JP2015139878A - Water-assist molding - Google Patents

Water-assist molding Download PDF

Info

Publication number
JP2015139878A
JP2015139878A JP2014011962A JP2014011962A JP2015139878A JP 2015139878 A JP2015139878 A JP 2015139878A JP 2014011962 A JP2014011962 A JP 2014011962A JP 2014011962 A JP2014011962 A JP 2014011962A JP 2015139878 A JP2015139878 A JP 2015139878A
Authority
JP
Japan
Prior art keywords
molded product
reinforcing fibers
fiber length
fiber
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014011962A
Other languages
Japanese (ja)
Inventor
岡 哲史
Tetsushi Oka
哲史 岡
吉則 牧
Yoshinori Maki
吉則 牧
直司 富田
Naoshi Tomita
直司 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2014011962A priority Critical patent/JP2015139878A/en
Publication of JP2015139878A publication Critical patent/JP2015139878A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water-assist molding with a reduced vacuum void.SOLUTION: A water-assist molding comprises a resin material and a reinforced fiber, with the reinforced fiber having an average fiber length of 50 μm or more 200 μm or less.

Description

本発明はウォーターアシスト成形法と呼ばれる成形方法で得られた成形品に関する。   The present invention relates to a molded product obtained by a molding method called a water assist molding method.

中空部を有する樹脂成形品を成形する場合、ガスアシスト成形法と呼ばれる成形方法を選択するのが一般的である。ガスアシスト成形法とは、射出成形法の一種であり、成形型のキャビティに注入された流体状の成形材料中に気体を圧入することで、成形品に中空部を形成し得る。以下、必要に応じて、流体状の成形材料を溶融成形材料と呼ぶ。また、成形品の中空部に対応するキャビティ内の部分を中空予定部と呼ぶ。   When molding a resin molded product having a hollow portion, a molding method called a gas assist molding method is generally selected. The gas assist molding method is a kind of injection molding method, and a hollow portion can be formed in a molded product by press-fitting a gas into a fluid molding material injected into a cavity of a molding die. Hereinafter, the fluid molding material is referred to as a melt molding material as necessary. Moreover, the part in the cavity corresponding to the hollow part of a molded product is called a hollow planned part.

しかしガスアシスト成形法においては、キャビティ内に溶融成形材料を注入し、さらに、キャビティの中空予定部に気体を圧入することで、中空予定部に既に存在していた溶融成形材料を流動させる。換言すると、ガスアシスト成形法によると、溶融成形材料を気体の押圧力によって流動させることで、成形品の中空部を形成する。このため、溶融成形材料が流動し難い材料であれば、溶融成形材料を気体による大きな力で押圧する必要がある。このとき気体に対しては、溶融成形材料からの大きな反力、つまり圧縮方向の大きな力が作用する。成形品を樹脂材料と強化繊維とで構成する場合等には、溶融成形材料が流動し難くなるため、成形時において気体に作用する圧縮方向の力もまた、過大になり易い。気体は比較的体積変化し易く、圧縮時における体積変化量もまた大きい。したがって、気体に作用する圧縮方向の力が過大であると、気体の圧縮量が過大になり、成形品に望みどおりの大きさの中空部を形成し難い場合がある。   However, in the gas assist molding method, the molten molding material is injected into the cavity, and further, the molten molding material that already exists in the planned hollow portion is caused to flow by injecting gas into the planned hollow portion of the cavity. In other words, according to the gas assist molding method, the hollow part of the molded product is formed by causing the molten molding material to flow by the pressing force of the gas. For this reason, if the melt molding material is difficult to flow, it is necessary to press the melt molding material with a large force of gas. At this time, a large reaction force from the melt molding material, that is, a large force in the compression direction acts on the gas. When the molded product is composed of a resin material and reinforcing fibers, the molten molding material is difficult to flow, so that the force in the compression direction acting on the gas during molding is also likely to be excessive. Gas is relatively easily changed in volume, and the volume change during compression is also large. Accordingly, if the force in the compression direction acting on the gas is excessive, the amount of compression of the gas becomes excessive, and it may be difficult to form a hollow part having a desired size in the molded product.

気体に換えてキャビティ内の中空予定部に液体を圧入するウォーターアシスト成形法(WIT:Water−assisted Injection Technology)が知られている(例えば、特許文献1参照)。液体は気体よりも圧縮し難いため、ウォーターアシスト成形法によると、比較的流動性に劣る溶融成形材料に対しても、充分な押圧力を作用させることが可能である。参考までに、ウォーターアシスト成形法で得られた成形品は、例えば、自動車用の冷却系ホースとして使用できる。ウォーターアシスト成形法に用いる成形材料としては、ガラスファイバーやタルク等の充填材をPA66に添加したものを用いるのが一般的である。   A water-assisted injection technology (WIT: Water-assisted Injection Technology) in which a liquid is pressed into a hollow portion in a cavity instead of a gas is known (for example, see Patent Document 1). Since a liquid is harder to compress than a gas, according to the water assist molding method, a sufficient pressing force can be applied even to a melt molding material having relatively poor fluidity. For reference, the molded product obtained by the water assist molding method can be used, for example, as a cooling hose for automobiles. As a molding material used in the water assist molding method, a material obtained by adding a filler such as glass fiber or talc to PA66 is generally used.

ところで、ウォーターアシスト成形法においては、中空部を形成するための流体として液体を用いているため、当該液体近傍に存在する溶融成形材料は急速に冷却される。したがって、当該液体近傍に存在する溶融成形材料、および、成形型の型面近傍に位置する溶融成形材料は、他の部分に存在する溶融成形材料に先んじて急速に冷却され固化する。換言すると、この種の成形方法によると、型面および流体から離間している溶融成形材料が溶融状態にあるにもかかわらず、型面および流体近傍の溶融成形材料は急速に冷却され固化してスキン層を形成する。そしてその結果、内部応力により、真空ボイドと呼ばれる空洞が成形品に生じる場合がある。   By the way, in the water assist molding method, since a liquid is used as a fluid for forming the hollow portion, the melt molding material existing in the vicinity of the liquid is rapidly cooled. Therefore, the melt molding material present in the vicinity of the liquid and the melt molding material located in the vicinity of the mold surface of the mold are rapidly cooled and solidified prior to the melt molding material present in the other part. In other words, according to this type of molding method, the molten molding material near the mold surface and the fluid is rapidly cooled and solidified even though the molten molding material spaced from the mold surface and the fluid is in a molten state. Form a skin layer. As a result, cavities called vacuum voids may occur in the molded product due to internal stress.

特開平11−28981号公報JP-A-11-28981

本発明は上記事情に鑑みてなされたものであり、樹脂材料と強化繊維とで構成される中空の成形品であって、真空ボイドの低減されたものを提供することを目的とする。   This invention is made | formed in view of the said situation, Comprising: It aims at providing the hollow molded article comprised with the resin material and the reinforced fiber, and the thing where the vacuum void was reduced.

上記課題を解決する本発明のウォーターアシスト成形品は、成形型のキャビティに注入された流体状の成形材料中に液体を圧入することで中空部を形成するウォーターアシスト成形法で成形されてなり、
前記成形材料が冷却固化されてなる壁部を備え、
前記壁部は、樹脂材料と強化繊維とを含み、
前記強化繊維の平均繊維長は50μm以上200μm以下であるものである。
The water assist molded product of the present invention that solves the above problems is molded by a water assist molding method that forms a hollow portion by press-fitting a liquid into a fluid molding material injected into a cavity of a mold,
A wall portion formed by cooling and solidifying the molding material;
The wall portion includes a resin material and a reinforcing fiber,
The average fiber length of the reinforcing fibers is 50 μm or more and 200 μm or less.

本発明のウォーターアシスト成形品は、以下の(1)〜(3)の何れかを備えるのが好ましく、(1)〜(3)の複数を備えるのがより好ましい。
(1)前記壁部の肉厚は、1.5mm以上5mm以下である。
(2)前記樹脂材料と前記強化繊維との質量の和を100質量%としたときに、前記強化繊維を10質量%以上50質量%以下含む。
(3)前記強化繊維は前記壁部中においてランダム配向している。
The water assist molded article of the present invention preferably includes any of the following (1) to (3), and more preferably includes a plurality of (1) to (3).
(1) The wall portion has a thickness of 1.5 mm or more and 5 mm or less.
(2) When the sum of the mass of the resin material and the reinforcing fiber is 100% by mass, the reinforcing fiber is included in an amount of 10% by mass to 50% by mass.
(3) The reinforcing fibers are randomly oriented in the wall.

本発明のウォーターアシスト成形品は、強化繊維の長さを特定の範囲内にしたものであり、真空ボイドの抑制されたものである。   The water-assist molded product of the present invention is one in which the length of the reinforcing fiber is within a specific range, and vacuum voids are suppressed.

実施例の成形品を模式的に表す一部切り欠き斜視図である。It is a partially cutaway perspective view schematically showing a molded product of an example. 真空ボイド測定試験で測定した真空ボイドの長さと、製品繊維長と、の関係を表すグラフである。It is a graph showing the relationship between the length of the vacuum void measured by the vacuum void measurement test, and the product fiber length.

以下、本発明のウォーターアシスト成形品を具体的に説明する。以下、特に説明のない場合、本発明のウォーターアシスト成形品を本発明の成形品と呼ぶ。また、特に説明のない場合、ウォーターアシスト成形法を単にWIT法と略する。   Hereinafter, the water assist molded article of the present invention will be specifically described. Hereinafter, unless otherwise specified, the water-assist molded product of the present invention is referred to as the molded product of the present invention. Further, unless otherwise specified, the water assist molding method is simply abbreviated as the WIT method.

本発明の成形品は、上述したように、樹脂材料と強化繊維とで構成され、WIT法で成形されてなる。樹脂材料の種類は特に限定しないが、WIT法で用いる液体、つまり、溶融成形材料に圧入する液体と反応し難いものであるのが良い。WIT法で用いる液体についても同様に、樹脂材料と反応し難いものを使用するのが良い。以下、必要に応じて、WIT法において溶融成形材料に圧入するための液体を圧入液体と略する。   As described above, the molded product of the present invention is composed of a resin material and reinforcing fibers, and is molded by the WIT method. The type of the resin material is not particularly limited, but it is preferable that the resin material does not easily react with the liquid used in the WIT method, that is, the liquid that is press-fitted into the melt molding material. Similarly, as the liquid used in the WIT method, it is preferable to use a liquid that does not easily react with the resin material. Hereinafter, the liquid for press-fitting into the melt molding material in the WIT method is abbreviated as press-fit liquid as necessary.

さらに、WIT法における圧入液体として水を選択する場合、圧入液体は水だけで構成しても良いが各種添加剤を加えても良い。なお、WIT法では、キャビティ内において、流体状の成形材料に圧入液体を圧入するが、ここでいう「流体状の」成形材料とは、溶融および/または軟化した樹脂材料と固体状の強化繊維とを含み、その他の材料を含んでも良い。その他の材料に関しては、このとき溶融および/または軟化しても良いし、固体状であっても良い。   Furthermore, when water is selected as the press-fit liquid in the WIT method, the press-fit liquid may be composed of water alone, but various additives may be added. In the WIT method, a press-fitted liquid is pressed into a fluid molding material in a cavity. The “fluid” molding material here refers to a molten and / or softened resin material and a solid reinforcing fiber. And other materials may be included. Other materials may be melted and / or softened at this time, or may be solid.

強化繊維は、繊維状でありかつ樹脂材料よりも高強度のものであれば良い。また、後述するように、強化繊維の平均繊維長は50μm以上かつ200μm以下であれば良い。   The reinforcing fibers may be fibrous and have a strength higher than that of the resin material. Further, as will be described later, the average fiber length of the reinforcing fibers may be 50 μm or more and 200 μm or less.

強化繊維の配合量は、強化繊維の強度や成形品に要求される強度、成形品の成形性、成形品の見栄え、原料コスト等を考慮して適宜設定すれば良い。例えば、成形品の強度および成形性を考慮すると、樹脂材料と強化繊維との質量の和を100質量%としたときに、強化繊維の配合量は10質量%以上50質量%以下であるのが好ましく、20質量%以上40質量%以下であるのがより好ましい。   The blending amount of the reinforcing fiber may be appropriately set in consideration of the strength of the reinforcing fiber, the strength required for the molded product, the moldability of the molded product, the appearance of the molded product, the raw material cost, and the like. For example, in consideration of the strength and moldability of the molded product, when the sum of the mass of the resin material and the reinforcing fiber is 100% by mass, the compounding amount of the reinforcing fiber is 10% by mass or more and 50% by mass or less. Preferably, it is 20 mass% or more and 40 mass% or less.

強化繊維の強度は引張強さで表すことができる。例えば成形品に要求される強度(引張強さ)が40MPa程度である場合には、強化繊維の強度(引張強さ)は3000MPa以上であるのが好ましい。なお、引張強さは一般的な試験方法で測定すれば良く、例えば、ISO 527−3に準拠して測定すれば良い。このような強度の強化繊維としては種々のものが知られているが、例えば、一般的な強化繊維であるガラスファイバーやカーボンファイバーを好ましく使用できる。強化繊維の強度に特に上限値はないが、価格や取り扱い性等を考慮し強いて挙げるとすると、6000MPa以下であるのが良いと考えられる。   The strength of the reinforcing fiber can be expressed by tensile strength. For example, when the strength (tensile strength) required for the molded product is about 40 MPa, the strength (tensile strength) of the reinforcing fiber is preferably 3000 MPa or more. In addition, what is necessary is just to measure tensile strength by a general test method, for example, should just measure based on ISO527-3. Various types of reinforcing fibers having such strength are known. For example, glass fibers and carbon fibers, which are general reinforcing fibers, can be preferably used. There is no particular upper limit on the strength of the reinforcing fiber, but it is considered that the strength is preferably 6000 MPa or less, considering the price and handling properties.

成形品の材料すなわち成形材料は、樹脂材料および強化繊維以外の添加剤を含み得る。例えば、タルク、ガラスフレーク、クレイ等である。これらの添加剤の配合量は、樹脂材料および強化繊維を含む成形材料全体を100質量%としたときに40質量%以下であるのが好ましい。   The material of the molded article, that is, the molding material, may contain additives other than the resin material and the reinforcing fiber. For example, talc, glass flake, clay and the like. The blending amount of these additives is preferably 40% by mass or less when the entire molding material including the resin material and the reinforcing fiber is 100% by mass.

ところで、本発明の成形品は真空ボイドの低減されたものである。これは、本発明の成形品における強化繊維の平均繊維長が上記の範囲内であることと関係している。以下、必要に応じて、成形品における強化繊維の平均繊維長を、製品繊維長と略する。実施例にて詳説するが、製品繊維長が長い程、真空ボイドの発生量も増大する。これは、強化繊維の繊維長が長い程、キャビティ内において強化繊維が一方向に配向し易くなることに由来すると考えられる。つまり、成形時において溶融成形材料が流動することによって強化繊維が受ける外力は、強化繊維の繊維長が長い程、大きくなる。このため繊維長が長い程、強化繊維は溶融成形材料の流動方向に沿って配向し易くなる。そして強化繊維が一方向に配向している場合には、成形品は強化繊維の配向方向には強化されるが、当該配向方向と直交する方向には強化され難い。したがってこの場合、強化繊維の配向方向と直交する方向に力が作用すると、強化繊維間において成形品が剥離し易くなる。   By the way, the molded product of the present invention has reduced vacuum voids. This is related to the fact that the average fiber length of the reinforcing fibers in the molded article of the present invention is within the above range. Hereinafter, if necessary, the average fiber length of the reinforcing fibers in the molded product is abbreviated as the product fiber length. As will be described in detail in Examples, the longer the product fiber length, the greater the amount of vacuum voids generated. This is considered to result from the fact that the longer the fiber length of the reinforcing fibers, the easier it is for the reinforcing fibers to be oriented in one direction within the cavity. That is, the external force received by the reinforcing fibers due to the flow of the melt molding material during molding increases as the fiber length of the reinforcing fibers increases. For this reason, the longer the fiber length, the easier it is for the reinforcing fibers to be oriented along the flow direction of the melt molding material. When the reinforcing fibers are oriented in one direction, the molded product is reinforced in the orientation direction of the reinforcing fibers, but is hardly reinforced in the direction orthogonal to the orientation direction. Therefore, in this case, when a force acts in a direction orthogonal to the orientation direction of the reinforcing fibers, the molded product is easily peeled between the reinforcing fibers.

強化繊維は、溶融成形材料の流動方向、つまり、キャビティ内への溶融成形材料の注入方向に沿って配向し易い。つまり、強化繊維は、キャビティ内において成形型の型面に沿って配向し易い。これに対して、WIT法においては、成形型の型面および圧入液体と、型面および圧入液体から離間している溶融成形材料(つまり、成形品の肉厚方向略中央部に位置する溶融成形材料)との温度差が大きい。またこれに起因して、成形品の肉厚方向略中央部に位置する溶融成形材料は溶融した状態にあっても、成形型の型面近傍および圧入液体近傍には溶融成形材料が急速に冷却され固化してスキン層が形成される。このように溶融成形材料の冷却速度差が大きければ、成形品の収縮量に差が生じ、冷却時の成形品においては、型面側および圧入液体側から肉厚方向略中央部に向けた内部応力が作用する。この内部応力は型面に対して交叉する方向(多くの場合、型面に対して直交する方向)に生じるため、冷却時の成形品には強化繊維の配向方向と直交する方向に向けた内部応力が作用するとも言える。そしてその結果、真空ボイドと呼ばれる空洞が生じると考えられる。   The reinforcing fibers are easily oriented along the flow direction of the melt molding material, that is, the injection direction of the melt molding material into the cavity. That is, the reinforcing fibers are easily oriented along the mold surface of the mold in the cavity. On the other hand, in the WIT method, the mold surface of the mold and the press-fitting liquid, and the melt-molding material that is spaced apart from the mold surface and the press-fitting liquid (that is, melt molding located at the approximate center in the thickness direction of the molded product The temperature difference from the material is large. In addition, due to this, even when the melt molding material located in the approximate center of the thickness direction of the molded product is in a molten state, the melt molding material is rapidly cooled in the vicinity of the mold surface of the mold and the press-fitted liquid. And solidifies to form a skin layer. In this way, if the difference in the cooling rate of the melt molding material is large, there will be a difference in the amount of shrinkage of the molded product. Stress acts. Since this internal stress occurs in the direction crossing the mold surface (in many cases, the direction perpendicular to the mold surface), the molded product during cooling is internally oriented in the direction perpendicular to the orientation direction of the reinforcing fibers. It can be said that stress acts. As a result, it is considered that a cavity called a vacuum void is generated.

これに対して、強化繊維の繊維長が短ければ、成形時つまり溶融成形材料の流動時に強化繊維に作用する外力は小さく、強化繊維は一方向に配向し難い。換言すると、この場合には強化繊維はランダムに配向する。ここで、「強化繊維が一方向に配向する」とは強化繊維の80%以上が平行に配置されることを指す。ここでいう強化繊維の80%とは、任意に選択した強化繊維50本を100%としたパーセンテージである。強化繊維の選択方法としては、先ず成形品を成形時の溶融成形材料の流動方向と平行な方向に切断し、次いで、顕微鏡下にてこの断面に露出している任意の強化繊維を50本選択する方法が例示される。また、ここでいう平行とは±15°の誤差を許容する。そして、「強化繊維がランダムに配向する」とは、当該平行に配置された強化繊維が全体の50%未満であることを指す。強化繊維がランダムに配向すれば、成形品は強化繊維により多方向に補強されて、冷却時に成形品に生じる内部応力に抗し得る。したがって上記した真空ボイドが抑制されるものと考えられる。   On the other hand, if the fiber length of the reinforcing fiber is short, the external force acting on the reinforcing fiber during molding, that is, the flow of the melt molding material is small, and the reinforcing fiber is difficult to be oriented in one direction. In other words, in this case, the reinforcing fibers are randomly oriented. Here, “the reinforcing fibers are oriented in one direction” means that 80% or more of the reinforcing fibers are arranged in parallel. Here, 80% of the reinforcing fibers is a percentage in which 50 arbitrarily selected reinforcing fibers are taken as 100%. As a method for selecting the reinforcing fibers, first, the molded product is cut in a direction parallel to the flow direction of the melt molding material at the time of molding, and then 50 arbitrary reinforcing fibers exposed in this section are selected under a microscope. The method of doing is illustrated. Further, the term “parallel” as used herein allows an error of ± 15 °. And "the reinforcing fibers are randomly oriented" means that the reinforcing fibers arranged in parallel are less than 50% of the whole. If the reinforcing fibers are randomly oriented, the molded product is reinforced in multiple directions by the reinforcing fibers, and can resist internal stress generated in the molded product during cooling. Therefore, it is considered that the above-described vacuum void is suppressed.

なお、強化繊維は、平均繊維長が上述した範囲内にあれば良く、その平均繊維径は特に限定しないが、10μm以下であるのが好ましい。繊維径が過大であれば、溶融前の材料混合物の状態において強化繊維の分散性を充分に高め難く、強度的に均質な製品を得難くなる場合がある。   The reinforcing fibers only have to have an average fiber length within the above-mentioned range, and the average fiber diameter is not particularly limited, but is preferably 10 μm or less. If the fiber diameter is excessive, it may be difficult to sufficiently enhance the dispersibility of the reinforcing fibers in the state of the material mixture before melting, and it may be difficult to obtain a product that is homogeneous in strength.

また、本発明の成形品は中空部を有するものであり、例えば、管状、筒状、袋状等の形状をなす。本発明の成形品は直筒状、直管状等であっても良いが、湾曲または屈曲していても良いし、分枝していても良い。また、一部に中空部を有するものであれば良く、中空のない部分があっても良い。このような本発明の成形品は、種々の流体を流通させるための管や、種々の物体を収容するための容器として利用可能である。具体的には、車両等の各種装置に配設される冷却系ホース、気体用ホース、燃料用ホース等に好ましく使用できる。   In addition, the molded product of the present invention has a hollow portion and has, for example, a tubular shape, a cylindrical shape, a bag shape, and the like. The molded product of the present invention may be a straight tube, a straight tube, or the like, but may be curved or bent, or may be branched. Moreover, what is necessary is just to have a hollow part in part, and there may be a part without a hollow. Such a molded article of the present invention can be used as a tube for circulating various fluids or a container for accommodating various objects. Specifically, it can be preferably used for a cooling hose, a gas hose, a fuel hose and the like disposed in various devices such as a vehicle.

以下、実施例を基に本発明の成形品を説明する。   Hereinafter, the molded article of the present invention will be described based on examples.

(実施例1)
実施例1の成形品は車両用の冷却系ホースであり、より具体的にはロングライフクーラント(LLC)用配管の一部である。実施例の成形品を模式的に表す一部切り欠き斜視図を図1に示す。
Example 1
The molded product of Example 1 is a cooling hose for a vehicle, and more specifically, is a part of piping for a long life coolant (LLC). FIG. 1 is a partially cutaway perspective view schematically showing a molded product of the example.

実施例1の成形品1は、図1に示すように略管状をなす。成形品1は管状の本体部10と本体部10に一体形成されているブラケット部11とを持つ。管状をなす本体部10の周壁が壁部20を構成し、壁部20で区画された管の内部が中空部30である。   The molded product 1 of Example 1 is substantially tubular as shown in FIG. The molded product 1 has a tubular main body 10 and a bracket 11 formed integrally with the main body 10. The peripheral wall of the tubular main body portion 10 constitutes the wall portion 20, and the inside of the tube partitioned by the wall portion 20 is the hollow portion 30.

実施例1の成形品は樹脂材料と強化繊維とを材料としてなり、樹脂材料としてはPA66(ナイロン66、ナイロン6/6ともいう)とPA612(ナイロン612、ナイロン6/12ともいう)とを1:1の質量比で混合したものを用いた。強化繊維としては、平均繊維長約50μm、平均繊維径約10μmのグラスファイバーを用いた。この強化繊維の強度(引張強さ)は3000MPaであり、実施例1の成形品に要求される強度(引張強さ)は41MPaであった。なお、引張強さはISO 527−3に準拠して測定した。   The molded product of Example 1 is made of a resin material and a reinforcing fiber, and the resin material is PA66 (also referred to as nylon 66 or nylon 6/6) and PA612 (also referred to as nylon 612 or nylon 6/12). A mixture with a mass ratio of 1 was used. As the reinforcing fibers, glass fibers having an average fiber length of about 50 μm and an average fiber diameter of about 10 μm were used. The strength (tensile strength) of the reinforcing fiber was 3000 MPa, and the strength (tensile strength) required for the molded product of Example 1 was 41 MPa. In addition, the tensile strength was measured based on ISO 527-3.

上記した強化繊維の平均繊維長(つまり、材料としての強化繊維の平均繊維長)は、材料メーカーのカタログに記載されている値であるが、実測することもできる。具体的には、任意の強化繊維100本の自然状態における長さを測定し、当該測定値を基に平均値を算出すれば良い。各繊維の長さはノギスや定規に代表される一般的な測定器、または、解析ソフト等を用いて測定可能である。例えば、強化繊維の長さは、顕微鏡像を撮像し拡大したものを上記した測定器を用いて測定しても良いし、或いは、強化繊維の顕微鏡像を画像解析することで測定しても良い。   The above-described average fiber length of the reinforcing fibers (that is, the average fiber length of the reinforcing fibers as the material) is a value described in the catalog of the material manufacturer, but can also be actually measured. Specifically, the length of 100 arbitrary reinforcing fibers in a natural state may be measured, and an average value may be calculated based on the measured value. The length of each fiber can be measured using a general measuring instrument typified by a caliper or a ruler, or analysis software. For example, the length of the reinforcing fiber may be measured by taking a magnified image and enlarging it using the measuring instrument described above, or may be measured by analyzing the microscope image of the reinforcing fiber. .

以下、必要に応じて、上記の方法で測定した材料としての強化繊維の平均繊維長を「材料繊維長」と呼ぶ。なお、一般に、材料繊維長は製品繊維長よりも長い。具体的には、製品繊維長は材料繊維長の70〜40%程度の長さであるのが一般的である。製品繊維長は、成形時の成形型内における溶融成形材料の流動速度や、成形装置(特にスクリュー)による剪断力を適宜調整することで、所望の長さに調整し得る。   Hereinafter, the average fiber length of the reinforcing fibers as the material measured by the above method is referred to as “material fiber length” as necessary. In general, the material fiber length is longer than the product fiber length. Specifically, the product fiber length is generally about 70 to 40% of the material fiber length. The product fiber length can be adjusted to a desired length by appropriately adjusting the flow rate of the melt-molding material in the mold during molding and the shearing force by a molding apparatus (particularly a screw).

実施例において、製品繊維長は以下のように測定した。先ず、成形品を加熱し、樹脂を揮発および/または燃焼させて、強化繊維だけを取り出した。この強化繊維100本につき、顕微鏡像を定規または画像処理ソフトにより測定した。なお、成形品における強化繊維の平均繊維径は、材料としての強化繊維の平均繊維径と略等しいため、材料メーカーのカタログ値を代用し得る。   In the examples, the product fiber length was measured as follows. First, the molded article was heated, the resin was volatilized and / or burned, and only the reinforcing fibers were taken out. A microscopic image of 100 reinforcing fibers was measured with a ruler or image processing software. In addition, since the average fiber diameter of the reinforced fiber in a molded article is substantially equal to the average fiber diameter of the reinforced fiber as a material, the catalog value of a material maker can be substituted.

上記の樹脂材料と強化繊維とを2:1の質量比で混合したものを成形材料として用いた。言い換えると、実施例1の成形品を製造するのに用いた成形材料は、PA66、PA612およびグラスファイバーをPA66:PA612:グラスファイバー=1:1:1の質量比で混合した混合材料である。この混合材料をWIT用の成形機に投入し、成形型を型締めおよび加熱し混合材料中の樹脂材料を溶融させて、射出成形型のキャビティに射出(注入)した。なお、キャビティは、成形品1の外形に対応する型面を持つものである。次いで、溶融成形材料が注入されたキャビティに、圧入液体(実施例1では水)を圧入した。圧入液体はキャビティの略中心部分(図略の中空予定部)に圧入された。そして、当該中空予定部に存在していた溶融成形材料、および、圧入液体の一部はキャビティの外部に押し出された。そして、溶融成形材料を冷却および固化して、中空部を有する実施例1の成形品を得た。実施例1の製品繊維長は約50μmであった。また、実施例1の成形品においては、強化繊維はランダムに配向していた。   A mixture of the above resin material and reinforcing fiber at a mass ratio of 2: 1 was used as a molding material. In other words, the molding material used to manufacture the molded article of Example 1 is a mixed material in which PA66, PA612 and glass fiber are mixed at a mass ratio of PA66: PA612: glass fiber = 1: 1: 1. This mixed material was put into a molding machine for WIT, the mold was clamped and heated to melt the resin material in the mixed material, and injected (injected) into the cavity of the injection mold. The cavity has a mold surface corresponding to the outer shape of the molded product 1. Next, a press-fit liquid (water in Example 1) was press-fitted into the cavity into which the melt molding material was injected. The injected liquid was injected into a substantially central portion of the cavity (a hollow portion not shown). And the melt molding material which existed in the said hollow planned part, and a part of press injection liquid were extruded out of the cavity. Then, the melt molding material was cooled and solidified to obtain a molded article of Example 1 having a hollow portion. The product fiber length of Example 1 was about 50 μm. In the molded product of Example 1, the reinforcing fibers were randomly oriented.

(実施例2)
実施例2の成形品は、材料繊維長、および製品繊維長以外は実施例1と同じものである。実施例2の成形品において、製品繊維長は約100μmであった。また、実施例2の成形品においても、強化繊維はランダムに配向していた。
(Example 2)
The molded product of Example 2 is the same as Example 1 except for the material fiber length and the product fiber length. In the molded product of Example 2, the product fiber length was about 100 μm. In the molded product of Example 2, the reinforcing fibers were randomly oriented.

(実施例3)
実施例3の成形品は、材料繊維長、および製品繊維長以外は実施例1と同じものである。実施例3の成形品において、製品繊維長は約140.8μmであった。また、実施例3の成形品においても、強化繊維はランダムに配向していた。
(Example 3)
The molded product of Example 3 is the same as Example 1 except for the material fiber length and the product fiber length. In the molded product of Example 3, the product fiber length was about 140.8 μm. In the molded product of Example 3, the reinforcing fibers were randomly oriented.

(実施例4)
実施例4の成形品は、材料繊維長、および製品繊維長以外は実施例1と同じものである。実施例4の成形品において、製品繊維長は約200μmであった。また、実施例4の成形品においても、強化繊維はランダムに配向していた。
Example 4
The molded product of Example 4 is the same as Example 1 except for the material fiber length and the product fiber length. In the molded product of Example 4, the product fiber length was about 200 μm. In the molded product of Example 4, the reinforcing fibers were randomly oriented.

(比較例1)
比較例1の成形品は、材料繊維長、および製品繊維長以外は実施例1と同じものである。比較例1の成形品において、製品繊維長は約250μmであった。比較例1の成形品においては、強化繊維はランダムに配向していなかった。
(Comparative Example 1)
The molded product of Comparative Example 1 is the same as Example 1 except for the material fiber length and the product fiber length. In the molded product of Comparative Example 1, the product fiber length was about 250 μm. In the molded product of Comparative Example 1, the reinforcing fibers were not randomly oriented.

(比較例2)
比較例2の成形品は、材料繊維長、および製品繊維長以外は実施例1と同じものである。比較例2の成形品において、製品繊維長は約305μmであった。比較例2の成形品においても、強化繊維はランダムに配向していなかった。
(Comparative Example 2)
The molded product of Comparative Example 2 is the same as Example 1 except for the material fiber length and the product fiber length. In the molded product of Comparative Example 2, the product fiber length was about 305 μm. Also in the molded product of Comparative Example 2, the reinforcing fibers were not randomly oriented.

(比較例3)
比較例3の成形品は、材料繊維長、および製品繊維長以外は実施例1と同じものである。比較例3の成形品において、製品繊維長は約377μmであった。比較例3の成形品においても、強化繊維はランダムに配向していなかった。
(Comparative Example 3)
The molded product of Comparative Example 3 is the same as Example 1 except for the material fiber length and the product fiber length. In the molded product of Comparative Example 3, the product fiber length was about 377 μm. Also in the molded product of Comparative Example 3, the reinforcing fibers were not randomly oriented.

<真空ボイド測定試験>
実施例1〜実施例4および比較例1〜比較例3の各成形品について、真空ボイドの発生量を測定した。真空ボイドの測定には、上記した製品繊維長を測定するのに用いた成形品の断面を用いた。具体的には、当該断面における真空ボイドの長さ(長手方向の長さ)をノギスまたは定規で測定した。複数の真空ボイドが形成されていた場合には、当該長さの総和を真空ボイドの長さとみなした。真空ボイド測定試験で測定した真空ボイドの長さと、製品繊維長と、の関係を図2に示す。図2に示すように、製品繊維長が長ければ長い程、真空ボイドの長さもまた長くなった。また、製品繊維長が200μm以下である実施例1〜4の成形品では真空ボイドは発生せず、製品繊維長が200μmを超える比較例1〜3の成形品では真空ボイドが発生した。つまり、この結果から、製品繊維長が200μm以下である本発明の成形品においては、真空ボイドの発生が抑制されているといえる。また、平均繊維長が過小である強化繊維は、強化繊維としての機能つまり成形品を補強する機能を充分に果たし得ないが、本発明の製品繊維長は50μm以上であり、成形品の強度は充分に高く維持される。参考までに、製品繊維長140.8μmの実施例3の成形品では、引張強さは41MPaであり、降伏強度は200MPaであった。このように、製品繊維長が50μm以上である本発明の成形品は充分な強度を示す。
<Vacuum void measurement test>
For each of the molded products of Examples 1 to 4 and Comparative Examples 1 to 3, the amount of vacuum voids generated was measured. For the measurement of the vacuum void, the cross section of the molded product used to measure the product fiber length was used. Specifically, the length (length in the longitudinal direction) of the vacuum void in the cross section was measured with a caliper or a ruler. When a plurality of vacuum voids were formed, the sum of the lengths was regarded as the length of the vacuum void. FIG. 2 shows the relationship between the length of the vacuum void measured in the vacuum void measurement test and the product fiber length. As shown in FIG. 2, the longer the product fiber length, the longer the length of the vacuum void. In addition, vacuum voids were not generated in the molded products of Examples 1 to 4 in which the product fiber length was 200 μm or less, and vacuum voids were generated in the molded products of Comparative Examples 1 to 3 in which the product fiber length exceeded 200 μm. That is, from this result, it can be said that the generation of vacuum voids is suppressed in the molded product of the present invention having a product fiber length of 200 μm or less. Further, the reinforcing fiber having an average fiber length that is too small cannot sufficiently fulfill the function as a reinforcing fiber, that is, the function of reinforcing the molded product, but the product fiber length of the present invention is 50 μm or more, and the strength of the molded product is Maintained high enough. For reference, in the molded product of Example 3 having a product fiber length of 140.8 μm, the tensile strength was 41 MPa and the yield strength was 200 MPa. Thus, the molded product of the present invention having a product fiber length of 50 μm or more exhibits a sufficient strength.

なお、本発明の成形品において、製品繊維長は50μm以上200μm以下であれば良く、材料繊維長は特に問わない。実施例に示したように、強化繊維の繊維長が当該条件を満たせば、ウォーターアシスト成形品における真空ボイドの発生を抑制できる。   In the molded product of the present invention, the product fiber length may be 50 μm or more and 200 μm or less, and the material fiber length is not particularly limited. As shown in the examples, when the fiber length of the reinforcing fiber satisfies the condition, the generation of vacuum voids in the water assist molded product can be suppressed.

(その他)本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。   (Others) The present invention is not limited to the embodiment described above and shown in the drawings, and can be implemented with appropriate modifications within a range not departing from the gist.

1:成形品 10:本体部 11:ブラケット部
20:壁部 30:中空部
1: Molded product 10: Body part 11: Bracket part 20: Wall part 30: Hollow part

Claims (4)

成形型のキャビティに注入された流体状の成形材料中に液体を圧入することで中空部を形成するウォーターアシスト成形法で成形されてなり、
前記成形材料が冷却固化されてなる壁部を備え、
前記壁部は、樹脂材料と強化繊維とを含み、
前記強化繊維の平均繊維長は50μm以上200μm以下であるウォーターアシスト成形品。
It is molded by a water assist molding method that forms a hollow part by press-fitting a liquid into a fluid molding material injected into a cavity of a mold,
A wall portion formed by cooling and solidifying the molding material;
The wall portion includes a resin material and a reinforcing fiber,
An average fiber length of the reinforcing fibers is a water assist molded product having a diameter of 50 μm or more and 200 μm or less.
前記壁部の肉厚は、1.5mm以上5mm以下である請求項1に記載のウォーターアシスト成形品。   The water assist molded article according to claim 1, wherein the wall portion has a thickness of 1.5 mm or greater and 5 mm or less. 前記樹脂材料と前記強化繊維との質量の和を100質量%としたときに、前記強化繊維を10質量%以上50質量%以下含む請求項1または請求項2に記載のウォーターアシスト成形品。   The water assist molded article according to claim 1 or 2, wherein the reinforcing fiber is contained in an amount of 10% by mass to 50% by mass when the sum of the masses of the resin material and the reinforcing fiber is 100% by mass. 前記強化繊維は前記壁部中においてランダムに配向している請求項1〜請求項3の何れか一項に記載のウォーターアシスト成形品。   The water-assisted molded product according to any one of claims 1 to 3, wherein the reinforcing fibers are randomly oriented in the wall portion.
JP2014011962A 2014-01-27 2014-01-27 Water-assist molding Withdrawn JP2015139878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011962A JP2015139878A (en) 2014-01-27 2014-01-27 Water-assist molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011962A JP2015139878A (en) 2014-01-27 2014-01-27 Water-assist molding

Publications (1)

Publication Number Publication Date
JP2015139878A true JP2015139878A (en) 2015-08-03

Family

ID=53770592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011962A Withdrawn JP2015139878A (en) 2014-01-27 2014-01-27 Water-assist molding

Country Status (1)

Country Link
JP (1) JP2015139878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139879A (en) * 2014-01-27 2015-08-03 豊田合成株式会社 Water-assist molding

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162445A (en) * 1989-11-21 1991-07-12 Mitsubishi Gas Chem Co Inc Sliding resin composition
JPH03273051A (en) * 1990-03-20 1991-12-04 Olympus Optical Co Ltd Injection-molded part for camera
JPH06278155A (en) * 1993-03-26 1994-10-04 Mitsubishi Gas Chem Co Inc Injection molded piece having hollow rib structure
JPH1128981A (en) * 1997-07-09 1999-02-02 Mitsubishi Eng Plast Kk Manufacture of vehicle roof rail of resin having cavity part
JPH1142650A (en) * 1997-05-28 1999-02-16 Mitsubishi Eng Plast Kk Mold assembly for molding thermoplastic resin and production of molded product
JPH1192672A (en) * 1997-09-25 1999-04-06 Mitsubishi Eng Plast Corp Resin composition, injection-molded product having hollow part and injection molding
US6165407A (en) * 1997-05-28 2000-12-26 Mitsubishi Engineering-Plastics Corp. Mold assembly for molding thermoplastic resin and method of manufacturing molded article of thermoplastic resin
JP2007069832A (en) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd Resin-made component for vehicle, and its manufacturing method
US20070077379A1 (en) * 2005-09-30 2007-04-05 Magna International Inc. Water-assist injection molded structural members
WO2008025133A1 (en) * 2006-08-29 2008-03-06 Magna International Inc. Water assist injection moulded structural members
JP2009531229A (en) * 2006-03-23 2009-09-03 エクソンモービル・ケミカル・パテンツ・インク Door assembly with core module with integrated reinforced belt line
JP2010501406A (en) * 2006-08-30 2010-01-21 タカタ・ペトリ アーゲー Vehicle steering wheel and manufacturing method
JP2012122464A (en) * 2010-11-17 2012-06-28 Sanoh Industrial Co Ltd Fuel injection rail
JP2013028076A (en) * 2011-07-28 2013-02-07 Mitsubishi Cable Ind Ltd Mandrel for manufacturing hose
JP2015139879A (en) * 2014-01-27 2015-08-03 豊田合成株式会社 Water-assist molding

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162445A (en) * 1989-11-21 1991-07-12 Mitsubishi Gas Chem Co Inc Sliding resin composition
JPH03273051A (en) * 1990-03-20 1991-12-04 Olympus Optical Co Ltd Injection-molded part for camera
JPH06278155A (en) * 1993-03-26 1994-10-04 Mitsubishi Gas Chem Co Inc Injection molded piece having hollow rib structure
JPH1142650A (en) * 1997-05-28 1999-02-16 Mitsubishi Eng Plast Kk Mold assembly for molding thermoplastic resin and production of molded product
US6165407A (en) * 1997-05-28 2000-12-26 Mitsubishi Engineering-Plastics Corp. Mold assembly for molding thermoplastic resin and method of manufacturing molded article of thermoplastic resin
JPH1128981A (en) * 1997-07-09 1999-02-02 Mitsubishi Eng Plast Kk Manufacture of vehicle roof rail of resin having cavity part
JPH1192672A (en) * 1997-09-25 1999-04-06 Mitsubishi Eng Plast Corp Resin composition, injection-molded product having hollow part and injection molding
JP2007069832A (en) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd Resin-made component for vehicle, and its manufacturing method
US20070077379A1 (en) * 2005-09-30 2007-04-05 Magna International Inc. Water-assist injection molded structural members
JP2009531229A (en) * 2006-03-23 2009-09-03 エクソンモービル・ケミカル・パテンツ・インク Door assembly with core module with integrated reinforced belt line
WO2008025133A1 (en) * 2006-08-29 2008-03-06 Magna International Inc. Water assist injection moulded structural members
US20110316306A1 (en) * 2006-08-29 2011-12-29 Steven Grgac Water Assist Injection Moulded Structural Members
JP2010501406A (en) * 2006-08-30 2010-01-21 タカタ・ペトリ アーゲー Vehicle steering wheel and manufacturing method
US20100018343A1 (en) * 2006-08-30 2010-01-28 Takata-Petri Ag Steering Wheel For A Vehicle And Method For Producing The Same
JP2012122464A (en) * 2010-11-17 2012-06-28 Sanoh Industrial Co Ltd Fuel injection rail
JP2013028076A (en) * 2011-07-28 2013-02-07 Mitsubishi Cable Ind Ltd Mandrel for manufacturing hose
JP2015139879A (en) * 2014-01-27 2015-08-03 豊田合成株式会社 Water-assist molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139879A (en) * 2014-01-27 2015-08-03 豊田合成株式会社 Water-assist molding

Similar Documents

Publication Publication Date Title
Ameli et al. Through-plane electrical conductivity of injection-molded polypropylene/carbon-fiber composite foams
US20200248014A1 (en) Thermally conductive polymer based filament
US8974165B2 (en) Screw
JP2016153226A (en) Casing and method for producing the same
Lin et al. Morphology of fluid assisted injection molded polycarbonate/polyethylene blends
JP2015139878A (en) Water-assist molding
JP2007176227A (en) Reduction gear for electric power steering device
JP5767850B2 (en) Thin molded body for electronic device housing
JP6102769B2 (en) Water assist molded product
Liu et al. Morphological development in water assisted injection molded polyethylene/polyamide‐6 blends
Choong et al. Role of processing history on the mechanical and electrical behavior of melt‐compounded polycarbonate‐multiwalled carbon nanotube nanocomposites
JP2009242616A (en) Resin injection-molded article and its molding method
JP2013188888A (en) Metal insert molding having sealability, electronic component having metal insert molding and sealability, and method for manufacturing metal insert molding having sealability
Zhang et al. Formation mechanism of high‐pressure water penetration induced fiber orientation in overflow water‐assisted injection molded short glass fiber‐reinforced polypropylene
Lin et al. Vibration welding of polypropylene-based nanocomposites–The crucial stage for the weld quality
KR101307989B1 (en) Resin composition and a molded article having excellent thermal conductivity and formability
JP2010234678A (en) Molding obtained by molding resin composition and production method of the molding
JP6955506B2 (en) PEEK resin composition molded article
JP2007106959A (en) Polyamide resin composition
JP5971795B2 (en) Carbon fiber composite resin beads, carbon fiber reinforced composite material, and method for producing the same
JP2008162145A (en) Resin molded article
JP5735343B2 (en) Thin molded body for electronic device housing
Hong et al. Structure Evolution and Hoop-Reinforcing Mechanism of Bionic-Inspired Off-Axial Glass Fiber-Reinforced High-Density Polyethylene Pipes Fabricated via Rotating Co-extrusion
JP6962438B1 (en) Method for manufacturing molds and plate-shaped molded products, method for manufacturing test pieces, and method for predicting characteristics of molded products of resin compositions
JP2019038211A (en) Injection molding apparatus and method of manufacturing reinforced resin molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170320