JP2018134789A - Fiber reinforced resin material and fiber reinforced resin molded article - Google Patents

Fiber reinforced resin material and fiber reinforced resin molded article Download PDF

Info

Publication number
JP2018134789A
JP2018134789A JP2017030629A JP2017030629A JP2018134789A JP 2018134789 A JP2018134789 A JP 2018134789A JP 2017030629 A JP2017030629 A JP 2017030629A JP 2017030629 A JP2017030629 A JP 2017030629A JP 2018134789 A JP2018134789 A JP 2018134789A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
carbon fiber
elastic modulus
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017030629A
Other languages
Japanese (ja)
Inventor
明宏 前田
Akihiro Maeda
明宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017030629A priority Critical patent/JP2018134789A/en
Publication of JP2018134789A publication Critical patent/JP2018134789A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced resin molded article that can exhibit good mechanical properties in which interfacial failure between carbon fibers and a matrix resin hardly occurs even when carbon fibers having high tensile elastic modulus are used, and a fiber-reinforced resin material excellent in moldability capable of obtaining such a fiber-reinforced resin molded article.SOLUTION: The fiber reinforced resin material includes: a plurality of carbon fibers; and a resin material containing either or both of a thermosetting resin and a thermoplastic resin. A product Lf×Er/Ef of a ratio Er/Ef of a tensile modulus of elasticity Er (GPa) of the resin material (however, in the case of including the thermosetting resin, the thermosetting resin is cured.) with respect to a tensile modulus of elasticity Ef (GPa) of the carbon fiber and a fiber length Lf (mm) of the carbon fiber is in a range of 0.2 to 0.8.SELECTED DRAWING: None

Description

本発明は、繊維強化樹脂材料、および繊維強化樹脂材料を成形した繊維強化樹脂成形体に関する。   The present invention relates to a fiber reinforced resin material and a fiber reinforced resin molded body obtained by molding the fiber reinforced resin material.

部分的に肉厚の異なる部分、リブ、ボス等を有する複雑な形状の繊維強化樹脂成形体の製造に用いられる中間材料としては、強化繊維がチョップドファイバーから構成されることによって成形性がよい、シートモールディングコンパウンド(以下、SMCと略す。)やスタンパブルシート等がある。SMCは、長尺の炭素繊維束を所定の長さに切断した短尺の炭素繊維束(チョップド炭素繊維束)を堆積して形成されたシート状炭素繊維束群に、熱硬化性樹脂を含浸させた繊維強化樹脂材料である。スタンパブルシートは、チョップド繊維束に熱可塑性樹脂を含浸させた繊維強化樹脂材料である。   As an intermediate material used in the manufacture of a fiber reinforced resin molded article having a complicated shape having parts with different thicknesses, ribs, bosses, etc., the moldability is good because the reinforcing fibers are composed of chopped fibers. There are sheet molding compounds (hereinafter abbreviated as SMC), stampable seats, and the like. SMC impregnates a sheet-like carbon fiber bundle group formed by depositing short carbon fiber bundles (chopped carbon fiber bundles) obtained by cutting long carbon fiber bundles into a predetermined length with a thermosetting resin. Fiber reinforced resin material. The stampable sheet is a fiber reinforced resin material in which a chopped fiber bundle is impregnated with a thermoplastic resin.

繊維強化樹脂材料を成形した繊維強化樹脂成形体としては、例えば、下記のものが挙げられる。
(1)繊維長が5〜100mmの範囲内である強化繊維が実質的に一方向に引き揃えられた、フィラメント本数が10,000〜700,000本の範囲内であるチョップド繊維束がマトリックス樹脂で一体化された成形材料であって、成形材料中におけるチョップド繊維束の平均幅Wmと平均厚みtmとの比率(Wm/tm)が70〜1,000の範囲内であり、かつ、チョップド繊維束の平均幅Wmが2〜50mmの範囲内、平均厚みtmが0.02〜0.1mmの範囲内である成形材料を成形した繊維強化樹脂成形体(特許文献1)。
(2)単繊維状に分散された強化繊維と熱可塑性樹脂からなる繊維強化樹脂成形体であって、強化繊維の面内角度度数分布における10°刻みの相対度数の最大値Dmaxと最小値DminがDmax―Dmin≦0.08なる関係にあり、強化繊維の長さ分布における最大繊維長(lmax)が臨界繊維長(lc)に対して5lc以下、かつ繊維長lc〜5lcに占める強化繊維量の体積比率(Va)が40〜90%であり、強化繊維の面外角度の平均値が6°以下、平面部における厚さが1.5〜4mmである、繊維強化樹脂成形体(特許文献2)。
As a fiber reinforced resin molding which shape | molded the fiber reinforced resin material, the following are mentioned, for example.
(1) A chopped fiber bundle in which the number of filaments is in the range of 10,000 to 700,000 in which the reinforcing fibers having a fiber length in the range of 5 to 100 mm are substantially aligned in one direction is a matrix resin. And a ratio (Wm / tm) of an average width Wm and an average thickness tm of the chopped fiber bundle in the molding material is in a range of 70 to 1,000, and chopped fibers A fiber reinforced resin molded article obtained by molding a molding material having an average bundle width Wm of 2 to 50 mm and an average thickness tm of 0.02 to 0.1 mm (Patent Document 1).
(2) A fiber reinforced resin molded article made of a reinforcing fiber dispersed in a single fiber and a thermoplastic resin, and a maximum value Dmax and a minimum value Dmin of relative frequencies in increments of 10 ° in the in-plane angular frequency distribution of the reinforcing fibers. Is a relationship of Dmax−Dmin ≦ 0.08, the maximum fiber length (lmax) in the length distribution of the reinforcing fibers is 5 lc or less with respect to the critical fiber length (lc), and the amount of reinforcing fibers occupying the fiber lengths lc to 5lc A fiber-reinforced resin molded article having a volume ratio (Va) of 40 to 90%, an average value of out-of-plane angles of reinforcing fibers of 6 ° or less, and a thickness of 1.5 to 4 mm in a plane portion (Patent Document) 2).

特開2009−062474号公報JP 2009-062474 A 特開2014−019780号公報JP 2014-0197780 A

機械特性に優れた繊維強化樹脂成形体を得るための手法の一つとして、ピッチ系炭素繊維等の引張弾性率の高い、高剛性の炭素繊維を用いることが考えられる。
しかし、(1)の成形材料や(2)の繊維強化樹脂成形体においては、汎用グレードの剛性(引張弾性率が200〜300GPa)である炭素繊維が用いられており、引張弾性率が300GPaを超えるような高剛性の炭素繊維は検討されていない。
As one of the methods for obtaining a fiber reinforced resin molded article having excellent mechanical properties, it is conceivable to use a carbon fiber having high tensile elasticity such as pitch-based carbon fiber and having high rigidity.
However, in the molding material (1) and the fiber reinforced resin molding (2), carbon fibers having a general-purpose grade stiffness (tensile elastic modulus is 200 to 300 GPa) are used, and the tensile elastic modulus is 300 GPa. High-rigidity carbon fibers exceeding the above have not been studied.

また、短尺の炭素繊維束を用いた繊維強化樹脂成形体において良好な機械特性を発揮させるためには、炭素繊維とマトリックス樹脂とが強固に接着していることが必要である。しかし、高剛性の炭素繊維を用いた繊維強化樹脂成形体においては、炭素繊維の引張弾性率とマトリックス樹脂の引張弾性率との差が大きくなる。そのため、繊維強化樹脂成形体に荷重を加えたときに、炭素繊維とマトリックス樹脂との界面に生じる応力集中が大きくなる傾向がある。また、界面破壊後はマトリックス樹脂に局所的な歪が発生しやすくなる。したがって、(1)の成形材料や(2)の繊維強化樹脂成形体において高剛性の炭素繊維を用いた場合、炭素繊維とマトリックス樹脂との界面破壊が生じやすく、十分な機械特性を発揮させることが困難となる。   Further, in order to exhibit good mechanical properties in a fiber reinforced resin molded article using a short carbon fiber bundle, it is necessary that the carbon fiber and the matrix resin are firmly bonded. However, in a fiber reinforced resin molded article using high-rigidity carbon fibers, the difference between the tensile elastic modulus of the carbon fibers and the tensile elastic modulus of the matrix resin increases. Therefore, when a load is applied to the fiber reinforced resin molded product, the stress concentration generated at the interface between the carbon fiber and the matrix resin tends to increase. In addition, local strain tends to occur in the matrix resin after the interface breakage. Therefore, when high-rigidity carbon fibers are used in the molding material (1) and the fiber-reinforced resin molding (2), interface fracture between the carbon fibers and the matrix resin is likely to occur, and sufficient mechanical properties are exhibited. It becomes difficult.

本発明は、引張弾性率の高い炭素繊維を用いた場合であっても、炭素繊維とマトリックス樹脂との界面破壊が生じにくく、良好な機械特性を発揮できる繊維強化樹脂成形体、およびこのような繊維強化樹脂成形体を得ることができ、かつ成形性に優れる繊維強化樹脂材料を提供する。   The present invention provides a fiber reinforced resin molded article that is less likely to cause interface fracture between carbon fibers and a matrix resin even when carbon fibers having a high tensile elastic modulus are used, and can exhibit good mechanical properties. Provided is a fiber reinforced resin material which can obtain a fiber reinforced resin molded article and is excellent in moldability.

本発明は、下記の態様を有する。
<1>複数の炭素繊維と、熱硬化性樹脂および熱可塑性樹脂のいずれか一方または両方を含む樹脂材料とを含み、前記炭素繊維の引張弾性率Ef(GPa)に対する前記樹脂材料(ただし、前記熱硬化性樹脂を含む場合は、該熱硬化性樹脂は硬化させる。)の引張弾性率Er(GPa)の比Er/Efと、前記炭素繊維の繊維長Lf(mm)との積Lf×Er/Efが、0.2〜0.8の範囲にある、繊維強化樹脂材料。
<2>前記炭素繊維の体積含有率が、前記繊維強化樹脂材料の100体積%のうち、20体積%以上65体積%未満である、前記<1>の繊維強化樹脂材料。
<3>前記<1>または<2>の繊維強化樹脂材料を成形した、繊維強化樹脂成形体。
The present invention has the following aspects.
<1> a plurality of carbon fibers and a resin material containing one or both of a thermosetting resin and a thermoplastic resin, and the resin material for the tensile elastic modulus Ef (GPa) of the carbon fiber (however, When the thermosetting resin is included, the thermosetting resin is cured.) The product Lf × Er of the ratio Er / Ef of the tensile elastic modulus Er (GPa) and the fiber length Lf (mm) of the carbon fiber. / Ef is a fiber reinforced resin material in the range of 0.2 to 0.8.
<2> The fiber reinforced resin material according to <1>, wherein a volume content of the carbon fiber is 20% by volume or more and less than 65% by volume out of 100% by volume of the fiber reinforced resin material.
<3> A fiber-reinforced resin molded article obtained by molding the fiber-reinforced resin material according to <1> or <2>.

本発明の繊維強化樹脂材料によれば、引張弾性率の高い炭素繊維を用いた場合であっても、炭素繊維とマトリックス樹脂との界面破壊が生じにくく、良好な機械特性を発揮できる繊維強化樹脂成形体を得ることができる。また、本発明の繊維強化樹脂材料は、成形性に優れる。
本発明の繊維強化樹脂成形体は、引張弾性率の高い炭素繊維を用いた場合であっても、炭素繊維とマトリックス樹脂との界面破壊が生じにくく、良好な機械特性を発揮できる。
According to the fiber reinforced resin material of the present invention, even when carbon fibers having a high tensile elastic modulus are used, the fiber reinforced resin is capable of exhibiting good mechanical properties without causing interface fracture between the carbon fibers and the matrix resin. A molded body can be obtained. Moreover, the fiber reinforced resin material of this invention is excellent in a moldability.
The fiber reinforced resin molded article of the present invention is less likely to cause interfacial breakage between the carbon fiber and the matrix resin even when carbon fiber having a high tensile modulus is used, and can exhibit good mechanical properties.

実施例で用いたシミュレーションモデル(繊維強化樹脂成形体)の斜視図である。It is a perspective view of the simulation model (fiber reinforced resin molding) used in the example. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 図1のIII−III断面図である。It is III-III sectional drawing of FIG.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「炭素繊維の引張弾性率」は、JIS R 7606:2000「炭素繊維−単繊維の引張特性の試験方法」(対応国際規格ISO 11566:1996)に準拠して測定された値である。
「樹脂材料の引張弾性率」は、JIS K 7161−1:2014「プラスチック−引張特性の求め方−第1部:通則」(対応国際規格ISO 527−1:2012)に準拠して測定された値である。
「炭素繊維とマトリックス樹脂との界面せん断強度」の測定方法としては、マイクロドロッププレット法およびフラグメンテーション法が知られているが、本明細書においては、マイクロドロッププレット法を採用する。
「マイクロドロッププレット法」は、単繊維に樹脂粒(ドロップレット)を付着させ、ドロップレットを固定した後、ドロップレットからの単繊維の引き抜き試験を行うことによって単繊維と樹脂との界面接着性を評価する方法である。マイクロドロッププレット法においては、下記式から界面せん断強度が算出される。
τ=F/(πDL)
ただし、τは界面せん断強度であり、Fは最大引抜荷重であり、Lはドロップレットに埋め込まれた部分の単繊維の長さであり、Dは単繊維の繊維径である。
数値範囲を示す「〜」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
図1〜図3における寸法比は、説明の便宜上、実際のものとは異なったものである。
The following definitions of terms apply throughout this specification and the claims.
“Tensile elastic modulus of carbon fiber” is a value measured in accordance with JIS R 7606: 2000 “Testing method for tensile properties of carbon fiber-single fiber” (corresponding international standard ISO 11566: 1996).
The “tensile elastic modulus of the resin material” was measured in accordance with JIS K 7161-1: 2014 “Plastics—Method of obtaining tensile properties—Part 1: General rules” (corresponding international standard ISO 527-1: 2012). Value.
As a method for measuring “interfacial shear strength between carbon fiber and matrix resin”, a microdroplet method and a fragmentation method are known. In this specification, the microdroplet method is employed.
In the “microdroplet method”, resin particles (droplets) are attached to single fibers, and after fixing the droplets, the interfacial adhesion between the single fibers and the resin is determined by performing a pull-out test of the single fibers from the droplets. It is a method to evaluate. In the microdroplet method, the interfacial shear strength is calculated from the following equation.
τ = F / (πDL)
Where τ is the interfacial shear strength, F is the maximum pulling load, L is the length of the single fiber embedded in the droplet, and D is the fiber diameter of the single fiber.
“˜” indicating a numerical range means that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
The dimensional ratios in FIGS. 1 to 3 are different from actual ones for convenience of explanation.

<繊維強化樹脂材料>
本発明の繊維強化樹脂材料は、複数の炭素繊維と、熱硬化性樹脂および熱可塑性樹脂のいずれか一方または両方を含む樹脂材料とを含む。
繊維強化樹脂材料は、加熱によって流動性が高くなるため、SMCとして様々な形状の繊維強化樹脂成形体の製造に用いられる。
<Fiber-reinforced resin material>
The fiber-reinforced resin material of the present invention includes a plurality of carbon fibers and a resin material containing one or both of a thermosetting resin and a thermoplastic resin.
Since the fiber reinforced resin material has high fluidity by heating, it is used as an SMC for manufacturing fiber reinforced resin molded products having various shapes.

本発明の繊維強化樹脂材料においては、炭素繊維の引張弾性率Ef(GPa)に対する樹脂材料(ただし、熱硬化性樹脂を含む場合は、該熱硬化性樹脂は硬化させる。)の引張弾性率Er(GPa)の比Er/Efと、炭素繊維の繊維長Lf(mm)との積Lf×Er/Efが、0.2〜0.8の範囲にあり、0.2〜0.6の範囲にあることが好ましい。Lf×Er/Efが前記範囲の下限値以上であれば、機械特性に優れた繊維強化樹脂成形体が得られる。Lf×Er/Efが前記範囲の上限値以下であれば、炭素繊維の繊維長Lfが十分に短くなり、繊維強化樹脂材料の成形性に優れる。   In the fiber reinforced resin material of the present invention, the tensile elastic modulus Er of a resin material (however, when a thermosetting resin is included, the thermosetting resin is cured) with respect to the tensile elastic modulus Ef (GPa) of the carbon fiber. The product Lf × Er / Ef of the ratio Er / Ef of (GPa) and the fiber length Lf (mm) of the carbon fiber is in the range of 0.2 to 0.8, and is in the range of 0.2 to 0.6. It is preferable that it exists in. When Lf × Er / Ef is not less than the lower limit of the above range, a fiber-reinforced resin molded article having excellent mechanical properties can be obtained. When Lf × Er / Ef is equal to or less than the upper limit of the above range, the fiber length Lf of the carbon fiber becomes sufficiently short, and the moldability of the fiber reinforced resin material is excellent.

Lf×Er/Efは、繊維強化樹脂成形体の機械特性と繊維強化樹脂材料の成形性のバランスを示す式である。
炭素繊維の引張弾性率Efが高いほど、繊維強化樹脂成形体において高い剛性が見込まれる。しかし、樹脂材料(マトリックス樹脂相当)の引張弾性率Erとの差が大きくなる、すなわちEr/Efが小さくなるほど、炭素繊維とマトリックス樹脂との界面に生ずる応力が高くなり、炭素繊維とマトリックス樹脂との界面破壊を助長して繊維強化樹脂成形体としての機械特性が低下しやすい。また、繊維強化樹脂成形体の機械特性の観点からは、炭素繊維の繊維長Lfは長い方が効果的であるが、繊維強化樹脂材料の成形性の観点からは、炭素繊維の繊維長Lfが短い方が効果的である。したがって、繊維強化樹脂成形体の機械特性と繊維強化樹脂材料の成形性のバランスを取るためには、Lf、ErおよびEfの関係を調整する必要があり、具体的にはLf×Er/Efを前記範囲内とすればよい。
Lf × Er / Ef is an equation indicating the balance between the mechanical properties of the fiber-reinforced resin molded product and the moldability of the fiber-reinforced resin material.
As the tensile elastic modulus Ef of the carbon fiber is higher, higher rigidity is expected in the fiber-reinforced resin molded body. However, as the difference from the tensile modulus Er of the resin material (corresponding to the matrix resin) increases, that is, as Er / Ef decreases, the stress generated at the interface between the carbon fiber and the matrix resin increases, and the carbon fiber and the matrix resin The mechanical properties of the fiber-reinforced resin molded product are likely to be reduced by promoting interfacial fracture. Further, from the viewpoint of mechanical properties of the fiber reinforced resin molded product, it is more effective that the fiber length Lf of the carbon fiber is longer, but from the viewpoint of moldability of the fiber reinforced resin material, the fiber length Lf of the carbon fiber is The shorter one is more effective. Therefore, in order to balance the mechanical properties of the fiber-reinforced resin molded body and the moldability of the fiber-reinforced resin material, it is necessary to adjust the relationship between Lf, Er, and Ef. Specifically, Lf × Er / Ef is set to It may be within the above range.

(炭素繊維)
Lf×Er/Efが前記範囲内にある場合、炭素繊維の繊維長Lfは十分に短くなる。よって、本発明における炭素繊維は、通常、長尺の炭素繊維を切断した短尺の炭素繊維である。
短尺の炭素繊維としては、繊維強化樹脂成形体の機械特性の観点から、長尺の炭素繊維束を切断した短尺の炭素繊維束、いわゆるチョップド炭素繊維束が好ましい。
長尺の炭素繊維束としては、複数の炭素繊維が1軸方向に配向したトウ等が挙げられる。
(Carbon fiber)
When Lf × Er / Ef is within the above range, the fiber length Lf of the carbon fiber is sufficiently short. Therefore, the carbon fiber in the present invention is usually a short carbon fiber obtained by cutting a long carbon fiber.
The short carbon fiber is preferably a short carbon fiber bundle obtained by cutting a long carbon fiber bundle, so-called chopped carbon fiber bundle, from the viewpoint of mechanical properties of the fiber reinforced resin molded product.
Examples of the long carbon fiber bundle include a tow or the like in which a plurality of carbon fibers are aligned in a uniaxial direction.

炭素繊維としては、PAN系炭素繊維、ピッチ系炭素繊維が挙げられる。炭素繊維の原材料や製造方法は、特に限定されない。炭素繊維は、繊維強化樹脂成形体におけるマトリックス樹脂との接着性を改善するために、表面処理されたものであってもよい。
炭素繊維は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the carbon fiber include PAN-based carbon fiber and pitch-based carbon fiber. The raw material and manufacturing method of carbon fiber are not particularly limited. The carbon fiber may be subjected to a surface treatment in order to improve adhesiveness with the matrix resin in the fiber reinforced resin molded body.
Carbon fiber may be used individually by 1 type, and may use 2 or more types together.

炭素繊維の引張弾性率Efは、300GPa超800GPa以下が好ましく、400〜700GPaがより好ましい。炭素繊維の引張弾性率Efが前記範囲の上限値以下であれば、機械特性にさらに優れた繊維強化樹脂成形体が得られる。炭素繊維の引張弾性率Efが前記範囲の上限値以下であれば、炭素繊維とマトリックス樹脂との界面破壊を抑制し、安定した物性を得る。   The tensile elastic modulus Ef of the carbon fiber is preferably more than 300 GPa and 800 GPa or less, and more preferably 400 to 700 GPa. If the tensile elastic modulus Ef of the carbon fiber is not more than the upper limit of the above range, a fiber reinforced resin molded article having further excellent mechanical properties can be obtained. When the tensile elastic modulus Ef of the carbon fiber is equal to or less than the upper limit of the above range, interfacial breakage between the carbon fiber and the matrix resin is suppressed, and stable physical properties are obtained.

炭素繊維の繊維長Lfは、20〜100mmが好ましく、50〜75mmがより好ましい。炭素繊維の繊維長Lfが前記範囲の上限値以下であれば、機械特性がさらに優れた繊維強化樹脂成形体が得られる。炭素繊維の繊維長Lfが前記範囲の上限値以下であれば、繊維強化樹脂材料の成形性がさらに優れる。繊維長Lfの異なる複数の炭素繊維を含む場合、炭素繊維の繊維長Lfは、平均値とする。   The fiber length Lf of the carbon fiber is preferably 20 to 100 mm, and more preferably 50 to 75 mm. If the fiber length Lf of the carbon fiber is equal to or less than the upper limit of the above range, a fiber reinforced resin molded article with further excellent mechanical properties can be obtained. If the fiber length Lf of the carbon fiber is not more than the upper limit of the above range, the moldability of the fiber reinforced resin material is further improved. When a plurality of carbon fibers having different fiber lengths Lf are included, the fiber length Lf of the carbon fibers is an average value.

炭素繊維の体積含有率Vfは、繊維強化樹脂材料の100体積%のうち、20体積%以上65体積%未満が好ましく、30〜50体積%がより好ましい。炭素繊維の体積含有率Vfが前記範囲の下限値以上であれば、機械特性がさらに優れた繊維強化樹脂成形体が得られる。炭素繊維の体積含有率Vfが前記範囲の上限値以下であれば、繊維強化樹脂材料の成形性がさらに優れ、複雑な形状の繊維強化樹脂成形体の中間材料に適した繊維強化樹脂材料が得られる。   The volume content Vf of the carbon fiber is preferably 20% by volume or more and less than 65% by volume, more preferably 30 to 50% by volume, out of 100% by volume of the fiber reinforced resin material. If the volume content Vf of the carbon fiber is equal to or higher than the lower limit of the above range, a fiber-reinforced resin molded article with further excellent mechanical properties can be obtained. If the volume content Vf of the carbon fiber is less than or equal to the upper limit of the above range, the fiber reinforced resin material is more excellent in moldability and a fiber reinforced resin material suitable for an intermediate material of a fiber reinforced resin molded body having a complicated shape is obtained. It is done.

(樹脂材料)
樹脂材料は、樹脂と、必要に応じて添加剤を含む。
樹脂としては、熱硬化性樹脂および熱可塑性樹脂のいずれか一方または両方が挙げられる。樹脂としては、繊維強化樹脂成形体の機械特性の点から、熱硬化性樹脂が好ましい。
(Resin material)
The resin material includes a resin and, if necessary, an additive.
Examples of the resin include one or both of a thermosetting resin and a thermoplastic resin. As the resin, a thermosetting resin is preferable from the viewpoint of mechanical properties of the fiber-reinforced resin molded body.

熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ウレタン樹脂等が挙げられる。熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
熱硬化性樹脂は、繊維強化樹脂材料の成形時には一部または全部が未硬化の状態であっても、全部が硬化した状態でもよい。熱硬化性樹脂は、繊維強化樹脂成形体においては硬化した状態にある。
Examples of the thermosetting resin include an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, and a urethane resin. A thermosetting resin may be used individually by 1 type, and may use 2 or more types together.
The thermosetting resin may be partially or completely uncured when the fiber-reinforced resin material is molded, or may be completely cured. The thermosetting resin is in a cured state in the fiber-reinforced resin molded body.

熱硬化性樹脂の硬化物の引張弾性率Erが炭素繊維の引張弾性率Efに比べて極端に小さい場合、繊維強化樹脂成形体に荷重を加えたときに、炭素繊維とマトリックス樹脂との界面に生じる応力集中が大きくなる。そのため、熱硬化性樹脂としては、硬化物の状態で炭素繊維との接着性が高いものが好ましい。また、炭素繊維が引張弾性率Efの比較的高いピッチ系炭素繊維の場合、熱硬化性樹脂としては、硬化物の状態での引張弾性率Erが比較的高いフェノール樹脂が好ましい。また、炭素繊維が引張弾性率Efの比較的低いPAN系炭素繊維の場合、熱硬化性樹脂としては、硬化物の状態での引張弾性率Erが比較的低いエポキシ樹脂またはビニルエステル樹脂が好ましい。   When the tensile elastic modulus Er of the cured product of the thermosetting resin is extremely smaller than the tensile elastic modulus Ef of the carbon fiber, when a load is applied to the fiber reinforced resin molded product, the interface between the carbon fiber and the matrix resin is applied. The resulting stress concentration increases. Therefore, as a thermosetting resin, a thing with high adhesiveness with carbon fiber in the state of hardened | cured material is preferable. When the carbon fiber is a pitch-based carbon fiber having a relatively high tensile elastic modulus Ef, the thermosetting resin is preferably a phenol resin having a relatively high tensile elastic modulus Er in a cured product state. When the carbon fiber is a PAN-based carbon fiber having a relatively low tensile elastic modulus Ef, the thermosetting resin is preferably an epoxy resin or a vinyl ester resin having a relatively low tensile elastic modulus Er in a cured product state.

熱可塑性樹脂としては、ポリアミド(ナイロン6、ナイロン66、ナイロン12、ナイロンMXD6等)、ポリオレフィン(低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン等)、変性ポリオレフィン(変性ポリプロピレン等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート、ポリアミドイミド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体、ポリフェニレンサルファイド、液晶ポリエステル、アクリロニトリル−スチレン共重合体等が挙げられる。変性ポリオレフィン樹脂としては、マレイン酸等の酸によりポリオレフィン樹脂を変性した樹脂等が挙げられる。   Examples of thermoplastic resins include polyamide (nylon 6, nylon 66, nylon 12, nylon MXD6, etc.), polyolefin (low density polyethylene, high density polyethylene, polypropylene, etc.), modified polyolefin (modified polypropylene, etc.), polyester (polyethylene terephthalate, poly Butylene terephthalate, etc.), polycarbonate, polyamideimide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polystyrene, acrylonitrile-butadiene-styrene copolymer, polyphenylene sulfide, liquid crystal polyester, acrylonitrile-styrene copolymer Examples include coalescence. Examples of the modified polyolefin resin include a resin obtained by modifying a polyolefin resin with an acid such as maleic acid.

添加剤としては、硬化剤、内部離型剤、増粘剤、安定剤、脱泡剤、難燃剤、耐候性改良剤、酸化防止剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、充填材、導電性フィラー等が挙げられる。   Additives include curing agents, internal mold release agents, thickeners, stabilizers, defoamers, flame retardants, weather resistance improvers, antioxidants, UV absorbers, plasticizers, lubricants, colorants, compatibilizers Examples thereof include an agent, a filler, and a conductive filler.

(繊維強化樹脂材料の製造方法)
本発明の繊維強化樹脂材料は、例えば、下記のようにして製造できる。
裁断機によって長尺の炭素繊維束を所定の長さに切断した短尺の炭素繊維束(チョップド炭素繊維束)をシート状に堆積してシート状炭素繊維束群を形成する。シート状炭素繊維束群に、液状の樹脂材料を含浸させて繊維強化樹脂材料を得る。
(Method for producing fiber-reinforced resin material)
The fiber reinforced resin material of the present invention can be produced, for example, as follows.
A short carbon fiber bundle (chopped carbon fiber bundle) obtained by cutting a long carbon fiber bundle into a predetermined length by a cutting machine is deposited in a sheet shape to form a sheet-like carbon fiber bundle group. A sheet-like carbon fiber bundle group is impregnated with a liquid resin material to obtain a fiber-reinforced resin material.

(作用機序)
以上説明した本発明の繊維強化樹脂材料にあっては、炭素繊維の引張弾性率Ef(GPa)に対する樹脂材料(ただし、熱硬化性樹脂を含む場合は、該熱硬化性樹脂は硬化させる。)の引張弾性率Er(GPa)の比Er/Efと、炭素繊維の繊維長Lf(mm)との積Lf×Er/Efが前記範囲の下限値以上であるため、ErとEfとの差が小さく、またLfが短すぎない。そのため、引張弾性率の高い炭素繊維を用いた場合であっても、炭素繊維とマトリックス樹脂との界面破壊が生じにくく、良好な機械特性を発揮できる繊維強化樹脂成形体を得ることができる。また、Lf×Er/Efが前記範囲の上限値以下であるため、Lfが長くなりすぎず、成形性に優れる。
(Mechanism of action)
In the fiber reinforced resin material of the present invention described above, the resin material for the tensile elastic modulus Ef (GPa) of the carbon fiber (however, when a thermosetting resin is included, the thermosetting resin is cured). Since the product Lf × Er / Ef of the ratio Er / Ef of the tensile elastic modulus Er (GPa) and the fiber length Lf (mm) of the carbon fiber is equal to or greater than the lower limit of the above range, the difference between Er and Ef is Small and Lf is not too short. Therefore, even when carbon fibers having a high tensile elastic modulus are used, it is possible to obtain a fiber reinforced resin molded article that is less likely to cause interface fracture between the carbon fibers and the matrix resin and that can exhibit good mechanical properties. Moreover, since Lf × Er / Ef is not more than the upper limit of the above range, Lf does not become too long, and the moldability is excellent.

このような本発明の繊維強化樹脂材料にあっては、引張弾性率の高い炭素繊維を用いることができるため、従来の汎用グレードの炭素繊維を用いた場合に比べ、機械特性に優れる繊維強化樹脂成形体を得ることができる。また、繊維強化樹脂材料における炭素繊維の体積含有率を減らすことができ、従来の繊維強化樹脂成形体と同等の機械特性を有しながら、軽量化された繊維強化樹脂成形体を得ることができる。また、炭素繊維の体積含有率を減らすことによって、繊維強化樹脂材料の流動性(成形性)が向上し、また、繊維強化樹脂材料や繊維強化樹脂成形体のコストを下げることもできる。   In such a fiber reinforced resin material of the present invention, a carbon fiber having a high tensile elastic modulus can be used, and therefore, a fiber reinforced resin having excellent mechanical properties as compared with the case of using a general-purpose grade carbon fiber. A molded body can be obtained. Further, the volume content of carbon fibers in the fiber reinforced resin material can be reduced, and a weight-reduced fiber reinforced resin molded product can be obtained while having mechanical properties equivalent to those of a conventional fiber reinforced resin molded product. . Moreover, by reducing the volume content of the carbon fiber, the fluidity (moldability) of the fiber reinforced resin material can be improved, and the cost of the fiber reinforced resin material and the fiber reinforced resin molded product can be reduced.

<繊維強化樹脂成形体>
本発明の繊維強化樹脂成形体は、本発明の繊維強化樹脂材料を成形したものであり、複数の炭素繊維と、繊維強化樹脂材料における樹脂材料に由来するマトリックス樹脂とを含む。
マトリックス樹脂は、樹脂材料が熱硬化性樹脂を含む場合は、熱硬化性樹脂の硬化物を含み、樹脂材料が熱可塑性樹脂を含む場合は、同じ熱可塑性樹脂を含む。
<Fiber-reinforced resin molding>
The fiber reinforced resin molded article of the present invention is obtained by molding the fiber reinforced resin material of the present invention, and includes a plurality of carbon fibers and a matrix resin derived from the resin material in the fiber reinforced resin material.
The matrix resin includes a cured product of a thermosetting resin when the resin material includes a thermosetting resin, and includes the same thermoplastic resin when the resin material includes a thermoplastic resin.

炭素繊維とマトリックス樹脂との界面せん断強度は、50MPa以上が好ましい。界面せん断強度が前記範囲の下限値以上であれば、炭素繊維とマトリックス樹脂との接着性が良好となり、機械特性にさらに優れた繊維強化樹脂成形体が得られる。界面せん断強度を高くするために、炭素繊維として表面処理されたものを用いてもよい。界面せん断強度は高ければ高いほどよく、上限値は特に限定されない。   The interfacial shear strength between the carbon fiber and the matrix resin is preferably 50 MPa or more. If the interfacial shear strength is at least the lower limit of the above range, the adhesion between the carbon fibers and the matrix resin will be good, and a fiber-reinforced resin molded product with further excellent mechanical properties can be obtained. In order to increase the interfacial shear strength, a carbon fiber that has been surface-treated may be used. The higher the interfacial shear strength, the better, and the upper limit is not particularly limited.

(繊維強化樹脂成形体の製造方法)
本発明の繊維強化樹脂成形体は、例えば、金型を用いて本発明の繊維強化樹脂材料を加熱および加圧し、繊維強化樹脂材料を金型の形状に追随させるとともに、樹脂材料が熱硬化性樹脂を含む場合は熱硬化性樹脂を硬化させることによって製造できる。
(Manufacturing method of fiber reinforced resin molding)
The fiber reinforced resin molded article of the present invention is, for example, heated and pressurized the fiber reinforced resin material of the present invention using a mold to cause the fiber reinforced resin material to follow the shape of the mold and the resin material is thermosetting. When resin is included, it can be manufactured by curing a thermosetting resin.

(作用機序)
以上説明した本発明の繊維強化樹脂成形体にあっては、本発明の繊維強化樹脂材料を成形したものであるため、引張弾性率の高い炭素繊維を用いた場合であっても、炭素繊維とマトリックス樹脂との界面破壊が生じにくく、良好な機械特性を発揮できる。
(Mechanism of action)
In the fiber reinforced resin molded body of the present invention described above, since the fiber reinforced resin material of the present invention is molded, even if carbon fibers having a high tensile elastic modulus are used, It is difficult to cause interface breakdown with the matrix resin, and can exhibit good mechanical properties.

以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(繊維強化樹脂成形体の評価)
繊維強化樹脂成形体の評価は、CAE(Computer Aided Engineering)ソフトウェアを利用したシミュレーションにて行った。
CAEソフトウェアとしては、非線形動的構造解析ソフトウェアであるLS−DYNA(LSTC社製)を用いた。
シミュレーションモデルとしては、図1〜図3に示すモデルを用いた。図1は、シミュレーションモデルの斜視図であり、図2は、図1のII−II断面図であり、図3は、図1のIII−III断面図である。
図1に示すように、シミュレーションモデル10は、長さ2L+1の長尺の角棒状の繊維強化樹脂成形体とした。
図2に示すように、シミュレーションモデル10においては、マトリックス樹脂12内に、シミュレーションモデル10の長手方向に沿って直列に配置された2本の繊維長Lの炭素繊維14(単繊維)が長さ1の間隔をあけて埋設されている。
図3に示すように、シミュレーションモデル10の断面は、縦および横がともに1である正方形とし、正方形に対する炭素繊維14の面積率が40%(すなわち炭素繊維14の体積含有率Vfが40体積%)となるように、炭素繊維14の繊維径を0.71とした。
(Evaluation of fiber reinforced resin molding)
The evaluation of the fiber reinforced resin molded body was performed by simulation using CAE (Computer Aided Engineering) software.
As CAE software, LS-DYNA (manufactured by LSTC), which is nonlinear dynamic structure analysis software, was used.
As the simulation model, the model shown in FIGS. 1 to 3 was used. 1 is a perspective view of a simulation model, FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
As shown in FIG. 1, the simulation model 10 is a long square bar-like fiber reinforced resin molded body having a length of 2L + 1.
As shown in FIG. 2, in the simulation model 10, two carbon fibers 14 (single fibers) having a fiber length L arranged in series in the matrix resin 12 along the longitudinal direction of the simulation model 10 are long. It is buried at an interval of 1.
As shown in FIG. 3, the cross section of the simulation model 10 is a square whose length and width are both 1, and the area ratio of the carbon fiber 14 to the square is 40% (that is, the volume content Vf of the carbon fiber 14 is 40% by volume). ) So that the fiber diameter of the carbon fiber 14 is 0.71.

CAEソフトウェアを用い、シミュレーションモデル10の両端のうち、第1の端部を拘束し、第2の端部に長手方向の強制変位を与え、シミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eを算出した。引張弾性率Eの算出範囲は、歪0.05〜0.25%の範囲とした。
シミュレーションモデル10(繊維強化樹脂成形体)の理論引張弾性率Etを、一般的な計算式である下記式から算出した。
Et=Ef×Vf/100+Er×(1−Vf/100)
ただし、Efは炭素繊維14の引張弾性率であり、Vfは炭素繊維14の体積含有率であり、Erはマトリックス樹脂12の引張弾性率である。
理論引張弾性率Etに対する繊維強化樹脂成形体の引張弾性率Eの比E/Etを算出し、80%以上を〇(合格)、80%未満を×(不合格)と判定した。E/Etが80%以上であれば、炭素繊維とマトリックス樹脂との界面破壊等を抑制し、理想に近い機械特性を有する繊維強化樹脂成形体が得られることを示す。
Using CAE software, the first end portion of both ends of the simulation model 10 is constrained, the second end portion is subjected to a forced displacement in the longitudinal direction, and the tensile modulus of the simulation model 10 (fiber reinforced resin molded body). E was calculated. The calculation range of the tensile modulus E was set to a range of 0.05 to 0.25% strain.
The theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) was calculated from the following formula, which is a general calculation formula.
Et = Ef * Vf / 100 + Er * (1-Vf / 100)
However, Ef is the tensile elastic modulus of the carbon fiber 14, Vf is the volume content of the carbon fiber 14, and Er is the tensile elastic modulus of the matrix resin 12.
The ratio E / Et of the tensile elastic modulus E of the fiber-reinforced resin molded body with respect to the theoretical tensile elastic modulus Et was calculated, and 80% or more was judged as ◯ (pass), and less than 80% was judged as x (failed). If E / Et is 80% or more, it indicates that an interfacial fracture between the carbon fiber and the matrix resin is suppressed, and a fiber-reinforced resin molded article having mechanical properties close to ideal is obtained.

以下、炭素繊維の繊維長Lfが繊維強化樹脂成形体の引張弾性率Eに与える影響について、シミュレーションモデル10を用いて確認した。   Hereinafter, the influence of the fiber length Lf of the carbon fiber on the tensile elastic modulus E of the fiber-reinforced resin molded body was confirmed using the simulation model 10.

(実施例A1)
CAEソフトウェアによるシミュレーションの条件は、下記のようにした。
炭素繊維14の引張弾性率Efは、ピッチ系炭素繊維(三菱レイヨン社製、ダイアリード K63712)を想定して640GPaとした。
マトリックス樹脂12の引張弾性率Erは、通常の繊維強化樹脂成形体に用いられるビニルエステル樹脂の硬化物またはエポキシ樹脂の硬化物を想定して3GPaとした。
炭素繊維14とマトリックス樹脂12との界面せん断強度は、マイクロドロッププレット法による実測値を参考に50MPaとした。
炭素繊維14の繊維長Lを3500とした。シミュレーションモデル10の長さは7001となった。ピッチ系炭素繊維の汎用グレードの繊維径は10μmであり、シミュレーションモデル10における炭素繊維14の繊維径と繊維長との比率から、実物の繊維強化樹脂成形体における炭素繊維の繊維長Lfを算出すると、49.0mm相当となる。
(Example A1)
The conditions for the simulation with the CAE software were as follows.
The tensile elastic modulus Ef of the carbon fiber 14 was 640 GPa assuming a pitch-based carbon fiber (Mitsubishi Rayon Co., Ltd., DIALEAD K63712).
The tensile elastic modulus Er of the matrix resin 12 was 3 GPa assuming a cured vinyl ester resin or a cured epoxy resin used in a normal fiber reinforced resin molded product.
The interfacial shear strength between the carbon fiber 14 and the matrix resin 12 was set to 50 MPa with reference to an actual measurement value by a microdroplet method.
The fiber length L of the carbon fiber 14 was 3500. The length of the simulation model 10 is 7001. The fiber diameter of the general-purpose grade of the pitch-based carbon fiber is 10 μm, and the fiber length Lf of the carbon fiber in the actual fiber reinforced resin molded body is calculated from the ratio of the fiber diameter and the fiber length of the carbon fiber 14 in the simulation model 10 , Corresponding to 49.0 mm.

CAEソフトウェアを用い、シミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eを算出した。また、シミュレーションモデル10(繊維強化樹脂成形体)の理論引張弾性率Etを算出した。   Using CAE software, the tensile elastic modulus E of the simulation model 10 (fiber reinforced resin molded product) was calculated. Further, the theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) was calculated.

(実施例A2)
炭素繊維14の繊維長Lを5000(シミュレーションモデル10の長さ:10001、実物の繊維強化樹脂成形体における炭素繊維の繊維長Lf:70.1mm相当)に変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Example A2)
Except for changing the fiber length L of the carbon fiber 14 to 5000 (the length of the simulation model 10: 10001, the fiber length Lf of the carbon fiber in the actual fiber-reinforced resin molded product: equivalent to 70.1 mm), the same as in Example A1 Thus, the tensile elastic modulus E and the theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated.

(比較例A1)
炭素繊維14の繊維長Lを1750(シミュレーションモデル10の長さ:3501、実物の繊維強化樹脂成形体における炭素繊維の繊維長Lf:24.5mm相当)に変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Comparative Example A1)
Except for changing the fiber length L of the carbon fiber 14 to 1750 (the length of the simulation model 10: 3501, the fiber length Lf of the carbon fiber in the actual fiber-reinforced resin molded product: equivalent to 24.5 mm), the same as in Example A1 Thus, the tensile elastic modulus E and the theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated.

(比較例A2)
炭素繊維14の繊維長Lを2500(シミュレーションモデル10の長さ:5001、実物の繊維強化樹脂成形体における炭素繊維の繊維長Lf:35.0mm相当)に変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Comparative Example A2)
Except for changing the fiber length L of the carbon fiber 14 to 2500 (the length of the simulation model 10: 5001, the fiber length Lf of the carbon fiber in the actual fiber-reinforced resin molded product: equivalent to 35.0 mm), the same as in Example A1 Thus, the tensile elastic modulus E and the theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated.

実施例A1、実施例A2、比較例A1および比較例A2の結果を表1にまとめた。
炭素繊維14の引張弾性率Efとマトリックス樹脂の引張弾性率Erの比Er/Efが一定のとき、炭素繊維の繊維長Lfが長いほど機械特性が向上することがわかる。LfとEr/Efの積が0.2以上であれば、繊維強化樹脂成形体の引張弾性率Eが理論値の80%以上となり、良好な剛性が得られた。
The results of Example A1, Example A2, Comparative Example A1, and Comparative Example A2 are summarized in Table 1.
It can be seen that when the ratio Er / Ef of the tensile elastic modulus Ef of the carbon fiber 14 and the tensile elastic modulus Er of the matrix resin is constant, the mechanical characteristics improve as the fiber length Lf of the carbon fiber increases. When the product of Lf and Er / Ef was 0.2 or more, the tensile elastic modulus E of the fiber-reinforced resin molded product was 80% or more of the theoretical value, and good rigidity was obtained.

Figure 2018134789
Figure 2018134789

以下、マトリックス樹脂の引張弾性率Erが繊維強化樹脂成形体の引張弾性率Eに与える影響について、シミュレーションモデル10を用いて確認した。   Hereinafter, the influence of the tensile elastic modulus Er of the matrix resin on the tensile elastic modulus E of the fiber-reinforced resin molded body was confirmed using the simulation model 10.

(実施例B1)
マトリックス樹脂12の引張弾性率Erを6GPaに変更し、炭素繊維14の繊維長Lを1750(シミュレーションモデル10の長さ:3501、実物の繊維強化樹脂成形体における炭素繊維の繊維長Lf:24.5mm相当)に変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Example B1)
The tensile elastic modulus Er of the matrix resin 12 is changed to 6 GPa, and the fiber length L of the carbon fiber 14 is 1750 (the length of the simulation model 10: 3501, the fiber length Lf of the carbon fiber in the actual fiber reinforced resin molded product: 24. Except for the change to equivalent to 5 mm, the tensile modulus E and the theoretical tensile modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated in the same manner as in Example A1.

(実施例B2)
マトリックス樹脂12の引張弾性率Erを6GPaに変更し、炭素繊維14の繊維長Lを2500(シミュレーションモデル10の長さ:5001、実物の繊維強化樹脂成形体における炭素繊維の繊維長Lf:35.0mm相当)に変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Example B2)
The tensile elastic modulus Er of the matrix resin 12 is changed to 6 GPa, and the fiber length L of the carbon fiber 14 is 2500 (the length of the simulation model 10: 5001, the fiber length Lf of the carbon fiber in the actual fiber-reinforced resin molded product: 35. Except for changing to 0 mm equivalent), the tensile elastic modulus E and the theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated in the same manner as in Example A1.

(実施例B3)
マトリックス樹脂12の引張弾性率Erを6GPaに変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Example B3)
Except for changing the tensile elastic modulus Er of the matrix resin 12 to 6 GPa, the tensile elastic modulus E and the theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated in the same manner as in Example A1.

(実施例C1)
マトリックス樹脂12の引張弾性率Erを8GPaに変更し、炭素繊維14の繊維長Lを1750(シミュレーションモデル10の長さ:3501、実物の繊維強化樹脂成形体における炭素繊維の繊維長Lf:24.5mm相当)に変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Example C1)
The tensile elastic modulus Er of the matrix resin 12 is changed to 8 GPa, and the fiber length L of the carbon fiber 14 is 1750 (the length of the simulation model 10: 3501, the fiber length Lf of the carbon fiber in the actual fiber reinforced resin molding: 24. Except for the change to equivalent to 5 mm, the tensile modulus E and the theoretical tensile modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated in the same manner as in Example A1.

(実施例C2)
マトリックス樹脂12の引張弾性率Erを8GPaに変更し、炭素繊維14の繊維長Lを2500(シミュレーションモデル10の長さ:5001、実物の繊維強化樹脂成形体における炭素繊維の繊維長Lf:35.0mm相当)に変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Example C2)
The tensile elastic modulus Er of the matrix resin 12 is changed to 8 GPa, and the fiber length L of the carbon fiber 14 is 2500 (the length of the simulation model 10: 5001, the fiber length Lf of the carbon fiber in the actual fiber reinforced resin molded product: 35. Except for changing to 0 mm equivalent), the tensile elastic modulus E and the theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated in the same manner as in Example A1.

(実施例C3)
マトリックス樹脂12の引張弾性率Erを8GPaに変更した以外は、実施例A1と同様にしてシミュレーションモデル10(繊維強化樹脂成形体)の引張弾性率Eおよび理論引張弾性率Etを算出した。
(Example C3)
Except for changing the tensile elastic modulus Er of the matrix resin 12 to 8 GPa, the tensile elastic modulus E and the theoretical tensile elastic modulus Et of the simulation model 10 (fiber reinforced resin molded body) were calculated in the same manner as in Example A1.

比較例A1、実施例B1、実施例C1の結果を表2に、比較例A2、実施例B2、実施例C2の結果を表3に、実施例A1、実施例B3、実施例C3の結果を表4にまとめた。
炭素繊維14の引張弾性率Efと炭素繊維14の繊維長Lfを固定し、マトリックス樹脂12の引張弾性率Erを振った結果である。Erが大きいほど、繊維強化樹脂成形体の引張弾性率Eと理論引張弾性率Etとの比E/Etが大きく向上し、良好な機械特性が得られた。
The results of Comparative Example A1, Example B1, and Example C1 are shown in Table 2, the results of Comparative Example A2, Example B2, and Example C2 are shown in Table 3, and the results of Example A1, Example B3, and Example C3 are shown. The results are summarized in Table 4.
This is a result of fixing the tensile elastic modulus Er of the carbon fiber 14 and the fiber length Lf of the carbon fiber 14 and shaking the tensile elastic modulus Er of the matrix resin 12. As Er was larger, the ratio E / Et of the tensile elastic modulus E and the theoretical tensile elastic modulus Et of the fiber reinforced resin molded product was greatly improved, and good mechanical properties were obtained.

Figure 2018134789
Figure 2018134789

Figure 2018134789
Figure 2018134789

Figure 2018134789
Figure 2018134789

同じ炭素繊維を用いた場合、炭素繊維の繊維長Lfが一定であれば、マトリックス樹脂の引張弾性率Erが高いほど高い剛性が得られる。言い換えれば、マトリックス樹脂の引張弾性率Erが一定であれば、長い繊維長Lfが必要とされる。一方で、流動性の観点からは、炭素繊維の繊維長Lfが短いほど、成形しやすい。実施例C1のように、Er/Etが大きい場合は、炭素繊維の繊維長Lfを短くしても、繊維強化樹脂成形体として良好な機械特性を得ることができるため、繊維強化樹脂材料の流動性を重視する場合に好ましい。すなわち、Er/Etが小さい場合は、炭素繊維の繊維長Lfを長くし、Er/Etが大きい場合は、炭素繊維の繊維長Lfを短くすることが好ましい。これらの好ましい範囲は、Er/EtとLfの積であらわされ、実施例および比較例の結果から、0.2〜0.8となる。   When the same carbon fiber is used, if the fiber length Lf of the carbon fiber is constant, higher rigidity is obtained as the tensile elastic modulus Er of the matrix resin is higher. In other words, if the tensile modulus Er of the matrix resin is constant, a long fiber length Lf is required. On the other hand, from the viewpoint of fluidity, the shorter the fiber length Lf of the carbon fiber, the easier it is to mold. As in Example C1, when Er / Et is large, even if the fiber length Lf of the carbon fiber is shortened, good mechanical properties can be obtained as a fiber-reinforced resin molded product. It is preferable when importance is attached to sex. That is, when Er / Et is small, it is preferable to lengthen the fiber length Lf of the carbon fiber, and when Er / Et is large, it is preferable to shorten the fiber length Lf of the carbon fiber. These preferable ranges are expressed by the product of Er / Et and Lf, and are 0.2 to 0.8 from the results of the examples and comparative examples.

本発明の繊維強化樹脂材料は、繊維強化樹脂成形体の製造に用いられる中間材料であるSMC等として有用である。   The fiber reinforced resin material of the present invention is useful as an SMC or the like that is an intermediate material used in the production of a fiber reinforced resin molded article.

10 シミュレーションモデル、12 マトリックス樹脂、14 炭素繊維。   10 simulation model, 12 matrix resin, 14 carbon fiber.

Claims (3)

複数の炭素繊維と、熱硬化性樹脂および熱可塑性樹脂のいずれか一方または両方を含む樹脂材料とを含み、
前記炭素繊維の引張弾性率Ef(GPa)に対する前記樹脂材料(ただし、前記熱硬化性樹脂を含む場合は、該熱硬化性樹脂は硬化させる。)の引張弾性率Er(GPa)の比Er/Efと、前記炭素繊維の繊維長Lf(mm)との積Lf×Er/Efが、0.2〜0.8の範囲にある、繊維強化樹脂材料。
A plurality of carbon fibers, and a resin material containing one or both of a thermosetting resin and a thermoplastic resin,
Ratio of tensile elastic modulus Er (GPa) of the resin material to the tensile elastic modulus Ef (GPa) of the carbon fiber (however, when the thermosetting resin is included, the thermosetting resin is cured) Er / A fiber reinforced resin material having a product Lf × Er / Ef of Ef and a fiber length Lf (mm) of the carbon fiber in a range of 0.2 to 0.8.
前記炭素繊維の体積含有率が、前記繊維強化樹脂材料の100体積%のうち、20体積%以上65体積%未満である、請求項1に記載の繊維強化樹脂材料。   The fiber reinforced resin material according to claim 1, wherein a volume content of the carbon fiber is 20% by volume or more and less than 65% by volume in 100% by volume of the fiber reinforced resin material. 請求項1または2に記載の繊維強化樹脂材料を成形した、繊維強化樹脂成形体。   A fiber-reinforced resin molded article obtained by molding the fiber-reinforced resin material according to claim 1.
JP2017030629A 2017-02-22 2017-02-22 Fiber reinforced resin material and fiber reinforced resin molded article Pending JP2018134789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030629A JP2018134789A (en) 2017-02-22 2017-02-22 Fiber reinforced resin material and fiber reinforced resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030629A JP2018134789A (en) 2017-02-22 2017-02-22 Fiber reinforced resin material and fiber reinforced resin molded article

Publications (1)

Publication Number Publication Date
JP2018134789A true JP2018134789A (en) 2018-08-30

Family

ID=63366490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030629A Pending JP2018134789A (en) 2017-02-22 2017-02-22 Fiber reinforced resin material and fiber reinforced resin molded article

Country Status (1)

Country Link
JP (1) JP2018134789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017550A1 (en) 2018-07-18 2020-01-23 三菱マテリアル株式会社 Metal base substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062474A (en) * 2007-09-07 2009-03-26 Toray Ind Inc Molding material, fiber-reinforced plastic, and manufacturing method for them

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062474A (en) * 2007-09-07 2009-03-26 Toray Ind Inc Molding material, fiber-reinforced plastic, and manufacturing method for them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017550A1 (en) 2018-07-18 2020-01-23 三菱マテリアル株式会社 Metal base substrate

Similar Documents

Publication Publication Date Title
US11104097B2 (en) Composite structural article
Zuccarello et al. Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers
JP5644496B2 (en) Fiber reinforced thermoplastic resin molding
KR102320480B1 (en) Carbon fiber reinforced molding material and molded body
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
KR102206337B1 (en) Hollow structure body and component for vehicle
KR20140099456A (en) Impact resistant member
KR20140001987A (en) Joined body of carbon fiber reinforced composite material
JP2018134789A (en) Fiber reinforced resin material and fiber reinforced resin molded article
Kumar et al. Development of glass/banana fibers reinforced epoxy composite
JP2011166124A (en) Electrical and electronic equipment housing
JP5972721B2 (en) Thermoplastic resin composition
JP5589465B2 (en) Fiber reinforced plastic for automotive parts
Lee et al. Strength of Onyx-based composite 3D printing materials according to fiber reinforcement
CN115023329B (en) Cold press molded article comprising carbon fiber and glass fiber, and method for producing same
Bakonyi et al. Analysis of the creep behavior of polypropylene and glass fiber reinforced polypropylene composites
Aravind et al. Flexural, impact, and dynamic mechanical analysis of glass fiber/ABS and glass fiber/carbon fiber/ABS composites
KR102483485B1 (en) Long fiber reinforced thermoplastics and molded article fabricated by the same
US11384209B2 (en) Composite material including carbon fibers and thermoplastic resin, molded body production method using same, and molded body
JP2013169647A (en) Composite molded object and method for manufacturing the same
JP6955506B2 (en) PEEK resin composition molded article
Bunea et al. Bending and compressive properties of fabric reinforced composites
KR20180024906A (en) Fiber-reinforced composite material and manufacturing method of interior and exterior ofvehicles using the same
Morales et al. Conductive CNF-doped laminates processing and characterization
KR20170076869A (en) Composition for fiber-reinforced composite material, fiber-reinforced composite material and method for preparing fiber-reinforced composite material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210323