JP2010234678A - Molding obtained by molding resin composition and production method of the molding - Google Patents
Molding obtained by molding resin composition and production method of the molding Download PDFInfo
- Publication number
- JP2010234678A JP2010234678A JP2009085900A JP2009085900A JP2010234678A JP 2010234678 A JP2010234678 A JP 2010234678A JP 2009085900 A JP2009085900 A JP 2009085900A JP 2009085900 A JP2009085900 A JP 2009085900A JP 2010234678 A JP2010234678 A JP 2010234678A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- molding
- molded body
- conductive filler
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、熱可塑性樹脂と異方性形状の熱伝導性フィラーとを含有する樹脂組成物を射出圧縮成形して得られる成形体及び該成形体の製造方法に関する。 The present invention relates to a molded body obtained by injection compression molding a resin composition containing a thermoplastic resin and an anisotropically shaped thermally conductive filler, and a method for producing the molded body.
熱可塑性樹脂は、溶融成形が可能な樹脂であり、耐衝撃性、耐熱性、寸法安定性等の性質のバランスがよく、電気・電子分野、精密機械分野、自動車分野、保安・医療分野、食品・雑貨分野等の幅広い分野で用いられている。特に、OA分野、電気・電子分野、精密機械分野、自動車分野での需要が伸びている。 Thermoplastic resins are melt-moldable resins with a good balance of properties such as impact resistance, heat resistance, and dimensional stability. Electrical / electronic fields, precision machinery fields, automotive fields, safety / medical fields, foods. -Used in a wide range of fields such as general merchandise. In particular, demand is growing in the OA field, electrical / electronic field, precision machine field, and automobile field.
これらの分野においては、ほとんどの機器が発熱する部品を搭載している。特に近年では装置・部品の高性能化に伴い消費電力量が増え、部品からの発熱量が増大する傾向にあるため、機器が局部的に高温になることによる誤動作等のトラブルの発生が懸念されている。そのため、熱伝導性が要求される部分の筐体やシャーシ、放熱板等には、通常、熱を拡散させやすい金属材料が広く用いられている。しかし、金属材料は、熱伝導性に優れる反面、成形が困難であり、また製造コストが高くなるという課題があるため、金属材料に代わる優れた熱伝導性を有する材料の開発が望まれている。 In these fields, most devices are equipped with components that generate heat. In particular, in recent years, power consumption has increased along with higher performance of devices and parts, and the amount of heat generated from parts tends to increase, so there is a concern that troubles such as malfunctions may occur due to local high temperature equipment. ing. For this reason, metal materials that easily diffuse heat are generally widely used for the casing, chassis, heat sink, and the like, where thermal conductivity is required. However, metal materials are excellent in thermal conductivity, but are difficult to mold and have high manufacturing costs. Therefore, development of materials having excellent thermal conductivity in place of metal materials is desired. .
また、OA、電気・電子部品では、絶縁性を求められる用途も多く、高い熱伝導性と絶縁性を併せ持つ材料が望まれている。 In OA and electric / electronic parts, there are many uses that require insulation, and materials having both high thermal conductivity and insulation are desired.
このような材料として、例えばポリフェニレンスルフィド樹脂とα−アルミナの球状粒子を含有する樹脂組成物が開発されている(特許文献1参照)。 As such a material, for example, a resin composition containing spherical particles of polyphenylene sulfide resin and α-alumina has been developed (see Patent Document 1).
しかしながら、上記の樹脂組成物においては、熱伝導性を向上させるために、高価なα−アルミナ球状粒子を比較的多量の添加させており、その成形性が低下する傾向にあった。 However, in the above resin composition, in order to improve the thermal conductivity, a relatively large amount of expensive α-alumina spherical particles are added, and the moldability tends to decrease.
本発明は上記課題を鑑みてなされたものであり、成形性の良好な樹脂組成物を用いた、絶縁性と高熱伝導性とを兼ね備えた成形体を提供することを目的とするものである。 This invention is made | formed in view of the said subject, and it aims at providing the molded object which has the insulation and high thermal conductivity using the resin composition with favorable moldability.
本発明者等は上記課題を解決するため鋭意研究したところ、熱伝導性フィラーを用いて熱可塑性樹脂を含有する樹脂組成物に熱伝導性を付与する際に、熱可塑性樹脂と異方性形状の熱伝導性フィラーとを含有する樹脂組成物を射出圧縮成形法により成形することにより、熱伝導性を向上させることができることを見出したものである。 The inventors of the present invention have intensively studied to solve the above-mentioned problems. When the thermal conductivity is imparted to the resin composition containing the thermoplastic resin using the thermal conductive filler, the thermoplastic resin and the anisotropic shape are used. The present inventors have found that the thermal conductivity can be improved by molding a resin composition containing the above thermal conductive filler by an injection compression molding method.
すなわち、本発明の要旨は、熱可塑性樹脂と異方性形状の熱伝導性フィラーとを含有する樹脂組成物を成形して得られる成形体であって、該熱可塑性樹脂と該異方性形状の熱伝導性フィラーとの合計量に対する該熱可塑性樹脂の含有量が15重量%以上75重量%以下であり、該熱可塑性樹脂と該異方性形状の熱伝導性フィラーとの合計量に対する該異方性形状の熱伝導性フィラーの含有量が25重量%以上85重量%以下である樹脂組成物を、射出圧縮成形して得られることを特徴とする、成形体に存する(請求項1)。 That is, the gist of the present invention is a molded body obtained by molding a resin composition containing a thermoplastic resin and an anisotropically-shaped thermally conductive filler, the thermoplastic resin and the anisotropic shape. The content of the thermoplastic resin with respect to the total amount of the heat conductive filler is 15 wt% or more and 75 wt% or less, and the content with respect to the total amount of the thermoplastic resin and the anisotropic shape of the heat conductive filler is A molded article characterized by being obtained by injection compression molding a resin composition having an anisotropically shaped heat conductive filler content of 25 wt% or more and 85 wt% or less (Claim 1). .
このとき、前記異方性形状の熱伝導性フィラーが平均アスペクト比2以上100以下の異方性形状の熱伝導性フィラーであることが好ましい(請求項2)。 At this time, the anisotropically-shaped thermally conductive filler is preferably an anisotropic-shaped thermally conductive filler having an average aspect ratio of 2 or more and 100 or less (claim 2).
また、前記異方性形状の熱伝導性フィラーが絶縁性のフィラーであることが好ましい(請求項3)。 Moreover, it is preferable that the anisotropically-shaped thermally conductive filler is an insulating filler.
さらに、前記異方性形状の熱伝導性フィラーがアルミニウム化合物のフィラーであることが好ましい(請求項4)。 Further, it is preferable that the thermally conductive filler having an anisotropic shape is a filler of an aluminum compound.
さらに、前記アルミニウム化合物のフィラーがアルミナフィラーであることが好ましい(請求項5)。 Furthermore, the aluminum compound filler is preferably an alumina filler.
さらに、前記成形体を自動車用部材として用いることが好ましい(請求項6)。 Furthermore, it is preferable to use the molded body as an automobile member.
本発明の別の要旨は、熱可塑性樹脂と異方性形状の熱伝導性フィラーとを含有する樹脂組成物を射出圧縮成形することを特徴とする、成形体の製造方法に存する(請求項7)。 Another subject matter of the present invention resides in a method for producing a molded article, characterized by injection-molding a resin composition containing a thermoplastic resin and an anisotropically-shaped thermally conductive filler. ).
本発明の別の要旨は、上記の成形体の製造方法であって、前記成形体における、前記射出圧縮成形により圧縮される方向の熱伝導率が、前記樹脂組成物を圧縮せずに射出成形して得られる成形体の同方向の熱伝導率よりも高いことを特徴とする、成形体の製造方法に存する(請求項8)。 Another gist of the present invention is a method for producing the above-mentioned molded body, wherein the thermal conductivity in the direction compressed by the injection compression molding in the molded body is injection-molded without compressing the resin composition. Thus, the present invention resides in a method for producing a molded body, wherein the molded body is higher in thermal conductivity in the same direction.
異方性形状の熱伝導性フィラーを用いて熱可塑性樹脂組成物の成形体に熱伝導性を付与する際に、射出圧縮成形法を用いることで、成形性の良好な樹脂組成物を用いた、高熱伝導性を有する成形体を提供することができる。また、上記の熱可塑性樹脂組成物を射出圧縮形成法により成形することにより、射出圧縮成形時に圧縮される方向の熱伝導率を、圧縮せずに射出成形した場合の熱伝導率より高くすることが可能となるため、所望の熱配向性付与による排熱設計が可能な成形体を提供することができる。 A resin composition with good moldability was used by using an injection compression molding method when imparting thermal conductivity to a molded article of a thermoplastic resin composition using a thermally conductive filler having an anisotropic shape. A molded body having high thermal conductivity can be provided. Also, by molding the above thermoplastic resin composition by the injection compression molding method, the thermal conductivity in the direction compressed during the injection compression molding is made higher than the thermal conductivity when injection molding is performed without compression. Therefore, it is possible to provide a molded body that can be designed for exhaust heat by imparting desired thermal orientation.
以下、本発明の実施の形態について説明するが、本願発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
[1.樹脂組成物]
本発明の成形体は、熱可塑性樹脂と異方性形状の熱伝導性フィラーとを含有する樹脂組成物を成形して得られる。以下、本発明に係る熱可塑性樹脂及び本発明に係る異方性形状の熱伝導性フィラーについて説明する。
[1. Resin composition]
The molded body of the present invention is obtained by molding a resin composition containing a thermoplastic resin and an anisotropically shaped thermally conductive filler. Hereinafter, the thermoplastic resin according to the present invention and the thermally conductive filler having an anisotropic shape according to the present invention will be described.
[1−1.熱可塑性樹脂]
本発明に係る熱可塑性樹脂は、溶融成形が可能な樹脂であれば限定されず、結晶性樹脂でも非晶性樹脂でもよい。
[1-1. Thermoplastic resin]
The thermoplastic resin according to the present invention is not limited as long as it can be melt-molded, and may be a crystalline resin or an amorphous resin.
本発明の熱可塑性樹脂としては、芳香族ポリカーボネート及び脂肪族ポリカーボネートなどのポリカーボネート類;ポリエチレンテレフタレート及びポリブチレンテレフタレートなどのポリエステル類;ナイロンなどのポリアミド類;ポリプロピレン、ポリエチレンなどのポリオレフィン類;ポリオキシエーテルケトン、ポリフェニレンサルファイド、ポリフェニレンエーテル、ポリイミド及びこれらのポリマーアロイなどが挙げられる。 Examples of the thermoplastic resin of the present invention include polycarbonates such as aromatic polycarbonate and aliphatic polycarbonate; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyamides such as nylon; polyolefins such as polypropylene and polyethylene; polyoxyether ketone , Polyphenylene sulfide, polyphenylene ether, polyimide, and polymer alloys thereof.
これらの内、結晶性樹脂としては、ポリフェニレンサルファイド、ポリエステル類、ポリアミド類、ポリオレフィン類、ポリオレフィン系エラストマー、ポリエステルエラストマー及びこれらのポリマーアロイなどが挙げられる。 Among these, examples of the crystalline resin include polyphenylene sulfide, polyesters, polyamides, polyolefins, polyolefin elastomers, polyester elastomers, and polymer alloys thereof.
また、非晶性樹脂としては、ポリカーボネート類、ポリフェニレンエーテル、ポリイミド等及びこれらのポリマーアロイなどが挙げられる。 Further, examples of the amorphous resin include polycarbonates, polyphenylene ether, polyimide, and polymer alloys thereof.
これらの熱可塑性樹脂の中でも、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の結晶性樹脂が好ましく、ポリブチレンテレフタレートが特に好ましい。 Among these thermoplastic resins, crystalline resins such as polyphenylene sulfide, polyethylene terephthalate, and polybutylene terephthalate are preferable, and polybutylene terephthalate is particularly preferable.
なお、これらの熱可塑性樹脂は、1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。 In addition, these thermoplastic resins may be used individually by 1 type, and may use 2 or more types by arbitrary combinations and a ratio.
熱可塑性樹脂が結晶性樹脂である場合のその融点、又は熱可塑性樹脂が非晶性樹脂である場合のそのガラス転移点(Tg)は、本発明の効果を著しく損なわなければ制限はないが、耐熱性の点では高い方が好ましく、通常100℃以上、好ましくは140℃以上、さらに好ましくは160℃以上がよい。また、上限は、通常400℃である。 The melting point when the thermoplastic resin is a crystalline resin, or the glass transition point (Tg) when the thermoplastic resin is an amorphous resin is not limited as long as the effects of the present invention are not significantly impaired. Higher heat resistance is preferable, and it is usually 100 ° C or higher, preferably 140 ° C or higher, more preferably 160 ° C or higher. Moreover, an upper limit is 400 degreeC normally.
なお、代表的な樹脂のガラス転移点(Tg)又は融点は、高密度ポリエチレンが132℃、ポリプロピレンが167℃、ポリブチレンテレフテレートが224℃、ナイロン6が225℃、ポリカーボネートが250℃、ポリエチレンテレフタレートが256℃、ナイロン66が267℃、ポリフェニレンサルファイドが280℃、液晶性ポリマーが285℃、ポリイミドが300℃超である。
The glass transition point (Tg) or melting point of typical resins is 132 ° C. for high-density polyethylene, 167 ° C. for polypropylene, 224 ° C. for polybutylene terephthalate, 225 ° C. for
[1−2.異方性形状の熱伝導性フィラー]
本発明に係る異方性形状の熱伝導性フィラーは、本発明に係る樹脂組成物の熱伝導性を向上させる材料である。
[1-2. Anisotropic heat conductive filler]
The anisotropically-shaped thermally conductive filler according to the present invention is a material that improves the thermal conductivity of the resin composition according to the present invention.
本発明に係る異方性形状の熱伝導性フィラーの熱伝導率は、本発明の成形体の熱伝導率向上の観点では高い方が好ましく、通常5W/m・K以上、好ましくは30W/m・K以上、さらに好ましくは70W/m・K以上がよい。また、一方、経済性及び入手のしやすさの観点では低い方が好ましく、通常500W/m・K以下、好ましくは300W/m・K以下、さらに好ましくは200W/m・K以下がよい。 The thermal conductivity of the anisotropically shaped thermally conductive filler according to the present invention is preferably higher from the viewpoint of improving the thermal conductivity of the molded article of the present invention, and is usually 5 W / m · K or more, preferably 30 W / m. · K or higher, more preferably 70 W / m · K or higher. On the other hand, it is preferably lower in view of economy and availability, and is usually 500 W / m · K or less, preferably 300 W / m · K or less, more preferably 200 W / m · K or less.
なお、本発明において熱伝導性フィラーの熱伝導率は、フィラーを加圧成形し、2000℃以上の温度で焼結させたものを株式会社アルバック製全自動レーザーフラッシュ法熱定数測定装置「TC−7000H/SB」を用いて、レーザーフラッシュ法にて測定することができる。 In the present invention, the thermal conductivity of the thermally conductive filler is obtained by compressing the filler and sintering it at a temperature of 2000 ° C. or higher. 7000H / SB "and can be measured by a laser flash method.
本発明に係る異方性形状の熱伝導性フィラーとしては、具体的には、ポリベンザゾールフィラー、アラミドフィラー等の有機フィラー;アルミニウム化合物フィラー、窒化珪素フィラー、スチールファイバー、六方晶窒化ホウ素フィラー等の無機フィラーなどが挙げられる。また、アルミニウム化合物フィラーとしては、窒化アルミニウムフィラー、アルミナフィラー等が挙げられる。
これらの中で、経済性及び高熱伝導率であることから、アルミニウム化合物フィラー、窒化珪素フィラー、六方晶窒化ホウ素フィラー等の無機フィラーが好ましい。
なお、本発明に係る異方性形状の熱伝導性フィラーは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
Specific examples of the thermally conductive filler having an anisotropic shape according to the present invention include organic fillers such as polybenzazole filler and aramid filler; aluminum compound filler, silicon nitride filler, steel fiber, hexagonal boron nitride filler, and the like. And inorganic fillers. Examples of the aluminum compound filler include aluminum nitride filler and alumina filler.
Among these, inorganic fillers such as an aluminum compound filler, a silicon nitride filler, and a hexagonal boron nitride filler are preferable because they are economical and have high thermal conductivity.
In addition, the anisotropic shape heat conductive filler which concerns on this invention may be used individually by 1 type, and may use 2 or more types by arbitrary combinations and a ratio.
本発明の成形体をOA、電気・電子部品などに用いる場合には、電気絶縁性のある絶縁性フィラーを用いることが好ましい。絶縁性フィラーの電気絶縁性は、体積低効率で通常108Ω・cm以上、好ましくは1010Ω・cm以上、さらに好ましくは1012Ω・cm以上がよく、また、通常1016Ω・cm以下、好ましくは1015Ω・cm以下がよい。 When the molded body of the present invention is used for OA, electrical / electronic parts, etc., it is preferable to use an insulating filler having electrical insulation. The electrical insulating property of the insulating filler is usually 10 8 Ω · cm or more, preferably 10 10 Ω · cm or more, more preferably 10 12 Ω · cm or more, and usually 10 16 Ω · cm, in terms of volumetric efficiency. Hereinafter, it is preferably 10 15 Ω · cm or less.
なお、本発明において熱伝導性フィラーの絶縁性(体積抵抗率)は、加圧した後に焼結した板状の成形体を使用して、ダイヤインスツルメント株式会社製「ハイレスタ(UR端子)」を使用し、500V、10秒の条件にて測定し、得られた体積抵抗率の3点の平均値を体積抵抗値とする。 In the present invention, the insulating property (volume resistivity) of the heat conductive filler is “HIRESTA (UR terminal)” manufactured by Dia Instruments Co., Ltd. using a plate-like molded body that is sintered after being pressed. Is measured under the conditions of 500 V and 10 seconds, and the average value of the three points of the obtained volume resistivity is defined as the volume resistance value.
電気絶縁性を有する異方性形状の熱伝導性フィラーとしては、上述の異方性形状の熱伝導性フィラーの例示の中で無機フィラーが好ましく、アルミナフィラー、窒化アルミニウムフィラー等のアルミニウム化合物フィラーが更に好ましく、アルミナフィラーが特に好ましい。 As the anisotropically-shaped thermally conductive filler having electrical insulation, inorganic fillers are preferable among the above-described anisotropically-shaped thermally conductive fillers, and aluminum compound fillers such as alumina filler and aluminum nitride filler are preferable. More preferably, an alumina filler is particularly preferable.
アルミナフィラーのアルミナのα化率は、本発明の効果を著しく損なわなければ制限はないが、熱伝導性向上の観点では高い方が好ましく、また、一方、製造コストの点では低い方が好ましい。具体的には、下限が通常10%以上、好ましくは50%以上、さらに好ましくは80%以上であるのがよい。また、上限は、通常100%以下、好ましくは99%以下であるのがよい。 The alpha conversion rate of alumina in the alumina filler is not limited as long as the effects of the present invention are not significantly impaired. However, the higher one is preferable from the viewpoint of improving thermal conductivity, and the lower one is preferable from the viewpoint of production cost. Specifically, the lower limit is usually 10% or more, preferably 50% or more, and more preferably 80% or more. The upper limit is usually 100% or less, preferably 99% or less.
本発明に係る異方性形状の熱伝導性フィラーの形状について説明する。本発明に係る異方性形状の熱伝導性フィラーは、異方性形状の粒子をいい、球状粒子のような等方性形状の粒子は、本発明に係る異方性形状には含まれない。また、異方性形状であれば、繊維状でも板状でもよいが、熱伝導性制御の観点から繊維状であるのが特に好ましい。なお、この異方性形状の熱伝導性フィラーの形状は、本発明に係る樹脂組成物とする前の状態での形状である。 The shape of the anisotropically thermally conductive filler according to the present invention will be described. The anisotropically shaped thermally conductive filler according to the present invention refers to anisotropically shaped particles, and isotropic shaped particles such as spherical particles are not included in the anisotropic shaped according to the present invention. . Moreover, although it may be fibrous or plate-like as long as it is anisotropic, it is particularly preferably fibrous from the viewpoint of thermal conductivity control. In addition, the shape of this heat conductive filler of an anisotropic shape is a shape in the state before setting it as the resin composition which concerns on this invention.
本発明に係る異方性形状の熱伝導性フィラーの最大長は、本発明の効果を著しく損なわなければ制限はないが、熱伝導経路が効率的に成形されやすい点では長い方が好ましく、また、一方、フィラーの分散性、流動性及び成形性の点では短い方が好ましい。具体的には、通常10μm以上、好ましくは15μm以上、更に好ましくは30μm以上がよく、また、通常1000μm以下、好ましくは500μm以下、さらに好ましくは250μm以下がよい。 The maximum length of the anisotropically shaped thermally conductive filler according to the present invention is not limited as long as the effects of the present invention are not significantly impaired, but a longer one is preferable in that the heat conduction path is easily formed efficiently. On the other hand, a shorter one is preferred in terms of filler dispersibility, fluidity and moldability. Specifically, it is usually 10 μm or more, preferably 15 μm or more, more preferably 30 μm or more, and usually 1000 μm or less, preferably 500 μm or less, more preferably 250 μm or less.
なお、本発明において最大長とは、異方性形状の熱伝導性フィラーの任意の2点間距離の最大値をいう。最大長の測定は、後述の平均アスペクト比の測定方法の過程において測定することができる。 In the present invention, the maximum length means the maximum value of the distance between any two points of the anisotropically-shaped thermally conductive filler. The maximum length can be measured in the process of the average aspect ratio measurement method described later.
本発明に係る異方性形状の熱伝導性フィラーの最大垂直長は、本発明の効果を著しく損なわなければ制限はないが、凝集等が起こり難く、分散性に優れる点では長い方が好ましく、また、一方、熱伝導経路が効率的に成形されやすい点では短い方が好ましい。具体的には、通常2μm以上、好ましくは3μm以上、さらに好ましくは4μm以上がよく、また、通常15μm以下、好ましくは12μm以下、さらに好ましくは10μm以下がよい。 The maximum vertical length of the anisotropically shaped thermally conductive filler according to the present invention is not limited as long as the effects of the present invention are not significantly impaired, but aggregation is difficult to occur, and the longer is preferable in terms of excellent dispersibility, On the other hand, it is preferable that the heat conduction path is short in terms of being easily formed efficiently. Specifically, it is usually 2 μm or more, preferably 3 μm or more, more preferably 4 μm or more, and usually 15 μm or less, preferably 12 μm or less, more preferably 10 μm or less.
なお、本発明において最大垂直長とは、最大長に対して平行な2直線で熱伝導フィラーを挟んだときの2直線間の距離の最小値をいう。最大垂直長の測定は、後述の個数平均のアスペクト比の測定方法の過程において測定することができる。 In the present invention, the maximum vertical length refers to the minimum value of the distance between two straight lines when the heat conductive filler is sandwiched between two straight lines parallel to the maximum length. The maximum vertical length can be measured in the process of the method for measuring the number average aspect ratio described later.
本発明に係る異方性形状の熱伝導性フィラーのアスペクト比は、通常2以上であるのがよい。また、本発明に係る異方性形状の熱伝導性フィラーのアスペクト比は、少量で熱伝導性を発現しやすい点では大きい方が好ましい。具体的には、アスペクト比が好ましくは3以上、更に好ましくは5以上、特に好ましくは7以上、最も好ましくは10以上であるのがよく、また、通常100以下、好ましくは70以下、更に好ましくは50以下がよい。このアスペクト比の範囲内に該当していれば、繊維状でも板状でもかまわない。 The aspect ratio of the anisotropically thermally conductive filler according to the present invention is usually preferably 2 or more. In addition, the aspect ratio of the anisotropically-shaped thermally conductive filler according to the present invention is preferably large in that the thermal conductivity is easily manifested in a small amount. Specifically, the aspect ratio is preferably 3 or more, more preferably 5 or more, particularly preferably 7 or more, most preferably 10 or more, and is usually 100 or less, preferably 70 or less, more preferably 50 or less is preferable. If it falls within the range of this aspect ratio, it may be fibrous or plate-like.
なお、本発明においてアスペクト比とは、最大長から最大垂直長を除して得た値である。アスペクト比は、粒度・形状分布測定装置(株式会社セイシン企業製「PITA−1」)を用いて、水を分散媒として、フィラー形状(最大長、最大垂直長、アスペクト比(アスペクト比=最大長/最大垂直長))及びその個数を計測し、計測個数の度数平均値におけるアスペクト比をもって個数平均のアスペクト比として測定することができる。 In the present invention, the aspect ratio is a value obtained by dividing the maximum vertical length from the maximum length. The aspect ratio was measured using a particle size / shape distribution measuring device (“PITA-1” manufactured by Seishin Enterprise Co., Ltd.), using water as a dispersion medium, and filler shape (maximum length, maximum vertical length, aspect ratio (aspect ratio = maximum length). / Maximum vertical length)) and the number thereof, and the aspect ratio in the frequency average value of the measured number can be measured as the number average aspect ratio.
[1−3.その他の成分]
本発明に係る樹脂組成物は、本発明の効果を著しく損なわなければ、上述の熱可塑性樹脂及び異方性形状の熱伝導性フィラー以外の成分(以下、「その他の成分」ということがある。)を含有していてもよい。
その他の成分としては、例えば、安定剤、着色剤、流動性改良剤、離型剤等の添加剤等や熱可塑性樹脂以外の樹脂等が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
[1-3. Other ingredients]
Unless the effect of this invention is impaired remarkably, the resin composition concerning this invention may be called components (henceforth "other components") other than the above-mentioned thermoplastic resin and anisotropically-shaped heat conductive filler. ) May be contained.
Examples of other components include additives such as stabilizers, colorants, fluidity improvers, mold release agents, and resins other than thermoplastic resins. One of these may be used alone, or two or more may be used in any combination and ratio.
[1−4.樹脂組成物]
(1−4−1.組成)
本発明に係る樹脂組成物は、少なくとも熱可塑性樹脂と異方性形状の熱伝導性フィラーとを含有する。また、それらに加えて、熱可塑性樹脂以外の樹脂や添加剤等のその他の成分を含有していてもよい。本発明に係る樹脂組成物中における熱可塑性樹脂と異方性形状の熱伝導性フィラーとの合計重量は、より高い熱伝導率を得やすくするためには多い方が好ましく、樹脂組成物100重量%中に、通常50重量%以上、好ましくは70重量%以上、さらに好ましくは80重量%以上、特に好ましくは90重量%以上であるのがよい。また、その他の成分は含有させなくてもよいので、上限は100重量%である。
[1-4. Resin composition]
(1-4-1. Composition)
The resin composition according to the present invention contains at least a thermoplastic resin and a thermally conductive filler having an anisotropic shape. Moreover, in addition to them, you may contain other components, such as resin other than a thermoplastic resin, and an additive. The total weight of the thermoplastic resin and the anisotropically-shaped thermally conductive filler in the resin composition according to the present invention is preferably large in order to make it easier to obtain higher thermal conductivity, and the resin composition is 100 weights. % Is usually 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, and particularly preferably 90% by weight or more. Moreover, since it is not necessary to contain another component, an upper limit is 100 weight%.
本発明に係る樹脂組成物の成形性の点では、本発明に係る樹脂組成物中に熱可塑性樹脂を多く含有することが好ましく、また、一方、本発明の成形体の熱伝導性の点では、本発明に係る樹脂組成物中に異方性形状の熱伝導性フィラーを多く含有することが好ましい。 In terms of moldability of the resin composition according to the present invention, it is preferable that the resin composition according to the present invention contains a large amount of thermoplastic resin. On the other hand, in terms of thermal conductivity of the molded body of the present invention. It is preferable that the resin composition according to the present invention contains a large amount of a thermally conductive filler having an anisotropic shape.
本発明に係る樹脂組成物における、熱可塑性樹脂と異方性形状の熱伝導性フィラーとの合計重量に対する熱可塑性樹脂の量は、通常15重量%以上、好ましくは20重量%以上、より好ましくは30重量%以上がよく、一方、通常75重量%以下、好ましくは60重量%以下、より好ましくは50重量%以下がよい。また、本発明に係る樹脂組成物における、熱可塑性樹脂と異方性形状の熱伝導性フィラーとの合計重量に対する異方性形状の熱伝導性フィラーの量は、通常25重量%以上、好ましくは40重量%以上、更に好ましくは50重量%以上がよく、一方、通常85重量%以下、好ましくは80重量%以下、更に好ましくは70重量%以下がよい。 In the resin composition according to the present invention, the amount of the thermoplastic resin relative to the total weight of the thermoplastic resin and the anisotropically-shaped thermally conductive filler is usually 15% by weight or more, preferably 20% by weight or more, more preferably 30% by weight or more is good, on the other hand, usually 75% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. In the resin composition according to the present invention, the amount of the anisotropically-shaped thermally conductive filler relative to the total weight of the thermoplastic resin and the anisotropically-shaped thermally conductive filler is usually 25% by weight or more, preferably It is 40% by weight or more, more preferably 50% by weight or more. On the other hand, it is usually 85% by weight or less, preferably 80% by weight or less, more preferably 70% by weight or less.
(1−4−2.混合)
本発明に係る樹脂組成物は、少なくとも熱可塑性樹脂と異方性形状の熱伝導性フィラーとが含有されていれば、熱可塑性樹脂と異方性形状の熱伝導性フィラーとを混合しても、敢えて混合操作を行わずに混じった状態で存在していても構わないが、熱可塑性樹脂と異方性形状の熱伝導性フィラーとを混合してから成形する方が異方性形状の熱伝導性フィラーの成形体中における分散性の点で好ましい。この場合の混合操作は、本発明の効果を著しく損なわなければ制限はない。
(1-4-2. Mixing)
If the resin composition according to the present invention contains at least a thermoplastic resin and an anisotropically-shaped thermally conductive filler, the thermoplastic resin and the anisotropically-shaped thermally conductive filler may be mixed. However, it may be present in a mixed state without performing the mixing operation. However, it is better to mix the thermoplastic resin and the anisotropic heat conductive filler before molding. It is preferable in terms of dispersibility in the molded body of the conductive filler. The mixing operation in this case is not limited as long as the effects of the present invention are not significantly impaired.
混合操作を行う場合は、例えば、ニーダー、ロール、押出機などの混合装置を用いて混合する方法等が挙げられる。混合時に異方性形状の熱伝導性フィラーを長い状態で残す(外圧などによって切断されない)方が本発明の成形体の熱伝導性能を向上させることができるため、剪断応力は小さい混合方法の方が好ましい。しかしながら、異方性形状の熱伝導性フィラーの熱可塑性樹脂中での分散性の点からは、剪断応力をかける方が好ましい。この相反する条件を鑑みて、スクリューの形態、処理量、スクリューの回転数、装置温度等の操作条件に対する自由度が高い二軸押出機を用いて行う方法が好ましい。 When performing mixing operation, the method of mixing using mixing apparatuses, such as a kneader, a roll, and an extruder, etc. are mentioned, for example. Since the heat conduction performance of the molded article of the present invention can be improved by leaving the thermally conductive filler in an anisotropic shape in a long state during mixing (not cut by external pressure or the like), the mixing method with a lower shear stress Is preferred. However, it is preferable to apply a shear stress from the viewpoint of dispersibility of the anisotropically shaped thermally conductive filler in the thermoplastic resin. In view of these conflicting conditions, a method of using a twin-screw extruder having a high degree of freedom with respect to operating conditions such as screw form, throughput, screw speed, and apparatus temperature is preferable.
本発明の樹脂組成物中での異方性形状の熱伝導性フィラーの最大長は、樹脂組成物とする前のそれと同様に、熱伝導経路が効率的に成形されやすい点では長い方が好ましく、成形性の点では短い方が好ましいが、混合時の剪断応力などによって、本発明の樹脂組成物とする前より短くなっている場合がある。この場合も、通常10μm以上、好ましくは15μm以上、更に好ましくは30μm以上がよく、また、通常1000μm以下、好ましくは500μm以下、更に好ましくは250μm以下がよい。 The maximum length of the anisotropically-shaped thermally conductive filler in the resin composition of the present invention is preferably longer from the viewpoint that the thermal conduction path is easily molded, similarly to that before the resin composition. In terms of moldability, a shorter one is preferable, but it may be shorter than before the resin composition of the present invention due to shear stress during mixing. Also in this case, it is usually 10 μm or more, preferably 15 μm or more, more preferably 30 μm or more, and usually 1000 μm or less, preferably 500 μm or less, more preferably 250 μm or less.
また、本発明に係る樹脂組成物がその他の成分を含有する場合、その混合順序等に特に制限はない。すなわち、例えば、その他の成分を予め熱可塑性樹脂と混合した後に異方性形状の熱伝導性フィラーと混合してもよいし、その他の成分を予め異方性形状の熱伝導性フィラーと混合した後に熱可塑性樹脂と混合してもよいし、予め熱可塑性樹脂と異方性形状の熱伝導性フィラーを混合した後にその他成分を加えるだけで混合しなくてもよい。また、混合単軸押出機や2軸押出機、ニーダーなどの装置を用いて、熱可塑性樹脂と異方性形状の熱伝導性フィラーとその他の成分とを同時に混合してもよい。 Moreover, when the resin composition which concerns on this invention contains another component, there is no restriction | limiting in particular in the mixing order. That is, for example, other components may be mixed with the thermoplastic resin after mixing with the thermoplastic resin in advance, or the other components may be mixed with the thermally conductive filler having the anisotropic shape in advance. It may be mixed with the thermoplastic resin later, or it may not be mixed only by adding other components after previously mixing the thermoplastic resin and the anisotropically-shaped thermally conductive filler. Moreover, you may mix a thermoplastic resin, a thermally conductive filler of an anisotropic shape, and another component simultaneously using apparatuses, such as a mixing single screw extruder, a twin screw extruder, and a kneader.
(1−4−3.樹脂組成物)
本発明に係る樹脂組成物は、これを射出圧縮成形することで本発明の成形体を得ることができる樹脂組成物である。本発明の成形体の用途に制限はないが、本発明の成形体をOA分野、電気・電子分野、精密機械分野、自動車分野等に用いる場合は、本発明に係る樹脂組成物が以下の物性を有することが好ましい。
(1-4-3. Resin composition)
The resin composition according to the present invention is a resin composition from which the molded article of the present invention can be obtained by injection compression molding. The use of the molded product of the present invention is not limited, but when the molded product of the present invention is used in the OA field, electrical / electronic field, precision machine field, automobile field, etc., the resin composition according to the present invention has the following physical properties. It is preferable to have.
本発明に係る樹脂組成物の熱伝導率は、本発明の効果を著しく損なわなければ制限はないが高い方が好ましい。具体的には、通常1W/m・K以上、好ましくは2W/m・K以上、さらに好ましくは3W/m・K以上がよい。 The thermal conductivity of the resin composition according to the present invention is not limited as long as the effects of the present invention are not significantly impaired, but is preferably higher. Specifically, it is usually 1 W / m · K or more, preferably 2 W / m · K or more, more preferably 3 W / m · K or more.
本発明に係る樹脂組成物及び後述の本発明の成形体の熱伝導率は、熱拡散率から算出することができる。熱拡散率は、株式会社アイフェイズ製「ai−Phase Mobile」を用いて測定することが可能である。この装置による熱拡散率の測定方法は、以下の通りである。すなわち、樹脂組成物又は成形体を2つの電極で挟み、電気を流すことで発生するジュール熱を利用して、樹脂組成物又は成形体の裏面で検出される樹脂組成物又は成形体の内部を伝播してきた温度波と、樹脂組成物又は成形体の表面に与えた交流温度波との位相差を測定し、この位相差の周波数を変えて測定し、各周波数の平方根に対する位相差の傾きより熱拡散率を算出することができる。そして、熱伝導率は、この熱拡散率と樹脂組成物の比熱、密度の積として求められる。 The thermal conductivity of the resin composition according to the present invention and the molded product of the present invention described later can be calculated from the thermal diffusivity. The thermal diffusivity can be measured using “ai-Phase Mobile” manufactured by Eye Phase Co., Ltd. The measuring method of the thermal diffusivity by this apparatus is as follows. That is, the inside of the resin composition or molded body detected on the back surface of the resin composition or molded body by using Joule heat generated by flowing electricity between the two electrodes between the resin composition or molded body Measure the phase difference between the propagating temperature wave and the AC temperature wave applied to the surface of the resin composition or molded body, measure the phase difference frequency, and measure the phase difference relative to the square root of each frequency. Thermal diffusivity can be calculated. And thermal conductivity is calculated | required as a product of this thermal diffusivity, the specific heat of a resin composition, and a density.
ここで、密度は、メトラー・トレド株式会社製精密天秤「XS−204」を用い、置換液に蒸留水を用いてアルキメデス法にて測定することができる。また、比熱は、株式会社パーキンエルマー製の示差走査熱量計「DSC7」を用い、結晶化条件が200℃で3分放置後10℃/分で−10℃まで降温、昇温条件が−10℃で5分放置後10℃/分で81℃まで昇温し4分放置にて測定した場合の25℃における比熱とする。 Here, the density can be measured by Archimedes method using a precision balance “XS-204” manufactured by METTLER TOLEDO Co., Ltd. and using distilled water as a replacement liquid. The specific heat was measured by using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer Co., Ltd., and left to stand at 200 ° C. for 3 minutes and then cooled to −10 ° C. at 10 ° C./min. Then, the temperature is raised to 81 ° C. at 10 ° C./min for 5 minutes, and the specific heat at 25 ° C. when measured by standing for 4 minutes.
[2.成形方法]
本発明の成形体は、上述の本発明に係る樹脂組成物を射出圧縮成形して得られる。
[2. Molding method]
The molded product of the present invention is obtained by injection compression molding the above-described resin composition according to the present invention.
本発明に係る射出圧縮成形とは、射出と共に金型の容積を減少させる工程が含まれる成形方法をいう。
本発明に係る射出圧縮成形は、予め低圧型締めされ閉鎖された金型内に、溶融樹脂を射出充填し、その後型締め側で圧縮を行う射出圧縮成形、又は、予め未閉鎖状態に保持された両金型間に溶融樹脂を射出充填し、その後型締め側で圧縮を行う射出プレス成形の何れもでもよく、両者に共通する「金型を圧縮する工程」を有する成形方法である。
Injection compression molding according to the present invention refers to a molding method including a step of reducing the volume of a mold together with injection.
The injection compression molding according to the present invention is an injection compression molding in which a molten resin is injected and filled in a mold that has been previously clamped and closed in a low pressure, and then compressed on the mold clamping side, or held in an unclosed state in advance. In addition, any of injection press moldings in which molten resin is injected and filled between both molds and then compressed on the mold clamping side may be used, which is a molding method having a “step of compressing molds” common to both.
なお、本発明に係る射出圧縮成形は、射出と金型の容積を減少させる工程等が含まれていればよく、閉じた金型を射出に合わせて開き(コアバック)その後圧縮する成形のように、さらに射出と共に金型の容積を増加させる工程が含まれていてもよい。 The injection compression molding according to the present invention only needs to include a step of reducing the volume of the injection and the mold, and the like, in which the closed mold is opened in accordance with the injection (core back) and then compressed. In addition, a step of increasing the volume of the mold together with the injection may be included.
本発明の射出成形法の具体例としては、金型を開いた状態で射出した後に金型を閉じる方法、金型を閉じながら射出する方法、閉じた金型を射出に合わせて開き(コアバック)再度閉じて型締めをかける方法、閉じた金型の型締め力をゼロにして射出してから型締めを行う方法等が挙げられる。中でも、熱伝導性を向上させるためには、コアバック成形が好ましい。 Specific examples of the injection molding method of the present invention include a method of closing a mold after injecting with the mold open, a method of injecting while closing the mold, and opening the closed mold in accordance with the injection (core back ) A method for closing and clamping the mold again, a method for clamping the mold after injecting with the mold clamping force of the closed mold zero. Among these, in order to improve the thermal conductivity, core back molding is preferable.
樹脂組成物の金型内への射出を開始する際の型開き率は、金型全閉時の成形体の厚みを、溶融状態の樹脂組成物を金型内に射出充填するときに金型が射出方向に開かれている量(充填前の開き量)で除した値である。型開き率は、本発明の効果を著しく損なわなければ制限はないが、熱伝導率向上の点では低い方が好ましい。具体的には、通常1.0以下、好ましくは0.5以下、さらに好ましくは0.25以下がよい。 The mold opening rate at the start of injection of the resin composition into the mold is the thickness of the molded body when the mold is fully closed, and the mold when the molten resin composition is injected and filled into the mold. Is a value divided by the amount opened in the injection direction (opening amount before filling). The mold opening ratio is not limited as long as the effects of the present invention are not significantly impaired, but a lower mold opening ratio is preferable in terms of improving thermal conductivity. Specifically, it is usually 1.0 or less, preferably 0.5 or less, and more preferably 0.25 or less.
射出圧縮成形機の型締め開始ポイントは、プランジャーより射出された樹脂組成物を圧縮成形するために、金型を射出方向と反対の方向に移動させるタイミングを決める指標であり、以下のように規定される。通常射出成形は、可塑化された樹脂組成物をプランジャー又はスクリューを前進させてスプルーを経て金型内に注入させて行う。このときの金型の成形体体積に対する金型内に充填された樹脂組成物の量から次式で算出された数値を型締め開始ポイントとする。
(型締め開始ポイント)={(樹脂組成物充填量)−(スプルー体積)}/(金型体積)
The mold clamping start point of the injection compression molding machine is an index that determines the timing for moving the mold in the direction opposite to the injection direction in order to compression mold the resin composition injected from the plunger. It is prescribed. In general, injection molding is performed by injecting a plasticized resin composition into a mold through a sprue by advancing a plunger or a screw. The numerical value calculated by the following equation from the amount of the resin composition filled in the mold with respect to the molded body volume of the mold at this time is defined as a mold clamping start point.
(Clamping start point) = {(Resin composition filling amount) − (Sprue volume)} / (Mold volume)
型締め開始ポイントは、本発明の効果を著しく損なわなければ制限はないが、熱伝導性向上の点では大きい方が好ましい。具体的には、通常0.50以上、好ましくは0.70以上、更に好ましくは0.9以上、特に好ましくは1.00以上、最も好ましくは1.50以上がよい。 The mold clamping start point is not limited as long as the effects of the present invention are not significantly impaired, but a larger one is preferable in terms of improving thermal conductivity. Specifically, it is usually 0.50 or more, preferably 0.70 or more, more preferably 0.9 or more, particularly preferably 1.00 or more, and most preferably 1.50 or more.
なお、本発明の成形体の熱伝導性を高くさせる点においては、射出された樹脂組成物を金型内に注入と同時に圧縮を開始するよりも、射出してから圧縮を開始する方が好ましい。 In terms of increasing the thermal conductivity of the molded article of the present invention, it is preferable to start compression after injection rather than starting compression simultaneously with injection of the injected resin composition into the mold. .
射出圧縮成形において、射出した樹脂を圧縮する方法は、本発明の効果を著しく損なわない限り制限はない。具体的には、例えば、金型を開いた状態で射出して閉じる方法、金型を閉じながら射出する方法、閉じた金型を射出に合わせて開き(コアバック)、再度閉じて型締めをかける方法、閉じた金型の型締め力をゼロにして射出してから型締めを行う方法の方法が挙げられる。またこれらの方法を組み合わせて用いてもよい。これらの内、より高い熱伝導率を得るための点から、閉じた金型を射出に合わせて開き(コアバック)、再度閉じて型締めをかける方法が好ましい。
また、射出圧縮成形において、射出した樹脂を圧縮する方向は、射出した樹脂が圧縮されていれば特に制限はない。具体的には、例えば、樹脂を射出する方向と逆向きに圧縮してもよいし、樹脂を射出する方向と直交方向から圧縮してもよい。また、成形体が板状又は糸状などである場合に、樹脂を射出する方向は、その厚みを薄く又は直径を細くする方向であっても、その長さを短くする方向であっても構わない。
本発明の成形方法では、この樹脂を圧縮する方向が本発明の成形体の長さを短くする方向であっても、後述の実施例の通り、成形体の厚み方向の熱伝導性を向上させることができる。即ち、樹脂組成物を圧縮する方向と成形体の厚み方向が同一方向でなくても、成形体の厚み方向の熱伝導性を向上させることができる。
In the injection compression molding, the method for compressing the injected resin is not limited as long as the effects of the present invention are not significantly impaired. Specifically, for example, a method of injecting and closing the mold in an open state, a method of injecting while closing the mold, opening the closed mold in accordance with the injection (core back), closing the mold again and closing the mold There are a method of applying and a method of performing mold clamping after injecting with a mold clamping force of a closed mold zero. Moreover, you may use combining these methods. Among these, from the viewpoint of obtaining higher thermal conductivity, a method in which a closed mold is opened in accordance with injection (core back), closed again and clamped is preferable.
In the injection compression molding, the direction in which the injected resin is compressed is not particularly limited as long as the injected resin is compressed. Specifically, for example, compression may be performed in a direction opposite to the direction in which the resin is injected, or compression may be performed in a direction orthogonal to the direction in which the resin is injected. Further, when the molded body is plate-like or thread-like, the direction of injecting the resin may be a direction in which the thickness is reduced or the diameter is reduced, or the length is reduced. .
In the molding method of the present invention, even if the direction in which the resin is compressed is the direction in which the length of the molded body of the present invention is shortened, the thermal conductivity in the thickness direction of the molded body is improved as in the examples described later. be able to. That is, even if the direction in which the resin composition is compressed and the thickness direction of the molded body are not the same direction, the thermal conductivity in the thickness direction of the molded body can be improved.
射出圧縮成形の圧縮での圧縮率は、本発明の効果を著しく損なわなければ制限はないが、射出流動によるフィラー配向性の点では小さい方が好ましく、また、一方、配向性制御の点では大きい方が好ましい。具体的には、通常1.0以上、好ましくは3.0以上、更に好ましくは4.0以上がよい。なお、圧縮率とは、型開き率の逆数である。 The compression ratio in the compression of injection compression molding is not limited as long as the effect of the present invention is not significantly impaired, but is preferably smaller in terms of filler orientation due to injection flow, and is larger in terms of orientation control. Is preferred. Specifically, it is usually 1.0 or more, preferably 3.0 or more, more preferably 4.0 or more. The compression rate is the reciprocal of the mold opening rate.
射出圧縮成形の圧縮での型締め速度は、本発明の効果を著しく損なわなければ制限はないが、過冷却となり難い点では小さい方が好ましく、また、一方、所望の厚みに成形しやすい点では大きい方が好ましい。具体的には、通常10cm3/s以上、好ましくは15cm3/s以上、さらに好ましくは20cm3/s以上がよく、また、通常150cm3/s以下、好ましくは100cm3/s以下、さらに好ましくは70cm3/s以下がよい。なお、型締め速度とは、金型の容積を減少させる速度(cm3/s)である。 The mold clamping speed in the compression of injection compression molding is not limited as long as the effect of the present invention is not significantly impaired. However, it is preferable that the mold clamping speed is small in that it is difficult to be overcooled. Larger is preferable. Specifically, it is usually 10 cm 3 / s or more, preferably 15 cm 3 / s or more, more preferably 20 cm 3 / s or more, and usually 150 cm 3 / s or less, preferably 100 cm 3 / s or less, more preferably Is preferably 70 cm 3 / s or less. The mold clamping speed is a speed (cm 3 / s) for reducing the volume of the mold.
射出圧縮成形における金型の温度は、これに供する樹脂組成物の種類等により異なるが、射出した樹脂組成物が固化する範囲で高い温度である方が好ましい。具体的には、樹脂組成物の融点若しくはガラス転移点が金型の温度よりも低い方がよい。また、その温度差は、樹脂組成物の固まりやすさの点では小さい方が好ましく、また、一方、金型内に射出した樹脂組成物が固まる前に金型内に広がりやすい点では大きい方が好ましく、具体的には、通常30℃以上、好ましくは50℃以上、更に好ましくは70℃以上がよく、また、通常150℃以下、好ましくは145℃以下、更に好ましくは140℃以下、特に好ましくは120℃以下、最も好ましくは100℃以下がよい。 The temperature of the mold in the injection compression molding varies depending on the type of the resin composition to be used, but it is preferable that the temperature is high as long as the injected resin composition is solidified. Specifically, the melting point or glass transition point of the resin composition is preferably lower than the temperature of the mold. In addition, the temperature difference is preferably small in terms of the tendency of the resin composition to solidify, and on the other hand, the temperature difference is preferably large in that it easily spreads in the mold before the resin composition injected into the mold is solidified. Specifically, it is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and usually 150 ° C. or lower, preferably 145 ° C. or lower, more preferably 140 ° C. or lower, particularly preferably. 120 ° C. or lower, most preferably 100 ° C. or lower is preferable.
また、樹脂組成物の射出圧縮成形中の金型の温度は、樹脂組成物を金型に射出している間と、圧縮している間で温度が異なるなど、一定に保っていなくても構わない。具体的には、例えば、金型に樹脂組成物を射出している間は樹脂組成物を金型内に充填しやすいように樹脂組成物の融点より高い温度で行い、圧縮中に温度を下げてもよい。 Further, the temperature of the mold during the injection compression molding of the resin composition may not be kept constant, for example, the temperature is different during the injection of the resin composition into the mold and during the compression. Absent. Specifically, for example, while injecting the resin composition into the mold, the resin composition is performed at a temperature higher than the melting point of the resin composition so that the resin composition can be easily filled in the mold, and the temperature is lowered during compression. May be.
以下、図を用いて、本発明の成形方法の内、特に好ましい一例を説明する。但し、本発明はその趣旨を逸脱しない限り、以下の説明例に限定されるものではない。 Hereinafter, a particularly preferred example of the molding method of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following explanation examples without departing from the gist thereof.
図1は、射出圧縮成形機100を圧縮方向に対して垂直な方向から見た断面の概略図である。図1(a)が樹脂組成物の充填前の状態を、図1(b)が樹脂組成物を充填して圧縮した後の状態を各々示す。射出圧縮成形機100は、可動の一対の型T1とT2を備えており、型T2は樹脂組成物を射出圧縮成形機100内に射出充填するための孔であるスプルー1を備えている。また、スプルー1にはプランジャー2を備えるシリンダ3が接続されており、該シリンダ3によって、射出圧縮成形機100内に樹脂組成物が射出充填される。
FIG. 1 is a schematic cross-sectional view of an injection
成形体を得るには、先ずシリンダ3によってスプルー1から樹脂組成物を射出圧縮成形機100内に射出充填する。そして、充填終了後に、型開き量X1がゼロになるまで型T1を閉め、樹脂組成物を圧縮する。この型T1を閉め切ったときの厚みX2が成形体の厚みとなる。
このように、図1の例では、樹脂組成物を射出する方向D1に対し、樹脂組成物を圧縮する方向D2が逆向きとなっている。また、樹脂組成物が圧縮される方向D2が成形体の厚みX2の方向となっている。
In order to obtain a molded body, first, the resin composition is injected and filled from the
As described above, in the example of FIG. 1, the direction D2 for compressing the resin composition is opposite to the direction D1 for injecting the resin composition. Further, the direction D2 in which the resin composition is compressed is the direction of the thickness X2 of the molded body.
[3.成形体]
(3−1.成形体の特徴)
本発明の成形体の形状は、本発明の効果を著しく損なわない限りどのような形状でもよく特に制限はない。具体的には、射出圧縮成形の金型で成形できる形状であればよく、具体的には、板状、円盤状、矩形等が挙げられる。
[3. Molded body]
(3-1. Characteristics of molded product)
The shape of the molded body of the present invention may be any shape as long as the effects of the present invention are not significantly impaired, and there is no particular limitation. Specifically, the shape may be any shape that can be molded by an injection compression molding die, and specific examples include a plate shape, a disk shape, and a rectangular shape.
本発明の成形体の熱伝導率は、上述の本発明に係る樹脂組成物の熱拡散率と同様に求めることができる。 The thermal conductivity of the molded article of the present invention can be determined in the same manner as the thermal diffusivity of the resin composition according to the present invention described above.
本発明の成形体の熱伝導率は、高い方が好ましく、具体的には、通常1W/m・K以上、好ましくは2W/m・K以上、更に好ましくは3W/m・K以上がよい。また、熱伝導率は高ければ高いほどよいので、その上限は、特に無い。また、特に、本発明の成形体は、射出圧縮成形時の圧縮方向の熱伝導率を、圧縮せずに射出成形して得られる成形体の同方向の熱伝導率よりも高くすることが可能である。 The heat conductivity of the molded body of the present invention is preferably higher. Specifically, it is usually 1 W / m · K or higher, preferably 2 W / m · K or higher, more preferably 3 W / m · K or higher. Also, the higher the thermal conductivity, the better, so there is no particular upper limit. In particular, the molded article of the present invention can have a thermal conductivity in the compression direction at the time of injection compression molding higher than the thermal conductivity in the same direction of a molded article obtained by injection molding without compression. It is.
本発明の成形体の射出圧縮成形時の圧縮方向の熱伝導率は、本発明に係る樹脂組成物を圧縮せずに射出成形した場合に得られる成形体の同方向の熱伝導率に対して、通常1.1倍以上、好ましくは1.2倍以上、更に好ましくは1.3倍以上、特に好ましくは1.5倍以上とすることが可能である。また、熱伝導率は、高ければ高いほど好ましい。 The thermal conductivity in the compression direction at the time of injection compression molding of the molded product of the present invention is relative to the thermal conductivity in the same direction of the molded product obtained by injection molding without compressing the resin composition according to the present invention. Usually, it is 1.1 times or more, preferably 1.2 times or more, more preferably 1.3 times or more, and particularly preferably 1.5 times or more. Also, the higher the thermal conductivity, the better.
本発明の成形体の射出圧縮成形時の圧縮方向の熱伝導率を、圧縮せずに射出成形して得られる成形体の同方向の熱伝導率よりも高くできる理由は、定かではないが、以下のように推測することができる。
本発明の成形体の射出圧縮成形時の圧縮方向の熱伝導率を、圧縮せずに射出成形して得られる成形体の同方向の熱伝導率よりも高くできる原因としては、射出圧縮成形時の圧縮により、成形体中での異方性形状の熱伝導性フィラーの配向に変化が生じ、本発明の成形体の熱伝導率に圧縮方向との関係で異方性が生じることが考えられる。
すなわち、圧縮を伴わない射出成形で射出する場合は、通常、高い圧力をかけることにより金型内に樹脂組成物を充填させる。このとき、樹脂組成物に強い応力がかかり、金型内で樹脂組成物が流動する方向に異方性形状の熱伝導性フィラーが配向すると考えられる。これに比べ、射出圧縮成形では、射出時に高圧充填する必要はなく、また、コアバック等の射出と共に金型の容積を増加させる工程も含ませることができる。従って、通常の射出成形に比べ、熱伝導フィラーの樹脂中での樹脂の流動方向への配向が起こりづらく、分散状態が変化したことにより、熱伝導性が向上したと考えられる。
The reason why the thermal conductivity in the compression direction at the time of injection compression molding of the molded body of the present invention can be higher than the thermal conductivity in the same direction of the molded body obtained by injection molding without compression is not clear, It can be estimated as follows.
The reason why the thermal conductivity in the compression direction at the time of injection compression molding of the molded body of the present invention can be higher than the thermal conductivity in the same direction of the molded body obtained by injection molding without compression is as follows. It is considered that the orientation of the thermally conductive filler having an anisotropic shape in the molded body changes due to the compression of the molded body, and anisotropy occurs in the thermal conductivity of the molded body of the present invention in relation to the compression direction. .
That is, when injecting by injection molding without compression, the resin composition is usually filled in the mold by applying high pressure. At this time, it is considered that a strong stress is applied to the resin composition, and the anisotropically thermally conductive filler is oriented in the direction in which the resin composition flows in the mold. In contrast, injection compression molding does not require high-pressure filling at the time of injection, and can include a step of increasing the volume of the mold along with injection of a core back or the like. Therefore, compared to normal injection molding, it is difficult for the heat conductive filler to be oriented in the flow direction of the resin in the resin, and it is considered that the thermal conductivity is improved by changing the dispersion state.
特に、本発明の成形方法では、後述の実施例で示すとおり、射出圧縮成形により樹脂組成物を圧縮する方向の熱伝導率が向上する。これは、熱伝導フィラーが圧縮方向に垂直な方向に配向するのではなく、意外なことに圧縮方向に配向したことによるものと考えられる。
そして、その結果、本発明の成形体には熱配向性が備わることになり、OA分野、電気・電子分野、精密機械分野、自動車分野等において、局所的な高温に対しても効率よく排熱が可能な樹脂組成物を成形してなる成形体として用いることができることが期待される。
In particular, in the molding method of the present invention, the thermal conductivity in the direction of compressing the resin composition by injection compression molding is improved, as shown in the examples described later. This is probably because the heat conductive filler was not oriented in the direction perpendicular to the compression direction, but was unexpectedly oriented in the compression direction.
As a result, the molded article of the present invention is provided with thermal orientation, and in the OA field, the electric / electronic field, the precision machine field, the automobile field, etc., it efficiently exhausts heat even at a local high temperature. It is expected that it can be used as a molded product obtained by molding a resin composition that can be used.
本発明の成形体の電気絶縁性は、本発明の効果を著しく損なわなければ制限はないが、本発明の成形体を電気又は電子部品等の電気絶縁性を求められる部品として用いる場合は大きい方が好ましい。具体的には、体積抵抗値が通常108Ω・cm以上、好ましくは1010Ω・cm以上、さらに好ましくは1012Ω・cm以上がよく、また、通常1016Ω・cm以下、好ましくは1015Ω・cm以下がよい。 The electrical insulation properties of the molded product of the present invention are not limited as long as the effects of the present invention are not significantly impaired. However, when the molded product of the present invention is used as a component requiring electrical insulation, such as an electric or electronic component, the larger one is required. Is preferred. Specifically, the volume resistance is usually 10 8 Ω · cm or more, preferably 10 10 Ω · cm or more, more preferably 10 12 Ω · cm or more, and usually 10 16 Ω · cm or less, preferably 10 15 Ω · cm or less is preferable.
本発明の成形体の電気絶縁性は、体積抵抗率の値で評価する。体積抵抗率は、ダイヤインスツルメント株式会社製「ハイレスタ」又はアドバンテスト株式会社製「R8340A」などにより測定することができる。特に、体積抵抗率が1×106〜1×1014Ω・cmの場合は、ダイヤインスツルメント株式会社製「ハイレスタ(UR端子)」を使用し、500V、10秒の条件にて測定して得られる体積抵抗率を体積抵抗値とする。 The electrical insulation of the molded product of the present invention is evaluated by the value of volume resistivity. The volume resistivity can be measured by “Hiresta” manufactured by Dia Instruments Co., Ltd. or “R8340A” manufactured by Advantest Co., Ltd. In particular, when the volume resistivity is 1 × 10 6 to 1 × 10 14 Ω · cm, use “HIRESTA (UR terminal)” manufactured by Dia Instruments Co., Ltd., and measure under conditions of 500 V and 10 seconds. The volume resistivity obtained in this way is taken as the volume resistance value.
(3−2.成形体の用途)
本発明の成形体は、熱伝導率の高さを利用することで、電子部品用放熱部品として用いることができる。また、絶縁性を要求されるOA機器部品や電気電子部品、精密機器及び自動車関連部品に幅広く用いられるが、中でもOA機器や電気電子機器の内部部品に好適であり、例えば、コネクタ部品やパソコン部材、携帯電話、プリンター、コピー機、スキャナー、テレビ等の用途が挙げられる。
また、例えば耐衝撃性のある熱可塑性樹脂を選択するなどすれば、耐衝撃性が要求されるような自動車部品用との用途にも好適に用いることができる。
(3-2. Use of molded product)
The molded body of the present invention can be used as a heat radiating component for electronic components by utilizing the high thermal conductivity. In addition, it is widely used for OA equipment parts, electrical and electronic parts, precision equipments, and automobile-related parts that require insulation, and is particularly suitable for internal parts of OA equipments and electrical and electronic equipments, such as connector parts and personal computer members. Applications include mobile phones, printers, copiers, scanners, and televisions.
In addition, for example, if a thermoplastic resin having impact resistance is selected, it can be suitably used for applications for automobile parts that require impact resistance.
以下、本発明について、実施例を用いてさらに説明するが、本発明はその趣旨を逸脱しない限り、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is further demonstrated using an Example, this invention is not limited to a following example, unless it deviates from the meaning.
熱可塑性樹脂と異方性形状の熱伝導性フィラーとを含有する樹脂組成物を作製し、これを射出圧縮成形して成形体を作製し、その熱伝導率と表面抵抗を評価した。 A resin composition containing a thermoplastic resin and a thermally conductive filler having an anisotropic shape was produced, and this was injection compression molded to produce a molded body, and its thermal conductivity and surface resistance were evaluated.
[評価方法]
(成形体の厚み方向の熱伝導率の測定方法)
成形体の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率を測定した。熱伝導率は、熱拡散率と樹脂組成物の比熱、密度の積から導出した。
[Evaluation methods]
(Measurement method of thermal conductivity in the thickness direction of the molded product)
The thermal conductivity in the thickness direction of the molded body (compression direction during injection compression molding) was measured. The thermal conductivity was derived from the product of the thermal diffusivity and the specific heat and density of the resin composition.
・熱拡散率
熱拡散率は、株式会社アイフェイズ製「ai−Phase Mobile」を用いて測定した。具体的には、成形体を2つの電極で挟み、電気を流すことで発生するジュール熱を利用して、成形体裏面で検出される成形体内部を伝播してきた温度波と、成形体表面に与えた交流温度波との位相差を測定し、この位相差の周波数を変えて測定し、各周波数の平方根に対する位相差の傾きより熱拡散率を算出した。
-Thermal diffusivity The thermal diffusivity was measured using "ai-Phase Mobile" manufactured by Eye Phase Co., Ltd. Specifically, by using Joule heat generated by sandwiching the molded body between two electrodes and flowing electricity, the temperature wave propagated inside the molded body detected on the back surface of the molded body and the surface of the molded body The phase difference with the applied AC temperature wave was measured, the frequency of this phase difference was changed and measured, and the thermal diffusivity was calculated from the slope of the phase difference with respect to the square root of each frequency.
・比熱
比熱は、株式会社パーキンエルマー製の示差走査熱量計「DSC7」を用いて測定した。具体的には、結晶化条件が200℃で3分放置後10℃/分で−10℃まで降温、昇温条件が−10℃で5分放置後10℃/分で81℃まで昇温し4分放置にて測定した場合の25℃における比熱とした。
Specific heat Specific heat was measured using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer Co., Ltd. Specifically, the temperature was lowered to -10 ° C at 10 ° C / min after standing for 3 minutes at 200 ° C, and the temperature was raised to 81 ° C at 10 ° C / min after standing at -10 ° C for 5 minutes. The specific heat at 25 ° C. was measured when left standing for 4 minutes.
・密度
密度は、メトラー・トレド株式会社製精密天秤「XS−204」を用いて測定した。具体的には、置換液に蒸留水を用いてアルキメデス法にて測定した。
-Density Density was measured using a precision balance "XS-204" manufactured by METTLER TOLEDO. Specifically, it was measured by Archimedes method using distilled water as a replacement liquid.
(体積抵抗値の測定方法)
電気絶縁性は、体積抵抗値で評価した。
体積抵抗値は、ダイヤインスツルメント株式会社製社製「ハイレスタ」を用いて、UR端子を使用し、500V、10秒の条件にて測定した。
(Measurement method of volume resistivity)
The electrical insulation was evaluated by the volume resistance value.
The volume resistance value was measured under the conditions of 500 V and 10 seconds using a UR terminal using “HIRESTA” manufactured by Dia Instruments Co., Ltd.
[樹脂組成物Aの製造] [Production of Resin Composition A]
三菱樹脂株式会社製の繊維状アルミナフィラー「マフテックALS」を大気下、温度1400℃で5時間加熱し、アルミナフィラー中のδアルミナのα化率を95重量%まで進行させた。 A fibrous alumina filler “Maftec ALS” manufactured by Mitsubishi Plastics Co., Ltd. was heated in the atmosphere at a temperature of 1400 ° C. for 5 hours to advance the α conversion rate of δ alumina in the alumina filler to 95% by weight.
次にポリブチレンテレフタレート樹脂(三菱エンジニアリングプラスチックス株式会社製「ノバデュラン5010R」(融点224℃))34重量%と、上述の繊維状アルミナフィラー66重量%とを、シリンダ温度270℃、スクリュー回転数は100rpmに設定した、シリンダ直径30mmの2軸同方向混練押出機にて混練し、押出を行い、円筒状ペレット(樹脂組成物A)を得た。
なお、「マフテックALS」の形状(最大長、最大垂直長及びアスペクト比)を株式会社セイシン企業製の粒度・形状分布測定装置「PITA−1」を用いて測定した結果、個数平均で、最大長が100μm、最大垂直長が10μmで、アスペクト比が10の異方性形状であることが確認された。形状測定は、具体的には、水を分散媒として、各フィラーの形状と個数を計測し、アスペクト比を(最大長/最大垂直長)として算出し、計測個数の度数平均値におけるアスペクト比を個数平均アスペクト比として測定した。
Next, 34% by weight of polybutylene terephthalate resin (“Novaduran 5010R” manufactured by Mitsubishi Engineering Plastics Co., Ltd. (melting point: 224 ° C.)), 66% by weight of the above-mentioned fibrous alumina filler, a cylinder temperature of 270 ° C. and a screw rotation speed of It knead | mixed and extruded with the biaxial same direction kneading extruder of cylinder diameter 30mm set to 100 rpm, and the cylindrical pellet (resin composition A) was obtained.
As a result of measuring the shape (maximum length, maximum vertical length and aspect ratio) of “Maftech ALS” using a particle size / shape distribution measuring device “PITA-1” manufactured by Seishin Co., Ltd., the number average and maximum length Was 100 μm, the maximum vertical length was 10 μm, and an anisotropic shape with an aspect ratio of 10 was confirmed. Specifically, the shape measurement measures the shape and number of each filler using water as a dispersion medium, calculates the aspect ratio as (maximum length / maximum vertical length), and calculates the aspect ratio in the frequency average value of the measured number. The number average aspect ratio was measured.
また、「マフテックALS」を加圧成形後、2000℃で焼結させて、株式会社アルバック製全自動レーザーフラッシュ法熱定数測定装置「TC−7000H/SB」を用いて、レーザーフラッシュ法にて測定した熱伝導率は、30W/m・Kであった。 In addition, “Maftech ALS” is pressure-molded, sintered at 2000 ° C., and measured by a laser flash method using a fully automatic laser flash method thermal constant measuring device “TC-7000H / SB” manufactured by ULVAC, Inc. The thermal conductivity was 30 W / m · K.
[樹脂組成物Bの製造]
ポリブチレンテレフタレート樹脂(三菱エンジニアリングプラスチックス株式会社製「ノバデュラン5010R」(融点224℃))を57重量%と、上述の繊維状アルミナフィラーを43重量%とした以外は、樹脂組成物Aと同様の方法で樹脂組成物Bを製造した。
[Production of Resin Composition B]
The same as resin composition A except that polybutylene terephthalate resin (“Novaduran 5010R” (melting point 224 ° C.) manufactured by Mitsubishi Engineering Plastics Co., Ltd.) was 57% by weight and the above-mentioned fibrous alumina filler was 43% by weight. The resin composition B was manufactured by the method.
[樹脂組成物Cの製造]
ポリブチレンテレフタレート樹脂(三菱エンジニアリングプラスチックス株式会社製「ノバデュラン5010R」(融点224℃))を34重量%と、上述の繊維状アルミナフィラーの代わりに球状アルミナ(マイクロン株式会社製「AX−3」(熱伝導率32W/m・K、平均アスペクト比1))を66重量%とした以外は、樹脂組成物Aと同様の方法で樹脂組成物Cを製造した。
[Production of Resin Composition C]
34% by weight of polybutylene terephthalate resin (“Novaduran 5010R” (melting point 224 ° C.) manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and spherical alumina (“AX-3” manufactured by Micron Co., Ltd.) instead of the above-mentioned fibrous alumina filler ( Resin composition C was produced in the same manner as resin composition A, except that the thermal conductivity was 32 W / m · K and the average aspect ratio 1)) was 66 wt%.
[実施例1]
樹脂組成物Aを120℃、2時間の条件で乾燥させ、型締め圧3tの射出圧縮成形機(日精樹脂工業株式会社製「ELJECT AU3E」)を用いて、シリンダ温度265℃、金型温度140℃、型開き率0.25、射出速度300mm/秒で溶融樹脂を射出し、型締め開始ポイント1.00の位置から型締め速度33mm/sで圧縮して成形し、直径30mmで厚みが0.5mmの成形体A1を得た。なお、ここで、射出圧縮成形の圧縮での圧縮率は、型開き量(2.0mm)/成形体の厚み(0.5mm)=4.0であった。
[Example 1]
The resin composition A is dried at 120 ° C. for 2 hours, and the cylinder temperature is 265 ° C. and the mold temperature is 140 using an injection compression molding machine (“ELJECT AU3E” manufactured by Nissei Plastic Industries Co., Ltd.) with a clamping pressure of 3 t. Molten resin is injected at a temperature of 0.25 ° C., a mold opening rate of 0.25, and an injection speed of 300 mm / second, and is compressed and molded from the position of the mold clamping start point 1.00 at a mold clamping speed of 33 mm / s. A molded body A1 of 0.5 mm was obtained. Here, the compression ratio in the compression of injection compression molding was mold opening amount (2.0 mm) / thickness of molded body (0.5 mm) = 4.0.
この成形方法について、図2を用いて詳述する。
図2は、射出圧縮成形機101を圧縮方向に対して垂直な方向から見た断面の概略図である。図2(a)が樹脂組成物Aの充填前の状態を、図2(b)が樹脂組成物Aを充填して圧縮した後の状態を各々示す。射出圧縮成形機101は、型締め圧3tの射出圧縮成形機(日精樹脂工業株式会社製「ELJECT AU3E」)を用いた。射出圧縮成形機101は、可動の一対の型T3と型T4とを備えている。型T3と型T4との間には、直径30mmの円柱状の空隙がある。型T4は、樹脂組成物を射出圧縮成形機101内に射出充填するための孔であるスプルー5を備えている。また、スプルー5にはプランジャー6を備えるシリンダ7が接続されており、該シリンダ7によって、射出圧縮成形機101内に樹脂組成物が射出充填される。成形体を得るには、先ずシリンダ7によってスプルー5から樹脂組成物を射出圧縮成形機101内に射出充填する。そして、充填終了後に、型開き量X3がゼロになるまで型T3を閉め、樹脂組成物を圧縮する。この型T3を閉め切ったときの厚みX4が成形体の厚みとなる。
This molding method will be described in detail with reference to FIG.
FIG. 2 is a schematic cross-sectional view of the injection
すなわち、射出圧縮成形は、以下の手順で行った。シリンダ7の温度を265℃に、金型T3及びT4の温度を温度140℃にした。シリンダ7内に溶融状態の樹脂組成物Aを充填させた。金型T3、T4を、型開き率0.25(金型全閉時の成形体の厚み(X4)0.5mm/充填前の金型の開き量(X3)2mm)の状態にして、金型内に樹脂組成物Aをスプルー5から射出速度300mm/秒で射出充填させた。射出充填開始後に、型を、型締め開始ポイントが1.00{(樹脂組成物Aの充填量550cm3−スプルー5の体積200cm3)/金型内の空隙の体積350cm3}の位置から型開き量X3がゼロになるまで、型締め速度33mm/sで閉め、樹脂組成物Aを圧縮した。この型を閉め切ったときの厚みX4は、0.5mmであった。
That is, injection compression molding was performed according to the following procedure. The temperature of the cylinder 7 was set to 265 ° C., and the temperatures of the molds T3 and T4 were set to 140 ° C. The cylinder 7 was filled with the molten resin composition A. The molds T3 and T4 are set to a mold opening rate of 0.25 (the thickness of the molded body when the mold is fully closed (X4) 0.5 mm / the opening amount of the mold before filling (X3) 2 mm)). The resin composition A was injected and filled into the mold from the
このようにして、直径が30mmで厚みが0.5mmの円盤状の成形体A1を得た。ここで、射出圧縮成形の圧縮での圧縮率は、型開き量(2.0mm)/成形体の厚み(0.5mm)=4.0であった。また、樹脂組成物Aを射出する方向D3は、樹脂組成物Aを圧縮する方向D4に対し、逆向きであった。そして、樹脂組成物Aが圧縮される方向D4は、成形体A1の厚み方向であった。
得られた成形体A1の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
In this way, a disk-shaped molded body A1 having a diameter of 30 mm and a thickness of 0.5 mm was obtained. Here, the compression rate in the compression of injection compression molding was mold opening amount (2.0 mm) / thickness of molded body (0.5 mm) = 4.0. Moreover, the direction D3 which injects the resin composition A was reverse with respect to the direction D4 which compresses the resin composition A. The direction D4 in which the resin composition A is compressed was the thickness direction of the molded body A1.
The thermal conductivity and volume resistance value in the thickness direction (compression direction at the time of injection compression molding) of the obtained molded body A1 were measured. The results are shown in Table 1.
[実施例2]
型締め開始ポイントを0.75にした以外は、実施例1と同様の条件で射出圧縮成形し、直径が30mmで厚みが0.5mmの円盤状の成形体A2を得た。得られた成形体A2の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
[Example 2]
Except that the clamping start point was set to 0.75, injection compression molding was performed under the same conditions as in Example 1 to obtain a disk-shaped molded body A2 having a diameter of 30 mm and a thickness of 0.5 mm. The thermal conductivity and volume resistance value in the thickness direction (compression direction during injection compression molding) of the obtained molded body A2 were measured. The results are shown in Table 1.
[実施例3]
型開き率を1.0、型締め開始ポイントを0.75にした以外は、実施例1と同様の条件で射出圧縮成形し、直径が30mmφで厚みが0.5mmの円盤状の成形体A3を得た。得られた成形体A3の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
[Example 3]
Except that the mold opening ratio is 1.0 and the clamping start point is 0.75, injection compression molding is performed under the same conditions as in Example 1, and a disk-shaped molded body A3 having a diameter of 30 mmφ and a thickness of 0.5 mm. Got. The thermal conductivity and volume resistance value in the thickness direction (compression direction during injection compression molding) of the obtained molded body A3 were measured. The results are shown in Table 1.
[実施例4]
樹脂組成物Aの代わりに樹脂組成物Bを用いた以外は、実施例2と同様の条件で射出圧縮成形し、直径が30mmで厚みが0.5mmの円盤状の成形体B2を得た。得られた成形体B1の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
[Example 4]
Except that the resin composition B was used in place of the resin composition A, injection compression molding was performed under the same conditions as in Example 2 to obtain a disk-shaped molded body B2 having a diameter of 30 mm and a thickness of 0.5 mm. The thermal conductivity and volume resistance value in the thickness direction (compression direction during injection compression molding) of the obtained molded body B1 were measured. The results are shown in Table 1.
[実施例5]
樹脂組成物Aの代わりに樹脂組成物Bを用いた以外は、実施例3と同様の条件で射出圧縮成形し、直径が30mmで厚みが0.5mmの円盤状の成形体B3を得た。得られた成形体B3の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
[Example 5]
Except that the resin composition B was used in place of the resin composition A, injection compression molding was performed under the same conditions as in Example 3 to obtain a disk-shaped molded body B3 having a diameter of 30 mm and a thickness of 0.5 mm. The thermal conductivity and volume resistance value in the thickness direction (compression direction during injection compression molding) of the obtained molded body B3 were measured. The results are shown in Table 1.
[比較例1]
樹脂組成物Aを120℃、2時間の条件で乾燥させ、型締め圧3tの射出圧縮成形機(日精樹脂工業株式会社製「ELJECT AU3E」)を用いて、シリンダ温度300℃、金型温度140℃、射出速度300mm/秒、型開きなし、型締めなしの条件で射出成形し、直径が30mmで厚みが0.5mmの円盤状の成形体A4を得た。得られた成形体A4の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
[Comparative Example 1]
The resin composition A is dried at 120 ° C. for 2 hours, and the cylinder temperature is 300 ° C. and the mold temperature is 140 ° C. using an injection compression molding machine (“ELJECT AU3E” manufactured by Nissei Plastic Industry Co., Ltd.) with a clamping pressure of 3 t. Injection molding was performed under the conditions of ° C., injection speed of 300 mm / second, no mold opening, and no mold clamping to obtain a disk-shaped molded body A4 having a diameter of 30 mm and a thickness of 0.5 mm. The thermal conductivity and volume resistance value in the thickness direction (compression direction during injection compression molding) of the obtained molded body A4 were measured. The results are shown in Table 1.
[比較例2]
樹脂組成物Aの代わりに樹脂組成物Bを用いた以外は、比較例1と同様の条件で射出成形し、直径が30mmで厚みが0.5mmの円盤状の成形体B4を得た。得られた成形体B4の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
[Comparative Example 2]
Except that the resin composition B was used in place of the resin composition A, injection molding was performed under the same conditions as in Comparative Example 1 to obtain a disk-shaped molded body B4 having a diameter of 30 mm and a thickness of 0.5 mm. The thermal conductivity and volume resistance value in the thickness direction (compression direction during injection compression molding) of the obtained molded body B4 were measured. The results are shown in Table 1.
[比較例3]
樹脂組成物Aの代わりに樹脂組成物Cを用いた以外は、比較例1と同様の条件で成形し、直径が30mmで厚みが0.5mmの円盤状の成形体C4を得た。得られた成形体C4の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
[Comparative Example 3]
Except having used the resin composition C instead of the resin composition A, it shape | molded on the conditions similar to the comparative example 1, and obtained the disk-shaped molded object C4 whose diameter is 30 mm and thickness is 0.5 mm. The thermal conductivity and volume resistance value in the thickness direction (compression direction at the time of injection compression molding) of the obtained molded body C4 were measured. The results are shown in Table 1.
[比較例4]
樹脂組成物Aの代わりに樹脂組成物Cを用いた以外は、実施例3と同様の条件で成形し、直径が30mmで厚みが0.5mmの円盤状の成形体C3を得た。得られた成形体C3の厚み方向(射出圧縮成形時の圧縮方向)の熱伝導率と体積抵抗値を測定した。結果を表1に示す。
[Comparative Example 4]
Except having used the resin composition C instead of the resin composition A, it shape | molded on the conditions similar to Example 3, and obtained the disk-shaped molded object C3 whose diameter is 30 mm and thickness is 0.5 mm. The thermal conductivity and volume resistance value in the thickness direction (compression direction at the time of injection compression molding) of the obtained molded body C3 were measured. The results are shown in Table 1.
1 スプルー
2 プランジャー
3 シリンダ
5 スプルー
6 プランジャー
7 シリンダ
100 射出圧縮成形機
101 射出圧縮成形機
T1 金型
T2 金型
T3 金型
T4 金型
X1 型開き量
X2 成形体の厚み
X3 型開き量
X4 成形体の厚み
D1 樹脂組成物を射出する方向
D2 樹脂組成物を圧縮する方向
D3 樹脂組成物を射出する方向
D4 樹脂組成物を圧縮する方向
1
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085900A JP2010234678A (en) | 2009-03-31 | 2009-03-31 | Molding obtained by molding resin composition and production method of the molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085900A JP2010234678A (en) | 2009-03-31 | 2009-03-31 | Molding obtained by molding resin composition and production method of the molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010234678A true JP2010234678A (en) | 2010-10-21 |
Family
ID=43089486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009085900A Pending JP2010234678A (en) | 2009-03-31 | 2009-03-31 | Molding obtained by molding resin composition and production method of the molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010234678A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013093099A (en) * | 2011-10-24 | 2013-05-16 | Panasonic Corp | Fuel cell separator forming material, fuel cell separator and fuel cell |
JP2015216216A (en) * | 2014-05-09 | 2015-12-03 | 凸版印刷株式会社 | Sealant for solar batteries, and solar battery module |
JP2017223276A (en) * | 2016-06-15 | 2017-12-21 | 日本精工株式会社 | Hub unit bearing |
WO2019203178A1 (en) * | 2018-04-20 | 2019-10-24 | 富士フイルム株式会社 | Heat-conducting layer, photosensitive layer, photosensitive composition, method for producing heat-conducting layer, and laminate and semiconductor device |
JP2020143788A (en) * | 2020-03-26 | 2020-09-10 | 日本精工株式会社 | Hub unit bearing |
-
2009
- 2009-03-31 JP JP2009085900A patent/JP2010234678A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013093099A (en) * | 2011-10-24 | 2013-05-16 | Panasonic Corp | Fuel cell separator forming material, fuel cell separator and fuel cell |
JP2015216216A (en) * | 2014-05-09 | 2015-12-03 | 凸版印刷株式会社 | Sealant for solar batteries, and solar battery module |
JP2017223276A (en) * | 2016-06-15 | 2017-12-21 | 日本精工株式会社 | Hub unit bearing |
WO2019203178A1 (en) * | 2018-04-20 | 2019-10-24 | 富士フイルム株式会社 | Heat-conducting layer, photosensitive layer, photosensitive composition, method for producing heat-conducting layer, and laminate and semiconductor device |
KR20200132943A (en) * | 2018-04-20 | 2020-11-25 | 후지필름 가부시키가이샤 | Conducting layer, photosensitive layer, photosensitive composition, method of manufacturing a conductive layer, and laminate and semiconductor device |
CN112004887A (en) * | 2018-04-20 | 2020-11-27 | 富士胶片株式会社 | Heat conductive layer, photosensitive composition, method for producing heat conductive layer, laminate, and semiconductor device |
JPWO2019203178A1 (en) * | 2018-04-20 | 2021-05-13 | 富士フイルム株式会社 | Heat-conducting layer, photosensitive layer, photosensitive composition, manufacturing method of heat-conducting layer, laminate and semiconductor device |
JP7018126B2 (en) | 2018-04-20 | 2022-02-09 | 富士フイルム株式会社 | A heat conductive layer, a photosensitive layer, a photosensitive composition, a method for manufacturing the heat conductive layer, and a laminate and a semiconductor device. |
KR102386491B1 (en) | 2018-04-20 | 2022-04-14 | 후지필름 가부시키가이샤 | A heat-conducting layer, a photosensitive layer, a photosensitive composition, the manufacturing method of a heat-conducting layer, and a laminated body and a semiconductor device |
US11697754B2 (en) | 2018-04-20 | 2023-07-11 | Fujifilm Corporation | Thermal conductive layer, photosensitive layer, photosensitive composition, manufacturing method for thermal conductive layer, and laminate and semiconductor device |
JP2020143788A (en) * | 2020-03-26 | 2020-09-10 | 日本精工株式会社 | Hub unit bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4590414B2 (en) | Injection compression molding method | |
Tiusanen et al. | Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts | |
JP5914935B2 (en) | Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and molded article | |
CN1318508C (en) | Injection moulded heat-conductive insulated plastics | |
KR100706653B1 (en) | Heat-conductive resin composition and plastic article | |
JP2010234678A (en) | Molding obtained by molding resin composition and production method of the molding | |
WO2005099994A1 (en) | Method for injection compression molding of conductive thermoplastic resin composition | |
Zhang et al. | Effects of mold cavity temperature on surface quality and mechanical properties of nanoparticle‐filled polymer in rapid heat cycle molding | |
Lin et al. | Morphology of fluid assisted injection molded polycarbonate/polyethylene blends | |
TWI457385B (en) | The liquid-crystalline resin | |
Frizelle | Injection molding technology | |
Hong et al. | Shear‐induced migration of conductive fillers in injection molding | |
KR20110089817A (en) | Liquid crystalline resin composition for injection molding, molded item, and method for improving blister resistance | |
KR101380841B1 (en) | Method for preparing the molded parts of heat resistant and thermally conductive polymer compositions and the molded parts of heat resistant and thermally conductive polymer compositions prepared by the same method | |
JP2006019227A (en) | Polyphenylene sulfide (pps) resin composition, fuel cell separator, fuel cell, and manufacturing method for fuel cell separator | |
Fujiyama et al. | Melting and crystallization behaviors of injection‐molded polypropylene | |
Shi et al. | Injection-compression-compression process for preparation of high-performance conductive polymeric composites | |
US7462388B2 (en) | Conductive resin molded product having insulating skin and method for forming the same | |
CN1225774C (en) | Method for manufacturing molded resin piece having surface distributed metal | |
Nudman et al. | Development and characterization of expanded graphite filled‐PET/PVDF blend: thermodynamic and kinetic effects | |
JPWO2018110646A1 (en) | Method for manufacturing plate-shaped body, mold and runner | |
JP3223053U (en) | Injection molded body | |
JP2008255256A (en) | Method of manufacturing resin molded object | |
WO2019189361A1 (en) | Method for producing molded foam articles, and molded foam articles | |
JP2006297742A (en) | Resin molding mold and resin molding method |