (en) Mold for molding synthetic resin and manufacture thereof
JPH0929753A (en) Heat insulating layer coated mold for molding synthetic resin
JPH05220793A (en) Injection molding metal die
JPH09262838A (en) Heat insulating mold and resin molding method using the same
JPH0760754A (en) Synthetic resin injection molding die
JPH06198684A (en) Injection molding of crystalline synthetic resin
JPH06278168A (en) Injection mold
JPH08187731A (en) Mold for molding synthetic resin and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Effective date: 20041228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919