JP3363500B2 - Mold and injection molding method using the same - Google Patents

Mold and injection molding method using the same

Info

Publication number
JP3363500B2
JP3363500B2 JP34624892A JP34624892A JP3363500B2 JP 3363500 B2 JP3363500 B2 JP 3363500B2 JP 34624892 A JP34624892 A JP 34624892A JP 34624892 A JP34624892 A JP 34624892A JP 3363500 B2 JP3363500 B2 JP 3363500B2
Authority
JP
Japan
Prior art keywords
mold
molded product
polyimide
injection
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34624892A
Other languages
Japanese (ja)
Other versions
JPH06190833A (en
Inventor
紘 片岡
政則 廻立
勇雄 梅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP34624892A priority Critical patent/JP3363500B2/en
Publication of JPH06190833A publication Critical patent/JPH06190833A/en
Application granted granted Critical
Publication of JP3363500B2 publication Critical patent/JP3363500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性合成樹脂の成
形用金型、及びそれを用いた射出成形法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for molding a thermoplastic synthetic resin, and an injection molding method using the same.

【0002】[0002]

【従来の技術】金型キャビディを成形する型壁面を熱伝
導率の小さい物質で被覆することにより金型表面再現性
を良くする方法はUSP3544518号明細書等で開
示されている。また、特開昭62−37107には通気
性のある断熱層を型表面につけ、シルバーストリークの
発生等を防ぐ方法が記載されている。
2. Description of the Related Art US Pat. No. 3,544,518 discloses a method of improving mold surface reproducibility by coating a mold wall surface for molding a mold cavid with a substance having a small thermal conductivity. Further, Japanese Patent Application Laid-Open No. 62-37107 describes a method in which a breathable heat insulating layer is provided on the mold surface to prevent the occurrence of silver streaks.

【0003】これ等の型表面断熱層被覆は成形品表面の
改良を目的に行われており、従って断熱層は成形品表面
側の型壁面に設けられてきた。破断伸度が小さい硬質熱
可塑性合成樹脂、例えばメタクリル樹脂(以後PMMA
と略称)等の射出成形品は、成形時に成形品に残溜応力
が残り易く、該射出成形品が塗装あるいは組立時に溶剤
等に接するとクラックが発生し易い。このことは破断伸
度が小さい、脆い合成樹脂では特に多く発生し、一般に
ストレスクラックと呼ばれ、これに対する抵抗力はスト
レスクラックレジスタンス(以後SCRと略称)とよば
れており、改良が求められている。
These mold surface heat insulating layer coatings are carried out for the purpose of improving the surface of the molded product, and thus the heat insulating layer has been provided on the mold wall surface on the surface side of the molded product. A hard thermoplastic synthetic resin having a small elongation at break, such as methacrylic resin (hereinafter PMMA
A residual stress is likely to remain in the molded product during injection molding, and cracks easily occur when the injection molded product comes into contact with a solvent or the like during coating or assembly. This occurs particularly often in brittle synthetic resins having a small elongation at break and is generally called stress crack, and the resistance to this is called stress crack resistance (hereinafter abbreviated as SCR), and improvement is required. There is.

【0004】SCRの改良法としてこれまで行われてい
る方法として、成形後に成形品をアニールして残溜応力
を低減させる方法、あるいは金型温度を高くして残溜応
力の少ない成形品とする方法等が行われている。しか
し、アニール法は後加工を追加することになりコスト上
昇となり、又金型温度を高くすることは成形サイクルタ
イムを長くし、生産性を低下させる。
As a conventional method for improving SCR, a molded product is annealed after molding to reduce residual stress, or a mold temperature is increased to obtain a molded product with less residual stress. The method etc. are performed. However, the annealing method increases the cost due to the addition of post-processing, and increasing the mold temperature prolongs the molding cycle time and lowers the productivity.

【0005】ポリフェニレンエーテル(以後PPEと略
称)は主にポリスチレン、ゴム強化ポリスチレン等とブ
レンドして、変性PPEとして広く使用されている。変
性PPEはポリマー中のベンゼン環等が会合し易く、こ
のため射出成形品の端部にクラックが発生し易い。この
クラック発生を低減させる経済的な成形法が求められて
いる。
Polyphenylene ether (hereinafter abbreviated as PPE) is widely blended with polystyrene, rubber-reinforced polystyrene and the like and widely used as a modified PPE. In the modified PPE, benzene rings and the like in the polymer are likely to associate with each other, and thus cracks are likely to occur at the ends of the injection molded product. There is a demand for an economical molding method that reduces the occurrence of cracks.

【0006】[0006]

【発明が解決しようとする課題】本発明は、これ等の成
形品のストレスクラック等を改良する金型であり、更に
それを用いた射出成形方法である。すなわち、従来アニ
ール法、あるいは金型温度を高くすること等により解決
してきたことを、より経済的に解決するものである。
DISCLOSURE OF THE INVENTION The present invention is a mold for improving stress cracks and the like of these molded products, and an injection molding method using the same. That is, it is a more economical solution to what has been solved by the conventional annealing method or by raising the mold temperature.

【0007】本発明は、金属から成る型キャビティを形
成する型壁面のリブ及び/またはボスを有する成形品裏
面に対応する型壁面のみ、または、リブ及び/またはボ
スを有する成形品裏面の端面および/または角部に対応
する型壁面のみに、熱伝導率が0.002cal/cm
・sec・℃以下の合成樹脂からなる断熱層が被覆され
た金型である。更に、型壁面の角部に断熱層が被覆され
た金型である。さらに本発明は、合成樹脂を上記金型に
射出する射出成形法である。射出成形品の裏面にリブや
ボス等があり、形状が複雑であり、射出成形品の残留応
力もより多く残り易い。又、成形品を組立て実用した場
合、リブ及び/またはボスを有する成形品裏面は内部の
機械部品の油や、溶剤に接触することも多いし、更に、
透明成形品では裏面に塗装し、深みを持った外観にする
ことも行なわれている。この様なリブ及び/またはボス
を有する成形品裏面や端面で問題になっている成形品の
残留応力を低減し、SCRを改良することが本発明によ
り達成される。特に、成形品の残留応力は成形品端部及
び角部に最も多く、溶剤と接触した時に、成形品端部及
び角部に集中的にクラックが発生する。本発明では型壁
面の端面部及び角部に断熱層を被覆し、成形品端部及び
角部の残留応力を低下させ、SCRを改良することを狙
っている。
The present invention is directed to a molded article back having ribs and / or bosses on the mold wall forming a mold cavity made of metal.
Face wall only, or ribs and / or
Corresponds to the edge and / or corner of the back surface of the molded product
The thermal conductivity is 0.002cal / cm only on the mold wall.
The mold is covered with a heat insulating layer made of a synthetic resin of sec. Further, it is a mold in which a heat insulating layer is coated on the corners of the mold wall surface. Furthermore, the present invention is an injection molding method in which a synthetic resin is injected into the mold. There are ribs, bosses, etc. on the back surface of the injection-molded product, the shape is complicated, and the residual stress of the injection-molded product is more likely to remain. Further, when the molded product is assembled and put into practical use, the back surface of the molded product having ribs and / or bosses often comes into contact with oil and solvent of internal mechanical parts, and further,
Transparent molded products are also painted on the back side to give a deeper appearance. According to the present invention, it is possible to reduce the residual stress of a molded product, which is a problem on the rear surface or the end surface of the molded product having such ribs and / or bosses, and improve the SCR. In particular, the residual stress of the molded product is the largest at the end and the corner of the molded product, and when contacting with the solvent, cracks are intensively generated at the end and the corner of the molded product. The present invention aims to improve the SCR by covering the end surface portion and the corner portion of the mold wall surface with a heat insulating layer to reduce the residual stress at the end portion and the corner portion of the molded product.

【0008】PMMAあるいはポリスチレン等は硬く、
透明性に優れ、光沢に優れた射出成形品が特徴となって
いる。従って、光沢を低下させる射出成形法は好ましい
方法ではない。型表面を断熱層で被覆することにより、
成形品の光沢を良くする方法が広く提案されているが、
ここで使用されている樹脂は、ゴム強化樹脂やガラス繊
維配合樹脂の様に外観が本来良くない樹脂である。従っ
て、これまで金型表面の断熱被覆は成形品表面側の型壁
面に行われてきた、PMMAやポリスチレン等は通常の
鏡面状クロムメッキ金型で十分に光沢に優れた成形品が
得られる。従って、外観上からはPMMA等では型表面
を断熱層で被覆する必要はない。特に、断熱層の厚みが
厚くなると、断熱層の弾性等も無視できなくなり、PM
MAの様な樹脂では従来のクロムメッキ金型の様な鏡面
状光沢の成形品が得られにくくなる。
PMMA or polystyrene is hard,
It features injection molded products with excellent transparency and gloss. Therefore, the injection molding method for reducing gloss is not a preferable method. By covering the mold surface with a heat insulating layer,
Although a method for improving the gloss of a molded product has been widely proposed,
The resin used here is a resin that does not originally have a good appearance, such as a rubber-reinforced resin or a glass fiber-containing resin. Therefore, the heat insulation coating on the surface of the mold has hitherto been performed on the mold wall surface on the surface side of the molded product. PMMA, polystyrene and the like can be obtained with a usual mirror-like chrome-plated mold to obtain a molded product having sufficiently excellent gloss. Therefore, in terms of appearance, it is not necessary to cover the mold surface with a heat insulating layer with PMMA or the like. In particular, when the thickness of the heat insulating layer becomes thicker, the elasticity of the heat insulating layer cannot be ignored, and PM
With a resin such as MA, it becomes difficult to obtain a molded product having a mirror-like luster like a conventional chrome-plated mold.

【0009】断熱層で被覆した金型は 1)複雑な形状の金型キャビティを有する金型に適用で
きる 2)冷却時間の増大が小さい 3)数万回の繰返し成形に耐える こと等が必要であり、このためには断熱層には、次のこ
とが要求されることを見出した。実質的に金型最表面に
あって薄層であること、また断熱物質に関しては、熱伝
導度が低いこと、耐熱性に優れること、引張強度、伸び
が大きくしかも冷熱サイクルに強いこと、表面硬度が大
きいこと、耐摩擦性に優れること、金型本体への塗布が
良好にできること、さらに断熱層の形成時あるいは本金
型を用いた合成樹脂の成形時に、耐蝕性に優れること等
である。
A mold covered with a heat insulating layer is 1) applicable to a mold having a mold cavity of complicated shape 2) a small increase in cooling time is required 3) it is required to withstand repeated molding of tens of thousands of times Therefore, it has been found that for this purpose, the heat insulating layer is required to have the following. Being a thin layer on the outermost surface of the mold, and having a low thermal conductivity and excellent heat resistance with respect to the heat insulating material, having a large tensile strength and elongation and being resistant to cold and heat cycles, surface hardness Is large, has excellent abrasion resistance, can be applied to the mold body well, and has excellent corrosion resistance when the heat insulating layer is formed or when the synthetic resin is molded using the mold.

【0010】我々は、これについて更に深い研究を行
い、主金型の表面を薄い合成樹脂で被覆しても、一定の
条件を満たす合成樹脂から成る断熱層を使用すれば、数
万回の射出成形に耐えること発見し本発明に至る。すな
わち、射出成形では、金型に射出された加熱可塑化樹脂
は冷却された金型壁面に接触して、接触面に直ちに固化
層を形成し、引き続き射出される樹脂は固化層と固化層
の間を進行し、流動先端(flow front)に達
すると、金型壁面の方向へ向かい、金型壁面と接して固
化層となる。すなわち、射出される樹脂は金型壁面を上
から押しつけるように流れ、金型壁面を引きずるように
流れない。
We have conducted a deeper study on this, and even if the surface of the main mold is coated with a thin synthetic resin, if a heat insulating layer made of a synthetic resin satisfying certain conditions is used, injection can be performed tens of thousands of times. The present invention was discovered by discovering that it withstands molding. That is, in injection molding, the heat-plasticized resin injected into the mold comes into contact with the cooled mold wall surface to immediately form a solidified layer on the contact surface, and the subsequently injected resin has a solidified layer and a solidified layer. When it reaches the flow front, it moves toward the mold wall surface and comes into contact with the mold wall surface to form a solidified layer. That is, the injected resin flows so as to press the mold wall surface from above, and does not flow so as to drag the mold wall surface.

【0011】従って金型表面を選択された合成樹脂から
成る薄い断熱層で被覆すれば、該断熱層は射出される樹
脂で直接摩耗することは無く、数万回の射出成形に耐え
うることを見い出した。本発明に用いる主金型材質は、
鉄又は鉄を50重量%以上含有する鋼材、アルミニウム
又はアルミニウムを50重量%以上含有する合金、亜鉛
合金、銅合金、例えばベリリウム銅合金等の一般に合成
樹脂の金型に使用されている金属を含有する。特に鋼材
が最も良好に使用できる。
Therefore, if the surface of the mold is covered with a thin heat insulating layer made of a selected synthetic resin, the heat insulating layer will not be directly worn by the injected resin and can withstand tens of thousands of injection moldings. I found it. The main mold material used in the present invention is
Iron or steel containing 50% by weight or more of iron, aluminum or an alloy containing 50% by weight or more of aluminum, zinc alloy, copper alloy, for example, beryllium copper alloy, etc. To do. In particular, steel materials can be used most preferably.

【0012】本発明では、主金型の型キャビティを形成
する型壁面をクロムメッキ又は/及びニッケルメッキで
被覆されていることが好ましい。本発明に良好に使用で
きる断熱材としては各種の耐熱樹脂が使用できる。直鎖
型高分子量ポリイミドが本発明では良好に使用できる。
ポリイミドを例に断熱材について説明する。
In the present invention, it is preferable that the mold wall forming the mold cavity of the main mold is coated with chromium plating and / or nickel plating. Various heat-resistant resins can be used as the heat insulating material that can be favorably used in the present invention. Linear high molecular weight polyimides can be successfully used in the present invention.
The heat insulating material will be described using polyimide as an example.

【0013】一般的にポリイミドは直鎖型と熱硬化型に
分けられそれらのポリイミド前駆体としては各種あり、
次の表1に分類される。
Generally, polyimide is classified into linear type and thermosetting type, and there are various types of polyimide precursors thereof.
It is classified in Table 1 below.

【0014】[0014]

【表1】 [Table 1]

【0015】射出成形では、加熱され可塑化された合成
樹脂が冷却された金型へ射出され、それが金型内で冷却
されて成形されるため、各成形毎に金型表面では100
℃にも及ぶ加熱と冷却が繰り返される。ポリイミドと鉄
等の金属では、熱膨張係数が1桁も異なっているもの
で、100℃にも及ぶ加熱と冷却が繰り返される毎に、
金属とポリイミドとの界面に激しい応力が発生すること
になる。この応力に数万回にわたって耐え得るポリイミ
ドとして、破断強度、破断伸度共に大きく、且つ金型と
の密着力が大きいことが必要であり、強靭な直鎖型の高
分子ポリイミドが最も好ましい。
In injection molding, a heated and plasticized synthetic resin is injected into a cooled mold and then cooled and molded in the mold, so that the mold surface is 100 after each molding.
The heating and cooling up to ℃ are repeated. Polyimide and iron and other metals have different coefficients of thermal expansion by an order of magnitude, and each time heating and cooling up to 100 ° C is repeated,
Severe stress is generated at the interface between the metal and the polyimide. As a polyimide capable of withstanding this stress for tens of thousands of times, it is necessary that both the breaking strength and the breaking elongation are large, and the adhesive force with the mold is also large, and a tough linear polymer polyimide is most preferable.

【0016】本発明に良好に使用できる直鎖型の高分子
量ポリイミドの例を表2に示した。なお、Tgはガラス
転移温度、又、nはくりかえし単位の数を表す。
Table 2 shows examples of linear type high molecular weight polyimides which can be favorably used in the present invention. In addition, Tg represents a glass transition temperature, and n represents the number of repeating units.

【0017】[0017]

【表2】 [Table 2]

【0018】直鎖型ポリイミドのTgは構成成分によっ
て異り、その例を表3および表4に示した。本発明者ら
の知見ではTgが高い方が好ましく、200℃以上、更
に好ましくは230℃以上である。
The Tg of the linear polyimide varies depending on the constituents, and examples are shown in Tables 3 and 4. According to the findings of the present inventors, a higher Tg is preferable, and it is 200 ° C. or higher, more preferably 230 ° C. or higher.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】射出成形は複雑な形状の成形品を一度の成
形で得られるところに経済的価値がある。この複雑な金
属表面をポリイミドで被覆し、且つ強固に密着させるに
は、ポリイミド前駆体溶液を塗布し、次いで加熱してポ
リイミドを形成させることが好ましい。直鎖型高分子量
ポリイミドは前駆体溶液を金型壁面に塗布し、次いで加
熱して形成される。さらに該ポリイミドは、Tgが20
0℃以上の高耐熱性樹脂であり、強度及び伸度に優れ、
その破断伸度は10%以上が好ましい。型壁面との密着
力は500g/mm巾以上であることが好ましい。
Injection molding has an economic value in that a molded product having a complicated shape can be obtained by molding once. In order to coat this complicated metal surface with polyimide and firmly adhere it, it is preferable to apply a polyimide precursor solution and then heat to form the polyimide. The linear high molecular weight polyimide is formed by applying the precursor solution to the wall surface of the mold and then heating. Further, the polyimide has a Tg of 20.
It is a high heat resistant resin of 0 ° C or higher, excellent in strength and elongation,
The elongation at break is preferably 10% or more. The adhesion to the mold wall surface is preferably 500 g / mm width or more.

【0022】直鎖型ポリイミド前駆体は、例えば芳香族
ジアミンと芳香族テトラカルボン酸二無水物を開環重付
加反応させることにより合成される。
The linear polyimide precursor is synthesized, for example, by subjecting an aromatic diamine and an aromatic tetracarboxylic dianhydride to a ring-opening polyaddition reaction.

【0023】[0023]

【化1】 [Chemical 1]

【0024】これ等のポリイミド前駆体は加熱して脱水
環化反応させることによりポリイミドを形成する。本発
明に最も好ましい直鎖型ポリイミド前駆体はポリアミド
酸でありその代表例の繰り返し単位と、それをイミド化
したポリイミドの繰り返し単位を次に示す。
[0024] These polyimide precursors are heated to cause a dehydration cyclization reaction to form a polyimide. The most preferred linear polyimide precursor for the present invention is polyamic acid, and the repeating unit of a typical example thereof and the repeating unit of a polyimide obtained by imidizing the same are shown below.

【0025】[0025]

【化2】 [Chemical 2]

【0026】[0026]

【化3】 [Chemical 3]

【0027】[0027]

【化4】 [Chemical 4]

【0028】[0028]

【化5】 [Chemical 5]

【0029】上記のポリイミド前駆体のポリマーは、カ
ルボキシル基等の極性基のため金型との密着性が良く、
金型表面上でポリイミドを反応形成させることにより金
型表面に密着したポリイミド薄層が得られる。上記のポ
リイミド前駆体のポリマーはN−メチルピロリドン等の
溶媒に溶かし、金型壁面に塗布される。ポリイミドと主
金型との密着力は、室温で500g/10mm以上が好
ましく、更に好ましくは1kg/10mm巾以上であ
る。これは密着したポリイミドを10mm巾に切り、接
着面と直角方向に20mm/分の速度で引張った時の剥
離力である。これは測定場所、測定回数によりかなりバ
ラツキが見られるが、最小値が大きいことが重要であ
り、安定して大きい剥離力であることが好ましい。ここ
に述べる密着力は金型の主要部の密着力の最小値であ
る。主金属をクロムメッキ、ニッケルメッキした場合は
安定した剥離力をもたらし、本発明に特に好ましい。断
熱層の熱伝導率は小さい程好ましいが、熱伝導率は0.
002cal/cm・sec・℃以下のものが使用でき
る。
The above-mentioned polyimide precursor polymer has good adhesion to the mold because it is a polar group such as a carboxyl group.
By reacting and forming a polyimide on the mold surface, a thin polyimide layer adhered to the mold surface can be obtained. The above polyimide precursor polymer is dissolved in a solvent such as N-methylpyrrolidone and applied on the wall surface of the mold. The adhesion between the polyimide and the main mold is preferably 500 g / 10 mm or more at room temperature, more preferably 1 kg / 10 mm width or more. This is the peeling force when the adhered polyimide was cut into a width of 10 mm and pulled at a speed of 20 mm / min in the direction perpendicular to the adhesive surface. Although this varies considerably depending on the measurement location and the number of times of measurement, it is important that the minimum value is large, and a stable and large peeling force is preferable. The adhesion force described here is the minimum value of the adhesion force of the main part of the mold. When the main metal is chrome-plated or nickel-plated, a stable peeling force is brought about, which is particularly preferable in the present invention. The smaller the thermal conductivity of the heat insulating layer is, the more preferable, but the thermal conductivity is 0.
Those of 002 cal / cm · sec · ° C or less can be used.

【0030】本発明に使用される直鎖型高分子量ポリイ
ミドの強度及び伸度は大きいことが好ましく、特に破断
伸度が大きいことが耐冷熱サイクルには好ましく、その
破断伸度は10%以上が好ましく、更に好ましくは20
%以上である。破断伸度の測定法はASTM D638
に準じて行う。本発明に使用できる断熱物質としてポリ
イミドで説明したが、これ等ポリイミドと類似の性質を
有する耐熱樹脂が基本的に使用でき、ポリイミドに限定
するものではない。各種芳香族系耐熱樹脂、熱硬化性樹
脂等も適度に選択すれば使用できる。
The linear high-molecular-weight polyimide used in the present invention preferably has a high strength and elongation, and particularly, a high elongation at break is preferable for a heat and cold resistance cycle, and the elongation at break is 10% or more. Preferably, more preferably 20
% Or more. The method for measuring the elongation at break is ASTM D638
Carry out according to. Although polyimide has been described as the heat insulating material that can be used in the present invention, a heat-resistant resin having properties similar to those of polyimide can be basically used, and the invention is not limited to polyimide. Various aromatic heat-resistant resins, thermosetting resins, etc. can be used if properly selected.

【0031】断熱層の厚みは0.01mmから2mmの
範囲が好ましい。好ましくは、0.05mmから0.5
mmで有り、更に好ましくは0.07mmから0.3m
mである。0.01mm未満では効果が低く、2mmを
越えると成形サイクルタイムが長くなる。本発明に述べ
リブ及び/またはボスを有する成形品裏面側に対応す
型壁面とは、使用時に表から見えない成形品の裏側を
成形する型壁面であり、射出金型では一般に移動側金型
が成形品の裏側を形成する。
The thickness of the heat insulating layer is preferably in the range of 0.01 mm to 2 mm. Preferably from 0.05 mm to 0.5
mm, and more preferably 0.07 mm to 0.3 m
m. If it is less than 0.01 mm, the effect is low, and if it exceeds 2 mm, the molding cycle time becomes long. It corresponds to the back side of the molded product having the ribs and / or bosses described in the present invention .
The mold wall surface is a mold wall surface that molds the back side of the molded product that is not visible from the front during use. In the injection mold, the moving side mold generally forms the back side of the molded product.

【0032】本発明ではリブ及び/またはボスを有する
成形品裏面側の型壁面に対応する型壁面のみに断熱層を
被覆し、成形品表側の型壁面は従来の鏡面状クロムメッ
キ等を用いれば、優れた外観を保持し、且つSCRを改
良することができる。本発明の型壁面の端面部とは一般
には厚み方向の壁面である。成形品の厚みは、薄すぎる
と樹脂が流動し難しくなり、厚すぎると成形サイクルタ
イムが長くなり好ましくなく、一般には1mmから5m
m厚である。型キャビティの厚み方向の壁面とは、成形
品の厚み方向の壁面、リブ部ではリブの先の部分の、リ
ブの厚み方向の壁面である。
In the present invention, only the mold wall surface corresponding to the mold wall surface on the rear surface side of the molded product having the ribs and / or bosses is coated with the heat insulating layer, and the mold wall surface on the front surface of the molded product is formed by the conventional mirror surface chrome plating. And the like, an excellent appearance can be maintained and the SCR can be improved. The end surface portion of the mold wall surface of the present invention is generally a wall surface in the thickness direction. If the thickness of the molded product is too thin, it will be difficult for the resin to flow, and if it is too thick, the molding cycle time will be long, which is not preferred, and generally 1 mm to 5 m.
It is m thick. The wall surface in the thickness direction of the mold cavity is the wall surface in the thickness direction of the molded product, and the rib portion is the wall surface in the thickness direction of the rib at the tip of the rib.

【0033】本発明の型壁面の角部とは、型キャビティ
が30度以上の角度で曲っている角部であり、好ましく
は45度以上、更に好ましくは60度から90度で曲っ
ている角部である。該角部には若干の丸みがつけられて
いるものも含まれる。型キャビティの樹脂の流れを良く
するため、あるいは成形品の強度を保持するために、型
キャビティの角部には丸みがつけられていることが多
い。本発明に於ては、丸みの曲率が小さい程残溜応力が
残り易いため、この様な鋭角部で本発明の効果は大き
く、曲率半径が好ましくは5mm以下、更に好ましくは
2mm以下の場合に本発明の効果は大きい。
The corner portion of the mold wall surface of the present invention is a corner portion where the mold cavity is bent at an angle of 30 degrees or more, preferably 45 degrees or more, more preferably 60 to 90 degrees. It is a department. Some of the corners are rounded. In order to improve the resin flow in the mold cavity or to maintain the strength of the molded product, the corners of the mold cavity are often rounded. In the present invention, since the residual stress is more likely to remain as the radius of curvature is smaller, the effect of the present invention is great at such an acute angle portion, and when the radius of curvature is preferably 5 mm or less, more preferably 2 mm or less. The effect of the present invention is great.

【0034】主金型温度は70℃以下に冷却されてお
り、好ましくは60℃以下で成形室温度以上である。一
般に金型温度は70℃以下で射出成形されており、70
℃を越える高温にすると成形サイクルタイムが長くな
り、成形効率が低下する。また、成形室温度より低くな
ると金型表面に結露が発生しやすくなる。本発明の金型
は一般に射出成形される合成樹脂に適応されるが、特に
良好に使用できる樹脂は硬質熱可塑性合成樹脂やポリフ
ェニレンエーテル(PPE)系樹脂等である。ここに述
べる硬質熱可塑性合成樹脂はASTMD638で測定し
た破断伸度が10%以下の、脆い樹脂であり、PMMA
が最も代表的樹脂である。ここに述べるPMMAとはメ
チルメタクリレートを主成分とする重合体であり、例え
ば、メチルメタクリレート重合体、エチルアクリレー
ト、ブチルアクリレート、2−エチルヘキシルアクリレ
ート等のアルキルアクリレートを15重量%以下共重合
させたメチルメタクリレートの共重合体、メチルメタク
リレートに無水マレイン酸とスチレンを共重合させた耐
熱PMMA等である。ポリスチレン、スチレンーアクリ
ロニトリル共重合体、スチレンーメチルメタクリレート
共重合体、スチレンーαメチルスチレン共重合体等のス
チレン系樹脂も同様に使用できる。
The temperature of the main mold is cooled to 70 ° C. or lower, preferably 60 ° C. or lower and the molding chamber temperature or higher. Generally, the mold temperature is 70 ° C or less and injection molding is performed.
When the temperature is higher than 0 ° C, the molding cycle time becomes long and the molding efficiency is lowered. Further, if the temperature is lower than the molding chamber temperature, dew condensation is likely to occur on the mold surface. The mold of the present invention is generally applicable to injection-molded synthetic resins, but the resins that can be particularly preferably used are hard thermoplastic synthetic resins and polyphenylene ether (PPE) resins. The hard thermoplastic synthetic resin described here is a brittle resin having a breaking elongation of 10% or less measured by ASTM D638, and PMMA
Is the most representative resin. The PMMA described here is a polymer containing methyl methacrylate as a main component. For example, methyl methacrylate obtained by copolymerizing 15% by weight or less of an alkyl acrylate such as a methyl methacrylate polymer, ethyl acrylate, butyl acrylate, or 2-ethylhexyl acrylate. And a heat-resistant PMMA obtained by copolymerizing methyl methacrylate with maleic anhydride and styrene. Styrene resins such as polystyrene, styrene-acrylonitrile copolymer, styrene-methylmethacrylate copolymer, styrene-α-methylstyrene copolymer and the like can be used as well.

【0035】PMMAやスチレン系樹脂は表面硬度が大
きく、透明性にも優れ、外観が良好な成形品が得られ、
それを目的に各種成形品がつくられている。金型表面は
十分に研摩され、更にその上に硬質クロムメッキを行っ
て、鏡面状表面の金型に、PMMA等を射出して鏡面状
射出成形品を得ている。本発明に良好に使用できるPP
E系樹脂としては、主にポリスチレン、ゴム強化ポリス
チレン等とブレンドして通常変成PPEとして広く使用
されているものや、PPEポリマー自体をカルボン酸無
水物やスチレンモノマー等と反応させその側鎖や末端を
化学変成したPPE等である。PPEポリマーをその構
造式で示せば、次の一般式で示される。
PMMA and styrene resins have a large surface hardness, excellent transparency, and a molded product having a good appearance can be obtained.
Various molded products are made for that purpose. The surface of the die is sufficiently polished, and then hard chrome plating is performed on the die surface, and PMMA or the like is injected into the die having a mirror-like surface to obtain a mirror-like injection molded product. PP which can be favorably used in the present invention
As the E-based resin, those widely used as modified PPE, which are generally blended with polystyrene, rubber-reinforced polystyrene, etc., or the PPE polymer itself is reacted with carboxylic acid anhydride, styrene monomer, etc. Is a chemically modified PPE or the like. The structural formula of a PPE polymer is shown by the following general formula.

【0036】[0036]

【化6】 [Chemical 6]

【0037】(ここに、Arは二価の芳香族残基を示
し、nは5以上の整数を表わす。)で表わされるポリフ
ェニレンエーテル類であり少なくとも片末端に−OH基
を有するポリフェニレンエーテル類である。それらの具
体例としては、ポリ(2,6−ジメチルフェニレン−
1,4−エーテル)、ポリ(2−メチル−6−エチルフ
ェニレン−1,4−エーテル)、ポリ(2,6−ジエチ
ルフェニレン−1,4−エーテル)、ポリ(2,6−ジ
クロルフェニレンエーテル)、ポリ(2−クロル−6−
メチルフェニレン−1,4−エテル)、ポリ(2,6−
フェニルフェニレン−1,4−エーテル)、ポリ(2−
メチル−6−n−プロピルフェニレン−1,4−エーテ
ル)、ポリ(フェニレン−1,3−エーテル)等が挙げ
られる。ポリ(2,6−ジメチルフェニレン−1,4−
エーテル)が最も広く使用されており、最も好ましい。
(Wherein Ar represents a divalent aromatic residue, and n represents an integer of 5 or more), and polyphenylene ethers having at least one end with an --OH group. is there. Specific examples thereof include poly (2,6-dimethylphenylene-
1,4-ether), poly (2-methyl-6-ethylphenylene-1,4-ether), poly (2,6-diethylphenylene-1,4-ether), poly (2,6-dichlorophenylene) Ether), poly (2-chloro-6-
Methylphenylene-1,4-ether), poly (2,6-)
Phenylphenylene-1,4-ether), poly (2-
Methyl-6-n-propylphenylene-1,4-ether), poly (phenylene-1,3-ether) and the like. Poly (2,6-dimethylphenylene-1,4-
Ether) is the most widely used and is most preferred.

【0038】本発明を図を用いて説明する。図1と図2
は本発明の金型の断面の、本発明に係る部分のみを示
す。図3は射出成形品を示す。図4は合成樹脂が型キャ
ビティを流動する状況を示す。図5は異なった射出速度
による成形品断面の配向分布を示す。図6は射出される
合成樹脂温度、金型温度、射出速度、射出時間と固化層
の厚みの関係を示す。図7は一般の金型壁表面付近の射
出成形時の温度分布変化を示す。図8は金型壁表面を断
熱層で被覆した金型壁表面付近の温度分布変化を示す。
図9は成形品のSCRを測定する片持ちばり法の装置を
示す。図10は射出成形品を溶剤に浸漬した時のクラッ
ク発生の状態を示す。
The present invention will be described with reference to the drawings. 1 and 2
Shows only the part according to the present invention in the cross section of the mold of the present invention. FIG. 3 shows an injection molded product. FIG. 4 shows a situation in which the synthetic resin flows through the mold cavity. FIG. 5 shows the orientation distribution of the cross section of the molded product at different injection speeds. FIG. 6 shows the relationship between the temperature of the injected synthetic resin, the mold temperature, the injection speed, the injection time and the thickness of the solidified layer. FIG. 7 shows a temperature distribution change at the time of injection molding near the surface of a general mold wall. FIG. 8 shows a temperature distribution change near the surface of the mold wall in which the surface of the mold wall is covered with a heat insulating layer.
FIG. 9 shows an apparatus of the cantilever method for measuring the SCR of a molded product. FIG. 10 shows a state where cracks are generated when the injection molded product is dipped in a solvent.

【0039】図1に於て、固定側金型2と移動側金型2
から形成される型キャビティ3に合成樹脂を射出して成
形される。固定側金型1で形成される型壁面4が成形品
表面側を形成し、移動側金型2で形成される型壁面5が
リブ及び/またはボスを有する成形品裏面側を形成す
る。一般に、成形品裏面側には成形品を補強するリブ6
や、成形品を組立てるボス等があり、複雑な形状をして
いる。本発明では、リブ及び/またはボスを有する成形
品裏面側の型壁面に対応する型壁面のみに、断熱層7を
被覆する。断熱層7はリブ及び/またはボスを有する
形品裏面側の型壁面全面を被覆することもできるが、リ
ブやボスの部分等の複雑な形状等の一部にのみ断熱層を
被覆した場合、あるいは断熱層が不均一である場合等
の、裏面の全面を被覆していない場合も本発明に含まれ
る。これまで型壁面に断熱層を被覆する場合には、成形
品表面側の型壁面を被覆することが常識であったが、図
1に示す様に本発明はリブ及び/またはボスを有する
面側に対応する型壁面のみ、を被覆することを特徴とし
ている。
In FIG. 1, fixed side mold 2 and moving side mold 2
It is molded by injecting a synthetic resin into the mold cavity 3 formed from. The mold wall surface 4 formed by the stationary mold 1 forms the surface side of the molded product, and the mold wall surface 5 formed by the moving mold 2 is
The back side of the molded product having ribs and / or bosses is formed. Generally, ribs 6 that reinforce the molded product are provided on the back side of the molded product.
There are also bosses for assembling molded products, and they have a complicated shape. In the present invention, the heat insulating layer 7 is coated only on the mold wall surface corresponding to the mold wall surface on the rear surface side of the molded product having the ribs and / or bosses . The heat insulating layer 7 can cover the entire mold wall surface on the back surface side of the molded product having ribs and / or bosses , but the heat insulating layer only on a part of a complicated shape such as ribs or bosses. The present invention also includes the case where the entire back surface is not covered, such as the case where the back surface is coated or the heat insulating layer is non-uniform. Up to now, it has been common sense to coat the mold wall on the surface side of the molded product when the mold wall is coated with a heat insulating layer. However, as shown in FIG. 1, the present invention provides a back surface having ribs and / or bosses. It is characterized in that only the mold wall surface corresponding to the surface side is covered.

【0040】図2は、固定側金型1と移動側金型2から
なる型キャビティ3を形成する型壁面の端面部8及び/
または角部9に、熱伝導率が0.002cal/cm・
sec・℃以下の断熱層が被覆された本発明の金型を示
す。図3に於て、本発明は、成形品10の端面13、
び/または成形品に穴11がある場合にはその端面12
に相当する型壁面に断熱層が被覆される。
FIG. 2 shows an end face portion 8 of a mold wall forming a mold cavity 3 composed of a stationary mold 1 and a moving mold 2 and / or
Or the corners 9, the thermal conductivity of 0.002cal / cm ·
1 shows a mold of the present invention coated with a heat insulating layer of sec · ° C. or less. In FIG. 3, the present invention relates to the end surface 13 of the molded product 10 and
And / or the end face 12 of the molded product, if it has a hole 11.
The heat insulating layer is coated on the mold wall surface corresponding to.

【0041】図4に於て、冷却された金型14に射出さ
れた合成樹脂は金型壁面に接した表面が直ちに冷却さ
れ、流動できない固化層15を形成する。そして引き続
き射出される樹脂は固化層15の内側を流動し型キャビ
ティの中心部程流動速度が速く流動し、流動先端16
(flow front)に達して型壁面方向へ向う、
いわゆるfountain flowをする。図中に流
動速度17、流動速度分布18、剪断速度分布19を示
す。剪断速度は流動する樹脂と固化層の境界部が最も大
きく、この剪断による発熱と金型への伝熱による冷却が
同時に起る。射出速度が大きい程、剪断発熱は大きく、
剪断発熱と伝熱冷却がバランスし合う領域では型内流動
が良好に進む。又、高速射出される程、固化層の厚みは
薄くなる。
In FIG. 4, the surface of the synthetic resin injected into the cooled mold 14 in contact with the wall surface of the mold is immediately cooled to form a solidified layer 15 which cannot flow. Then, the subsequently injected resin flows inside the solidified layer 15 and has a higher flow velocity toward the center of the mold cavity, and the flow front 16
It reaches (flow front) and goes toward the mold wall surface,
A so-called fountain flow is performed. Flow velocity 17, flow velocity distribution 18, and shear velocity distribution 19 are shown in the figure. The shear rate is greatest at the boundary between the flowing resin and the solidified layer, and heat generation by this shear and cooling by heat transfer to the mold occur at the same time. The higher the injection speed, the greater the shear heat generation,
In the region where the shear heat generation and the heat transfer cooling are balanced, the flow in the mold progresses well. Also, the higher the speed of injection, the thinner the solidified layer.

【0042】図5は射出成形品断面図の配合度合と射出
速度の関係を示し、高速射出される程、全体的な配向は
少ない。図中斜線で示す部分が成形中の固化層に相当
し、高速射出される程全体的な配向は少い。図中斜線で
しめす部分が成形中の固化層に相当し、高速射出される
程、固化層の厚みは薄くなる。図6は固化層の厚みの成
形中の変化を、樹脂温度、金型温度、射出速度で示した
図である。図6に示す様に固化層の厚みは金型温度によ
り大きく影響される。固化層を薄くするには金型温度を
高くすることが最も効果が大きい。しかし金型温度を高
くすることは成形サイクルタイムを長くし、成形効率を
低下させる。本発明では成形サイクルタイムの増大を極
力小くし、型表面温度を高くする手段として、型表面を
断熱層で被覆することを用いる。
FIG. 5 shows the relationship between the compounding degree and the injection speed in the cross-sectional view of the injection-molded product. The higher the speed of injection, the less the overall orientation. The shaded area in the figure corresponds to the solidified layer during molding, and the higher the speed of injection, the less the overall orientation. The shaded area in the figure corresponds to the solidified layer during molding, and the higher the speed of injection, the thinner the solidified layer. FIG. 6 is a diagram showing changes in the thickness of the solidified layer during molding, in terms of resin temperature, mold temperature, and injection speed. As shown in FIG. 6, the thickness of the solidified layer is greatly affected by the mold temperature. Increasing the mold temperature is the most effective for thinning the solidified layer. However, increasing the mold temperature prolongs the molding cycle time and lowers the molding efficiency. In the present invention, as a means for minimizing the increase in molding cycle time and increasing the mold surface temperature, coating the mold surface with a heat insulating layer is used.

【0043】図7と図8は主金型温度を50℃、樹脂
(ポリスチレン)の温度を240℃で射出成形した時の
金型壁表面付近の温度分布の変化の計算値を示してい
る。図中の各曲線の数値は加熱された樹脂が冷却された
金型壁に接触してからの時間(秒)を示している。加熱
樹脂は型壁面に接触して、急速に冷却され、金型表面は
加熱樹脂から熱を受けて昇温する。図8に示すように、
金型表面を断熱層(ポリイミド)で被覆すると、樹脂と
接触する断熱層表面の温度上昇は大きくなり、温度低下
速度も小さくなる。断熱層で被覆されると樹脂が金型壁
に接触してからの時間が小さい程、型表面温度は著るし
く高くなり、断熱層被覆により金型温度を大巾に上昇さ
せたのと同等の効果が得られ、且つ、成形サイクルタイ
ムの増大が少い。樹脂が金型壁に接触してからの時間が
小さいことは射出速度が速い、高速射出に相当し、図中
の秒数は樹脂が型表面に接触してから高射出圧力がかか
るまでの時間に相当する。図7と図8の値は、射出成形
中の合成樹脂の剪断発熱については計算していない。高
速射出成形の効果は更に大きいものと考えられる。型表
面温度変化は、合成樹脂、主金属、断熱層のそれぞれの
温度、比熱、熱伝導率、密度、結晶化潜熱等から計算で
きる。図に示す値は、ADINA及びADINAT(マ
サチューセッツ工科大学で開発されたソフトウェア)を
用い、非線形有限要素法による非定常熱伝導解析により
計算した値である。
FIGS. 7 and 8 show calculated values of changes in the temperature distribution near the mold wall surface when injection molding was performed at a main mold temperature of 50 ° C. and a resin (polystyrene) temperature of 240 ° C. The numerical value of each curve in the figure shows the time (seconds) after the heated resin comes into contact with the cooled mold wall. The heating resin comes into contact with the mold wall surface and is rapidly cooled, and the surface of the mold receives heat from the heating resin and rises in temperature. As shown in FIG.
When the surface of the mold is covered with a heat insulating layer (polyimide), the temperature of the surface of the heat insulating layer that comes into contact with the resin increases, and the rate of temperature decrease also decreases. When the resin is in contact with the mold wall when it is covered with a heat-insulating layer, the smaller the time is, the mold surface temperature becomes significantly higher, which is equivalent to a large increase in the mold temperature due to the heat-insulating layer coating. And the increase in molding cycle time is small. The fact that the time after the resin comes into contact with the mold wall is small corresponds to high injection speed and high-speed injection, and the number of seconds in the figure is the time from when the resin contacts the mold surface until high injection pressure is applied. Equivalent to. The values in FIGS. 7 and 8 are not calculated for the shear heat generation of the synthetic resin during injection molding. The effect of high-speed injection molding is considered to be even greater. The mold surface temperature change can be calculated from the temperatures of the synthetic resin, the main metal, and the heat insulating layer, specific heat, thermal conductivity, density, latent heat of crystallization, and the like. The values shown in the figure are values calculated by unsteady heat conduction analysis by a nonlinear finite element method using ADINA and ADINAT (software developed at the Massachusetts Institute of Technology).

【0044】図4〜図6で示す様に金型温度が高い程、
又、射出速度が速い程、固化層は薄くなる。更に、型表
面を断熱層で被覆した場合、射出速度が大きくなると型
表面温度が急速に高くなることは図8に示される通りで
あり、その結果、固化層は著しく薄くなる。射出された
樹脂は冷却された金型に接して急冷され、固化層が直ち
に形成される。固化層にはさまれた内核層は充填された
後徐々に冷却される。従って、成形品の表層は冷却され
た固化層が形成し、内核は収縮率が大きいため、成形品
には表層に圧縮力が、内核に引張力が残る。表層固化層
が薄肉になる程、表層の圧縮力は強くなり、成形品の耐
衝撃強度、SCRは強くなる。このことは強化ガラスの
形成(テンパリング)に似ている。
As shown in FIGS. 4 to 6, the higher the mold temperature is,
Also, the faster the injection speed, the thinner the solidified layer. Further, as shown in FIG. 8, when the mold surface is covered with a heat insulating layer, the mold surface temperature rapidly increases as the injection speed increases, and as a result, the solidified layer becomes extremely thin. The injected resin is brought into contact with a cooled mold to be rapidly cooled, and a solidified layer is immediately formed. The inner core layer sandwiched between the solidified layers is filled and then gradually cooled. Therefore, a cooled solidified layer is formed on the surface layer of the molded product, and the inner core has a large shrinkage ratio, so that the molded product retains compressive force in the surface layer and tensile force in the inner core. The thinner the solidified surface layer, the stronger the compression force of the surface layer, and the stronger the impact resistance and SCR of the molded product. This is similar to tempered glass formation (tempering).

【0045】ガラスには熱的または化学的にテンパリン
グが実施できる。熱的テンパリングは、暖いガラスに冷
たい空気を吹きつけることにより実施できる。これによ
ってガラスの表面は速やかに固化する。そしてガラスの
内部もまた冷えて収縮したときに、ガラスの表面に圧縮
力がかかるようになり、そして微細なきずは決して広が
らず、かつこのきずがガラスの破損をもたらすこともな
い。一方、この圧力に対応する引張応力がガラスの内部
に生ずる。上記のテンパリングにより、屈曲および衝撃
に対するガラスの抵抗力がかなり増大する。ガラスと同
様に、合成樹脂も圧縮強度が引張強度より強いため、表
層に圧縮力がかけられた成形品が耐衝撃強度及びSCR
に強く、本発明により良好な成形品が得られる。
The glass can be tempered either thermally or chemically. Thermal tempering can be accomplished by blowing cold air onto warm glass. This causes the surface of the glass to quickly solidify. And, when the inside of the glass also cools and contracts, a compressive force is applied to the surface of the glass, and fine flaws never spread, and the flaws do not cause breakage of the glass. On the other hand, tensile stress corresponding to this pressure occurs inside the glass. The tempering described above significantly increases the resistance of the glass to bending and impact. Similar to glass, synthetic resin has a higher compressive strength than tensile strength, so molded products with compressive force applied to the surface layer have impact resistance and SCR.
And a good molded product can be obtained by the present invention.

【0046】圧縮力が働いている表層断面より引張力が
働いている内核断面が大きい時、表層の圧縮力はより強
くなり、SCRも強くなる。本発明では型壁面を断熱層
で被覆することにより、成形時の固化層を薄くし、それ
により成形品に発生する表層の圧縮力を強くし、硬質合
成樹脂等の欠点であるSCRを著しく改良した成形品を
提供することができる。
When the inner core cross section in which the tensile force acts is larger than the surface layer cross section in which the compressive force acts, the compressive force in the surface layer becomes stronger and the SCR also becomes stronger. In the present invention, by covering the mold wall surface with a heat insulating layer, the solidified layer at the time of molding is thinned, thereby increasing the compressive force of the surface layer generated in the molded product, and remarkably improving the SCR which is a drawback of hard synthetic resin etc. It is possible to provide the molded product.

【0047】[0047]

【実施例】次の物質及び方法を用いて実験を行った。 (1)射出成形した合成樹脂 PMMA:旭化成工業(株)製「デルペット80N」 変性PPE:旭化成工業(株)製「ザイロン300H」 (2)主金型材料 1)鋼材:S55C、熱伝導率は0.12cal/cm
・sec・℃ (3)型表面被覆材 1)クロムメッキ:硬質クロムメッキ、0.02mm厚 2)ポリイミド ポリイミド(A):直鎖型ポリイミド前駆体、ポリイミ
ドワニス「トレニース#3000」(東レ(株)製、商
品名)。
EXAMPLES Experiments were conducted using the following materials and methods. (1) Injection-molded synthetic resin PMMA: "Delpet 80N" manufactured by Asahi Kasei Kogyo Co., Ltd. Modified PPE: "Zylon 300H" manufactured by Asahi Kasei Kogyo Co., Ltd. (2) Main mold material 1) Steel material: S55C, thermal conductivity Is 0.12 cal / cm
-Sec- ° C (3) Type surface coating material 1) Chrome plating: hard chrome plating, 0.02 mm thickness 2) Polyimide Polyimide (A): Linear polyimide precursor, polyimide varnish "Trenice # 3000" (Toray Industries, Inc. ), Product name).

【0048】硬化後のポリイミドのTgは300℃ 熱伝導率0.0005cal/cm・sec・℃ 破断伸度60% ポリイミド(B):直鎖型ポリイミド前駆体、ポリイミ
ドワニス「Larc−TPI」(三井東圧(株)製、商
品名」。
The Tg of the polyimide after curing is 300 ° C. thermal conductivity 0.0005 cal / cm · sec · ° C. 60% elongation at break Polyimide (B): linear polyimide precursor, polyimide varnish “Larc-TPI” (Mitsui Toatsu Co., Ltd., trade name ".

【0049】硬化後のポリイミドのTgは256℃、 熱伝導率0.0005cal/cm・sec・℃ 破断伸度25% ポリイミド(C):直鎖型ポリイミド前駆体、ポリアミ
ドイミド「A1−10」(アモコジャパンリミテッド
(株)、製品)溶液。
The polyimide after curing has a Tg of 256 ° C., a thermal conductivity of 0.0005 cal / cm · sec · ° C., and an elongation at break of 25% Polyimide (C): a straight-chain polyimide precursor, polyamide-imide “A1-10” ( Amoco Japan Ltd. product) solution.

【0050】 硬化後のポリイミドのTgは230℃ 熱伝導率0.0005cal/cm・sec・℃ 破断伸度40% (4)主金型表面ポリイミド被覆法 ポリイミド前駆体溶液を用い、硬質クロムメッキを行っ
た主金型表面にポリイミド被覆層を次の方法により形成
した。金型表面を、十分に脱脂し、次いでポリイミド
(A)を塗布し、160℃に加熱し、この塗布、加熱を
繰返して厚肉にし、最後に290℃に加熱してポリイミ
ド層を形成する。次いで、バフにダイヤモンドペースト
をつけて研磨を行い、所定厚みの鏡面状直鎖型ポリイミ
ド被覆層を形成する。被覆層を10mm巾に切り、20
mm/分の速度で被覆面と直角方向に引張り、密着力を
測定する。密着力は2.0〜2.2kg/10mm巾で
ある。他のポリイミドもこれと同様にして形成した。
The Tg of the cured polyimide is 230 ° C. thermal conductivity 0.0005 cal / cm · sec · ° C. Breaking elongation 40% (4) Main mold surface polyimide coating method Hard polyimide plating using a polyimide precursor solution. A polyimide coating layer was formed on the surface of the main mold by the following method. The surface of the mold is thoroughly degreased, then polyimide (A) is applied, heated to 160 ° C., this application and heating are repeated to thicken, and finally heated to 290 ° C. to form a polyimide layer. Next, a diamond paste is applied to the buff and polished to form a mirror-like linear polyimide coating layer having a predetermined thickness. Cut the coating layer to a width of 10 mm, and
The adhesion is measured by pulling at a speed of mm / min in the direction perpendicular to the coated surface. The adhesion is 2.0 to 2.2 kg / 10 mm width. Other polyimides were also formed in the same manner.

【0051】[0051]

【実施例】次の金型条件でPMMAを射出成形した。該
射出成形品のSCRを図9に示す装置を用いた片持ばり
法で測定した。金型:380mm×70mm×30mm
の型キャビティを有する鋼材から成る主金型の金型全壁
面にクロムメッキを行い、更に金型移動側壁面にポリイ
ミド(A)を0.11mm厚に被覆した。 成形条件:射出シリンダー温度 260℃ 金型温度 60℃ 射出時間 4秒 保圧時間 10秒 片持ばり法:図9に於て、支持台20に成形品21の一
端を固定し、他端に荷重22を加え、成形品21の中央
部に 紙にしみこませた溶剤23を作用させる。荷重を
変えることにより、成形品の表面応力を変化させること
ができる。表面応力と溶剤を変化させて、成形品が破断
する時間を測定する。
[Example] PMMA was injection-molded under the following mold conditions. The SCR of the injection-molded product was measured by the cantilever method using the device shown in FIG. Mold: 380mm × 70mm × 30mm
The entire wall surface of the mold of the main mold made of steel having the mold cavity was plated with chrome, and the side wall surface of the mold was coated with polyimide (A) to a thickness of 0.11 mm. Molding conditions: Injection cylinder temperature 260 ° C Mold temperature 60 ° C Injection time 4 seconds Pressure holding time 10 seconds Cantilever method: In FIG. 9, one end of the molded product 21 is fixed to the support base 20, and the other end is loaded. 22 is added, and the solvent 23 impregnated in the paper is made to act on the center of the molded product 21. The surface stress of the molded product can be changed by changing the load. By changing the surface stress and the solvent, the time at which the molded product breaks is measured.

【0052】成形品表面側(金型の最表面がクロムメッ
キされた側)と成形品裏面側(金型の最表面がポリイミ
ド被覆された側)でSCRを測定した。結果を表5に示
した。
SCRs were measured on the front surface side of the molded product (the outermost surface of the mold is plated with chrome) and the rear surface side of the molded product (the outermost surface of the mold is covered with polyimide). The results are shown in Table 5.

【0053】[0053]

【表5】 [Table 5]

【0054】表5に示す様に金型に破断層が被覆された
側の成形品裏面側は、エタノール、キシレンのいずれで
も破断時間は増大し、SCRは大巾に改良された。
As shown in Table 5, on the back surface side of the molded article on which the breaking layer was coated on the mold, the breaking time increased with either ethanol or xylene, and the SCR was greatly improved.

【0055】[0055]

【実施側2】ポリイミド(B)、あるいはポリイミド
(C)を用いて、実施側1と同様に実験を行い、同様の
結果を得た。
[Practice side 2] Using polyimide (B) or polyimide (C), an experiment was conducted in the same manner as in implementation side 1, and similar results were obtained.

【0056】[0056]

【実施例3】38mm×70mm×3mmの平板状型キ
ャビティを有する鋼材金型の型キャビティ壁の全表面に
クロムメッキした金型と、全表面クロムメッキした金型
の端面のみにポリイミド(A)を0.1mm厚に被覆し
た金型を用い、実施例1と同一条件でPMMAを射出成
形した。得られた成形品を次の組成の溶剤に、250℃
で5秒間浸漬後、風乾し、発生したクラックの状態を図
10に示した。 溶剤:オリジンシンナー#210(オリジン電気(株)
製) 図10の(10−1)は金型全壁面にクロムメッキした
金型で成形した成形品であり、成形品端面24に多数の
クラック25が発生している。(10−2)は(10−
1)の金型端面に0.1mm厚のポリイミドを被覆して
成形した成形品であり、成形品端面24のクラック25
は大巾に少くなった。
Example 3 A mold of a steel material mold having a flat mold cavity of 38 mm × 70 mm × 3 mm, the mold cavity wall of which is entirely chrome-plated, and the entire surface of which is chrome-plated. PMMA was injection-molded under the same conditions as in Example 1 by using a metal mold having a thickness of 0.1 mm. The obtained molded product was added to a solvent having the following composition at 250 ° C.
FIG. 10 shows the state of the cracks generated by soaking for 5 seconds in air, followed by air-drying. Solvent: Origin thinner # 210 (Origin Electric Co., Ltd.)
Made) (10-1) of FIG. 10 is a molded product formed by a mold in which the entire wall surface of the mold is plated with chrome, and a large number of cracks 25 are generated on the end face 24 of the molded product. (10-2) is (10-
It is a molded product obtained by coating the end face of the mold with polyimide of 0.1 mm thickness in 1) and molding, and cracks 25 on the end face 24 of the molded product.
Is much less.

【0057】[0057]

【実施例4】実施例3に示した金型を用い、60℃にし
た該金型に変性PPEを射出し、射出成形した。成形条
件は、射出シリンダー温度260℃、射出時間5秒、保
圧時間10秒である、得られた成形品をn−ヘキサン
に、25℃で1分間浸漬後、風乾し、クラック発生を観
察した。金型端面にポリイミドを被覆した金型を用いて
成形した成形品には、成形品端面のクラックが明らかに
少なかった。
Example 4 Using the mold shown in Example 3, modified PPE was injected into the mold at 60 ° C. and injection-molded. The molding conditions were an injection cylinder temperature of 260 ° C., an injection time of 5 seconds, and a pressure holding time of 10 seconds. The obtained molded product was immersed in n-hexane at 25 ° C. for 1 minute, air-dried, and cracks were observed. . The molded product formed by using the mold whose end face was coated with polyimide had obviously few cracks on the end face of the molded product.

【0058】[0058]

【発明の効果】本発明により、射出成形品の残溜応力は
低下し、塗装時等のSCRを向上できる。
According to the present invention, the residual stress of the injection molded product is reduced and the SCR at the time of coating can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金型の断面図FIG. 1 is a sectional view of a mold of the present invention.

【図2】本発明の金型の断面図FIG. 2 is a sectional view of a mold of the present invention.

【図3】本発明でえられる成形品図FIG. 3 is a diagram of a molded product obtained by the present invention.

【図4】合成樹脂が型キャビティを流動する状況図FIG. 4 is a diagram showing a situation in which synthetic resin flows in a mold cavity.

【図5】異なった射出速度による成形品断面の配向分布
[Figure 5] Orientation distribution chart of the cross section of the molded product with different injection speeds

【図6】射出させる合成樹脂温度、金型温度、射出速
度、射出時間と固化層の厚みの関係を示す図
FIG. 6 is a diagram showing the relationship between the temperature of the synthetic resin to be injected, the mold temperature, the injection speed, the injection time and the thickness of the solidified layer.

【図7】一般の金型壁表面付近の射出成形時の温度分布
変化を示す図
FIG. 7 is a diagram showing a temperature distribution change at the time of injection molding in the vicinity of a general mold wall surface.

【図8】金型壁表面を断熱層で被覆した金型壁表面付近
の射出成形時の温度分布変化を示す図
FIG. 8 is a diagram showing a temperature distribution change at the time of injection molding in the vicinity of the mold wall surface in which the mold wall surface is covered with a heat insulating layer.

【図9】成形品のSCRを測定する片持ばり法の装置の
FIG. 9 is a diagram of a device of a cantilever method for measuring SCR of a molded product.

【図10】射出成形品を溶剤に浸漬した時のクラック発
生の状態図
FIG. 10 is a state diagram of cracks generated when an injection molded product is immersed in a solvent.

【符号の説明】[Explanation of symbols]

1 固定側金型 2 移動側金型 3 型キャビティ 4 型壁面 5 型壁面 6 リブ 7 断熱層 8 端面部 9 角部 10 成形品 11 穴 12 端面 13 端面 14 金型 15 固化層 16 流動先端 17 流動速度 18 流動速度分布 19 剪断速度分布 1 Fixed mold 2 Moving mold 3 type cavity Type 4 wall 5 type wall 6 ribs 7 heat insulation layer 8 end face 9 corners 10 molded products 11 holes 12 end faces 13 End face 14 mold 15 Solidified layer 16 Flow tip 17 Flow rate 18 Flow velocity distribution 19 Shear rate distribution

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−55839(JP,A) 特開 昭54−142266(JP,A) 特開 昭62−37107(JP,A) 特開 昭62−208919(JP,A) 特開 昭61−222708(JP,A) 特開 平5−131456(JP,A) 特開 平2−235714(JP,A) 特開 昭61−79611(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 33/38 B29C 45/37 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-55-55839 (JP, A) JP-A-54-142266 (JP, A) JP-A-62-37107 (JP, A) JP-A-62- 208919 (JP, A) JP 61-222708 (JP, A) JP 5-131456 (JP, A) JP 2-235714 (JP, A) JP 61-79611 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B29C 33/38 B29C 45/37

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属から成る型キャビティを形成する型
壁面のうち、リブ及び/またはボスを有する成形品裏面
に対応する型壁面のみに、熱伝導率が0.002cal
/cm・sec・℃以下の合成樹脂からなる断熱層が被
覆された金型。
1. A back surface of a molded product having ribs and / or bosses on a mold wall surface forming a mold cavity made of metal.
The thermal conductivity is 0.002cal only on the mold wall corresponding to
A mold covered with a heat insulating layer made of synthetic resin having a temperature of not more than / cm · sec · ° C.
【請求項2】 金属から成る型キャビティを形成する型
壁面のうち、リブ及び/またはボスを有する成形品裏面
の端面および/または角部に対応する型壁面のみに、熱
伝導率が0.002cal/cm・sec・℃以下の合
成樹脂からなる断熱層が被覆された金型。
2. The thermal conductivity is 0.002 cal only in a mold wall surface forming a mold cavity made of a metal, only a mold wall surface corresponding to an end surface and / or a corner of a back surface of a molded product having ribs and / or bosses. A mold covered with a heat insulating layer made of synthetic resin having a temperature of not more than / cm · sec · ° C.
【請求項3】 合成樹脂を請求項1あるいは2の金型へ
射出する射出成形法。
3. An injection molding method for injecting a synthetic resin into a mold according to claim 1 or 2.
【請求項4】 合成樹脂が硬質熱可塑性合成樹脂である
請求項3の射出成形法。
4. The injection molding method according to claim 3, wherein the synthetic resin is a hard thermoplastic synthetic resin.
JP34624892A 1992-12-25 1992-12-25 Mold and injection molding method using the same Expired - Fee Related JP3363500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34624892A JP3363500B2 (en) 1992-12-25 1992-12-25 Mold and injection molding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34624892A JP3363500B2 (en) 1992-12-25 1992-12-25 Mold and injection molding method using the same

Publications (2)

Publication Number Publication Date
JPH06190833A JPH06190833A (en) 1994-07-12
JP3363500B2 true JP3363500B2 (en) 2003-01-08

Family

ID=18382123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34624892A Expired - Fee Related JP3363500B2 (en) 1992-12-25 1992-12-25 Mold and injection molding method using the same

Country Status (1)

Country Link
JP (1) JP3363500B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4230692B2 (en) * 2001-11-22 2009-02-25 大日本塗料株式会社 Manufacturing method for in-mold coating
JP5237758B2 (en) * 2008-06-02 2013-07-17 パナソニック株式会社 Resin molded product and manufacturing method thereof
JP6904145B2 (en) * 2017-07-31 2021-07-14 工機ホールディングス株式会社 Electric tool
TWI782482B (en) * 2021-04-13 2022-11-01 群光電子股份有限公司 Electronic module

Also Published As

Publication number Publication date
JPH06190833A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
KR970000922B1 (en) Mold for synthetic resin molding
US5535980A (en) Multilayer injection mold having improved surface properties
US5489410A (en) Molding thermoplastic materials for producing textured articles
JPH04314506A (en) Adiabatic mold structure with multilayer metal surface layers
JP3363500B2 (en) Mold and injection molding method using the same
JP3396254B2 (en) Mold and its manufacturing method
JP3268067B2 (en) Mold for synthetic resin molding
JPH0872086A (en) Low-pressure injection molding method
JPH06198667A (en) Injection molding method of synthetic resin
JP2627131B2 (en) Molding method for recovered resin
JPH10138252A (en) Mold coated with heat insulating layer and molding method of synthetic resin using this mold
JPH06328549A (en) New extrusion blow molding method
JPH06198682A (en) Low pressure injection molding method
JPH06198684A (en) Injection molding of crystalline synthetic resin
JP3387578B2 (en) Manufacturing method of synthetic resin mold
JPH07178765A (en) Insert molding method
JPH079453A (en) Mold for molding synthetic resin
JPH06226749A (en) Mold for molding synthetic resin
EP0614413A1 (en) Mold with improved surface properties for molding thermoplastic materials
JPH06270154A (en) Resin molding die and manufacture of high functional resin molded form
JP2715357B2 (en) Mold for synthetic resin molding
JPH08187731A (en) Mold for molding synthetic resin and manufacture thereof
JPH08187732A (en) Mold for molding synthetic resin and manufacture thereof
JPH05131456A (en) Resin mold and resin molding method
JPH07227854A (en) Molding of synthetic resin

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021015

LAPS Cancellation because of no payment of annual fees