JP2013169647A - Composite molded object and method for manufacturing the same - Google Patents

Composite molded object and method for manufacturing the same Download PDF

Info

Publication number
JP2013169647A
JP2013169647A JP2012032715A JP2012032715A JP2013169647A JP 2013169647 A JP2013169647 A JP 2013169647A JP 2012032715 A JP2012032715 A JP 2012032715A JP 2012032715 A JP2012032715 A JP 2012032715A JP 2013169647 A JP2013169647 A JP 2013169647A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
continuous fiber
reinforced thermoplastic
resin plate
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012032715A
Other languages
Japanese (ja)
Inventor
Masaru Tateyama
勝 舘山
Koji Yamaguchi
晃司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012032715A priority Critical patent/JP2013169647A/en
Publication of JP2013169647A publication Critical patent/JP2013169647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite molded object which exhibits lightweight and high strength and high rigidity and is almost completely warp-free.SOLUTION: A composite molded object 1 includes a unidirectional continuous fiber-reinforced thermoplastic resin sheet 10 and a thermoplastic resin composition 20. In addition, the construction of the composite molded object 1 is such that the fiber direction of the unidirectional continuous fiber-reinforced thermoplastic resin sheet 10, is parallel with a rib 25, and that the resin sheet 10 is laminated on the root part of the rib 25.

Description

本発明は、一方向連続繊維強化熱可塑性樹脂板と熱可塑性樹脂組成物からなる、軽量で高強度、高剛性で且つ反りの少ない複合成形体およびその射出製造方法に関するものである。   The present invention relates to a light-weight, high-strength, high-rigidity composite composite body comprising a unidirectional continuous fiber-reinforced thermoplastic resin plate and a thermoplastic resin composition and a method for producing the same.

更に詳しくは、リブ構造を有する成形体のリブ付け根部分に一方向連続繊維強化熱可塑性樹脂板を積層することにより、射出成形品全体が一様に高強度化され、かつ反りの少ない射出複合成形体とその製造する方法に関するものである。   More specifically, by laminating a unidirectional continuous fiber reinforced thermoplastic resin plate at the rib base of a molded article having a rib structure, the entire injection molded product is uniformly strengthened and injection composite molding with less warpage. It relates to the body and the method of manufacturing it.

熱可塑性樹脂は優れた成形加工特性から種々の加工法、例えば射出成形、ブロー成形、シート成形、フイルム成形、異形押出成形、プレス成形などにより成形され、電気・電子、OA、自動車、機器、雑貨など広範囲な用途の製品製造に使用されている。その中でも、射出成形は生産性の高さ、形状自由度の高さから、熱可塑性樹脂のメインの加工方法となっている。   Thermoplastic resins are molded by various processing methods, such as injection molding, blow molding, sheet molding, film molding, profile extrusion molding, press molding, etc. due to their excellent molding characteristics. Electrical / electronic, OA, automobile, equipment, miscellaneous goods It is used to manufacture products for a wide range of applications. Among them, injection molding is the main processing method for thermoplastic resins because of its high productivity and high degree of freedom in shape.

また熱可塑性樹脂において特に高い強度、剛性、耐熱を求められる場合には、繊維状充填剤を添加し改質する手法が一般的に取られている。その代表的な例としては、熱可塑性樹脂をペレット化する際に、押出機で熱可塑性樹脂とガラス繊維や炭素繊維とを一緒に溶融混錬して得られた、繊維強化熱可塑性樹脂ペレットが挙げられる。しかしながら、このようにして得られた繊維強化熱可塑性樹脂成形体は、繊維が不連続であるため、強度、剛性の改良効果は限定的なものとなる。   Further, when a thermoplastic resin is required to have particularly high strength, rigidity, and heat resistance, a technique of adding a fibrous filler and modifying it is generally taken. A typical example is a fiber reinforced thermoplastic resin pellet obtained by melting and kneading together a thermoplastic resin and glass fiber or carbon fiber in an extruder when pelletizing the thermoplastic resin. Can be mentioned. However, since the fiber-reinforced thermoplastic resin molded article thus obtained has discontinuous fibers, the effect of improving strength and rigidity is limited.

強度、剛性の成形材料として特許文献1には、一方向連続繊維強化熱可塑性樹脂板およびその製造方法について記載されており、本成形材料の成形方法としてファイバープレースメント法などが記載されている。しかしながら、本方法では複雑形状の成形体には適用が難しく適用形状に制限が生じること、強度、剛性が必要としない部分にも一方向連続繊維強化熱可塑性樹脂板を使用するため、成形体の価格が非常に高価となる懸念があった。   Patent Document 1 describes a unidirectional continuous fiber-reinforced thermoplastic resin plate and a method for producing the same as a molding material having strength and rigidity, and a fiber placement method and the like as a molding method for the molding material. However, in this method, it is difficult to apply to a molded product having a complicated shape, and the applied shape is limited. Since a unidirectional continuous fiber reinforced thermoplastic resin plate is used in a portion where strength and rigidity are not required, There was concern that the price would be very expensive.

一方、軽量かつ高剛性で材料費のバランスを取る方法として、特許文献2には、炭素繊維複合板の表面に熱可塑性樹脂を射出成形して一体化した成形品の製造方法について記載されている。   On the other hand, as a method for balancing material costs with light weight and high rigidity, Patent Document 2 describes a method for manufacturing a molded product in which a thermoplastic resin is injection-molded and integrated on the surface of a carbon fiber composite plate. .

本方法は複雑形状の成形体にも適用可能であり、軽量かつ高剛性の成形体を安価に製造可能であるが、炭素繊維複合板と射出成形する熱可塑性樹脂の成形収縮率差により大きなソリが生じる
欠点を有していた。
This method can also be applied to molded bodies with complex shapes, and it is possible to produce lightweight and high-rigid molded bodies at low cost, but due to the difference in molding shrinkage between the carbon fiber composite plate and the thermoplastic resin used for injection molding, Has the disadvantage of generating.

特開2000−355629号公報JP 2000-355629 A 特開平6−15687号公報JP-A-6-15687

本発明は、上記のような従来技術に伴う問題を解決しようとするものであり、強度、剛性に優れるとともに、反りの極めて少ない成形体を得るための、構造およびその製造方法を提供することを課題とする。   The present invention is intended to solve the problems associated with the prior art as described above, and provides a structure and a method for manufacturing the same to obtain a molded article having excellent strength and rigidity and extremely low warpage. Let it be an issue.

本発明は、リブ付き射出成形体を一方向連続繊維強化熱可塑性樹脂板で補強する際に、一方向連続繊維強化熱可塑性樹脂板を積層する位置と積層形状を工夫することにより上記課題を解決することができることを見いだしたものであり、以下のとおりである。
(1)一方向連続繊維強化熱可塑性樹脂板とリブ付熱可塑性樹脂組成物とからなる複合成形体において、熱可塑性樹脂組成物のリブ形成面に前記一方向連続繊維強化熱可塑性樹脂板が配設されるとともに、前記リブの立設面の少なくとも一部に、前記一方向連続繊維強化熱可塑性樹脂板の一部が該リブの立設面に沿って延設された屈曲部を有することを特徴とする複合成形体。
(2)前記リブが、一方向連続繊維強化熱可塑性樹脂板の繊維方向と略平行に設けられることを特徴とする(1)に記載の複合成形体。
(3)前記一方向連続繊維強化熱可塑性樹脂板の屈曲部が、前記リブを形成する射出圧により形成された、前記一方向連続繊維強化熱可塑性樹脂板の繊維方向に沿った切断部であることを特徴とする(2)に記載の複合成形体。
(4)前記リブが、一方向連続繊維強化熱可塑性樹脂板の繊維端を有する端部に沿って設けられることを特徴とする(1)に記載の複合成形体。
(5)一方向連続繊維強化熱可塑性樹脂板の繊維方向と異なる方向に、一方向連続繊維強化熱可塑性樹脂板上にリブが設けられることを特徴とする(1)〜(4)のいずれかに記載の複合成形体。
(6)前記一方向連続繊維強化熱可塑性樹脂板の厚みが0.1から2mmであることを特徴とする(1)〜(5)のいずれかに記載の複合成形体。
(7)前記一方向連続繊維強化熱可塑性樹脂板と前記リブ付熱可塑性樹脂組成物とが、同一種の熱可塑性樹脂がからなることを特徴とする(1)〜(6)のいずれかに記載の複合成形体。
(8)前記一方向連続繊維強化熱可塑性樹脂板の連続繊維が、炭素繊維、ガラス繊維、アラミド繊維から選ばれる少なくとも1種であることを特徴とする(1)〜(7)のいずれかに記載の複合成形体。
(9)前記一方向連続繊維強化熱可塑性樹脂板の連続繊維含有量が40〜70体積含有率であることを特徴とする(1)〜(8)のいずれかに記載の複合成形体。
(10)一方向連続繊維強化熱可塑性樹脂板とリブ付熱可塑性樹脂組成物からなる複合成形体の製造方法において、成形型内にセットした一方向連続繊維強化熱可塑性樹脂板に熱可塑性樹脂組成物を射出成形するものであり、前記一方向連続繊維強化熱可塑性樹脂板の端部の少なくとも一部を射出圧で折り曲げてリブを形成することを特徴とする複合成形体の製造方法。
(11)前記リブが、一方向連続繊維強化熱可塑性樹脂板の繊維方向と略平行に設けられることを特徴とする(10)に記載の複合成形体の製造方法。
(12)前記一方向連続繊維強化熱可塑性樹脂板の屈曲部が、前記リブを形成する射出圧により、前記一方向連続繊維強化熱可塑性樹脂板を繊維方向に沿って切断させて形成することを特徴とする(11)に記載の複合成形体の製造方法。
(13)前記リブが、一方向連続繊維強化熱可塑性樹脂板の繊維端を有する端部に沿って設けられることを特徴とする(10)に記載の複合成形体の製造方法。
(14)(10)〜(13)のいずれかの方法により形成されたリブが、さらに前記一方向連続繊維強化熱可塑性樹脂板の繊維方向と異なる方向に、一方向連続繊維強化熱可塑性樹脂板上にリブを形成することを特徴とする複合成形体の製造方法。
(15)前記一方向連続繊維強化熱可塑性樹脂板の厚みが0.1から2mmであることを特徴とする(10)〜(14)のいずれかに記載の複合成形体の製造方法。
(16)前記一方向連続繊維強化熱可塑性樹脂板と前記リブ付熱可塑性樹脂組成物とが、同一種の熱可塑性樹脂がからなることを特徴とする(10)〜(15)のいずれかに記載の複合成形体の製造方法。
This invention solves the said subject by devising the position and lamination | stacking shape which laminate | stack a unidirectional continuous fiber reinforced thermoplastic resin board, when reinforcing an injection molded body with a rib with a unidirectional continuous fiber reinforced thermoplastic resin board. What we can do is as follows.
(1) In a composite molded body comprising a unidirectional continuous fiber reinforced thermoplastic resin plate and a ribbed thermoplastic resin composition, the unidirectional continuous fiber reinforced thermoplastic resin plate is disposed on a rib forming surface of the thermoplastic resin composition. And at least a part of the standing surface of the rib has a bent portion in which a part of the unidirectional continuous fiber reinforced thermoplastic resin plate extends along the standing surface of the rib. Characteristic composite molded body.
(2) The composite molded body according to (1), wherein the rib is provided substantially parallel to the fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin plate.
(3) The bent portion of the unidirectional continuous fiber reinforced thermoplastic resin plate is a cut portion along the fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin plate formed by the injection pressure forming the rib. (2) The composite molded article according to (2).
(4) The composite molded body according to (1), wherein the rib is provided along an end portion having a fiber end of a unidirectional continuous fiber reinforced thermoplastic resin plate.
(5) Any one of (1) to (4), wherein a rib is provided on the one-way continuous fiber reinforced thermoplastic resin plate in a direction different from the fiber direction of the one-way continuous fiber reinforced thermoplastic resin plate. A composite molded article according to 1.
(6) The composite molded body according to any one of (1) to (5), wherein the unidirectional continuous fiber reinforced thermoplastic resin plate has a thickness of 0.1 to 2 mm.
(7) The unidirectional continuous fiber reinforced thermoplastic resin plate and the thermoplastic resin composition with ribs are made of the same kind of thermoplastic resin, according to any one of (1) to (6) The composite molded article described.
(8) The continuous fiber of the unidirectional continuous fiber reinforced thermoplastic resin plate is at least one selected from carbon fiber, glass fiber, and aramid fiber, according to any one of (1) to (7) The composite molded article described.
(9) The composite molded body according to any one of (1) to (8), wherein the continuous fiber content of the unidirectional continuous fiber reinforced thermoplastic resin plate is 40 to 70 volume content.
(10) In the method for producing a composite molded body comprising a unidirectional continuous fiber reinforced thermoplastic resin plate and a ribbed thermoplastic resin composition, the thermoplastic resin composition is applied to the unidirectional continuous fiber reinforced thermoplastic resin plate set in a mold. A method for producing a composite molded body, comprising: molding an object, and forming a rib by bending at least a part of an end of the unidirectional continuous fiber reinforced thermoplastic resin plate with an injection pressure.
(11) The method for producing a composite molded body according to (10), wherein the rib is provided substantially parallel to the fiber direction of the unidirectional continuous fiber-reinforced thermoplastic resin plate.
(12) The bent portion of the unidirectional continuous fiber reinforced thermoplastic resin plate is formed by cutting the unidirectional continuous fiber reinforced thermoplastic resin plate along the fiber direction by an injection pressure for forming the rib. The method for producing a composite molded article according to (11), which is characterized in that
(13) The method for producing a composite molded body according to (10), wherein the rib is provided along an end portion having a fiber end of a unidirectional continuous fiber reinforced thermoplastic resin plate.
(14) The unidirectional continuous fiber reinforced thermoplastic resin plate is further formed in a direction in which the rib formed by the method of any one of (10) to (13) is different from the fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin plate. A method for producing a composite molded body, comprising forming a rib on the top.
(15) The method for producing a composite molded body according to any one of (10) to (14), wherein the unidirectional continuous fiber reinforced thermoplastic resin plate has a thickness of 0.1 to 2 mm.
(16) The unidirectional continuous fiber reinforced thermoplastic resin plate and the ribbed thermoplastic resin composition are made of the same kind of thermoplastic resin, according to any one of (10) to (15) The manufacturing method of the composite molded object of description.

本発明の複合成形体は強度、剛性に優れると共に、反りが極めて少ない成形体が得られる。また、一方向連続繊維強化熱可塑性樹脂板がリブ面にも配置されるため、表面外観が損なわれることがなく、自動車、航空機、産業機器、スポーツ、レジャー用途に利用できる。特に電気、電子機器のハウジングやシャーシ、ギア、自動車部品のフード、ドアパネル、ルーフ、バックドア、ドアインナー、ラジコアサポートなどにおいて好適に使用できる。   The composite molded body of the present invention is excellent in strength and rigidity, and a molded body with extremely little warpage can be obtained. In addition, since the unidirectional continuous fiber reinforced thermoplastic resin plate is also disposed on the rib surface, the surface appearance is not impaired, and the unidirectional continuous fiber reinforced thermoplastic resin plate can be used for automobiles, aircraft, industrial equipment, sports and leisure applications. In particular, it can be suitably used in housings and chassis of electric and electronic devices, gears, hoods for automobile parts, door panels, roofs, back doors, door inners, and radio core supports.

一方向連続繊維強化熱可塑性樹脂板がリブの付け根部分に配置された構造を有する複合成形体の模式図(1−A)と成形体の断面図(a−a断面)である。It is the schematic diagram (1-A) of the composite molded object which has the structure where the unidirectional continuous fiber reinforced thermoplastic resin board has been arrange | positioned at the base part of a rib, and sectional drawing (aa cross section) of a molded object. 十字リブの根元部分に一方向連続繊維強化熱可塑性樹脂板が配置された構造を有する複合成形体の模式図(1−B)とT字リブの根元部分に一方向連続繊維強化熱可塑性樹脂板が配置された構造を有する複合成形体の模式図(2−B)およびその断面図(b−b断面)である。Schematic diagram (1-B) of a composite molded body having a structure in which a unidirectional continuous fiber reinforced thermoplastic resin plate is arranged at the root portion of the cross rib and a unidirectional continuous fiber reinforced thermoplastic resin plate at the root portion of the T-shaped rib It is a schematic diagram (2-B) and a cross-sectional view (bb cross section) of a composite molded body having a structure in which is arranged. 一方向連続繊維強化熱可塑性樹脂板がリブの付け根部分に配置され、かつ一方向連続繊維強化熱可塑性樹脂板の端部が外周リブの内側に折り曲げられた構造の模式図(3−A〜3−C)、およびその断面図(c−c断面)である。Schematic (3-A to 3) of a structure in which a unidirectional continuous fiber reinforced thermoplastic resin plate is arranged at the base of the rib and an end of the unidirectional continuous fiber reinforced thermoplastic resin plate is bent inside the outer peripheral rib. -C) and its sectional view (cross-section cc). 複合成形体の反り評価位置を示した図である。It is the figure which showed the curvature evaluation position of the composite molded object. 複合成形体の曲げ荷重評価方法を示した図である。It is the figure which showed the bending load evaluation method of the composite molded object. 一方向連続繊維強化熱可塑性樹脂板を金型にセットした状態を示した模式図である。It is the schematic diagram which showed the state which set the unidirectional continuous fiber reinforced thermoplastic resin board to the metal mold | die.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の第1の態様としては、図1に示すように、一方向に引き揃えた連続繊維に熱可塑性樹脂を含浸させた一方向連続繊維強化熱可塑性樹脂板10と熱可塑性樹脂組成物20とからなる複合成形体1において、一方向連続繊維強化熱可塑性樹脂板10が、射出成形により形成されるリブ付の熱可塑性樹脂組成物20におけるリブ25の付け根部分に配置された構造を有する複合成形体1である。   As a 1st aspect of this invention, as shown in FIG. 1, the unidirectional continuous fiber reinforced thermoplastic resin board 10 and the thermoplastic resin composition 20 which impregnated the thermoplastic resin to the continuous fiber arranged in one direction are shown. In the composite molded body 1 comprising: a composite having a structure in which a unidirectional continuous fiber reinforced thermoplastic resin plate 10 is disposed at a base portion of a rib 25 in a ribbed thermoplastic resin composition 20 formed by injection molding. This is a molded body 1.

一方向連続繊維強化熱可塑性樹脂板10を、熱可塑性樹脂組成物20のリブ形成面21に積層させると、複合成形体1の剛性重心位置に近い部分が一方向連続繊維強化熱可塑性樹脂板10によって補強され、複合成形体1全体の反りを低減させることができる。逆に、リブ形成面21と反対側の面に一方向連続繊維強化熱可塑性樹脂板10を積層させると、一方向連続繊維強化熱可塑性樹脂板10と射出された熱可塑性樹脂組成物20との成形収縮率差により大きな反りが発生し、好ましくない態様となる。   When the unidirectional continuous fiber reinforced thermoplastic resin plate 10 is laminated on the rib forming surface 21 of the thermoplastic resin composition 20, the portion close to the rigid center of gravity position of the composite molded body 1 is the unidirectional continuous fiber reinforced thermoplastic resin plate 10. Therefore, the warpage of the entire composite molded body 1 can be reduced. Conversely, when the unidirectional continuous fiber reinforced thermoplastic resin plate 10 is laminated on the surface opposite to the rib forming surface 21, the unidirectional continuous fiber reinforced thermoplastic resin plate 10 and the injected thermoplastic resin composition 20 A large warp is generated due to the difference in molding shrinkage rate, which is not preferable.

また、一方向連続繊維強化熱可塑性樹脂板10の一部または端部がリブ立設面26に接着する屈曲部11として成形されることが好ましい(a−a断面)。一方向連続繊維強化熱可塑性樹脂板10は、熱可塑性樹脂組成物20のリブ形成面21のほぼ全面にわたるように1枚配置してもよいし、複数枚をリブ25が形成される位置に端部が配置されるようにリブ形成面21に積層させることもできる。熱可塑性樹脂組成物20を射出成形すると、樹脂組成物の流動圧で曲がり、屈曲部11が形成される。この方法以外にも、端部をあらかじめ曲げ加工して屈曲部11を形成した一方向連続繊維強化熱可塑性樹脂板10を配置することも可能である。このように屈曲部11を形成すると、リブ25の付け根部分も連続的に補強することになり、付け根部分の折損防止を図ることができる。   Moreover, it is preferable to shape | mold as the bending part 11 in which a one part or edge part of the unidirectional continuous fiber reinforced thermoplastic resin board 10 adhere | attaches the rib standing surface 26 (aa cross section). One unidirectional continuous fiber reinforced thermoplastic resin plate 10 may be disposed so as to cover almost the entire rib forming surface 21 of the thermoplastic resin composition 20, or a plurality of the unidirectional continuous fiber reinforced thermoplastic resin plates 10 may be arranged at positions where ribs 25 are formed. It can also be laminated on the rib forming surface 21 so that the portions are arranged. When the thermoplastic resin composition 20 is injection-molded, the bent portion 11 is formed by bending with the flow pressure of the resin composition. In addition to this method, it is also possible to arrange the unidirectional continuous fiber reinforced thermoplastic resin plate 10 in which the bent portion 11 is formed by bending the end portion in advance. When the bent portion 11 is formed in this way, the base portion of the rib 25 is also continuously reinforced, and breakage of the base portion can be prevented.

また、本発明の第2の態様として、図2に示すように、一方向連続繊維強化熱可塑性樹脂板10の繊維方向と平行に設けられたリブ25と、該リブに交差するリブ構造27を有する複合成形体とすることができる。リブ25の付け根部分に積層された複合成形体1においては、複合成形体1の剛性を、一方向連続繊維強化熱可塑性樹脂板10と交差するリブ構造27によりアップするとともに、一方向連続繊維強化熱可塑性樹脂板10を押さえる形状となり(b−b断面)、接着の観点から好ましい。特に、リブ25とリブ構造27とが直角に交差する十字やT字リブに形成することが好ましい。ここで、「繊維方向に平行に設けられた」とは、リブと繊維が完全に平行であるだけでなく、リブに対して20°程度ずれている態様も含まれるものである。また、「リブ25の付け根部分に積層された」とは、最初に、図1のように一方向連続繊維強化熱可塑性樹脂板10の繊維方向に平行にリブ25を形成し、次に、リブ25と交差する方向に設けられた金型のキャビティに沿って、一方向連続繊維強化熱可塑性樹脂板10上にリブ構造27を新たに形成することをいう。したがって、リブ構造27の直下にある強化繊維は切断されることなく、一方向連続繊維強化熱可塑性樹脂板10自身の長手方向の繊維長による補強効果を発揮できることに加え、リブ構造27による補強効果も相乗的に発揮できるものである。   Moreover, as a 2nd aspect of this invention, as shown in FIG. 2, the rib 25 provided in parallel with the fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin board 10, and the rib structure 27 which cross | intersects this rib are provided. It can be set as the composite molding which has. In the composite molded body 1 laminated at the base portion of the rib 25, the rigidity of the composite molded body 1 is increased by the rib structure 27 intersecting with the unidirectional continuous fiber reinforced thermoplastic resin plate 10, and the unidirectional continuous fiber reinforced. It becomes the shape which presses the thermoplastic resin board 10 (bb cross section), and is preferable from a viewpoint of adhesion | attachment. In particular, the rib 25 and the rib structure 27 are preferably formed in a cross or T-shaped rib that intersects at a right angle. Here, “provided parallel to the fiber direction” includes not only the rib and the fiber being completely parallel, but also a mode in which the rib and the fiber are displaced by about 20 °. Further, “laminated at the base portion of the rib 25” means that the rib 25 is first formed parallel to the fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin plate 10 as shown in FIG. The rib structure 27 is newly formed on the one-way continuous fiber-reinforced thermoplastic resin plate 10 along the mold cavity provided in a direction intersecting with the mold 25. Therefore, the reinforcing fiber immediately below the rib structure 27 is not cut, and the reinforcing effect by the fiber length in the longitudinal direction of the unidirectional continuous fiber reinforced thermoplastic resin plate 10 itself can be exhibited. Can also be demonstrated synergistically.

さらに、本発明の第3の態様として、図3に示すように、複合成形体1の外周に立ち壁28がある場合、一方向連続繊維強化熱可塑性樹脂板10の端部を、リブ形成面21からリブ立設面26または立ち壁28に連続的に挿入された形状(c−c断面)を有する複合成形体とすることができる。このような形状にすると、複合成形体1の剛性アップとともに、一方向連続繊維強化熱可塑性樹脂板10の端末処理が容易となり生産性が向上し好ましい。この際、一方向連続繊維強化熱可塑性樹脂板10は予め曲げ加工したものを用いてもよいが、平板形状の一方向連続繊維強化熱可塑性樹脂板10が樹脂の流動圧で曲がり、立ち壁28に接着するようにして成形した複合成形体1が経済性の観点から好ましい。   Further, as a third aspect of the present invention, as shown in FIG. 3, when there is a standing wall 28 on the outer periphery of the composite molded body 1, the end portion of the unidirectional continuous fiber reinforced thermoplastic resin plate 10 is connected to the rib forming surface. The composite molded body having a shape (cc cross section) continuously inserted from 21 to the rib standing surface 26 or the standing wall 28 can be obtained. Such a shape is preferable because it increases the rigidity of the composite molded body 1 and facilitates the terminal treatment of the unidirectional continuous fiber-reinforced thermoplastic resin plate 10 to improve productivity. At this time, the unidirectional continuous fiber reinforced thermoplastic resin plate 10 may be bent in advance, but the unidirectional continuous fiber reinforced thermoplastic resin plate 10 is bent by the flow pressure of the resin, and the standing wall 28 is bent. From the viewpoint of economy, the composite molded body 1 molded so as to adhere to the substrate is preferable.

本発明の一方向連続繊維強化熱可塑性樹脂板10の連続繊維含有量は、40〜70体積含有率(%)が好ましい。40体積含有率(%)未満では繊維による補強効果が小さく、70体積含有量(%)以上では一方向連続繊維強化熱可塑性樹脂板10の表面樹脂量が少なく、射出成形した熱可塑性樹脂組成物20との接着性が低下するおそれがある。このうち、連続繊維による補強効果と接着性のバランスから、45〜60体積含有率(%)が特に好ましい。   The continuous fiber content of the unidirectional continuous fiber reinforced thermoplastic resin plate 10 of the present invention is preferably 40 to 70 volume content (%). If it is less than 40 volume content (%), the reinforcing effect by the fiber is small, and if it is 70 volume content (%) or more, the surface resin amount of the unidirectional continuous fiber-reinforced thermoplastic resin plate 10 is small, and an injection molded thermoplastic resin composition. There exists a possibility that adhesiveness with 20 may fall. Among these, 45-60 volume content (%) is especially preferable from the balance of the reinforcement effect by continuous fiber, and adhesiveness.

本発明による複合成形体1の製造方法は、一方向連続繊維強化熱可塑性樹脂板10をリブ形成面21と同じ面に積層するため、キャビティのリブ形成側に、リブ25が形成される長手方向と平行になる方向に一方向連続繊維強化熱可塑性樹脂板10をセットし、熱可塑性樹脂組成物20を射出成形して得る方法である。この際、一方向連続繊維強化熱可塑性樹脂板10を、リブ25が形成される位置を外してセットすることも可能であるが、生産性の面から一方向連続繊維強化熱可塑性樹脂板10を加工することなく、リブ25が形成されるキャビティの上にセットする形態が好ましい。熱可塑性樹脂組成物20を射出した際の樹脂の流動圧で、リブ25が形成されるキャビティ上の一方向連続繊維強化熱可塑性樹脂板10は強化繊維の配向に沿って破断し、破断した部分からリブ25に熱可塑性樹脂組成物20が充填される。このとき、破断した部分の一方向連続繊維強化熱可塑性樹脂板10は、熱可塑性樹脂組成物20の射出圧によって、リブ25が形成されるキャビティに沿って折り曲げられた屈曲部11が形成される。   In the manufacturing method of the composite molded body 1 according to the present invention, the unidirectional continuous fiber reinforced thermoplastic resin plate 10 is laminated on the same surface as the rib forming surface 21, so that the rib 25 is formed on the rib forming side of the cavity. The unidirectional continuous fiber reinforced thermoplastic resin plate 10 is set in a direction parallel to the surface, and the thermoplastic resin composition 20 is obtained by injection molding. At this time, the unidirectional continuous fiber reinforced thermoplastic resin plate 10 can be set out of the position where the ribs 25 are formed. A mode in which the rib 25 is set on the cavity where the rib 25 is formed is preferable without processing. Due to the flow pressure of the resin when the thermoplastic resin composition 20 is injected, the unidirectional continuous fiber reinforced thermoplastic resin plate 10 on the cavity where the ribs 25 are formed breaks along the orientation of the reinforcing fibers, and the broken portion The rib 25 is filled with the thermoplastic resin composition 20. At this time, the unidirectional continuous fiber reinforced thermoplastic resin plate 10 at the broken portion is formed with a bent portion 11 that is bent along the cavity in which the rib 25 is formed by the injection pressure of the thermoplastic resin composition 20. .

十字リブやT字リブなど交差したリブ構造27を持つ複合体を成形する際は、上述したようにリブ25を形成した後、金型にあらかじめ設けられたキャビティに沿って熱可塑性樹脂組成物20が十字状やT字状に形成することができる。図2のように、リブ25に直交する十字状やT字状に限定されず、斜行させたり、放射状に配置させたリブ構造とすることも可能である。   When forming a composite having crossed rib structures 27 such as cross ribs and T-shaped ribs, after forming the ribs 25 as described above, the thermoplastic resin composition 20 along the cavities provided in advance in the mold. Can be formed in a cross or T shape. As shown in FIG. 2, the rib structure is not limited to a cross shape or a T shape perpendicular to the ribs 25, and a rib structure that is skewed or radially arranged may be used.

いずれの場合においても、リブ構造27は、一方向連続繊維強化熱可塑性樹脂板10上に、強化繊維を切断することなく配置されていることから、一方向連続繊維強化熱可塑性樹脂板10自身の長手方向の繊維長による補強効果を発揮できることに加え、リブ構造27による補強効果も相乗的に発揮できるものである。なお、強化繊維による補強効果が十分発揮されることが期待できる場合や、リブ構造27を複雑形状とする必要がある場合等は、一方向連続繊維強化熱可塑性樹脂板10の一部に切断部(スリット)を意図的に設け、この切断部から射出圧によってリブ構造27を形成することも可能である。この場合、一方向連続繊維強化熱可塑性樹脂板10の切断部端部が、リブ構造27内にくさびの様に固定することができる。   In any case, since the rib structure 27 is arranged on the unidirectional continuous fiber reinforced thermoplastic resin plate 10 without cutting the reinforcing fibers, the unidirectional continuous fiber reinforced thermoplastic resin plate 10 itself. In addition to being able to exhibit the reinforcing effect due to the fiber length in the longitudinal direction, the reinforcing effect due to the rib structure 27 can also be exhibited synergistically. In addition, when it can be expected that the reinforcing effect by the reinforcing fiber is sufficiently exhibited, or when the rib structure 27 needs to have a complicated shape, a cut portion is formed on a part of the one-way continuous fiber-reinforced thermoplastic resin plate 10. It is also possible to intentionally provide a (slit) and form the rib structure 27 from this cut portion by injection pressure. In this case, the end of the cut portion of the unidirectional continuous fiber reinforced thermoplastic resin plate 10 can be fixed in the rib structure 27 like a wedge.

本発明の一方向連続繊維強化熱可塑性樹脂板10の厚みは、0.1mmから2mmが好ましい。0.1mmより薄いと補強効果が十分発現せず、2mmを超えると射出成形した際にリブ部分が破断しづらくなり、リブ25に熱可塑性樹脂組成物20の充填が不十分となる場合が生じ好ましくない。補強効果と成形の安定性の観点から0.2mmから1.5mmが特に好ましい。   The thickness of the unidirectional continuous fiber reinforced thermoplastic resin plate 10 of the present invention is preferably 0.1 mm to 2 mm. If the thickness is less than 0.1 mm, the reinforcing effect is not sufficiently exhibited. If the thickness exceeds 2 mm, the rib portion is difficult to break when injection molding is performed, and the rib 25 may not be sufficiently filled with the thermoplastic resin composition 20. It is not preferable. From the viewpoint of the reinforcing effect and molding stability, 0.2 mm to 1.5 mm is particularly preferable.

本発明の射出成形する熱可塑性樹脂組成物20の保圧力は10MPa以上が好ましい。保圧力が10MPa未満だと、流動末端部の一方向連続繊維強化熱可塑性樹脂板10の接着力が低下する可能性がある。ただし保圧をかけすぎると型開きを生じバリが発生するため注意が必要である。一方向連続繊維強化熱可塑性樹脂板10の接着力とバリのバランスの観点から保圧力は15〜80MPaが特に好ましい。   The holding pressure of the thermoplastic resin composition 20 for injection molding of the present invention is preferably 10 MPa or more. If the holding pressure is less than 10 MPa, the adhesive force of the unidirectional continuous fiber reinforced thermoplastic resin plate 10 in the flow end portion may be reduced. However, care should be taken because too much holding pressure will cause mold opening and burrs. From the viewpoint of the balance between the adhesive force and burrs of the unidirectional continuous fiber reinforced thermoplastic resin plate 10, the holding pressure is particularly preferably 15 to 80 MPa.

本発明の一方向連続繊維強化熱可塑性樹脂板10に用いる連続強化繊維は、炭素繊維、ガラス繊維、アラミド繊維から選ばれる少なくとも一種の連続繊維からなる。補強効果と経済性の観点から炭素繊維およびガラス繊維が特に好適に使用される。   The continuous reinforcing fiber used for the unidirectional continuous fiber reinforced thermoplastic resin plate 10 of the present invention is composed of at least one continuous fiber selected from carbon fiber, glass fiber, and aramid fiber. Carbon fibers and glass fibers are particularly preferably used from the viewpoints of reinforcing effect and economy.

本発明に使用する炭素繊維は、例えばポリアクリロニトリル(PAN)系、ピッチ系、セルロース系などが挙げられる。これらの中でも、強度や弾性率などに優れるPAN系炭素繊維が好ましい。   Examples of the carbon fiber used in the present invention include polyacrylonitrile (PAN), pitch, and cellulose. Among these, PAN-based carbon fibers that are excellent in strength and elastic modulus are preferable.

本発明に使用するPAN系炭素繊維としては、引張破断伸びが1.5%以上の炭素繊維が好ましい。引張破断伸びが1.5%未満である場合、本発明で使用する一方向連続繊維強化熱可塑性樹脂板10の製造工程で炭素繊維の破断が生じ易く、炭素繊維の長さを長くできないため、機械特性に劣るものとなる。   The PAN-based carbon fiber used in the present invention is preferably a carbon fiber having a tensile elongation at break of 1.5% or more. When the tensile elongation at break is less than 1.5%, the carbon fiber is easily broken in the production process of the unidirectional continuous fiber reinforced thermoplastic resin plate 10 used in the present invention, and the length of the carbon fiber cannot be increased. The mechanical properties are inferior.

前記問題を解決するためには引張破断伸びは1.5%以上、好ましくは1.7%以上、更に好ましくは1.9%以上の炭素繊維を用いるのが良い。本発明に用いるPAN系炭素繊維の引張破断伸びに上限は無いが、一般的には5%未満である。   In order to solve the above problem, it is preferable to use carbon fiber having a tensile elongation at break of 1.5% or more, preferably 1.7% or more, more preferably 1.9% or more. Although there is no upper limit to the tensile elongation at break of the PAN-based carbon fiber used in the present invention, it is generally less than 5%.

かかるPAN系炭素繊維の紡糸方法としては、湿式紡糸、乾湿式紡糸などが挙げられ、所望の特性により任意の紡糸方法を選択することができる。   Examples of the spinning method of the PAN-based carbon fiber include wet spinning and dry wet spinning, and any spinning method can be selected depending on desired characteristics.

本発明に用いるガラス繊維は、一般的に市販されているガラス繊維ではいずれも使用可能であるが、例えばEガラスの繊維がコストと性能の観点から好ましい。   As the glass fiber used in the present invention, any commercially available glass fiber can be used. For example, E glass fiber is preferable from the viewpoint of cost and performance.

連続強化繊維には、表面処理を施して熱可塑性樹脂との親和性を付与させることも可能である。例えばシラン系カップリング剤、ボラン系カップリング剤、チタネート系カップリング剤などが使用可能で、上記シラン系カップリングとしてはアミノシラン系カップリング剤、エポキシシラン系カップリング剤、またはアクリルシラン系カップリング剤などが使用できる。   The continuous reinforcing fiber can be surface-treated to impart affinity with the thermoplastic resin. For example, silane coupling agents, borane coupling agents, titanate coupling agents and the like can be used. As the silane couplings, aminosilane coupling agents, epoxysilane coupling agents, or acrylic silane coupling agents. Agents can be used.

本発明で使用する一方向連続繊維強化熱可塑性樹脂板の製造方法は特に制限はないものの、例えば、溶融樹脂が充満した含浸ダイに連続繊維を投入し、スリットダイから引き抜くプルトルージョン法や、連続繊維束に熱可塑性樹脂粉体をまぶし溶融プレスするパウダー含浸法、連続強化繊維と熱可塑性繊維を混紡した繊維を板状に配置し熱プレスする方法などが挙げられる。   Although the production method of the unidirectional continuous fiber reinforced thermoplastic resin plate used in the present invention is not particularly limited, for example, a pultrusion method in which continuous fibers are introduced into an impregnation die filled with a molten resin and pulled out from a slit die, or a continuous Examples thereof include a powder impregnation method in which a thermoplastic resin powder is applied to a fiber bundle and melt-pressed, and a method in which fibers obtained by mixing continuous reinforcing fibers and thermoplastic fibers are arranged in a plate shape and heat-pressed.

本発明の一方向連続繊維強化熱可塑性樹脂板に用いる熱可塑性樹脂は特に制限はないが、例えばポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ナイロン樹脂、PBT樹脂、PET樹脂、PPS樹脂、LCP樹脂、PEEK樹脂などが有用に用いることができ、更に2種類以上をブレンドし使用してもよい。特にポリプロピレン、ポリカーボネート樹脂、ナイロン樹脂、PPS樹脂が好適に使用できる。   The thermoplastic resin used in the unidirectional continuous fiber reinforced thermoplastic resin plate of the present invention is not particularly limited. For example, polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, polyacetal resin, polycarbonate resin, nylon resin, PBT resin, PET Resin, PPS resin, LCP resin, PEEK resin and the like can be used effectively, and two or more kinds may be blended and used. In particular, polypropylene, polycarbonate resin, nylon resin, and PPS resin can be suitably used.

本発明の射出成形に用いる熱可塑性樹脂組成物20は、一方向連続繊維強化熱可塑性樹脂板10と接着すれば特に制限は無いが、一方向連続繊維強化熱可塑性樹脂板10に用いた熱可塑性樹脂と同種の熱可塑性樹脂が好ましい。一方向連続繊維強化熱可塑性樹脂板10との接着の観点から、射出成形する熱可塑性樹脂組成物20の成形収縮率は小さくすることが好ましく、繊維状充填材を配合した熱可塑性樹脂組成物20が好ましい。好ましい繊維状充填材の例としては炭素繊維、ガラス繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカ、ワラステナイトウィスカ、硼酸アルミウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などが挙げられ、特に炭素繊維、ガラス繊維が好ましい。更に熱可塑性樹脂組成物20中の繊維の形態はペレットと同じ長さの繊維が充填された長繊維タイプが特に好ましい。   The thermoplastic resin composition 20 used for the injection molding of the present invention is not particularly limited as long as it is bonded to the unidirectional continuous fiber reinforced thermoplastic resin plate 10, but the thermoplastic used for the unidirectional continuous fiber reinforced thermoplastic resin plate 10. The same kind of thermoplastic resin as the resin is preferred. From the viewpoint of adhesion to the unidirectional continuous fiber-reinforced thermoplastic resin plate 10, it is preferable to reduce the molding shrinkage of the thermoplastic resin composition 20 to be injection-molded, and the thermoplastic resin composition 20 containing a fibrous filler is blended. Is preferred. Examples of preferred fibrous fillers are carbon fiber, glass fiber, potassium titanate whisker, zinc oxide whisker, calcium carbonate whisker, wollastonite whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber. , Stone fiber, metal fiber and the like, and carbon fiber and glass fiber are particularly preferable. Furthermore, the form of the fibers in the thermoplastic resin composition 20 is particularly preferably a long fiber type in which fibers having the same length as the pellets are filled.

本発明で用いる熱可塑性樹脂組成物20はペレットとして射出成形するものが好ましい。このペレットの形状は特に制限はなく、ペレットの長さは通常3〜15mmの範囲である。ペレットの長さが短すぎると、射出成形体中の残存繊維長が短くなりスキン層の樹脂の流れ方向への繊維配向が強くなり異方性が生じるとともに、強度、衝撃が低下する恐れがある。またペレット長が長すぎると、成形機での噛み込み不良を生じる場合があるためペレット長は3〜12mmが好ましく、6〜10mmが更に好ましい。   The thermoplastic resin composition 20 used in the present invention is preferably one that is injection-molded as pellets. There is no restriction | limiting in particular in the shape of this pellet, The length of a pellet is the range of 3-15 mm normally. If the length of the pellet is too short, the remaining fiber length in the injection-molded body becomes short, the fiber orientation in the resin flow direction of the skin layer becomes strong, anisotropy occurs, and the strength and impact may be reduced. . If the pellet length is too long, it may cause a biting failure in the molding machine, so the pellet length is preferably 3 to 12 mm, more preferably 6 to 10 mm.

以下に実施例を挙げて本発明を更に具体的に説明する。材料特性評価については下記の方法に従って行った。   The present invention will be described more specifically with reference to the following examples. The material properties were evaluated according to the following method.

[リブの充填]
射出成形した複合成形体のリブの充填状態を目視で観察し、未充填部分がある場合×、完全充填した場合○とた。
[Rib filling]
The filled state of the ribs of the composite molded article that was injection-molded was visually observed.

[反り量]
リブを上として複合成形体を平板上に配置し、複合成形体の板部分の両端を結ぶ線を0(基準位置)としたときの、複合成形体の中央部分の浮き又は沈み量(長さ)を反り量とした(図4)。上反りを+、下反りを−とした。
[Warpage amount]
When the composite molded body is placed on a flat plate with the ribs on top, and the line connecting both ends of the plate portion of the composite molded body is 0 (reference position), the floating or sinking amount (length) of the central portion of the composite molded body ) Was defined as the amount of warpage (FIG. 4). Upper warpage was defined as +, and lower warpage was defined as-.

[曲げ強さ]
リブ付き複合成形体を図5に示す曲げ試験機にセットし、支点間距離100mm、クロスヘッドの降下速度3mm/minで曲げ試験を実施し、初期の1mmたわみ時の荷重(kg)を曲げ強さとした。
[Bending strength]
The composite molded body with ribs is set in the bending test machine shown in FIG. 5, and a bending test is performed at a distance between supporting points of 100 mm and a crosshead descending speed of 3 mm / min. Say it.

また、実施例および比較例に用いる熱可塑性樹脂、一方向連続繊維強化熱可塑性樹脂板を以下のように準備した。
ナイロン6樹脂:東レ社製“アミラン”(登録商標)CM1011G30
ポリプロピレン樹脂:プライムポリマー社製“モストロン”(登録商標)L4070
PPS樹脂:東レ社製“トレリナ”(登録商標)A604
Moreover, the thermoplastic resin used for an Example and a comparative example and the unidirectional continuous fiber reinforced thermoplastic resin board were prepared as follows.
Nylon 6 resin: “Amilan” (registered trademark) CM1011G30 manufactured by Toray Industries, Inc.
Polypropylene resin: “Mostron” (registered trademark) L4070 manufactured by Prime Polymer Co., Ltd.
PPS resin: “Torelina” (registered trademark) A604 manufactured by Toray Industries, Inc.

また、上記樹脂に適用する繊維状充填材は以下の通りである。
炭素繊維 :東レ社製“トレカ”(登録商標)T700S(直径7μm、PAN系炭素繊維)。
Moreover, the fibrous filler applied to the said resin is as follows.
Carbon fiber: “Torayca” (registered trademark) T700S (diameter 7 μm, PAN-based carbon fiber) manufactured by Toray Industries, Inc.

[一方向連続繊維強化熱可塑性樹脂板:A−1]
東レ株式会社製炭素繊維“トレカ”(登録商標)T700S(12K)を引き揃え、PPS樹脂で充満された含浸ダイに投入した後、引き抜き成形によって、幅50mm、厚み0.28mm、連続繊維含有量50重量%の一方向連続繊維強化熱可塑性樹脂板A−1を得た。
[One-way continuous fiber reinforced thermoplastic resin plate: A-1]
Carbon fiber “Torayca” (registered trademark) T700S (12K) manufactured by Toray Industries, Inc. is aligned, put into an impregnation die filled with PPS resin, and then drawn by pultrusion to have a width of 50 mm, a thickness of 0.28 mm, and a continuous fiber content A 50% by weight unidirectional continuous fiber reinforced thermoplastic resin plate A-1 was obtained.

[一方向連続繊維強化熱可塑性樹脂板:A−2]
A−1で用いたPPS樹脂をナイロン6樹脂とした以外はA−1と同様の条件にて一方向連続繊維強化熱可塑性樹脂板A−2を製造した。得られた一方向連続繊維強化熱可塑性樹脂板は幅50mm、厚み0.26mm、連続繊維含有量55重量%であった。
[One-way continuous fiber reinforced thermoplastic resin plate: A-2]
A unidirectional continuous fiber reinforced thermoplastic resin plate A-2 was produced under the same conditions as in A-1, except that the PPS resin used in A-1 was a nylon 6 resin. The obtained unidirectional continuous fiber reinforced thermoplastic resin plate had a width of 50 mm, a thickness of 0.26 mm, and a continuous fiber content of 55% by weight.

[一方向連続繊維強化熱可塑性樹脂板:A−3]
A−1で用いたPPS樹脂をポリプロピレン樹脂とした以外はA−1と同様の条件にて一方向連続繊維強化熱可塑性樹脂板A−3を製造した。得られた一方向連続繊維強化熱可塑性樹脂板A−3は幅50mm、厚み0.26mm、連続繊維含有量60重量%であった。
[One-way continuous fiber reinforced thermoplastic resin plate: A-3]
A unidirectional continuous fiber reinforced thermoplastic resin plate A-3 was produced under the same conditions as in A-1, except that the PPS resin used in A-1 was a polypropylene resin. The obtained unidirectional continuous fiber reinforced thermoplastic resin plate A-3 had a width of 50 mm, a thickness of 0.26 mm, and a continuous fiber content of 60% by weight.

[一方向連続繊維強化熱可塑性樹脂板:A−4]
一方向連続繊維強化熱可塑性樹脂板A−1を、連続繊維の配向が同じ方向になるように4枚積層し、熱プレスして、幅50mm、厚み1.1mm、連続繊維含有量50重量%の一方向連続繊維強化熱可塑性樹脂板A−4を得た。
[One-way continuous fiber reinforced thermoplastic resin plate: A-4]
Four unidirectional continuous fiber reinforced thermoplastic resin plates A-1 are laminated so that the orientation of continuous fibers is in the same direction, and hot-pressed, width 50 mm, thickness 1.1 mm, continuous fiber content 50% by weight. A unidirectional continuous fiber reinforced thermoplastic resin plate A-4 was obtained.

[一方向連続繊維強化熱可塑性樹脂板:A−5]
一方向連続繊維強化熱可塑性樹脂板A−1を、連続繊維の配向が同じ方向になるように8枚積層し、熱プレスして、幅50mm、厚み2.1mm、連続繊維含有量50重量%の一方向連続繊維強化熱可塑性樹脂板A−5を得た。
[One-way continuous fiber reinforced thermoplastic resin plate: A-5]
Eight unidirectional continuous fiber reinforced thermoplastic resin plates A-1 are laminated so that the orientation of the continuous fibers is the same, and hot-pressed to obtain a width of 50 mm, a thickness of 2.1 mm, and a continuous fiber content of 50% by weight. A unidirectional continuous fiber reinforced thermoplastic resin plate A-5 was obtained.

[実施例1]
図3−Bに示す幅50mm、長さ150mm、高さ10mm、肉厚2mmの箱形状の中央部に高さ10mm、厚み2mmのリブが付いた金型を130℃に温調し、一方向連続繊維強化熱可塑性樹脂板A−1を幅149.5mm長にカットして金型のリブ面にセットし、東レ株式会社製PPS樹脂“トレリナ”(登録商標)A604を320℃で射出成形して複合成形体を得た。得られた特性は表1に示す通りであった。
[Example 1]
The mold with ribs of 10 mm high and 2 mm thick at the center of a box shape with a width of 50 mm, a length of 150 mm, a height of 10 mm and a wall thickness of 2 mm shown in FIG. Continuous fiber reinforced thermoplastic resin plate A-1 was cut to a width of 149.5 mm and set on the rib surface of the mold, and PPS resin “Torelina” (registered trademark) A604 manufactured by Toray Industries, Inc. was injection-molded at 320 ° C. Thus, a composite molded body was obtained. The obtained characteristics were as shown in Table 1.

[実施例2]
一方向連続繊維強化熱可塑性樹脂板A−4を用いた以外は実施例1と同様とした。得られた特性は表1に示す通りであった。
[Example 2]
Example 1 was repeated except that the unidirectional continuous fiber reinforced thermoplastic resin plate A-4 was used. The obtained characteristics were as shown in Table 1.

[実施例3]
一方向連続繊維強化熱可塑性樹脂板A−2、射出成形材料として東レ株式会社製ナイロン樹脂“アミラン”(登録商標)CM1011G30を金型温度80℃、成形温度260℃で実施した以外は実施例1と同様とした。得られた特性は表1に示す通りであった。
[Example 3]
Example 1 except that unidirectional continuous fiber reinforced thermoplastic resin plate A-2 and nylon resin “Amilan” (registered trademark) CM1011G30 manufactured by Toray Industries, Inc. was used as the injection molding material at a mold temperature of 80 ° C. and a molding temperature of 260 ° C. And the same. The obtained characteristics were as shown in Table 1.

[実施例4]
一方向連続繊維強化熱可塑性樹脂板A−3、射出成形材料としてプライムポリマー社製ポリプロピレン樹脂“モストロン”(登録商標)L4070を金型温度80℃、成形温度230℃で実施した以外は実施例1と同様とした。得られた特性は表1に示す通りであった。
[Example 4]
Example 1 except that a unidirectional continuous fiber reinforced thermoplastic resin plate A-3 and a polypropylene resin “Mostron” (registered trademark) L4070 manufactured by Prime Polymer Co., Ltd. were used as injection molding materials at a mold temperature of 80 ° C. and a molding temperature of 230 ° C. And the same. The obtained characteristics were as shown in Table 1.

[実施例5]
図2−Aに示す幅50mm、長さ150mm、高さ10mmで肉厚2mmの板形状の中央部に、高さ10mm、厚み2mmの十字リブ付き金型を用いた以外は実施例1と同様とした。得られた特性は表1に示す通りであった。
[Example 5]
As in Example 1 except that a die with a cross rib having a height of 10 mm and a thickness of 2 mm was used at the center of the plate shape having a width of 50 mm, a length of 150 mm, a height of 10 mm and a thickness of 2 mm shown in FIG. It was. The obtained characteristics were as shown in Table 1.

[比較例1]
一方向連続繊維強化熱可塑性樹脂板を金型にセットせず射出成形した以外は実施例1と同様とした。得られた結果は反りが大きく、曲げ荷重も小さいものであった。
[Comparative Example 1]
Example 1 was the same as Example 1 except that the unidirectional continuous fiber-reinforced thermoplastic resin plate was injection-molded without being set in the mold. The obtained results showed large warpage and small bending load.

[比較例2]
一方向連続繊維強化熱可塑性樹脂板A−1をリブ面と反対面にセットした以外は実施例1と同様とした。得られた結果は反りが非常に大きいものであった。
[Comparative Example 2]
Example 1 was the same as Example 1 except that the unidirectional continuous fiber reinforced thermoplastic resin plate A-1 was set on the surface opposite to the rib surface. The obtained results were very warped.

[比較例3]
一方向連続繊維強化熱可塑性樹脂板A−1を中央リブに対し直角に配置した以外は実施例1と同様とした。得られた結果は一方向連続繊維強化熱可塑性樹脂板に樹脂の流動が妨げられ、リブの充填が不十分となり、補強効果が小さく反りが大きいものであった。
[Comparative Example 3]
Example 1 was the same as Example 1 except that the unidirectional continuous fiber reinforced thermoplastic resin plate A-1 was disposed at right angles to the central rib. As a result, the flow of the resin to the unidirectional continuous fiber reinforced thermoplastic resin plate was hindered, the rib filling was insufficient, the reinforcing effect was small, and the warp was large.

[比較例4]
一方向連続繊維強化熱可塑性樹脂板A−5を用いた以外は実施例1と同様にした。得られた結果は、一方向連続繊維強化熱可塑性樹脂板が厚すぎ中央リブの充填が不十分であった。そのため反りが大きいものであった。
[Comparative Example 4]
Example 1 was repeated except that the unidirectional continuous fiber reinforced thermoplastic resin plate A-5 was used. As a result, the unidirectional continuous fiber reinforced thermoplastic resin plate was too thick and the central rib was insufficiently filled. Therefore, the warpage was large.

[比較例5]
一方向連続繊維強化熱可塑性樹脂板を金型にセットせず射出成形した以外は実施例5と同様とした。得られた結果は反りが大きく、曲げ荷重も小さいものであった。
[Comparative Example 5]
Example 5 was the same as Example 5 except that the unidirectional continuous fiber reinforced thermoplastic resin plate was injection-molded without being set in the mold. The obtained results showed large warpage and small bending load.

Figure 2013169647
Figure 2013169647

1 複合成形体
10 一方向連続繊維強化熱可塑性樹脂板
11 屈曲部
20 熱可塑性樹脂組成物
21 リブ形成面
25 リブ
26 リブ立設面
27 リブ構造
28 立ち壁
30 曲げ試験用クロスヘッド
40 曲げ試験機にセットされた複合成形体
50 曲げ試験用支点
60 可動側の金型
70 固定側の金型
80 金型内にセットされた一方向連続繊維強化熱可塑性樹脂板
90 スプル
DESCRIPTION OF SYMBOLS 1 Composite molded object 10 Unidirectional continuous fiber reinforced thermoplastic resin board 11 Bending part 20 Thermoplastic resin composition 21 Rib formation surface 25 Rib 26 Rib standing surface 27 Rib structure 28 Standing wall 30 Crosshead 40 for bending test Bending test machine Composite molded body 50 set in a bending test fulcrum 60 Movable side mold 70 Fixed side mold 80 Unidirectional continuous fiber reinforced thermoplastic resin plate 90 set in the mold

Claims (16)

一方向連続繊維強化熱可塑性樹脂板とリブ付熱可塑性樹脂組成物とからなる複合成形体において、熱可塑性樹脂組成物のリブ形成面に前記一方向連続繊維強化熱可塑性樹脂板が配設されるとともに、前記リブの立設面の少なくとも一部に、前記一方向連続繊維強化熱可塑性樹脂板の一部が該リブの立設面に沿って延設された屈曲部を有することを特徴とする複合成形体。 In a composite molded body comprising a unidirectional continuous fiber reinforced thermoplastic resin plate and a ribbed thermoplastic resin composition, the unidirectional continuous fiber reinforced thermoplastic resin plate is disposed on a rib forming surface of the thermoplastic resin composition. In addition, at least a part of the standing surface of the rib has a bent portion in which a part of the unidirectional continuous fiber reinforced thermoplastic resin plate extends along the standing surface of the rib. Composite molded body. 前記リブが、一方向連続繊維強化熱可塑性樹脂板の繊維方向と略平行に設けられることを特徴とする請求項1に記載の複合成形体。 The composite molded body according to claim 1, wherein the rib is provided substantially parallel to a fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin plate. 前記一方向連続繊維強化熱可塑性樹脂板の屈曲部が、前記リブを形成する射出圧により形成された、前記一方向連続繊維強化熱可塑性樹脂板の繊維方向に沿った切断部であることを特徴とする請求項2に記載の複合成形体。 The bent portion of the unidirectional continuous fiber reinforced thermoplastic resin plate is a cut portion along the fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin plate formed by an injection pressure forming the rib. The composite molded body according to claim 2. 前記リブが、一方向連続繊維強化熱可塑性樹脂板の繊維端を有する端部に沿って設けられることを特徴とする請求項1に記載の複合成形体。 The composite molded body according to claim 1, wherein the rib is provided along an end portion having a fiber end of the unidirectional continuous fiber-reinforced thermoplastic resin plate. 一方向連続繊維強化熱可塑性樹脂板の繊維方向と異なる方向に、一方向連続繊維強化熱可塑性樹脂板上にリブが設けられることを特徴とする請求項1〜4のいずれかに記載の複合成形体。 The composite molding according to any one of claims 1 to 4, wherein ribs are provided on the one-way continuous fiber-reinforced thermoplastic resin plate in a direction different from the fiber direction of the one-way continuous fiber-reinforced thermoplastic resin plate. body. 前記一方向連続繊維強化熱可塑性樹脂板の厚みが0.1から2mmであることを特徴とする請求項1〜5のいずれかに記載の複合成形体。 The composite molded body according to any one of claims 1 to 5, wherein the unidirectional continuous fiber reinforced thermoplastic resin plate has a thickness of 0.1 to 2 mm. 前記一方向連続繊維強化熱可塑性樹脂板と前記リブ付熱可塑性樹脂組成物とが、同一種の熱可塑性樹脂がからなることを特徴とする請求項1〜6のいずれかに記載の複合成形体。 The composite molded body according to any one of claims 1 to 6, wherein the unidirectional continuous fiber reinforced thermoplastic resin plate and the ribbed thermoplastic resin composition are made of the same kind of thermoplastic resin. . 前記一方向連続繊維強化熱可塑性樹脂板の連続繊維が、炭素繊維、ガラス繊維、アラミド繊維から選ばれる少なくとも1種であることを特徴とする請求項1〜7のいずれかに記載の複合成形体。 The composite molded body according to any one of claims 1 to 7, wherein the continuous fiber of the unidirectional continuous fiber reinforced thermoplastic resin plate is at least one selected from carbon fiber, glass fiber, and aramid fiber. . 前記一方向連続繊維強化熱可塑性樹脂板の連続繊維含有量が40〜70体積含有率であることを特徴とする請求項1〜8のいずれかに記載の複合成形体。 The composite molded body according to any one of claims 1 to 8, wherein the continuous fiber content of the unidirectional continuous fiber reinforced thermoplastic resin plate is 40 to 70 volume content. 一方向連続繊維強化熱可塑性樹脂板とリブ付熱可塑性樹脂組成物からなる複合成形体の製造方法において、成形型内にセットした一方向連続繊維強化熱可塑性樹脂板に熱可塑性樹脂組成物を射出成形するものであり、前記一方向連続繊維強化熱可塑性樹脂板の端部の少なくとも一部を射出圧で折り曲げてリブを形成することを特徴とする複合成形体の製造方法。 In a method for producing a composite molded body comprising a unidirectional continuous fiber reinforced thermoplastic resin plate and a ribbed thermoplastic resin composition, the thermoplastic resin composition is injected onto the unidirectional continuous fiber reinforced thermoplastic resin plate set in a mold. A method for producing a composite molded body, comprising: forming a rib by bending at least a part of an end portion of the unidirectional continuous fiber reinforced thermoplastic resin plate with an injection pressure. 前記リブが、一方向連続繊維強化熱可塑性樹脂板の繊維方向と略平行に設けられることを特徴とする請求項10に記載の複合成形体の製造方法。 The method for producing a composite molded body according to claim 10, wherein the rib is provided substantially parallel to a fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin plate. 前記一方向連続繊維強化熱可塑性樹脂板の屈曲部が、前記リブを形成する射出圧により、前記一方向連続繊維強化熱可塑性樹脂板を繊維方向に沿って切断させて形成することを特徴とする請求項11に記載の複合成形体の製造方法。 The bent portion of the unidirectional continuous fiber reinforced thermoplastic resin plate is formed by cutting the unidirectional continuous fiber reinforced thermoplastic resin plate along a fiber direction by an injection pressure for forming the rib. The manufacturing method of the composite molded object of Claim 11. 前記リブが、一方向連続繊維強化熱可塑性樹脂板の繊維端を有する端部に沿って設けられることを特徴とする請求項10に記載の複合成形体の製造方法。 The said rib is provided along the edge part which has the fiber end of a unidirectional continuous fiber reinforced thermoplastic resin board, The manufacturing method of the composite molded object of Claim 10 characterized by the above-mentioned. 請求項10〜13のいずれかの方法により形成されたリブが、さらに前記一方向連続繊維強化熱可塑性樹脂板の繊維方向と異なる方向に、一方向連続繊維強化熱可塑性樹脂板上にリブを形成することを特徴とする複合成形体の製造方法。 The rib formed by the method according to any one of claims 10 to 13 further forms a rib on the unidirectional continuous fiber reinforced thermoplastic resin plate in a direction different from the fiber direction of the unidirectional continuous fiber reinforced thermoplastic resin plate. A method for producing a composite molded body, comprising: 前記一方向連続繊維強化熱可塑性樹脂板の厚みが0.1から2mmであることを特徴とする請求項10〜14のいずれかに記載の複合成形体の製造方法。 The method for producing a composite molded body according to any one of claims 10 to 14, wherein the unidirectional continuous fiber reinforced thermoplastic resin plate has a thickness of 0.1 to 2 mm. 前記一方向連続繊維強化熱可塑性樹脂板と前記リブ付熱可塑性樹脂組成物とが、同一種の熱可塑性樹脂がからなることを特徴とする請求項10〜15のいずれかに記載の複合成形体の製造方法。 The composite molded body according to any one of claims 10 to 15, wherein the unidirectional continuous fiber reinforced thermoplastic resin plate and the ribbed thermoplastic resin composition are made of the same kind of thermoplastic resin. Manufacturing method.
JP2012032715A 2012-02-17 2012-02-17 Composite molded object and method for manufacturing the same Pending JP2013169647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032715A JP2013169647A (en) 2012-02-17 2012-02-17 Composite molded object and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032715A JP2013169647A (en) 2012-02-17 2012-02-17 Composite molded object and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013169647A true JP2013169647A (en) 2013-09-02

Family

ID=49263942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032715A Pending JP2013169647A (en) 2012-02-17 2012-02-17 Composite molded object and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013169647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172241A (en) * 2013-03-07 2014-09-22 Toray Ind Inc Fiber-reinforced thermoplastic resin molding and method for manufacturing the same
JP2020104419A (en) * 2018-12-27 2020-07-09 国立大学法人岐阜大学 Molding apparatus and molding method of long fiber reinforced thermoplastic resin product
CN113226717A (en) * 2018-10-15 2021-08-06 阿里斯复合材料有限公司 Method and apparatus for molding composite ribs and rib-sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172241A (en) * 2013-03-07 2014-09-22 Toray Ind Inc Fiber-reinforced thermoplastic resin molding and method for manufacturing the same
CN113226717A (en) * 2018-10-15 2021-08-06 阿里斯复合材料有限公司 Method and apparatus for molding composite ribs and rib-sheet
JP2020104419A (en) * 2018-12-27 2020-07-09 国立大学法人岐阜大学 Molding apparatus and molding method of long fiber reinforced thermoplastic resin product
JP7303961B2 (en) 2018-12-27 2023-07-06 国立大学法人東海国立大学機構 Molding equipment for long fiber-reinforced thermoplastic resin products

Similar Documents

Publication Publication Date Title
JP5644496B2 (en) Fiber reinforced thermoplastic resin molding
TWI547371B (en) Carbon fiber reinforced thermoplastic resin composite material, molded body using the same and electronic equipment case
JP6269826B2 (en) Molded body and manufacturing method thereof
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
EP2803694A3 (en) Prepreg, preform, molded product, and method for manufacturing prepreg
CN111212716B (en) Method for producing fiber-reinforced plastic composite
US20190211164A1 (en) Laminated substrate and method for manufacturing the same
US20150266245A1 (en) Method for manufacturing fiber-reinforced resin materials
KR101956131B1 (en) Composite material for reinforcement and articles comprising the same
JP6801321B2 (en) Laminated base material for rib molding
JP2013072055A (en) Method for manufacturing fiber-reinforced resin structure
JP2013169647A (en) Composite molded object and method for manufacturing the same
KR20180126762A (en) Hybrid type fiber reinforced composite material
US10876002B2 (en) Resin composition for FRP, FRP sheet and molded product
JP2020049925A (en) Method for producing carbon fiber-reinforced thermoplastic resin composite material
KR20160022467A (en) Composite material and method of manufacturing the same
KR102063600B1 (en) Fiber-reinforced composite material and manufacturing method of interior and exterior ofvehicles using the same
KR102063602B1 (en) Fiber reinforced composite material sheet and method of manufacturing the same
KR101746026B1 (en) Multilayer hybrid prepreg and its manufacturing method
KR20170069747A (en) Thermoplastic composite containing thermoplastic polyurethane coating layer and its manufacturing method
KR20150001481U (en) Fiber-reinforced sheet
KR20160110648A (en) Composite material and method for preparing the same
US20240190103A1 (en) Sheet-type fiber-reinforced composite having heterogeneous properties and mehtod for manufacturing the same
KR20200064759A (en) Method for preparing fiber reinforced plastic composite material and fiber reinforced plastic composite material using the same
JP2017206015A5 (en)