JP5237758B2 - Resin molded product and manufacturing method thereof - Google Patents

Resin molded product and manufacturing method thereof Download PDF

Info

Publication number
JP5237758B2
JP5237758B2 JP2008278807A JP2008278807A JP5237758B2 JP 5237758 B2 JP5237758 B2 JP 5237758B2 JP 2008278807 A JP2008278807 A JP 2008278807A JP 2008278807 A JP2008278807 A JP 2008278807A JP 5237758 B2 JP5237758 B2 JP 5237758B2
Authority
JP
Japan
Prior art keywords
sub
upstream
thin portion
thin
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008278807A
Other languages
Japanese (ja)
Other versions
JP2010012770A (en
Inventor
寿夫 杉田
直人 池川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008278807A priority Critical patent/JP5237758B2/en
Publication of JP2010012770A publication Critical patent/JP2010012770A/en
Application granted granted Critical
Publication of JP5237758B2 publication Critical patent/JP5237758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は短繊維を含有する合成樹脂よりなり、主薄肉部に対して屈曲又は分岐した副薄肉部を有する樹脂成形品及びその製造方法に関する。   The present invention relates to a resin molded product made of a synthetic resin containing short fibers and having a sub-thin portion bent or branched with respect to a main thin portion and a method for producing the same.

従来、液晶ポリマー(LCP)などを成形材料とする樹脂成形品にあっては、配向による異方性を低減するために繊維との複合化が一般に行われている。   Conventionally, in a resin molded product using a liquid crystal polymer (LCP) or the like as a molding material, a composite with a fiber is generally performed in order to reduce anisotropy due to orientation.

また、厚み1mm以下の薄肉部を有する樹脂成形品としては、例えば非特許文献1に示すように、厚み1.0mmとなる薄肉の樹脂成形品からなり、繊維長約200μmの短繊維を含む液晶ポリマーを原料としたものが開示してある。   In addition, as a resin molded product having a thin portion having a thickness of 1 mm or less, for example, as shown in Non-Patent Document 1, a liquid crystal comprising a thin resin molded product having a thickness of 1.0 mm and containing short fibers having a fiber length of about 200 μm. A polymer is disclosed as a raw material.

上記非特許文献1は、主薄肉部から交差する方向に突出した厚み1.0mm以下の副薄肉部を備えたものではなく、従来、厚み1mm以下の主薄肉部及び副薄肉部を備えた樹脂成形品及びその製造方法において、樹脂材料に含まれる短繊維の繊維長と繊維長分布に着目したものはなく、このような樹脂成形品においては引張強度や副薄肉部の曲げ剛性が低下したり、線膨張係数が大きくなることがあった。
「成形加工」、2003年10月20日、社団法人プラスチック成形加工学会、第15巻、698〜705頁
The non-patent document 1 does not include a sub-thin portion having a thickness of 1.0 mm or less protruding in a direction intersecting from the main thin-wall portion, but conventionally a resin having a main thin portion and a sub-thin portion having a thickness of 1 mm or less. None of the molded products and their manufacturing methods focus on the fiber length and fiber length distribution of the short fibers contained in the resin material. In such resin molded products, the tensile strength and the bending rigidity of the sub-thin portion are reduced. The linear expansion coefficient sometimes increased.
“Molding”, October 20, 2003, Japan Society for Plastic Molding, Volume 15, 698-705.

本発明は上記従来の問題点に鑑みてなされたものであって、主薄肉部及び副薄肉部を備え、引張強度及び曲げ剛性を高めると共に、線膨張係数を低減した樹脂成形品及びその製造方法を提供することを課題とする。   The present invention has been made in view of the above-described conventional problems, and has a main thin part and a sub thin part, and has improved tensile strength and bending rigidity, and has a reduced linear expansion coefficient and a method for manufacturing the same. It is an issue to provide.

上記課題を解決するために本発明の請求項1に係る樹脂成形品は、短繊維2を含有する合成樹脂よりなり、主薄肉部3と、主薄肉部3から交差する方向に一体に突出して成形時の上流端となる突出基端が主薄肉部3に接続された副薄肉部4を備え、前記主薄肉部3の厚みt及び副薄肉部の厚みtを共に1.0mm以下とした樹脂成形品において、
主薄肉部3における副薄肉部4との交差部5よりも成形時に上流側に位置する部分を上流側薄肉部6として、該上流側薄肉部6と副薄肉部4とでなす角度をθとし、含有する全ての短繊維2のうち、繊維長が下記式3により導き出される臨界繊維長L (ここで、式3におけるL は、引張試験を実施したときの破断繊維の平均繊維長)以上の短繊維2の全短繊維2に対する体積分率をV、繊維長が臨界繊維長L以上で且つ下記式1により導き出されるLmax以下の短繊維2の全短繊維2に対する体積分率をVとし、

Figure 0005237758
Figure 0005237758
前記体積分率Vに対する体積分率Vの割合V/Vを40%以上とすることを特徴とする。 In order to solve the above-mentioned problem, the resin molded product according to claim 1 of the present invention is made of a synthetic resin containing the short fibers 2 and integrally protrudes in a direction intersecting from the main thin portion 3 and the main thin portion 3. It includes a sub-thin portion 4 upstream end and comprising projecting base end of the time of molding is connected to the main thin portion 3, both 1.0mm or less the thickness t 1 and the thickness t 2 of the sub-thin portion 4 of the main thin wall portion 3 In the resin molded product
A portion located upstream of the intersection 5 with the sub thin portion 4 in the main thin portion 3 is defined as an upstream thin portion 6 and an angle formed by the upstream thin portion 6 and the sub thin portion 4 is defined as θ. The critical fiber length L c derived from the following formula 3 among all the contained short fibers 2 (where L f in formula 3 is the average fiber length of the fractured fibers when the tensile test is carried out) The volume fraction of the above short fibers 2 with respect to all the short fibers 2 is V l , the volume length of the short fibers 2 with the fiber length not less than the critical fiber length L c and not more than L max derived by the following formula 1 with respect to all the short fibers 2. Let the rate be V,
Figure 0005237758
Figure 0005237758
The ratio V / V l of the volume fraction V to the volume fraction V l is 40% or more.

また、請求項2は請求項1において、上流側薄肉部6と副薄肉部4とでなす入隅部13を直線状又は弧状の面取り形状に形成して成ることを特徴とする。   A second aspect of the present invention is characterized in that, in the first aspect, the corner 13 formed by the upstream thin portion 6 and the auxiliary thin portion 4 is formed in a linear or arc-shaped chamfered shape.

また、請求項3は請求項1又は請求項2において、上流側薄肉部6に対して下記式2で導き出される角度φだけ副薄肉部4側に傾斜し、且つ、上流側薄肉部6と副薄肉部4とでなす入隅部13の面と1箇所のみで接する仮想直線Aを描き、

Figure 0005237758
上流側薄肉部6の副薄肉部4と反対側の面における仮想直線Aが通過する部分、又は、副薄肉部4の上流側薄肉部6と反対側の面における仮想直線Aが通過する部分のうち、少なくとも一方に短繊維逃がし用突部15を形成して成ることを特徴とする。 A third aspect of the present invention is the first or second aspect, wherein the upstream thin portion 6 is inclined toward the auxiliary thin portion 4 by an angle φ derived by the following expression 2 and the upstream thin portion 6 and the secondary thin portion 6 are Draw a virtual straight line A that touches the surface of the corner 13 formed by the thin portion 4 only at one place,
Figure 0005237758
The portion of the upstream thin portion 6 through which the virtual straight line A passes on the surface opposite to the sub thin portion 4 or the portion of the sub thin portion 4 opposite to the upstream thin portion 6 through which the virtual straight line A passes. Of these, the short fiber escape projection 15 is formed on at least one of the above.

また、請求項4は請求項1乃至3のいずれか1項において、上記短繊維2はマトリックス樹脂の融点よりも高い融点を持つ可撓性を有する有機繊維からなることを特徴とする。   A fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the short fiber 2 is made of a flexible organic fiber having a melting point higher than that of the matrix resin.

また、請求項5に係る樹脂成形品の製造方法は、短繊維2を含有する合成樹脂の射出成形品であり、且つ、主薄肉部3と、該主薄肉部3から交差する方向に一体に突出して成形時の上流端となる突出基端が主薄肉部3に接続された副薄肉部4を備え、前記主薄肉部3の厚みt及び副薄肉部4の厚みtを共に1.0mm以下とした樹脂成形品の製造方法において、樹脂成形品1の金型7は、主薄肉部3を形成する主キャビティ部8と、副薄肉部4を形成する副キャビティ部9を形成し、主キャビティ部8における副キャビティ部9との交差部10よりも上流側に位置する部分を上流側キャビティ部11とし、該上流側キャビティ部11と副キャビティ部9とでなす角度をθとし、前記合成樹脂に含有された全短繊維2のうち、繊維長が臨界繊維長L以上の短繊維2の全短繊維2に対する体積分率をV、繊維長が下記式3により導き出される臨界繊維長L (ここで、式3におけるL は、引張試験を実施したときの破断繊維の平均繊維長)以上で且つ下記式1により導き出されるLmax以下の短繊維2の全短繊維2に対する体積分率をVとし、

Figure 0005237758
Figure 0005237758
前記体積分率Vに対する体積分率Vの割合V/Vを40%以上とすることを特徴とする。 The method for producing a resin molded product according to claim 5 is a synthetic resin injection-molded product containing the short fibers 2, and is integrally formed in a direction intersecting with the main thin portion 3 and the main thin portion 3. comprising an upstream end and comprising projecting proximal end during molding to protrude are connected to the main thin portion 3 sub thin portion 4, the thickness t 1 and the thickness t 2 of the sub-thin portion 4 of the main thin portion 3 are both 1. In the method for manufacturing a resin molded product of 0 mm or less, the mold 7 of the resin molded product 1 forms a main cavity portion 8 that forms the main thin portion 3 and a sub cavity portion 9 that forms the sub thin portion 4, A portion of the main cavity portion 8 located upstream from the intersection 10 with the sub-cavity portion 9 is defined as an upstream-side cavity portion 11, and an angle formed by the upstream-side cavity portion 11 and the sub-cavity portion 9 is defined as θ. Of all the short fibers 2 contained in the synthetic resin, the fiber length is critical. V l is the volume fraction of all short fibers 2 of short fibers 2 that are equal to or longer than fiber length L c, and the critical fiber length L c is derived from the following equation 3 (where L f in equation 3 is a tensile test) The volume fraction of all short fibers 2 of the short fibers 2 that is equal to or greater than the average fiber length of the broken fibers when carried out and is equal to or less than L max derived from the following equation 1 is V,
Figure 0005237758
Figure 0005237758
The ratio V / V l of the volume fraction V to the volume fraction V l is 40% or more.

また、請求項6は請求項5において、上流側キャビティ部11と副キャビティ部9とでなす出隅部12を直線状又は弧状の面取り形状に形成して成ることを特徴とする。   A sixth aspect of the present invention is characterized in that, in the fifth aspect, the protruding corner portion 12 formed by the upstream cavity portion 11 and the sub-cavity portion 9 is formed in a linear or arc-shaped chamfered shape.

また、請求項7は請求項5又は請求項6において、上流側キャビティ部11に対して下記式2で導き出される角度φだけ副キャビティ部9側に傾斜し、且つ、上流側キャビティ部11と副キャビティ部9とでなす出隅部12の面と1箇所のみで接する仮想直線Aを描き、

Figure 0005237758
上流側キャビティ部11の副キャビティ部9と反対側の内面における仮想直線Aが通過する部分、又は、副キャビティ部9の上流側キャビティ部11と反対側の内面における仮想直線Aが通過する部分のうち、少なくとも一方に、短繊維逃がし用凹部14を形成して成ることを特徴とする。 A seventh aspect of the present invention is the same as the fifth or sixth aspect, wherein the upstream cavity portion 11 is inclined toward the sub-cavity portion 9 by an angle φ derived from the following equation 2 and the upstream-side cavity portion 11 is Draw an imaginary straight line A that touches the surface of the protruding corner 12 formed by the cavity 9 only at one location,
Figure 0005237758
The portion of the inner surface of the upstream cavity portion 11 opposite to the sub cavity portion 9 through which the virtual straight line A passes, or the portion of the sub cavity portion 9 on the inner surface of the opposite side of the upstream cavity portion 11 through which the virtual straight line A passes. Among these, at least one is characterized in that a short fiber escape recess 14 is formed.

また、請求項8は請求項5乃至7のいずれか1項において、上記短繊維2はマトリックス樹脂の融点よりも高い融点を持つ可撓性を有する有機繊維からなることを特徴とする。   An eighth aspect is characterized in that, in any one of the fifth to seventh aspects, the short fibers 2 are made of flexible organic fibers having a melting point higher than that of the matrix resin.

請求項1に係る発明は、厚み1.0mm以下の主薄肉部及び該主薄肉部から突出する副薄肉部を備えた樹脂成形品において、繊維長が臨界繊維長L以上の短繊維の体積分率Vに対する繊維長が臨界繊維長L以上で且つLmax以下の短繊維の体積分率Vの占める割合V/Vを40%以上とすることにより、樹脂成形品の引張強度を高めることができ、また、主薄肉部に対して交差する方向に突出し且つ薄肉であるために成形時において短繊維が充填され難い副薄肉部にも多くの短繊維を充填して副薄肉部の曲げ剛性を高めることができる。 Invention provides a resin molded article having a sub-thin portion projecting from the thickness 1.0mm or less of the main thin wall portion and the main thin portion, the fiber length of the short fibers of more than the critical fiber length L c volume according to claim 1 By setting the ratio V / V 1 of the volume fraction V of the short fibers whose fiber length to the fraction V 1 is not less than the critical fiber length L c and not more than L max to 40% or more, the tensile strength of the resin molded product can be increased. In addition, it projects in a direction intersecting the main thin part and is thin, so that it is difficult to fill the short fiber at the time of molding. Bending rigidity can be increased.

請求項2に係る発明は、上記請求項1の効果に加えて、上流側薄肉部と副薄肉部とでなす入隅部を直線状又は弧状の面取り形状に形成することにより、成形時において繊維長がLmaxよりも長い短繊維を副薄肉部を形成する副キャビティ部側にスムーズに流すことができ、副薄肉部に一層多くの短繊維を充填して副薄肉部の曲げ剛性を高めることができる。 In addition to the effect of the above-mentioned claim 1, the invention according to claim 2 is characterized in that the corner formed by the upstream thin portion and the sub thin portion is formed into a linear or arc-shaped chamfered shape, thereby forming a fiber during molding. Short fibers whose length is longer than L max can be smoothly flowed to the sub-cavity side forming the sub-thin portion, and the sub-thin portion is filled with more short fibers to increase the bending rigidity of the sub-thin portion. Can do.

請求項3に係る発明は、上記請求項1又は請求項2の効果に加えて、成形時においては上流側薄肉部を形成する上流側キャビティ部から副薄肉部を形成する副キャビティ部に向かって短繊維を含む溶融樹脂が流れることとなり、この際、溶融樹脂に含まれる短繊維の端部を短繊維逃がし用突部を形成する短繊維逃がし用凹部に逃がすことができ、繊維長がLmaxよりも長い短繊維を副キャビティ部側にスムーズに流すことができる。このため副薄肉部に一層多くの短繊維を充填して副薄肉部の曲げ剛性を高めることができる。 In addition to the effect of the first or second aspect, the invention according to claim 3 is directed from the upstream cavity portion forming the upstream thin portion to the sub cavity portion forming the sub thin portion during molding. The molten resin containing the short fiber flows, and at this time, the end of the short fiber contained in the molten resin can be released to the short fiber escape recess forming the short fiber escape projection, and the fiber length is L max It is possible to smoothly flow a short fiber longer than the sub-cavity side. For this reason, it is possible to increase the bending rigidity of the sub-thin portion by filling the sub-thin portion with more short fibers.

請求項4に係る発明は、上記請求項1乃至3のいずれか1項の効果に加えて、樹脂成形品に含まれる短繊維を可撓性を有する有機繊維とすることで、成形時においては、上流側薄肉部を形成する上流側キャビティ部から副薄肉部を形成する副キャビティ部に短繊維を含む溶融樹脂が流れるが、この際、溶融樹脂に含まれる短繊維が金型の内面に接して変形し、これにより繊維長がLmaxよりも長い短繊維を副キャビティ部9側にスムーズに流すことができる。このため副薄肉部に一層多くの短繊維を充填して副薄肉部の曲げ剛性を高めることができる。 In the invention according to claim 4, in addition to the effect of any one of claims 1 to 3, the short fiber contained in the resin molded product is a flexible organic fiber, so that at the time of molding The molten resin containing short fibers flows from the upstream cavity portion forming the upstream thin portion to the sub cavity portion forming the sub thin portion. At this time, the short fibers contained in the molten resin contact the inner surface of the mold. As a result, short fibers having a fiber length longer than Lmax can be smoothly caused to flow toward the subcavity 9 side. For this reason, it is possible to increase the bending rigidity of the sub-thin portion by filling the sub-thin portion with more short fibers.

請求項5に係る発明では、厚み1.0mm以下の主薄肉部及び該主薄肉部から突出する副薄肉部を備えた樹脂成形品を形成するにあたって、繊維長が臨界繊維長L以上の短繊維の体積分率Vに対する繊維長が臨界繊維長L以上で且つLmax以下の短繊維の体積分率Vの占める割合V/Vを40%以上とすることにより、製造される樹脂成形品の引張強度を高めることができ、また、成形時において短繊維が流れこみ難い副キャビティ部にも多くの短繊維を充填して該副キャビティ部により形成される副薄肉部の曲げ剛性を高めることができる。 In the invention according to claim 5, in forming a resin molded product having a main thin part having a thickness of 1.0 mm or less and a sub thin part protruding from the main thin part, the fiber length is a short fiber having a critical fiber length Lc or more. Resin produced by setting the ratio V / V 1 of the volume fraction V of short fibers whose fiber length to the fiber volume fraction V l is not less than the critical fiber length L c and not more than L max to 40% or more The tensile strength of the molded product can be increased, and the bending strength of the sub-thin wall part formed by the sub-cavity part can be increased by filling the sub-cavity part where short fibers do not easily flow into the sub-cavity part. Can be increased.

請求項6に係る発明では、上記請求項5に係る発明の効果に加えて、上流側キャビティ部と副キャビティ部とでなす出隅部を直線状又は弧状の面取り形状に形成することにより、成形時において、繊維長がLmaxよりも長い短繊維を副薄肉部を形成するキャビティ側にスムーズに流すことができる。このため副薄肉部に一層多くの短繊維を充填して副薄肉部の曲げ剛性を高めることができる。 In the invention according to claim 6, in addition to the effect of the invention according to claim 5, the projecting corner portion formed by the upstream cavity portion and the sub-cavity portion is formed in a linear or arc-shaped chamfered shape, thereby forming In some cases, short fibers having a fiber length longer than L max can be smoothly flowed to the cavity forming the sub-thin portion. For this reason, it is possible to increase the bending rigidity of the sub-thin portion by filling the sub-thin portion with more short fibers.

請求項7に係る発明は、上記請求項5又は請求項6の効果に加えて、成形時においては上流側キャビティ部から副キャビティ部に向かって短繊維を含む溶融樹脂が流れるが、この際、溶融樹脂に含まれる短繊維の端部を短繊維逃がし用凹部に逃がすことができ、繊維長がLmaxよりも長い短繊維を副キャビティ部側にスムーズに流すことができる。このため副薄肉部に一層多くの短繊維を充填して副薄肉部の曲げ剛性を高めることができる。 In the invention according to claim 7, in addition to the effect of claim 5 or claim 6 described above, molten resin containing short fibers flows from the upstream cavity portion toward the sub-cavity portion at the time of molding. the end of the short fibers contained in the molten resin can be released to the short fibers relief recesses, fiber length can flow smoothly long short fiber than L max the sub cavity portion. For this reason, it is possible to increase the bending rigidity of the sub-thin portion by filling the sub-thin portion with more short fibers.

請求項8に係る発明は、上記請求項5乃至7のいずれか1項の効果に加えて、成形時においては、上流側薄肉部を形成する上流側キャビティ部から副薄肉部を形成する副キャビティ部に短繊維を含む溶融樹脂が流れるが、この際、溶融樹脂に含まれる短繊維が金型の内面に接して変形し、これにより繊維長がLmaxよりも長い短繊維を副キャビティ部9側にスムーズに流すことができる。このため副薄肉部に一層多くの短繊維を充填して副薄肉部の曲げ剛性を高めることができる。 According to an eighth aspect of the present invention, in addition to the effect of any one of the fifth to seventh aspects, in molding, a sub-cavity that forms a sub-thin portion from an upstream-side cavity portion that forms the upstream-side thin portion at the time of molding. The molten resin containing short fibers flows in the part. At this time, the short fibers contained in the molten resin are deformed in contact with the inner surface of the mold, and thereby the short fibers having a fiber length longer than Lmax are transformed into the sub cavity portion 9. Can flow smoothly to the side. For this reason, it is possible to increase the bending rigidity of the sub-thin portion by filling the sub-thin portion with more short fibers.

以下、本発明を添付図面に基づいて説明する。   Hereinafter, the present invention will be described with reference to the accompanying drawings.

本発明は、例えば基板上にリフロー実装され、端子を狭ピッチで配置したコネクタ等の電子機器のボディを構成する樹脂成形品に適用される。勿論、本発明が適用される樹脂成形品はこれに限定されるものではない。   The present invention is applied to, for example, a resin molded product that constitutes the body of an electronic device such as a connector that is mounted on a substrate by reflow mounting and has terminals arranged at a narrow pitch. Of course, the resin molded product to which the present invention is applied is not limited to this.

(実施形態1)
樹脂成形品1は短繊維2(繊維状フィラー)を含有する合成樹脂からなり、短繊維を含有した樹脂ペレットを成形材料とし、射出成形機によって射出成形される。
(Embodiment 1)
The resin molded product 1 is made of a synthetic resin containing short fibers 2 (fibrous fillers), and is formed by injection molding with an injection molding machine using resin pellets containing short fibers as a molding material.

樹脂成形品1のマトリックス樹脂となる合成樹脂は液晶ポリマー(LCP)からなり、好ましい樹脂としては、熱可塑性樹脂であって、例えば6ナイロン(PA6)、6−6ナイロン(PA6−6)、4−6ナイロン(PA46)、11ナイロン(PA11)、6−10ナイロン、PA−MXD−6、ポリフタルアミド等の芳香族ポリアミド(PA6T、PA9T等)などのポリアミド、又は、ポリフェニレンサルファイド、又はポリフェニレンエーテル、又はポリエーテルケトン、ポリエーテルエーテルケトンなどのポリケトン、又はポリエチレンテレフタレート(PET)、ポリブチレンテレフタレートなどのポリエステル、又はポリエーテルイミド、又はポリイミドなどが挙げられる。   The synthetic resin used as the matrix resin of the resin molded product 1 is made of a liquid crystal polymer (LCP), and a preferable resin is a thermoplastic resin such as 6 nylon (PA6), 6-6 nylon (PA6-6), 4 Polyamide such as aromatic polyamide (PA6T, PA9T, etc.) such as -6 nylon (PA46), 11 nylon (PA11), 6-10 nylon, PA-MXD-6, polyphthalamide, or polyphenylene sulfide or polyphenylene ether Or a polyetherketone, a polyketone such as polyetheretherketone, a polyester such as polyethylene terephthalate (PET) or polybutylene terephthalate, a polyetherimide, or a polyimide.

強化材となる短繊維2としては例えばガラス繊維や炭素繊維等の無機繊維が用いられる。   As the short fibers 2 serving as a reinforcing material, for example, inorganic fibers such as glass fibers and carbon fibers are used.

樹脂成形品1は薄肉射出成形品であり、図1(b)に示すように、主薄肉部3と、主薄肉部3から交差する方向に一体に突出して成形時の上流端となる突出基端が主薄肉部3に接続された副薄肉部4を備えている。   The resin molded product 1 is a thin-walled injection-molded product. As shown in FIG. 1B, a main thin-walled portion 3 and a protruding base that integrally protrudes in a direction intersecting from the main thin-walled portion 3 and serves as an upstream end during molding. An auxiliary thin portion 4 having an end connected to the main thin portion 3 is provided.

両薄肉部3、4は図1(b)の紙面奥行き方向を幅方向とする厚み均一の薄板状に形成されている。副薄肉部4は主薄肉部3の片面から垂直に突出しており、つまり、主薄肉部3における副薄肉部4との交差部5よりも成形時に上流側に位置する部分(ゲート跡側に近い部分)を上流側薄肉部6とすると、上流側薄肉部6と副薄肉部4とでなす角度θは90度となっている。副薄肉部4は主薄肉部3の長さ方向(図1(b)の紙面左右方向)の途中から突出し、突端が自由端となったリブを構成している。   Both thin portions 3 and 4 are formed in a thin plate shape having a uniform thickness with the depth direction in FIG. 1B being the width direction. The sub-thin portion 4 protrudes perpendicularly from one surface of the main thin portion 3, that is, a portion located on the upstream side from the intersection 5 with the sub-thin portion 4 in the main thin portion 3 (closer to the gate trace side) If the portion) is the upstream thin portion 6, the angle θ formed by the upstream thin portion 6 and the sub thin portion 4 is 90 degrees. The auxiliary thin portion 4 protrudes from the middle of the length direction of the main thin portion 3 (left and right direction in FIG. 1 (b)), and constitutes a rib whose protruding end is a free end.

上記主薄肉部3の厚みt及び副薄肉部の厚みtは共に1.0mm以下であり(t≦1.0mm、t≦1.0mm)、より具体的には、厚みt、tを共に0.5mm以下(t≦0.5mm、t≦0.5mm)としている。 The main thickness t 2 of the thickness t 1 and the sub-thin portion 4 of the thin portion 3 are both 1.0mm or less (t 1 ≦ 1.0mm, t 2 ≦ 1.0mm), and more specifically, the thickness t 1 and t 2 are both 0.5 mm or less (t 1 ≦ 0.5 mm, t 2 ≦ 0.5 mm).

図1(a)は上記樹脂成形品1の金型7により形成されるキャビティのうち、両薄肉部3、4を形成する部分の拡大図である。図に示すように金型7にはゲートに通じる主キャビティ部8と、主キャビティ部8に連通する副キャビティ部9が形成されている。   FIG. 1A is an enlarged view of a portion where both thin portions 3 and 4 are formed in the cavity formed by the mold 7 of the resin molded product 1. As shown in the figure, the mold 7 is formed with a main cavity portion 8 communicating with the gate and a sub cavity portion 9 communicating with the main cavity portion 8.

主キャビティ部8の内部には主薄肉部3と同形状の空間が形成され、該主キャビティ部8によって主薄肉部3が形成される。副キャビティ部9の内部には副薄肉部4と同形状の空間が形成され、該副キャビティ部9によって副薄肉部4が形成される。   A space having the same shape as the main thin portion 3 is formed inside the main cavity portion 8, and the main thin portion 3 is formed by the main cavity portion 8. A space having the same shape as the sub thin portion 4 is formed inside the sub cavity portion 9, and the sub thin portion 4 is formed by the sub cavity portion 9.

以下、主キャビティ部8における副キャビティ部9との交差部10よりも上流側(ゲート側)に位置する部分を上流側キャビティ部11とする。即ち、該上流側キャビティ部11によって上流側薄肉部6が形成される。   Hereinafter, the portion located on the upstream side (gate side) of the main cavity portion 8 with respect to the intersecting portion 10 with the sub cavity portion 9 is referred to as an upstream cavity portion 11. That is, the upstream side thin portion 6 is formed by the upstream side cavity portion 11.

上記樹脂成形品1を成形する場合、図示しないゲートから短繊維2を含む溶融樹脂を射出し、この溶融樹脂を金型7の主キャビティ部8及び副キャビティ部9に充填する。なお、この際、短繊維2を含む溶融樹脂は、上流側キャビティ部11の長さ方向における副キャビティ部9とは反対側の端部から上流側キャビティ部11に流入し、この後、交差部10で分岐して、副キャビティ部9と、主キャビティ部8における交差部10よりも下流側の部分に夫々流入する。つまり、上記交差部10で分岐する溶融樹脂の2つの流れのうち、上流側キャビティ部11から交差部10を介して副キャビティ部9に至る流れは交差部10において角度θ向きを変える。   When molding the resin molded product 1, a molten resin containing the short fibers 2 is injected from a gate (not shown), and the molten resin is filled into the main cavity portion 8 and the subcavity portion 9 of the mold 7. At this time, the molten resin containing the short fibers 2 flows into the upstream cavity portion 11 from the end opposite to the sub-cavity portion 9 in the length direction of the upstream cavity portion 11, and thereafter, the intersection portion 10 and branches into the sub-cavity portion 9 and the downstream portion of the main cavity portion 8 with respect to the intersecting portion 10. That is, of the two flows of molten resin branched at the intersection 10, the flow from the upstream cavity 11 to the sub-cavity 9 through the intersection 10 changes the direction of the angle θ at the intersection 10.

ここで、本発明にあっては、樹脂成形品1に含有される短繊維2の繊維長分布を以下のようにしてある。すなわち、上記樹脂成形品1を形成する合成樹脂に含まれる全ての短繊維2のうち、繊維長が臨界繊維長L以上の短繊維2の全短繊維2に対する体積分率をV、繊維長が臨界繊維長L以上で且つLmax以下の短繊維の全短繊維2に対する体積分率をVとすると、体積分率Vに対する体積分率Vの占める割合V/Vを40%以上としている。

Figure 0005237758
なお、式1におけるθは前述した上流側薄肉部6と副薄肉部4とでなす角度、又は、これと同角度となる上流側キャビティ部11と副キャビティ部9とでなす角度である。 Here, in the present invention, the fiber length distribution of the short fibers 2 contained in the resin molded product 1 is as follows. That is, of all of the short fibers 2 contained in the synthetic resin forming the resin molded article 1, the fiber length is critical fiber length L c over the volume fraction relative to the total short fibers 2 of the short fibers 2 V l, fibers If the length is and the volume fraction relative to the total short fiber 2 of L max following short fibers and V at the critical fiber length L c above, a ratio V / V l occupied volume fraction V against the volume fraction V l 40% That's it.
Figure 0005237758
In Equation 1, θ is an angle formed by the upstream thin portion 6 and the sub thin portion 4 described above, or an angle formed by the upstream cavity portion 11 and the sub cavity portion 9 having the same angle.

また、臨界繊維長Lは成形品から作成した試験片の引張試験を実施し、試験前後の繊維長分布の差より破断した繊維のみの繊維長分布を求め、下記の式3により算出されるものである。

Figure 0005237758
(ここで、L;破断繊維の平均繊維長)
上記式1により導き出されるLmaxは、図1(a)に示すように、直線状の短繊維2が上流側キャビティ部11に対して下記式(2)によって導き出される角度φ傾斜し、且つ、短繊維2の両端が、上流側キャビティ部11の副キャビティ部9と反対側の内面11a(つまり上流側薄肉部6の副薄肉部4を突出した側と反対側の面を形成する内面)と、副キャビティ部9の上流側キャビティ部11と反対側の内面9a(つまり副薄肉部4の上流側薄肉部6側の面を形成する内面)の夫々に接すると共に、短繊維2の中央が上流側キャビティ部11と副キャビティ部9とでなす出隅部12の頂点12aに接した状態における短繊維2の繊維長である。
Figure 0005237758
Further, the critical fiber length Lc is obtained by performing a tensile test of a test piece prepared from a molded product, obtaining the fiber length distribution of only the broken fiber from the difference in fiber length distribution before and after the test, and calculating by the following formula 3. Is.
Figure 0005237758
(Where L f is the average fiber length of the broken fibers)
As shown in FIG. 1A, L max derived from the above equation 1 is inclined by an angle φ derived from the linear short fiber 2 by the following equation (2) with respect to the upstream cavity portion 11, and Both ends of the short fiber 2 have an inner surface 11a opposite to the sub-cavity portion 9 of the upstream cavity portion 11 (that is, an inner surface forming a surface opposite to the side protruding the sub-thin portion 4 of the upstream thin portion 6). The inner surface 9a of the sub cavity portion 9 opposite to the upstream cavity portion 11 (that is, the inner surface forming the surface of the sub thin portion 4 on the upstream thin portion 6 side) is in contact with each other, and the center of the short fiber 2 is upstream. This is the fiber length of the short fiber 2 in a state where it is in contact with the apex 12a of the protruding corner portion 12 formed by the side cavity portion 11 and the sub cavity portion 9.
Figure 0005237758

従って、短繊維2の繊維長をLmaxよりも短くすることは、上記成形時において上流側キャビティ部11から交差部10を介して副キャビティ部9に至る溶融樹脂に含まれる短繊維2が金型7内面と物理的に干渉することを防止することを意味し、副キャビティ部9側に短繊維2を流れやすくしている。 Therefore, the fiber length of the short fibers 2 shorter than L max, the short fibers 2 gold contained in the molten resin reaches the secondary cavity 9 from the upstream side cavity 11 through the crossing portion 10 during the molding This means that physical interference with the inner surface of the mold 7 is prevented, and the short fibers 2 are easy to flow toward the subcavity 9 side.

また、下記式4が示すように、樹脂成形品1に臨界繊維長Lよりも長い短繊維2が多く存在すれば、樹脂成形品1の引張強度は高くなる。

Figure 0005237758
(ここで、S;樹脂の引張強度、V;臨界繊維長L以下の短繊維の体積分率、V;臨界繊維長L以上の短繊維の体積分率、L;臨界繊維長L以下の短繊維の長さ、L;臨界繊維長L以上の短繊維の長さ、τ;界面せん断応力、σ;短繊維の破断強度、r;短繊維の半径) Further, as shown by the following formula 4, if there are many long short fiber 2 than the critical fiber length L c in the resin molded article 1, the tensile strength of the resin molded article 1 is increased.
Figure 0005237758
(Where S m ; tensile strength of resin, V i ; volume fraction of short fibers having critical fiber length L c or less, V l ; volume fraction of short fibers having critical fiber length L c or more, L i ; critical The length of short fibers having a fiber length L c or less, L l ; the length of short fibers having a critical fiber length L c or more, τ: interfacial shear stress, σ: breaking strength of short fibers, r: radius of short fibers)

このように体積分率Vに対する体積分率Vの占める割合V/Vを40%以上とすることで、樹脂成形品1の引張強度を高めることができる。また、この場合、上流側キャビティ部11から副キャビティ部9に至る溶融樹脂に含まれる短繊維2が金型7の内面と物理的に干渉し難くなり、このため副キャビティ部9内に多くの短繊維2を充填できて副薄肉部4の曲げ剛性も高めることができる。 Thus, the tensile strength of the resin molded product 1 can be increased by setting the ratio V / V l of the volume fraction V to the volume fraction V l to 40% or more. Further, in this case, the short fibers 2 contained in the molten resin from the upstream cavity portion 11 to the sub cavity portion 9 are difficult to physically interfere with the inner surface of the mold 7. The short fibers 2 can be filled, and the bending rigidity of the auxiliary thin portion 4 can be increased.

つまり、図3において、破線bに示すように、短繊維2の繊維長分布の平均長が短くなると、繊維長がL以上の短繊維2が減って引張強度が低下し、また、破線cに示すように、短繊維2の繊維長分布の平均長が長くなると、繊維長がLmax以上の短繊維2が増えて副キャビティ部9内に短繊維2を多く充填できないが、本実施形態では上記V/Vを40%以上とすることにより樹脂成形品1の引張強度を向上すると共に副キャビティ部9内に多くの短繊維2を充填して副薄肉部4の曲げ剛性を高めることができるのである。 That is, as shown by a broken line b in FIG. 3, when the average length of the fiber length distribution of the short fibers 2 is shortened, the short fibers 2 having a fiber length of Lc or more are decreased, and the tensile strength is decreased. As shown in FIG. 4, when the average length of the fiber length distribution of the short fibers 2 is increased, the short fibers 2 having a fiber length of L max or more increase and the sub-cavity portion 9 cannot be filled with a lot of short fibers 2. Then, by setting the above V / Vl to 40% or more, the tensile strength of the resin molded product 1 is improved, and the short cavity 2 is filled into the subcavity portion 9 to increase the bending rigidity of the subthin wall portion 4. Can do it.

また、この場合、副薄肉部4に臨界繊維長Lよりも長い短繊維2を多く充填できるので、副薄肉部4の線膨張係数も低減でき加熱される樹脂成形品1においては有効である。 In this case, since it often fill a long short fiber 2 than the critical fiber length L c in the sub-thin portion 4, which is effective in the resin molded article 1 linear expansion coefficient of the sub-thin portion 4 is reduced can be heated .

したがって、樹脂成形品1が、副薄肉部4に端子を係止して取り付けるものであり、また、端子が基板にリフロー実装されるコネクタである場合には、端子の組込時に副薄肉部4が変形し難く、また、リフロー実装の際に反りが発生し難くなり、特に有効である。   Therefore, when the resin molded product 1 is a connector in which the terminal is locked and attached to the sub-thin portion 4, and the terminal is a connector that is reflow-mounted on the substrate, the sub-thin portion 4 is assembled when the terminal is assembled. This is particularly effective because it is difficult to deform and warpage is unlikely to occur during reflow mounting.

(実施形態2)
本実施形態を図2に示す。本実施形態は図2(b)に示すように、実施形態1における副薄肉部4を主薄肉部3の長さ方向の端部から突出したものである。つまり、実施形態1では、主薄肉部3の長さ方向の途中から副薄肉部4を突出して断面T字状としたが、本実施形態では主薄肉部3の成形時における下流側端部から副薄肉部4を突出して断面L字状としている。
(Embodiment 2)
This embodiment is shown in FIG. In the present embodiment, as shown in FIG. 2B, the auxiliary thin portion 4 in the first embodiment protrudes from the end portion in the length direction of the main thin portion 3. That is, in the first embodiment, the sub thin portion 4 protrudes from the middle of the main thin portion 3 in the length direction to have a T-shaped cross section, but in the present embodiment, from the downstream end when the main thin portion 3 is molded. The sub-thin portion 4 protrudes to have an L-shaped cross section.

従って、樹脂成形品1を成形する場合、溶融樹脂の流れは、図2(a)の矢印に示すように、上流側キャビティ部11から交差部10を介して副キャビティ部9に向かって角度θ曲がる流れとなる。   Accordingly, when the resin molded product 1 is molded, the flow of the molten resin has an angle θ from the upstream cavity portion 11 to the sub cavity portion 9 via the intersecting portion 10 as shown by the arrow in FIG. It will turn.

(実施形態3)
本実施形態を図4に示す。本実施形態では、図4(a)に示すように、実施形態1の上流側キャビティ部11と副キャビティ部9とでなす出隅部12を面取りして、当該出隅部12を直線状の面取り形状に形成してある。従って、当該金型7によって成形される本実施形態の樹脂成形品1は、図4(b)に示すように、上流側薄肉部6と副薄肉部4とでなす入隅部13が直線状の面取り形状に形成される。
(Embodiment 3)
This embodiment is shown in FIG. In this embodiment, as shown in FIG. 4A, the protruding corner portion 12 formed by the upstream cavity portion 11 and the sub-cavity portion 9 of the first embodiment is chamfered, and the protruding corner portion 12 is linearly shaped. It is formed in a chamfered shape. Therefore, as shown in FIG. 4B, the resin molded product 1 of the present embodiment molded by the die 7 has a straight corner 13 formed by the upstream thin portion 6 and the sub thin portion 4. The chamfered shape is formed.

このように上流側キャビティ部11と副キャビティ部9とでなす出隅部12を直線状の面取り形状とすることにより、図1の実施形態のように出隅部12を面取りしていないものと比較して以下の利点を有する。   In this way, the protruding corner portion 12 formed by the upstream cavity portion 11 and the sub-cavity portion 9 is formed into a linear chamfered shape, so that the protruding corner portion 12 is not chamfered as in the embodiment of FIG. In comparison, it has the following advantages.

即ち、図1に示す実施形態にあっては、図4(a)の破線で示した繊維長Lmaxの短繊維2よりも繊維長の長い短繊維2は出隅部12に干渉して副キャビティ部9側に流れ難いものとなるが、本実施形態にあっては、上流側キャビティ部11と副キャビティ部9とでなす出隅部12を面取り形状とすることにより、図4(a)の実線で示す繊維長がLmaxよりも長い短繊維2を副キャビティ部9側にスムーズに流すことができる。従って、副キャビティ部9内に多くの短繊維2を充填して副薄肉部4の曲げ剛性を高めることができる。 That is, in the embodiment shown in FIG. 1, the short fiber 2 having a fiber length longer than the short fiber 2 having the fiber length Lmax shown by the broken line in FIG. Although it is difficult to flow to the cavity portion 9 side, in this embodiment, the protruding corner portion 12 formed by the upstream cavity portion 11 and the sub-cavity portion 9 has a chamfered shape, so that FIG. The short fiber 2 whose fiber length indicated by the solid line is longer than Lmax can be smoothly flowed to the subcavity 9 side. Therefore, it is possible to increase the bending rigidity of the sub thin portion 4 by filling the sub cavity portion 9 with many short fibers 2.

(実施形態4)
本実施形態を図5に示す。本実施形態は実施形態2において実施形態3と同様に出隅部12を直線状の面取り形状に形成したものである。
(Embodiment 4)
This embodiment is shown in FIG. In this embodiment, the protruding corner 12 is formed in a linear chamfered shape in the second embodiment, as in the third embodiment.

(実施形態5)
本実施形態を図6に示す。本実施形態は、図6(a)に示すように、実施形態1の上流側キャビティ部11と副キャビティ部9とでなす出隅部12を面取りして、当該出隅部12を弧状の面取り形状に形成してある。従って、当該金型7によって成形される本実施形態の樹脂成形品1は、図6(b)に示すように、上流側薄肉部6と副薄肉部4とでなす入隅部13が弧状の面取り形状に形成されている。
(Embodiment 5)
This embodiment is shown in FIG. In the present embodiment, as shown in FIG. 6A, the protruding corner portion 12 formed by the upstream cavity portion 11 and the sub-cavity portion 9 of the first embodiment is chamfered, and the protruding corner portion 12 is arc-shaped chamfered. It is formed into a shape. Therefore, as shown in FIG. 6B, the resin molded product 1 of the present embodiment molded by the mold 7 has an arcuate corner 13 formed by the upstream thin portion 6 and the sub thin portion 4. It is formed in a chamfered shape.

このように上流側キャビティ部11と副キャビティ部9とでなす出隅部12を弧状の面取り形状とすることにより、実施形態3と同様の利点がある。   Thus, by making the protruding corner portion 12 formed by the upstream cavity portion 11 and the sub-cavity portion 9 into an arc-shaped chamfered shape, there is an advantage similar to that of the third embodiment.

(実施形態6)
本実施形態を図7に示す。本実施形態は、実施形態2において実施形態5と同様に出隅部12を弧状の面取り形状に形成したものである。
(Embodiment 6)
This embodiment is shown in FIG. In the present embodiment, the protruding corner 12 is formed in an arc-shaped chamfered shape in the second embodiment as in the fifth embodiment.

(実施形態7)
本実施形態を図8に示す。本実施形態は、図8(a)に示すように、実施形態1の上流側キャビティ部11の副キャビティ部9と反対側の内面11aに短繊維逃がし用凹部14を形成している。
(Embodiment 7)
This embodiment is shown in FIG. In this embodiment, as shown in FIG. 8A, a short fiber escape recess 14 is formed on the inner surface 11a of the upstream cavity 11 of the first embodiment on the opposite side to the sub-cavity 9.

短繊維逃がし用凹部14は、図8(a)に示すように、上流側キャビティ部11の下流側端部に位置し、成形時において上流側キャビティ部11と副キャビティ部9とでなす角状の出隅部12の頂点12aに接した短繊維2の一端部を収納できる位置に形成されている。   As shown in FIG. 8A, the short fiber escape recess 14 is positioned at the downstream end of the upstream cavity 11 and is formed into an angular shape formed by the upstream cavity 11 and the sub cavity 9 during molding. It is formed in the position which can accommodate the one end part of the short fiber 2 which contact | connected the vertex 12a of the protruding corner part 12 of this.

具体的には、図8(a)に示すように、上流側キャビティ部11の長さ方向に対して上記式2で導き出される角度φだけ副キャビティ部9側に傾斜し、且つ、出隅部12の面と1箇所のみで接する仮想直線Aを描き(つまり仮想直線Aは出隅部12の頂点12aを通過する)、上流側キャビティ部11の副キャビティ部9と反対側の内面11aにおける仮想直線Aが通過する部分に断面矩形状の短繊維逃がし用凹部14を形成している。   Specifically, as shown in FIG. 8 (a), it is inclined toward the sub-cavity portion 9 by the angle φ derived from the above equation 2 with respect to the length direction of the upstream-side cavity portion 11, and the protruding corner portion. An imaginary straight line A that touches the surface of 12 at only one location is drawn (that is, the imaginary straight line A passes through the vertex 12a of the protruding corner 12), and the imaginary straight line 11a on the inner surface 11a opposite to the subcavity 9 of the upstream cavity 11 A short fiber escape recess 14 having a rectangular cross section is formed in a portion through which the straight line A passes.

従って、上記金型7によって成形される本実施形態の樹脂成形品1には、上記短繊維逃がし用凹部14により形成された短繊維逃がし用凹部14と同形状の短繊維逃がし用突部15が形成される。つまり、図8(b)に示すように、上流側薄肉部6の長さ方向に対して上記式2で導き出される角度φだけ副薄肉部4側に傾斜し、且つ、上流側薄肉部6と副薄肉部4とでなす入隅部13の面と1箇所のみで接する仮想直線Aを描き(つまり仮想直線Aは入隅部13の頂点13aを通過する)、上流側薄肉部6の副薄肉部4と反対側の面における仮想直線Aが通過する部分に短繊維逃がし用突部15が形成される。   Therefore, the resin molded product 1 of the present embodiment formed by the mold 7 has a short fiber escape protrusion 15 having the same shape as the short fiber escape recess 14 formed by the short fiber escape recess 14. It is formed. That is, as shown in FIG. 8B, the upstream thin portion 6 is inclined toward the sub thin portion 4 by the angle φ derived from the above formula 2 with respect to the length direction of the upstream thin portion 6 and the upstream thin portion 6 An imaginary straight line A that is in contact with the surface of the corner 13 formed by the subthinned portion 4 is drawn only at one location (that is, the imaginary straight line A passes through the vertex 13a of the corner 13). A short fiber escape projection 15 is formed at a portion through which the virtual straight line A passes on the surface opposite to the portion 4.

本実施形態では上記短繊維逃がし用凹部14を形成しているので、成形時においては、図8(a)に示すように、上流側キャビティ部11から交差部10を介して副キャビティ部9に流れる短繊維2の端部を短繊維逃がし用凹部14に逃がすことができ、繊維長がLmaxよりも長い短繊維2を副キャビティ部9側にスムーズに流すことができる。従って、副キャビティ部9内に多くの短繊維2を充填でき、副薄肉部4の曲げ剛性を高めることができる。 In the present embodiment, since the short fiber escape recess 14 is formed, at the time of molding, as shown in FIG. 8A, the upstream cavity portion 11 is passed through the intersecting portion 10 to the sub cavity portion 9. through the ends of the short fibers 2 can be released to the short fibers escape recess 14, the fiber length can flow smoothly short fibers 2 longer than L max the sub cavity 9 side. Therefore, a lot of the short fibers 2 can be filled in the sub cavity portion 9 and the bending rigidity of the sub thin portion 4 can be increased.

(実施形態8)
本実施形態を図9に示す。本実施形態は図9(b)に示すように、実施形態2において実施形態7と同様の短繊維逃がし用凹部14を形成したものである。
(Embodiment 8)
This embodiment is shown in FIG. In the present embodiment, as shown in FIG. 9B, a short fiber escape recess 14 similar to that in the seventh embodiment is formed in the second embodiment.

(実施形態9)
本実施形態を図10に示す。本実施形態は、図10(a)に示すように、実施形態8の短繊維逃がし用凹部14を副キャビティ部9の上流側キャビティ部11と反対側の内面9aに形成してある。
(Embodiment 9)
This embodiment is shown in FIG. In this embodiment, as shown in FIG. 10A, the short fiber escape recess 14 of Embodiment 8 is formed on the inner surface 9 a of the sub cavity portion 9 on the opposite side to the upstream cavity portion 11.

上記短繊維逃がし用凹部14は、図10(a)に示すように、副キャビティ部9の上流側端部に位置し、上流側キャビティ部11と副キャビティ部9とでなす角状の出隅部12の頂点12aに接した短繊維2の一端部を収納できる位置に形成されている。   As shown in FIG. 10A, the short fiber escape recess 14 is positioned at the upstream end of the sub-cavity 9, and has an angular protruding corner formed by the upstream-side cavity 11 and the sub-cavity 9. It is formed at a position where one end of the short fiber 2 in contact with the apex 12a of the portion 12 can be stored.

具体的には、実施形態8と同様に仮想直線Aを描き、副キャビティ部9の上流側キャビティ部11と反対側の内面9aにおける仮想直線Aが通過する部分に断面矩形状の短繊維逃がし用凹部14を形成している。   Specifically, the virtual straight line A is drawn in the same manner as in the eighth embodiment, and a short fiber escape having a rectangular cross section is formed in a portion where the virtual straight line A passes through the inner surface 9a on the opposite side of the upstream cavity portion 11 of the sub cavity portion 9. A recess 14 is formed.

従って、上記金型7によって成形される本実施形態の樹脂成形品1には上記短繊維逃がし用凹部14によって形成された短繊維逃がし用凹部14と同形状の短繊維逃がし用突部15が形成される。つまり、図10(b)に示すように、実施形態8と同様に仮想直線Aを描き、副薄肉部4の上流側薄肉部6と反対側の面における仮想直線Aが通過する部分に短繊維逃がし用突部15が形成される。   Therefore, the resin molded product 1 of the present embodiment formed by the mold 7 is formed with the short fiber escape protrusion 15 having the same shape as the short fiber escape recess 14 formed by the short fiber escape recess 14. Is done. That is, as shown in FIG. 10 (b), the virtual straight line A is drawn as in the eighth embodiment, and the short fiber is passed through the portion where the virtual straight line A on the surface opposite to the upstream thin portion 6 of the sub thin portion 4 passes. An escape projection 15 is formed.

本実施形態においては、上記短繊維逃がし用凹部14を形成しているので、実施形態7と同様に、成形時においては、図10(a)に示すように、上流側キャビティ部11から交差部10を介して副キャビティ部9に流れる短繊維2の端部を短繊維逃がし用凹部14に逃がすことができ、繊維長がLmaxよりも長い短繊維2を副キャビティ部9側にスムーズに流すことができる。 In the present embodiment, since the short fiber escape recess 14 is formed, as in the seventh embodiment, at the time of molding, as shown in FIG. the end of the short fibers 2 which flows into the sub-cavity 9 through 10 can be released to the short fibers escape recess 14, flow long staple fibers 2 smoothly in the sub-cavity 9 side than the fiber length L max be able to.

(実施形態10)
本実施形態を図11に示す。本実施形態は図11(b)に示すように、実施形態2において実施形態9と同様に短繊維逃がし用凹部14を形成したものである。
(Embodiment 10)
This embodiment is shown in FIG. In this embodiment, as shown in FIG. 11B, a short fiber escape recess 14 is formed in the second embodiment as in the ninth embodiment.

なお、上記実施形態7〜10にあっては実施形態3〜6と同様に出隅部12を面取り形状に形成しても良いものとする。また、上記実施形態7、8において実施形態9、10の短繊維逃がし用凹部14を形成し、上流側キャビティ部11と副キャビティ部9との両方に短繊維逃がし用凹部14を形成しても良いものとする。   In addition, in the said Embodiments 7-10, you may form the protrusion corner part 12 in a chamfering shape similarly to Embodiment 3-6. Further, in Embodiments 7 and 8, the short fiber escape recess 14 of Embodiments 9 and 10 is formed, and the short fiber escape recess 14 is formed in both the upstream cavity portion 11 and the sub cavity portion 9. Be good.

(実施形態11)
本実施形態を図12に示す。本実施形態は実施形態1の樹脂成形品1に含まれる短繊維2をマトリックス樹脂となる合成樹脂の融点よりも高い融点を持つ可撓性を有する有機繊維としたものである。
(Embodiment 11)
This embodiment is shown in FIG. In the present embodiment, the short fibers 2 included in the resin molded product 1 of Embodiment 1 are flexible organic fibers having a melting point higher than the melting point of the synthetic resin serving as the matrix resin.

表1に上記短繊維2として用いられる有機繊維を列挙し、合わせて各有機繊維の物性を示す。

Figure 0005237758
Table 1 lists the organic fibers used as the short fibers 2 and collectively shows the physical properties of each organic fiber.
Figure 0005237758

このように樹脂成形品1に含まれる短繊維2を可撓性を有する有機繊維とすることで、成形時においては、図12に示すように、上流側キャビティ部11から交差部10を介して副キャビティ部9に流れる短繊維2が金型7の交差部10近傍の内面に接した際に変形することができ、これにより繊維長がLmaxよりも長い短繊維2を副キャビティ部9側にスムーズに流すことができる。 Thus, by making the short fiber 2 contained in the resin molded product 1 into an organic fiber having flexibility, at the time of molding, as shown in FIG. 12, the upstream cavity portion 11 passes through the intersection portion 10. The short fibers 2 flowing in the sub-cavity portion 9 can be deformed when contacting the inner surface in the vicinity of the intersecting portion 10 of the mold 7, whereby the short fibers 2 whose fiber length is longer than L max are changed to the side of the sub-cavity portion 9. Can flow smoothly.

(実施形態12)
本実施形態を図13に示す。本実施形態は実施形態2の樹脂成形品1に含まれる短繊維2を実施形態11と同様にマトリックス樹脂となる合成樹脂の融点よりも高い融点を持つ可撓性を有する有機繊維としたものである。この有機繊維としては実施形態11と同様に表1に示すいずれかの有機繊維が用いられる。
Embodiment 12
This embodiment is shown in FIG. In the present embodiment, the short fibers 2 contained in the resin molded product 1 of the second embodiment are made of flexible organic fibers having a melting point higher than that of the synthetic resin serving as the matrix resin, similar to the eleventh embodiment. is there. As the organic fiber, any one of organic fibers shown in Table 1 is used as in the case of the eleventh embodiment.

なお、既述の実施形態1〜10にあっては、上記実施形態11及び12と同様に短繊維2として可撓性を有する有機繊維を用いても良いものとする。また、実施形態1〜12では副薄肉部4を主薄肉部3に対して垂直に突出し、上流側薄肉部6と副薄肉部4とでなす角度θを90度としたが、角度θはこれに限定されるものではなく、つまり副薄肉部4の突出方向は上流側薄肉部6の長さ方向に対して傾斜してあれば良い。   In the above-described first to tenth embodiments, flexible organic fibers may be used as the short fibers 2 in the same manner as in the above-described embodiments 11 and 12. In the first to twelfth embodiments, the sub thin portion 4 protrudes perpendicularly to the main thin portion 3 and the angle θ formed by the upstream thin portion 6 and the sub thin portion 4 is 90 degrees. In other words, the protruding direction of the sub-thin portion 4 may be inclined with respect to the length direction of the upstream thin portion 6.

次に実施例1〜3及び比較例1〜7について説明する。   Next, Examples 1 to 3 and Comparative Examples 1 to 7 will be described.

(実施例1)
本実施例は上記実施形態1に対応する実施例であり、図14に成形する樹脂成形品1の形状を示す。樹脂成形品1は、幅20mm×長さ50mm×厚みt0.5mmの主薄肉部3に、ゲートから8.3mmの位置に幅20mm×高さ3mm×厚みt0.15mmの副薄肉部4を接続している。主薄肉部3の樹脂流動方向を揃えるため、ゲートはファンゲートとし、ベースとなる主薄肉部3と段差無く接続した。
Example 1
This example is an example corresponding to the first embodiment, and FIG. 14 shows the shape of the resin molded product 1 to be molded. The resin molded product 1 has a main thin portion 3 having a width of 20 mm × a length of 50 mm × a thickness of t 1 0.5 mm, and a sub-thin portion having a width of 20 mm × a height of 3 mm × a thickness of t 2 of 0.15 mm at a position of 8.3 mm from the gate. Part 4 is connected. In order to align the resin flow direction of the main thin portion 3, the gate was a fan gate and connected to the main thin portion 3 serving as a base without a step.

成形材料は、短繊維2として繊維径10μm、充填率30重量%のガラス繊維を含み、臨界繊維長Lが0.5mmの液晶ポリマー(LCP)からなるペレットを用いた。樹脂ペレットの実際に測定した繊維長分布を図16(a)に示す。 As the molding material, pellets made of liquid crystal polymer (LCP) containing glass fibers having a fiber diameter of 10 μm and a filling rate of 30% by weight as the short fibers 2 and having a critical fiber length Lc of 0.5 mm were used. The fiber length distribution actually measured for the resin pellets is shown in FIG.

なお、繊維長分布の測定は、材料ペレットをアルミナるつぼ(CW−B000、(株)ニッカトー製)にそれぞれ投入しふたをした後、マッフル炉(KM−600、アドバンテック(株)製)内において600℃大気中に120分間保持しガラス繊維を抽出した。繊維長測定は画像処理ソフト(UVS Light、ケイオー電子工業(株)製)を用いて行った。   The fiber length distribution was measured by placing the material pellets in an alumina crucible (CW-B000, manufactured by Nikkato Co., Ltd.) and capping the material pellets in a muffle furnace (KM-600, manufactured by Advantech Co., Ltd.). The glass fiber was extracted by maintaining in the atmosphere at 120 ° C. for 120 minutes. The fiber length was measured using image processing software (UVS Light, manufactured by Keio Electronics Co., Ltd.).

また、成形はプランジャー径16mm、最大型締力196kNのプリプラ式射出成形機(TR20EHV、ソディックプラステック(株)製)により以下の表2の条件で行った。

Figure 0005237758
Molding was performed under the conditions shown in Table 2 below using a pre-plastic injection molding machine (TR20EHV, manufactured by Sodick Plustech Co., Ltd.) having a plunger diameter of 16 mm and a maximum clamping force of 196 kN.
Figure 0005237758

(実施例2)
本実施例は実施例1の主薄肉部3の厚みtを0.3mmとし、副薄肉部4の厚みtを0.3mmとした。その他の点は実施例1と同じである。
(Example 2)
This embodiment of the thickness t 1 of the main thin portion 3 of Example 1 and 0.3 mm, the thickness t 2 of the sub-thin portion 4 was set to 0.3 mm. The other points are the same as in the first embodiment.

(実施例3)
本実施例は実施例1の主薄肉部3の厚みtを0.5mmとし、副薄肉部4の厚みtを0.3mmとした。その他の点は実施例1と同じである。
(Example 3)
This embodiment of the thickness t 1 of the main thin portion 3 of Example 1 and 0.5 mm, the thickness t 2 of the sub-thin portion 4 was set to 0.3 mm. The other points are the same as in the first embodiment.

(比較例1)
主薄肉部3の厚みtを0.3mmとし、副薄肉部4の厚みtを0.15mmとした。その他の点は実施例1と同じである。
(Comparative Example 1)
The thickness t 1 of the main thin portion 3 was 0.3 mm, and the thickness t 2 of the sub thin portion 4 was 0.15 mm. The other points are the same as in the first embodiment.

(比較例2)
成形材料は、短繊維2として繊維径10μm、充填率30重量%のガラス繊維を含み、臨界繊維長Lが0.5mmの液晶ポリマー(LCP)からなるペレットを用いた。樹脂ペレットの実際に測定した繊維長分布を図16(b)に示す。また、主薄肉部3の厚みtを0.15mmとし、副薄肉部4の厚みtを0.15mmとした。その他の点は実施例1と同じである。
(Comparative Example 2)
As the molding material, pellets made of liquid crystal polymer (LCP) containing glass fibers having a fiber diameter of 10 μm and a filling rate of 30% by weight as the short fibers 2 and having a critical fiber length Lc of 0.5 mm were used. FIG. 16B shows the fiber length distribution actually measured for the resin pellets. The thickness t 1 of the main thin portion 3 was 0.15 mm, and the thickness t 2 of the sub thin portion 4 was 0.15 mm. The other points are the same as in the first embodiment.

(比較例3)
主薄肉部3の厚みtを0.15mmとし、副薄肉部4の厚みtを0.3mmとした。その他の点は比較例2と同じである。
(Comparative Example 3)
The thickness t 1 of the main thin portion 3 was 0.15 mm, and the thickness t 2 of the sub thin portion 4 was 0.3 mm. Other points are the same as those of Comparative Example 2.

(比較例4)
主薄肉部3の厚みtを0.3mmとし、副薄肉部4の厚みtを0.15mmとした。その他の点は比較例2と同じである。
(Comparative Example 4)
The thickness t 1 of the main thin portion 3 was 0.3 mm, and the thickness t 2 of the sub thin portion 4 was 0.15 mm. Other points are the same as those of Comparative Example 2.

(比較例5)
主薄肉部3の厚みtを0.3mmとし、副薄肉部4の厚みtを0.3mmとした。その他の点は比較例2と同じである。
(Comparative Example 5)
The thickness t 1 of the main thin portion 3 was 0.3 mm, and the thickness t 2 of the sub thin portion 4 was 0.3 mm. Other points are the same as those of Comparative Example 2.

(比較例6)
主薄肉部3の厚みtを0.5mmとし、副薄肉部4の厚みtを0.15mmとした。その他の点は比較例2と同じである。
(Comparative Example 6)
The thickness t 1 of the main thin portion 3 was 0.5 mm, and the thickness t 2 of the sub thin portion 4 was 0.15 mm. Other points are the same as those of Comparative Example 2.

(比較例7)
主薄肉部3の厚みtを0.5mmとし、副薄肉部4の厚みtを0.3mmとした。その他の点は比較例2と同じである。
(Comparative Example 7)
The thickness t 1 of the main thin portion 3 was 0.5 mm, and the thickness t 2 of the sub thin portion 4 was 0.3 mm. Other points are the same as those of Comparative Example 2.

上記実施例1〜3及び比較例1〜7で得た各樹脂成形品1の副薄肉部4における曲げ剛性の評価及び引張強度の判定を行った。表3にその結果を示す。   Evaluation of bending rigidity and determination of tensile strength in the sub-thin wall portion 4 of each resin molded product 1 obtained in Examples 1 to 3 and Comparative Examples 1 to 7 were performed. Table 3 shows the results.

Figure 0005237758
Figure 0005237758

表3における曲げ剛性の評価は、図15に示すように、主薄肉部3を拘束した後、気温22℃、相対湿度50%の恒温恒湿室内でダイプラウィンテス(株)製SAICAS(Surface and Interfacial Cutting Analysis System)CN型に取り付けた半径1mm×幅21mmの半円筒形状の治具16を主薄肉部3から2mmの高さで副薄肉部4と接触するように調整した後、5μm/secで平行移動させ、副薄肉部4に与えた変位と、その際の移動方向の荷重を計測した。なお、図15中矢印aは樹脂の流れ方向を示すものである。   As shown in FIG. 15, the bending rigidity evaluation in Table 3 is performed by constraining the main thin-walled portion 3 and then in a constant temperature and humidity room with a temperature of 22 ° C. and a relative humidity of 50%, SAICAS (Surface and Surface) manufactured by Daipurwintes Co., Ltd. Interfacial Cutting Analysis System) After adjusting the semi-cylindrical jig 16 having a radius of 1 mm × width of 21 mm attached to the CN type so as to be in contact with the sub-thin portion 4 at a height of 2 mm from the main thin portion, 5 μm / sec The displacement applied to the sub-thin portion 4 and the load in the moving direction at that time were measured. In addition, the arrow a in FIG. 15 shows the flow direction of resin.

また、表3において測定した線膨張係数は、副薄肉部4の幅方向、すなわち図15における紙面厚み方向の長さが膨張する割合である。   Further, the linear expansion coefficient measured in Table 3 is a ratio in which the width direction of the auxiliary thin portion 4, that is, the length in the paper thickness direction in FIG. 15 expands.

上記表3の結果からわかるように、本発明の樹脂成形品1にあっては引張強度、曲げ剛性、及び線膨張係数を向上することができた。   As can be seen from the results in Table 3, the resin molded product 1 of the present invention was able to improve the tensile strength, the bending rigidity, and the linear expansion coefficient.

(a)は本発明の実施形態1の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 1 of this invention, (b) is a principal part expanded side view of a resin molded product. (a)は本発明の実施形態2の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 2 of this invention, (b) is a principal part expanded side view of a resin molded product. 本発明及び比較例b、cの短繊維の繊維長分布を示すグラフである。It is a graph which shows fiber length distribution of the short fiber of this invention and Comparative Examples b and c. (a)は本発明の実施形態3の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 3 of this invention, (b) is a principal part expanded side view of a resin molded product. (a)は本発明の実施形態4の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 4 of this invention, (b) is a principal part expanded side view of a resin molded product. (a)は本発明の実施形態5の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 5 of this invention, (b) is a principal part expanded side view of a resin molded product. (a)は本発明の実施形態6の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 6 of this invention, (b) is a principal part expanded side view of a resin molded product. (a)は本発明の実施形態7の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 7 of this invention, (b) is a principal part expanded side view of a resin molded product. (a)は本発明の実施形態8の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 8 of this invention, (b) is a principal part expanded side view of a resin molded product. (a)は本発明の実施形態9の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 9 of this invention, (b) is a principal part expanded side view of a resin molded product. (a)は本発明の実施形態10の成形用金型の要部断面を示す説明図であり、(b)は樹脂成形品の要部拡大側面図である。(A) is explanatory drawing which shows the principal part cross section of the metal mold | die for Embodiment 10 of this invention, (b) is a principal part expanded side view of a resin molded product. 本発明の実施形態11の成形用金型の要部断面を示す説明図である。It is explanatory drawing which shows the principal part cross section of the metal mold | die for Embodiment 11 of this invention. 本発明の実施形態12の成形用金型の要部断面を示す説明図である。It is explanatory drawing which shows the principal part cross section of the metal mold | die of Embodiment 12 of this invention. 実施例1の樹脂成形品を示し、(a)は側面図であり、(b)は平面図である。The resin molded product of Example 1 is shown, (a) is a side view, (b) is a top view. 曲げ剛性の評価方法を示す説明図である。It is explanatory drawing which shows the evaluation method of bending rigidity. (a)は実施例1〜3、比較例1の繊維長分布を示すグラフであり、(b)は比較例2〜7の繊維長分布を示すグラフである。(A) is a graph which shows the fiber length distribution of Examples 1-3 and the comparative example 1, (b) is a graph which shows the fiber length distribution of the comparative examples 2-7.

1 樹脂成形品
2 短繊維
3 主薄肉部
4 副薄肉部
5 交差部
6 上流側薄肉部
8 主キャビティ部
9 副キャビティ部
10 交差部
DESCRIPTION OF SYMBOLS 1 Resin molding 2 Short fiber 3 Main thin part 4 Sub thin part 5 Crossing part 6 Upstream thin part 8 Main cavity part 9 Sub cavity part 10 Crossing part

Claims (8)

短繊維を含有する合成樹脂よりなり、主薄肉部と、主薄肉部から交差する方向に一体に突出して成形時の上流端となる突出基端が主薄肉部に接続された副薄肉部を備え、前記主薄肉部の厚みt及び副薄肉部の厚みtを共に1.0mm以下とした樹脂成形品において、
主薄肉部における副薄肉部との交差部よりも成形時に上流側に位置する部分を上流側薄肉部として、該上流側薄肉部と副薄肉部とでなす角度をθとし、含有する全ての短繊維のうち、繊維長が下記式3により導き出される臨界繊維長L (ここで、式3におけるL は、引張試験を実施したときの破断繊維の平均繊維長)以上の短繊維の全短繊維に対する体積分率をV、繊維長が臨界繊維長L以上で且つ下記式1により導き出されるLmax以下の短繊維の全短繊維に対する体積分率をVとし、
Figure 0005237758
Figure 0005237758
前記体積分率Vに対する体積分率Vの割合V/Vを40%以上とすることを特徴とする樹脂成形品。
Made of synthetic resin containing short fibers, it has a main thin part and a sub-thin part that protrudes integrally in the direction intersecting from the main thin part and has a protruding base end that becomes the upstream end during molding connected to the main thin part in the main thin portion resin molded article together and 1.0mm or less the thickness t 1 and the thickness t 2 of the sub-thin portion,
The portion located upstream from the intersection of the main thin portion with the sub thin portion at the time of molding is defined as the upstream thin portion, and the angle formed by the upstream thin portion and the sub thin portion is defined as θ. Among the fibers, the total length of short fibers whose fiber length is derived from the following formula 3 is equal to or greater than the critical fiber length L c (where L f in formula 3 is the average fiber length of the fractured fibers when the tensile test is performed). The volume fraction with respect to the fibers is V l , and the volume fraction with respect to all short fibers of the short fibers whose fiber length is not less than the critical fiber length L c and not more than L max derived by the following formula 1 is V,
Figure 0005237758
Figure 0005237758
A resin molded product, wherein a ratio V / V 1 of the volume fraction V to the volume fraction V 1 is 40% or more.
上流側薄肉部と副薄肉部とでなす入隅部を直線状又は弧状の面取り形状に形成して成ることを特徴とする請求項1に記載の樹脂成形品。   2. The resin molded product according to claim 1, wherein a corner portion formed by the upstream thin portion and the sub thin portion is formed in a linear or arcuate chamfered shape. 上流側薄肉部に対して下記式2で導き出される角度φだけ副薄肉部側に傾斜し、且つ、上流側薄肉部と副薄肉部とでなす入隅部の面と1箇所のみで接する仮想直線Aを描き、
Figure 0005237758
上流側薄肉部の副薄肉部と反対側の面における仮想直線Aが通過する部分、又は、副薄肉部の上流側薄肉部と反対側の面における仮想直線Aが通過する部分のうち、少なくとも一方に短繊維逃がし用突部を形成して成ることを特徴とする請求項1又は請求項2に記載の樹脂成形品。
An imaginary straight line that inclines toward the sub-thin portion by an angle φ derived from the following equation 2 with respect to the upstream side thin portion, and is in contact with the face of the corner formed by the upstream side thin portion and the sub-thin portion at only one location. Draw A
Figure 0005237758
At least one of the portion through which the virtual straight line A on the surface opposite to the sub-thin portion of the upstream thin portion passes, or the portion through which the virtual straight line A on the surface opposite to the upstream thin portion of the sub-thin portion passes. The resin molded product according to claim 1, wherein a short fiber escape protrusion is formed on the resin molded product.
上記短繊維はマトリックス樹脂の融点よりも高い融点を持つ可撓性を有する有機繊維からなることを特徴とする請求項1乃至3のいずれか1項に記載の樹脂成形品。   4. The resin molded product according to claim 1, wherein the short fibers are made of flexible organic fibers having a melting point higher than that of the matrix resin. 短繊維を含有する合成樹脂の射出成形品であり、且つ、主薄肉部と、該主薄肉部から交差する方向に一体に突出して成形時の上流端となる突出基端が主薄肉部に接続された副薄肉部を備え、前記主薄肉部の厚みt及び副薄肉部の厚みtを共に1.0mm以下とした樹脂成形品の製造方法において、
樹脂成形品の金型は、主薄肉部を形成する主キャビティ部と、副薄肉部を形成する副キャビティ部を形成し、主キャビティ部における副キャビティ部との交差部よりも上流側に位置する部分を上流側キャビティ部とし、該上流側キャビティ部と副キャビティ部とでなす角度をθとし、前記合成樹脂に含有された全短繊維のうち、繊維長が下記式3により導き出される臨界繊維長L (ここで、式3におけるL は、引張試験を実施したときの破断繊維の平均繊維長)以上の短繊維の全短繊維に対する体積分率をV、繊維長が臨界繊維長L以上で且つ下記式1により導き出されるLmax以下の短繊維の全短繊維に対する体積分率をVとし、
Figure 0005237758
Figure 0005237758
前記体積分率Vに対する体積分率Vの割合V/Vを40%以上とすることを特徴とする樹脂成形品の製造方法。
This is an injection-molded product of synthetic resin containing short fibers, and the main thin-walled portion and the protruding base end that protrudes integrally in the direction intersecting from the main thin-walled portion and becomes the upstream end during molding are connected to the main thin-walled portion in the sub-thin portion wherein the main thin portion thickness t 1 and the manufacturing method of the sub-thin portion resin molded article together and 1.0mm or less the thickness t 2 of which are,
The mold of the resin molded product forms a main cavity part that forms the main thin part and a sub cavity part that forms the sub thin part, and is located upstream of the intersection of the main cavity part and the sub cavity part. The critical fiber length derived from the following equation 3 among all short fibers contained in the synthetic resin, where θ is an angle formed by the upstream cavity portion and the upstream cavity portion and the sub-cavity portion, L c (where L f in Equation 3 is the average fiber length of the broken fiber when the tensile test is performed) V 1 is the volume fraction of all short fibers, and the fiber length is the critical fiber length L The volume fraction with respect to all short fibers of short fibers not less than c and not more than L max derived by the following formula 1 is V,
Figure 0005237758
Figure 0005237758
A method for producing a resin molded product, wherein a ratio V / V 1 of the volume fraction V to the volume fraction V 1 is 40% or more.
上流側キャビティ部と副キャビティ部とでなす出隅部を直線状又は弧状の面取り形状に形成して成ることを特徴とする請求項5に記載の樹脂成形品の製造方法。   6. The method for producing a resin molded product according to claim 5, wherein a protruding corner portion formed by the upstream cavity portion and the sub-cavity portion is formed in a linear or arc chamfered shape. 上流側キャビティ部に対して下記式2で導き出される角度φだけ副キャビティ部側に傾斜し、且つ、上流側キャビティ部と副キャビティ部とでなす出隅部の面と1箇所のみで接する仮想直線Aを描き、
Figure 0005237758
上流側キャビティ部の副キャビティ部と反対側の内面における仮想直線Aが通過する部分、又は、副キャビティ部の上流側キャビティ部と反対側の内面における仮想直線Aが通過する部分のうち、少なくとも一方に、短繊維逃がし用凹部を形成して成ることを特徴とする請求項5又は請求項6に記載の樹脂成形品の製造方法。
An imaginary straight line that is inclined toward the sub-cavity portion by an angle φ derived from the following equation 2 with respect to the upstream-side cavity portion, and that is in contact with the surface of the protruding corner formed by the upstream-side cavity portion and the sub-cavity portion only at one location. Draw A
Figure 0005237758
At least one of a portion through which an imaginary straight line A passes through an inner surface of the upstream cavity portion opposite to the sub-cavity portion or a portion through which an imaginary straight line A passes through the inner surface of the sub-cavity portion opposite to the upstream cavity portion. The method for producing a resin molded product according to claim 5 or 6, wherein a short fiber escape recess is formed.
上記短繊維はマトリックス樹脂の融点よりも高い融点を持つ可撓性を有する有機繊維からなることを特徴とする請求項5乃至7のいずれか1項に記載の樹脂成形品の製造方法。   The method for producing a resin molded product according to any one of claims 5 to 7, wherein the short fibers are made of flexible organic fibers having a melting point higher than that of the matrix resin.
JP2008278807A 2008-06-02 2008-10-29 Resin molded product and manufacturing method thereof Expired - Fee Related JP5237758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278807A JP5237758B2 (en) 2008-06-02 2008-10-29 Resin molded product and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008144938 2008-06-02
JP2008144938 2008-06-02
JP2008278807A JP5237758B2 (en) 2008-06-02 2008-10-29 Resin molded product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010012770A JP2010012770A (en) 2010-01-21
JP5237758B2 true JP5237758B2 (en) 2013-07-17

Family

ID=41699342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278807A Expired - Fee Related JP5237758B2 (en) 2008-06-02 2008-10-29 Resin molded product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5237758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103711A1 (en) * 2012-12-26 2014-07-03 東レ株式会社 Molded product having hollow structure and process for producing same
TWI750105B (en) * 2016-12-15 2021-12-11 日商住友化學股份有限公司 Method for producing a plate-like molded product, mold
JP7070065B2 (en) * 2018-05-14 2022-05-18 株式会社豊田中央研究所 Fiber reinforced resin structural member

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137648A (en) * 1990-09-28 1992-05-12 Toshiba Components Co Ltd Semiconductor element storage case
JP3363500B2 (en) * 1992-12-25 2003-01-08 旭化成株式会社 Mold and injection molding method using the same
JP3170552B2 (en) * 1994-10-18 2001-05-28 ポリプラスチックス株式会社 Injection molding
JPH09286036A (en) * 1996-04-22 1997-11-04 Toray Ind Inc Resin molded product
JP3993292B2 (en) * 1998-02-13 2007-10-17 株式会社プライムポリマー Fiber reinforced resin molded product with thick part
JP2001277292A (en) * 2000-03-29 2001-10-09 Toshiba Corp Structure, method of manufacturing it, housing body device and portable terminal device
JP2001278996A (en) * 2000-03-30 2001-10-10 Toto Ltd Heat exchanging tank for warm water washing apparatus
JP4696351B2 (en) * 2000-11-22 2011-06-08 東レ株式会社 Resin composition for precision molded products
JP3755457B2 (en) * 2001-12-18 2006-03-15 住友化学株式会社 Manufacturing method of fiber reinforced molded product
JP2003200452A (en) * 2002-01-10 2003-07-15 Daicel Chem Ind Ltd Fiber-reinforced thermoplastic resin molding and molding method
JP2004058413A (en) * 2002-07-26 2004-02-26 Ricoh Co Ltd Resin molded product

Also Published As

Publication number Publication date
JP2010012770A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
CN104235249B (en) The method that the energy management assemblies and management energy being resiliently deformable absorb
EP0376472B1 (en) Thermoplastic composite plate material and products molded from the same
EP1894210B1 (en) Thermoplastic long fiber composites, methods of manufacture thereof and articles derived therefrom
JP5237758B2 (en) Resin molded product and manufacturing method thereof
WO2018142971A1 (en) Integrally molded body and method for producing same
KR101927557B1 (en) Fabrication method for injection formed body
JP2010030193A (en) Method for manufacturing fiber-reinforced plastic
JP5950194B2 (en) Method for producing composite molded body
JPWO2015093261A1 (en) Thermosetting resin composition and metal resin composite
JP5767850B2 (en) Thin molded body for electronic device housing
KR101793232B1 (en) Thin moulded body, process for preparation thereof, and use thereof as electronic device housing
EP3718733A1 (en) Molding method and molding device
JP6283941B2 (en) Manufacturing method of molded products
TWI750105B (en) Method for producing a plate-like molded product, mold
US20200276873A1 (en) Bi-material cage comprising bearings, for a ball joint
JP2018134789A (en) Fiber reinforced resin material and fiber reinforced resin molded article
JP2010010374A (en) Method of manufacturing semiconductor package
JP3947088B2 (en) Electronic device casing and injection molding apparatus used for manufacturing the casing
JP2011173400A (en) Resin mold structure and resin molding method
JPH08233110A (en) Oil seal ring
JP2023131922A (en) Resin molded product and method for manufacturing the same
JPH0477095A (en) Diaphragm for speaker
JP2015139878A (en) Water-assist molding
JP3240497B2 (en) Resin molded products with end grooves
JP2003202054A (en) Method for manufacturing high load transmission belt, manufacturing device and high load transmission belt

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees