JP2010201866A - Metal mold device, heat insulating member and method of manufacturing metal mold device - Google Patents

Metal mold device, heat insulating member and method of manufacturing metal mold device Download PDF

Info

Publication number
JP2010201866A
JP2010201866A JP2009052196A JP2009052196A JP2010201866A JP 2010201866 A JP2010201866 A JP 2010201866A JP 2009052196 A JP2009052196 A JP 2009052196A JP 2009052196 A JP2009052196 A JP 2009052196A JP 2010201866 A JP2010201866 A JP 2010201866A
Authority
JP
Japan
Prior art keywords
partition wall
parallel
mold
groove
partition walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009052196A
Other languages
Japanese (ja)
Inventor
Koji Seike
幸治 清家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2009052196A priority Critical patent/JP2010201866A/en
Publication of JP2010201866A publication Critical patent/JP2010201866A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin injection molding metal mold device having a heat insulation member and a method of manufacturing the same, easy in manufacture, and superior in durability, reducing friction between an adjacent member and itself. <P>SOLUTION: This heat insulation member of the metal mold device includes a plate part having a flat back face and a surface and a plurality of liner partition walls formed in parallel on the surface of the plate part. The respective partition walls have a first member having a parallel sidewall surface, a surface and a parallel top surface, a plate part having a flat back face and a surface and a plurality of liner partition walls formed in parallel on the surface of the plate part. The respective partition walls have the parallel sidewall surface, the surface and the parallel top surface, and have a second member forming a groove capable of inserting the partition wall of the first member. The first member and the second member are opposed with the back face on the outside, and the partition wall of the first member is inserted into the groove of the second member. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、樹脂射出成形装置に適した断熱部材およびその製造方法に関し、特に製造が容易で耐久性に優れた、樹脂射出成形装置に適した断熱部材およびその製造方法に関する。   The present invention relates to a heat insulating member suitable for a resin injection molding apparatus and a manufacturing method thereof, and particularly relates to a heat insulating member suitable for a resin injection molding apparatus that is easy to manufacture and excellent in durability and a manufacturing method thereof.

導光板、位相フィルム等の光学フィルム、コンパクトディスク(CD),デジタルバーサタイルディスク(DVD)等の光メディアの樹脂成形においては、平面や曲面で形成される金型上に極微細な凹凸形状を有するスタンパを配置し、ポリカーボネート等の熱可塑性樹脂をスタンパ上に供給ないし充填し、スタンパの極微細な凹凸形状を樹脂成形品に高精度に転写する樹脂成形方法が広く採用されている。   In resin molding of optical media such as light guide plates, optical films such as phase films, compact discs (CDs), digital versatile discs (DVDs), etc., there are extremely fine irregularities on a mold formed with a flat or curved surface. A resin molding method is widely employed in which a stamper is arranged, a thermoplastic resin such as polycarbonate is supplied or filled on the stamper, and the extremely fine uneven shape of the stamper is transferred to a resin molded product with high accuracy.

以下、射出成形法に付いて説明する。射出成形法は、樹脂射出成形装置の加熱シリンダ内において加熱、溶融された樹脂が、金型装置内のキャビティに充填され、該キャビティ内において冷却、固化されて成形品が形成される。   Hereinafter, the injection molding method will be described. In the injection molding method, a resin heated and melted in a heating cylinder of a resin injection molding apparatus is filled into a cavity in a mold apparatus, and cooled and solidified in the cavity to form a molded product.

樹脂射出成形装置は、射出装置、及び樹脂成形装置としての金型装置と型締装置を有する。射出装置は、樹脂を加熱して溶融させる加熱シリンダ、加熱シリンダの前端に取り付けられ、溶融させられた樹脂を射出する射出ノズル、加熱シリンダ内において回転自在に、かつ、進退自在に配設されたスクリュー等を備える。金型装置は固定金型及び可動金型を備え、型締装置によって可動金型を進退させることにより、金型装置の型閉じ、型締め及び型開きが行なわれ、型締めに伴って、固定金型と可動金型との間にキャビティが形成される。   The resin injection molding apparatus includes an injection apparatus, a mold apparatus as a resin molding apparatus, and a mold clamping apparatus. The injection device is provided with a heating cylinder that heats and melts the resin, an injection nozzle that is attached to the front end of the heating cylinder and injects the molten resin, and is rotatably and reciprocally disposed within the heating cylinder. Provide screws and the like. The mold apparatus has a fixed mold and a movable mold, and the mold mold is closed, clamped and opened by moving the movable mold back and forth with the mold clamping device. A cavity is formed between the mold and the movable mold.

そして、計量工程において、スクリューが回転させられると、加熱シリンダ内で溶融された熱可塑性樹脂がスクリューの前方に蓄えられ、それに伴って、スクリューが後退させられる。この間に、金型装置の型閉じ及び型締めが行なわれる。続いて、射出工程において、スクリューが前進させられ、スクリューの前方に蓄えられた樹脂が射出ノズルから射出され、スタンパが配置されたキャビティに充填される。次に、冷却工程において、キャビティ内の樹脂が冷却、固化される。続いて、型開きが行なわれ、成形品が取り出される。大量生産においては、同一サイクルが繰り返される。ここでキャビティ内に流入する溶融樹脂は、300℃〜400℃であり、取出時には百数十℃まで低下しているので、スタンパ表面は、百数十℃以上の温度サイクルに曝される。   In the metering step, when the screw is rotated, the thermoplastic resin melted in the heating cylinder is stored in front of the screw, and the screw is retracted accordingly. During this time, the mold apparatus is closed and clamped. Subsequently, in the injection process, the screw is advanced, the resin stored in front of the screw is injected from the injection nozzle, and filled into the cavity in which the stamper is arranged. Next, in the cooling step, the resin in the cavity is cooled and solidified. Subsequently, the mold is opened and the molded product is taken out. In mass production, the same cycle is repeated. Here, since the molten resin flowing into the cavity is 300 ° C. to 400 ° C. and is lowered to hundreds of degrees Celsius when taken out, the stamper surface is exposed to a temperature cycle of hundreds of degrees Celsius or more.

ところで、近年、サイクル時間を短くして生産性を向上させる要求が強まっており、サイクル時間を短縮するために、溶融樹脂の冷却時間の短縮が図られている。このため、溶融樹脂と接する前の金型表面やスタンパ表面の温度は、用いる熱可塑性樹脂のガラス転移温度より数十℃低く設定されている。   By the way, in recent years, there is an increasing demand for improving the productivity by shortening the cycle time, and in order to shorten the cycle time, the cooling time of the molten resin is shortened. For this reason, the temperature of the mold surface or stamper surface before coming into contact with the molten resin is set to be several tens of degrees C lower than the glass transition temperature of the thermoplastic resin to be used.

しかしながら、溶融樹脂がキャビティ内に流れ込み、金型表面やスタンパ表面に接すると、一瞬にして樹脂表面が冷却され、固化層(スキン層)が形成される。このスキン層が発達しすぎると、転写不良やウェルドラインの発生等を引き起こす。   However, when the molten resin flows into the cavity and comes into contact with the mold surface or the stamper surface, the resin surface is instantly cooled and a solidified layer (skin layer) is formed. If this skin layer is developed too much, transfer defects, weld lines and the like are caused.

さらに、極微細な形状を高精度に転写する要求がますます強くなっている。高精度の転写性を維持しつつ、サイクル時間を短くして生産性を向上する1つの方法は、冷却水路の変更であるが、この対応には限界が来ている。   In addition, there is an increasing demand for transferring extremely fine shapes with high accuracy. One method of improving productivity by shortening the cycle time while maintaining high-precision transferability is to change the cooling water channel, but this approach has reached its limit.

特許第3066254号(特開平7−178774号)は、成形中の熱可塑性材料の初期冷却の遅延化を目的として、スタンパと支持体との間に断熱層を挿入することを開示している。断熱層は、プラスチック、多孔質金属、セラミクス、低伝熱性合金等の低伝熱性材料で製造する。さらに、厚さ方向中央部を低密度、縁部を高密度とすることを提案している。   Japanese Patent No. 3066254 (Japanese Patent Laid-Open No. 7-178774) discloses that a heat insulating layer is inserted between the stamper and the support for the purpose of delaying the initial cooling of the thermoplastic material during molding. The heat insulation layer is made of a low heat transfer material such as plastic, porous metal, ceramics, low heat transfer alloy. Furthermore, it has been proposed that the central portion in the thickness direction be low density and the edge portion be high density.

熱可塑性材料は金型の比較的冷たい表面に接触して当初は冷却されて一時的にガラス転移温度より低温になるものの、熱した溶融熱可塑性材料からは熱エネルギが供給される。断熱層を備えていることで、熱伝導による放熱は抑制される。金型表面が再加熱され、表面温度はガラス転移温度よりも上昇する。従って、熱可塑性材料の急冷による粗面化を防止でき、転写性を向上させることができる
また、国際公開WO2007/123210号は、対向配置される一方の金型と転写プレートとのいずれかの上に成長させた断熱層を有する樹脂成形装置を提案し、断熱層は一方の金型または転写プレートを基板とし、ハニカム状の開口パターンを有するレジストマスクを用いてニッケルメッキにより壁状の断熱層を成長させることも提案している。ハニカム状のニッケル壁の間の空隙が断熱機能を発揮し、伝熱性を低下させる。したがって、成形材料が有する熱エネルギが一方の金型に逃げるのを抑制することができ、スキン層が形成されるのを抑制することができる。また、成形装置の温度を低く設定することができるので、一方の金型および転写プレートの温度の下降速度を高くすることができ、成形サイクルを十分に短くすることができる。
Although the thermoplastic material contacts the relatively cool surface of the mold and is initially cooled to temporarily drop below the glass transition temperature, heat energy is supplied from the hot molten thermoplastic material. By providing the heat insulating layer, heat dissipation due to heat conduction is suppressed. The mold surface is reheated and the surface temperature rises above the glass transition temperature. Accordingly, roughening due to rapid cooling of the thermoplastic material can be prevented, and transferability can be improved. Also, International Publication No. WO2007 / 123210 discloses that one of the opposed molds and the transfer plate is placed on top of each other. A resin molding apparatus having a heat insulation layer grown on the substrate is proposed, and the heat insulation layer is formed of one mold or transfer plate as a substrate, and a wall-like heat insulation layer is formed by nickel plating using a resist mask having a honeycomb-like opening pattern. It is also proposed to grow. The voids between the honeycomb-like nickel walls exhibit a heat insulating function and reduce heat transfer. Therefore, the thermal energy of the molding material can be prevented from escaping to one mold, and the skin layer can be prevented from being formed. Moreover, since the temperature of the molding apparatus can be set low, the temperature lowering speed of one mold and the transfer plate can be increased, and the molding cycle can be sufficiently shortened.

断熱層のような断熱機能を有する部材を、断熱部材と、スタンパや転写プレートのような凹凸パターンを転写するための部材を転写部材と呼ぶことがある。   A member having a heat insulating function such as a heat insulating layer may be referred to as a heat insulating member and a member for transferring an uneven pattern such as a stamper or a transfer plate as a transfer member.

熱可塑性樹脂材料の射出成形用金型は、溶融樹脂による加熱、冷却水などの冷却材による冷却の熱サイクルに繰り返し曝される。各部材は、熱サイクルによって、位置に応じた温度変化を受け、熱膨張、熱収縮を繰り返す。金型部材、断熱部材、転写部材を全て金属で形成しても、温度分布により、熱膨張、熱収縮の量は部材により異なる。対向する面間の摩擦が大きいと、部材間に大きな応力が働く。   A mold for injection molding of a thermoplastic resin material is repeatedly exposed to a heat cycle of heating with a molten resin and cooling with a coolant such as cooling water. Each member undergoes a temperature change according to its position by a thermal cycle, and repeats thermal expansion and thermal contraction. Even if the mold member, the heat insulating member, and the transfer member are all made of metal, the amount of thermal expansion and contraction varies depending on the member due to temperature distribution. When the friction between the opposing surfaces is large, a large stress acts between the members.

特許第3066254号公報Japanese Patent No. 3066254 特開平7−178774号公報JP-A-7-178774 国際公開WO2007/123210号公報International Publication No. WO2007 / 123210

本発明の1つの目的は、隣接部材との間の摩擦が小さく、製造が容易で耐久性に優れた、樹脂射出成形装置に適した断熱部材およびその製造方法を提供することである。   One object of the present invention is to provide a heat insulating member suitable for a resin injection molding apparatus, which has a small friction between adjacent members, is easy to manufacture and has excellent durability, and a method for manufacturing the same.

本発明の他の目的は、熱抵抗の調整が容易な断熱部材およびその製造方法を提供することである。   Another object of the present invention is to provide a heat insulating member whose heat resistance can be easily adjusted and a method for manufacturing the same.

本発明の1観点によれば、
平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有する、第1部材と、
平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有し、かつ前記第1部材の隔壁を挿入できる溝が形成された、第2部材と、
を有し、前記第1部材と前記第2部材とを前記背面を外側にして対向させ、前記第1部材の隔壁が前記第2部材の溝内に挿入されている断熱部材
が提供される。
According to one aspect of the present invention,
A plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion, each of the partition walls being parallel to the side wall surface and the surface A first member having a top surface;
A plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion, each of the partition walls being parallel to the side wall surface and the surface A second member having a top surface and formed with a groove into which the partition wall of the first member can be inserted;
There is provided a heat insulating member in which the first member and the second member are opposed to each other with the back face outside, and a partition wall of the first member is inserted into a groove of the second member.

本発明の他の観点によれば、
a)平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有する、第1部材を2つ作製する工程と、
b)前記第1部材の一方の隔壁に、溝を作製して第2部材を作製する工程であって、前記第2部材の溝は前記第1部材の隔壁を挿入できるように作製する工程と、
c)前記第1部材の隔壁を前記第2部材の溝に挿入して、前記第1部材と前記第2部材を組み合わせる工程と、
を含む断熱部材の製造方法
が提供される。
According to another aspect of the invention,
a) a plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion, each of the partition walls having a parallel side wall surface and the surface Producing two first members having parallel top surfaces;
b) forming a groove in one partition wall of the first member to form a second member, wherein the groove of the second member is formed so that the partition wall of the first member can be inserted; ,
c) inserting the partition wall of the first member into the groove of the second member and combining the first member and the second member;
The manufacturing method of the heat insulation member containing is provided.

両面が平坦であるため、隣接部材との間の摩擦を小さくすることができる。   Since both surfaces are flat, the friction between adjacent members can be reduced.

断熱部材を2つの部材の嵌めこみ構造とすることにより空隙部を作ることで、断熱性を高くでき、隔壁を格子状とすることで耐久性も高くできる。   By making the heat insulating member into a two-member fitting structure to create a gap, the heat insulating property can be increased, and by making the partition walls into a lattice shape, the durability can also be increased.

直線状の隔壁は製造が容易である。   A straight partition is easy to manufacture.

図1A,1Bは、実施例1による断熱部材の基本的構造を示す概略断面図および、断熱部材の隔壁部の概略平面図である。1A and 1B are a schematic sectional view showing a basic structure of a heat insulating member according to Example 1, and a schematic plan view of a partition wall portion of the heat insulating member. 図2A−2Dは、2つの部材で断熱部材を形成する実施例1の製造方法の主要工程を示す概略斜視図である。2A to 2D are schematic perspective views illustrating main processes of the manufacturing method of Example 1 in which a heat insulating member is formed by two members. 図3A−3Cは、実施例1の製造方法の変形例の主要工程を示す概略斜視図である。3A to 3C are schematic perspective views illustrating main processes of a modified example of the manufacturing method according to the first embodiment. 図4A−4Cは、高い熱抵抗を得ることができる実施例2による断熱部材の製造方法の主要工程を示す概略斜視図である。4A to 4C are schematic perspective views illustrating main steps of a method for manufacturing a heat insulating member according to Example 2 that can obtain high thermal resistance. 図5A,5Bは、実施例3による断熱部材の構成を示す概略断面図である。5A and 5B are schematic cross-sectional views illustrating the configuration of the heat insulating member according to the third embodiment. 図6A,6Bは、断熱部材を備えた樹脂射出成形装置の構成を示す概略断面図および一部拡大断面図である。6A and 6B are a schematic sectional view and a partially enlarged sectional view showing a configuration of a resin injection molding apparatus provided with a heat insulating member. 図7は、断熱部材を有さない金型装置の構成を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing a configuration of a mold apparatus that does not have a heat insulating member. 図8は、断熱部材を備えた金型装置の構成を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a configuration of a mold apparatus provided with a heat insulating member. 図9は、断熱部材の有無による金型装置の特性を比較して示すグラフである。FIG. 9 is a graph showing a comparison of the characteristics of the mold apparatus with and without the heat insulating member.

まず、金型装置の基本構成を考察する。   First, the basic configuration of the mold apparatus will be considered.

図7に示すように、例えば導光板を成形するための金型装置101は、固定された固定金型102と進退自由に配設された可動金型103を有する。可動金型103は、上板121と、上板121を受ける下板122を備える。上板121の上に転写プレート134が配設される。転写プレート134上面には微細な凹凸が所定のパターンで形成されている。型締装置104によって可動金型103が前進されて、型閉じが行なわれ、可動金型103が固定金型102に当接されて型締が行なわれる。固定金型102と可動金型103の間に断面形状矩形のキャビティC1,C2が形成される。   As shown in FIG. 7, for example, a mold apparatus 101 for forming a light guide plate includes a fixed mold 102 that is fixed and a movable mold 103 that is freely moved forward and backward. The movable mold 103 includes an upper plate 121 and a lower plate 122 that receives the upper plate 121. A transfer plate 134 is disposed on the upper plate 121. Fine irregularities are formed in a predetermined pattern on the upper surface of the transfer plate 134. The movable mold 103 is advanced by the mold clamping device 104 to close the mold, and the movable mold 103 is brought into contact with the fixed mold 102 to perform mold clamping. Cavities C1 and C2 having a rectangular cross section are formed between the fixed mold 102 and the movable mold 103.

固定金型102に形成されたスプルー105は、キャビティC1,C2とゲートg1、g2を介して連通し、溶融樹脂をキャビティC1,C2に流し込める。下板122には温度調節流路123が形成され、水等の温調流体を流すことにより、金型装置および樹脂を冷却する。キャビティC1,C2に流し込まれた樹脂は、冷却されて固化し、成形品として取り出される。金型装置の温度を低くしすぎるとスキン層が発達しすぎ、転写不良を発生しやすくなる。また、溶融樹脂の流動性を確保するため金型装置の温度を高くすると、その分、冷却時間が長くなり、成形サイクルが長くなってしまう。   The sprue 105 formed in the fixed mold 102 communicates with the cavities C1 and C2 via the gates g1 and g2, and allows molten resin to flow into the cavities C1 and C2. A temperature adjusting flow path 123 is formed in the lower plate 122, and the mold apparatus and the resin are cooled by flowing a temperature adjusting fluid such as water. The resin poured into the cavities C1 and C2 is cooled and solidified, and is taken out as a molded product. If the temperature of the mold apparatus is too low, the skin layer develops too much and transfer defects tend to occur. Further, when the temperature of the mold apparatus is increased in order to ensure the fluidity of the molten resin, the cooling time becomes longer and the molding cycle becomes longer.

図8は、断熱部材(断熱層)を設けた、例えば導光板を成形するための金型装置161を示す。可動金型103のベース部の上面に断熱部材140が形成され、その上に転写プレート134が取り付けられている。型締が行なわれた金型装置のスプルー105から溶融樹脂130が射出され、溶融樹脂130はゲートg1、g2を介してキャビティC1,C2に充填される。金型装置161には、温度調節流路123が形成され、水等の温調流体を流すことにより金型装置および樹脂を冷却する。その結果、キャビティC1,C2に充填された樹脂は、冷却され、固化される。このとき、断熱部材140により、熱抵抗が高くなるため、金型装置の温度を低く設定しても、溶融樹脂130から金型への熱流が抑制され、転写プレート134の初期到達温度を高くでき、スキン層の発達しすぎを抑制できる。樹脂が冷却する過程では金型装置の設定温度が低いため、冷却が速やかに進む。   FIG. 8 shows a mold apparatus 161 for forming, for example, a light guide plate provided with a heat insulating member (heat insulating layer). A heat insulating member 140 is formed on the upper surface of the base portion of the movable mold 103, and a transfer plate 134 is attached thereon. The molten resin 130 is injected from the sprue 105 of the mold apparatus that has been clamped, and the molten resin 130 is filled into the cavities C1 and C2 through the gates g1 and g2. The mold apparatus 161 is formed with a temperature control flow path 123, and the mold apparatus and the resin are cooled by flowing a temperature control fluid such as water. As a result, the resin filled in the cavities C1 and C2 is cooled and solidified. At this time, since the heat resistance is increased by the heat insulating member 140, even if the temperature of the mold apparatus is set low, the heat flow from the molten resin 130 to the mold is suppressed, and the initial temperature reached by the transfer plate 134 can be increased. , Too much development of the skin layer can be suppressed. In the process of cooling the resin, since the set temperature of the mold apparatus is low, the cooling proceeds promptly.

図9は、金型装置の特性を示す図である。横軸は時間を、縦軸は温度を示す。曲線L1は断熱部材なしの金型装置101を使用して樹脂を成形した時の転写プレート134の温度を示し、曲線L3は断熱部材を備えた金型装置161を使用して樹脂を成形したときの転写プレート134の温度を示す。   FIG. 9 is a diagram illustrating characteristics of the mold apparatus. The horizontal axis represents time, and the vertical axis represents temperature. A curve L1 indicates the temperature of the transfer plate 134 when the resin is molded using the mold apparatus 101 without a heat insulating member, and a curve L3 is when the resin is molded using the mold apparatus 161 provided with a heat insulating member. The temperature of the transfer plate 134 is shown.

まず、断熱部材なしの場合の特性(曲線L1)から説明すると、樹脂が金型101のキャビティC1,C2内に流入されると、この溶融された樹脂は高温であるため、転写プレート134の温度は急激に上昇する。しかしながら、冷却水によって冷却されている下板122側に多くの熱が奪われるため、転写プレート134の温度は、転写が完了する時刻t1で温度T1となる。従って充填された溶融樹脂は転写完了時刻t1までに急激に冷却されることになり、スキン層が形成され易く、また形成されたスキン層が発達し易い。転写完了後、時刻t2でキャビティ内に充填された樹脂が固化し取出可能となる温度T2に到達し、金型が型開開始するが、金型装置の温度が高めに設定されているので転写プレート134の温度は非常に緩やかに下降するため、成形サイクルが長くなってしまう。ところで、樹脂に転写される凹凸パターンの深さは、形成されるスキン層の厚さに対してかなり小さい。樹脂が多少固化したスキン層に凹凸パターンを転写するためには、金型装置の型締めによって発生させられる圧縮力により、スキン層を押しつぶし、塑性変形させて凹凸パターンに沿わせる必要があるが、大きな圧縮力をかける必要があるので、転写プレートの凹凸パターンが劣化しやすくなってしまう。   First, from the characteristics without the heat insulating member (curve L1), when the resin flows into the cavities C1 and C2 of the mold 101, the molten resin is at a high temperature. Rises rapidly. However, since much heat is deprived to the lower plate 122 side that is cooled by the cooling water, the temperature of the transfer plate 134 becomes the temperature T1 at the time t1 when the transfer is completed. Accordingly, the filled molten resin is rapidly cooled by the transfer completion time t1, so that the skin layer is easily formed and the formed skin layer is easily developed. After the transfer is completed, the temperature T2 at which the resin filled in the cavity is solidified and can be taken out is reached at time t2, and the mold starts to open, but the transfer is performed because the temperature of the mold apparatus is set high. Since the temperature of the plate 134 falls very slowly, the molding cycle becomes long. By the way, the depth of the concavo-convex pattern transferred to the resin is considerably smaller than the thickness of the skin layer to be formed. In order to transfer the concavo-convex pattern to the skin layer where the resin is somewhat solidified, the skin layer needs to be crushed and plastically deformed by the compressive force generated by the clamping of the mold apparatus, Since it is necessary to apply a large compressive force, the uneven pattern of the transfer plate tends to deteriorate.

一方、断熱部材を備えた場合の特性(曲線L3)においては、樹脂の有する熱エネルギが可動金型103側に逃げるのを抑制できるので、下板122の冷却能力を高く設定しても、転写プレート134の温度をT1以上に長時間保つことができる。従って、転写が完了するまで樹脂の流動性が確保され、スキン層の発達を抑制することができ、転写性を改善することができる。転写後は、下板122の冷却能力が高く設定されているので、急激に転写プレート134の温度を下げることができる。したがって、時刻t3で樹脂が固化し取出可能となる温度T2に到達させることができるので、成形サイクルを短くすることができる。樹脂が多少固化したスキン層を金型装置の型締めによって発生させられる圧縮力により、押しつぶし、塑性変形させて転写プレートの凹凸パターンに沿わせるとき、その圧縮力を小さくすることができるので、転写プレートの凹凸パターンの劣化を防止することができる。したがって、転写プレートの耐久性を向上させることができる。   On the other hand, in the characteristic (curve L3) when the heat insulating member is provided, the thermal energy of the resin can be prevented from escaping to the movable mold 103 side. Therefore, even if the cooling capacity of the lower plate 122 is set high, the transfer can be performed. The temperature of the plate 134 can be maintained at T1 or higher for a long time. Accordingly, the fluidity of the resin is ensured until the transfer is completed, the development of the skin layer can be suppressed, and the transferability can be improved. After the transfer, since the cooling capacity of the lower plate 122 is set high, the temperature of the transfer plate 134 can be rapidly lowered. Therefore, since the resin can reach the temperature T2 at which the resin is solidified and can be taken out at time t3, the molding cycle can be shortened. When the skin layer with some solidified resin is crushed and plastically deformed by the compressive force generated by the clamping of the mold device, the compressive force can be reduced as it conforms to the concavo-convex pattern of the transfer plate. Deterioration of the uneven pattern on the plate can be prevented. Therefore, the durability of the transfer plate can be improved.

このように高温の樹脂を充填した時、断熱部材なしの場合は金型に急速に熱が奪われるため、転写プレートの初期の温度上昇が抑えられ、断熱部材を用いた場合は金型に奪われる熱が抑制されるため、転写プレートの初期の温度上昇が大きいと考えられる。冷却時は、断熱部材なしの場合に比べて、断熱部材を用いた場合は金型の温度を低く設定できるため、冷却速度が速くなることが判る。   When a high temperature resin is filled in this way, heat is rapidly lost to the mold when there is no thermal insulation member, so the initial temperature rise of the transfer plate is suppressed, and when a thermal insulation member is used, the mold is lost. Since the generated heat is suppressed, it is considered that the initial temperature rise of the transfer plate is large. At the time of cooling, it can be seen that the temperature of the mold can be set lower when the heat insulating member is used, compared to the case without the heat insulating member, so that the cooling rate is increased.

したがって、断熱部材を用いると樹脂成形サイクルのサイクル時間の短縮に有効であることが判る。ところで、断熱部材を金属で形成する場合、熱伝導率を下げるためには空隙部を作ることが望まれる。空隙部を作るために、レジストマスクを用いてメッキにより隔壁を形成すると、上面は凹凸を有する構造となり、断熱部材の表面が凹凸を有すると隣接部材との摩擦が大きくなってしまう。   Therefore, it can be seen that using a heat insulating member is effective in shortening the cycle time of the resin molding cycle. By the way, when forming a heat insulation member with a metal, it is desirable to make a space | gap part in order to reduce heat conductivity. When a partition wall is formed by plating using a resist mask in order to create a void, the upper surface has a structure with irregularities, and if the surface of the heat insulating member has irregularities, the friction between adjacent members increases.

本発明者らは、断熱部材を両面が平坦で内部に空隙部を有する金属構造によって製造することを考えた。   The inventors of the present invention have considered that the heat insulating member is manufactured by a metal structure having flat surfaces on both sides and having a void inside.

図1A,1Bは、実施例1による断熱部材の基本的構造を示す概略断面図および、断熱部材の隔壁部の概略平面図である。図1Aに示すように、平行平坦面を有する下板部1の上に、隔壁部2が配置され、さらにその上に平行平坦面を有する上板部3が配置されている。下板部1の下面、上板部3の上面は平坦かつ滑らかであり摩擦の少ない面接触を可能とする。図1Bに示すように、隔壁部2は正方格子状の形状を有し、空隙部4を取り囲む形状を有する。空隙部は空気ないし他の気体で満たされるので、断熱性が高い。隔壁部2は上板部3、下板部1間を機械的、熱的に接続する。空隙部の面積を大きく、隔壁部の面積を小さくするほど、また隔壁の高さを高くするほど、熱抵抗は大きくなる。隔壁間の距離を適切に設定することにより、断熱部材としての熱的特性は面内でほぼ均一とすることができる。正方格子形状とすることにより、高耐久性を実現し、かつ、図中横方向と縦方向の機械的特性を同等とすることができる。閉じた空隙部は、むく材からの加工では作製できず、複数の部材を組み合わせることで得られる。   1A and 1B are a schematic sectional view showing a basic structure of a heat insulating member according to Example 1, and a schematic plan view of a partition wall portion of the heat insulating member. As shown in FIG. 1A, a partition wall portion 2 is disposed on a lower plate portion 1 having a parallel flat surface, and an upper plate portion 3 having a parallel flat surface is further disposed thereon. The lower surface of the lower plate portion 1 and the upper surface of the upper plate portion 3 are flat and smooth, enabling surface contact with little friction. As shown in FIG. 1B, the partition wall 2 has a square lattice shape and has a shape surrounding the gap 4. Since the gap is filled with air or other gas, the heat insulation is high. The partition wall portion 2 mechanically and thermally connects the upper plate portion 3 and the lower plate portion 1. The thermal resistance increases as the area of the gap is increased, the area of the partition is reduced, and the height of the partition is increased. By appropriately setting the distance between the partition walls, the thermal characteristics as the heat insulating member can be made substantially uniform in the plane. By adopting a square lattice shape, high durability can be realized, and mechanical characteristics in the horizontal direction and the vertical direction in the figure can be made equal. A closed void cannot be produced by processing from a stripping material, and can be obtained by combining a plurality of members.

図2A−2Dは、2つの部材で断熱部材を形成する実施例1の製造方法の主要工程、および得られる構造を示す概略斜視図である。図2Aに示すように、平坦な背面と表面を有する板材を機械加工することにより、平坦な背面と表面を有する板部1(3)の上に平行な側壁面と板部表面と平行な頂面とを有する直線状隔壁(凸部)2aが平行に並んだ第1部材11を作製する。板材の表面部を直線に沿ったストライプ状に除去する加工は容易に行なうことができる。図2Bに示すように、図2A同様、板材を機械加工することにより、平坦な背面と表面を有する板部3(1)の上に平行な側壁面と板部表面と平行な頂面とを有する直線状隔壁(凸部)2bが平行に並んだ第2部材12を作製し、さらに隔壁2bに直交する溝13を機械加工で作製する。溝形成加工も直線に沿ったストライプ領域を除去する加工なので、容易に行なうことができる。本実施例では、隔壁2a,2bは同一の高さ、幅、ピッチを有する。溝13は、隔壁2bの高さと同一の深さ、隔壁2aを挿入できる幅を有し、隔壁2aと同一ピッチで形成する。例えば、溝13の断面形状は隔壁2aの断面形状と同じである。第1部材11、第2部材12の各背面は、平坦かつ滑らかな面とする。図2Cに示すように、隔壁2a,2bが対向するように、第1部材11、第2部材12の一方を反転し、さらに隔壁2aの面内位置を、溝13の面内位置と位置合わせする。図2Dに示すように、第1部材11、第2部材12を互いに接近させ、隔壁2aを溝13に挿入し、突き当たるまで進める。隔壁2a,2bは対向する板部3,1の表面に当接する。このようにして、図1A,1Bに示す構成を有する断熱部材が作製される。   2A to 2D are schematic perspective views showing main steps of the manufacturing method of Example 1 in which a heat insulating member is formed by two members, and the resulting structure. As shown in FIG. 2A, by machining a plate material having a flat back surface and a surface, the side wall surface parallel to the plate portion 1 (3) having the flat back surface and surface and the top surface parallel to the plate surface. A first member 11 in which linear partition walls (convex portions) 2a having a surface are arranged in parallel is produced. The processing of removing the surface portion of the plate material in a stripe shape along a straight line can be easily performed. As shown in FIG. 2B, as in FIG. 2A, by machining the plate material, a side wall surface parallel to the plate portion 3 (1) having a flat back surface and a surface and a top surface parallel to the plate portion surface are obtained. The 2nd member 12 in which the linear partition (convex part) 2b which has is arranged in parallel is produced, and also the groove | channel 13 orthogonal to the partition 2b is produced by machining. Since the groove forming process is also a process of removing the stripe region along the straight line, it can be easily performed. In this embodiment, the partition walls 2a and 2b have the same height, width and pitch. The groove 13 has the same depth as the height of the partition 2b and a width that allows the partition 2a to be inserted, and is formed at the same pitch as the partition 2a. For example, the cross-sectional shape of the groove 13 is the same as the cross-sectional shape of the partition wall 2a. The back surfaces of the first member 11 and the second member 12 are flat and smooth surfaces. As shown in FIG. 2C, one of the first member 11 and the second member 12 is inverted so that the partition walls 2 a and 2 b face each other, and the in-plane position of the partition wall 2 a is aligned with the in-plane position of the groove 13. To do. As shown in FIG. 2D, the first member 11 and the second member 12 are brought close to each other, and the partition wall 2a is inserted into the groove 13 and advanced until it abuts. The partition walls 2a and 2b are in contact with the surfaces of the opposing plate portions 3 and 1. Thus, the heat insulation member which has the structure shown to FIG. 1A and 1B is produced.

図3A−3Cは、実施例1の製造方法の変形例の主要工程を示す概略斜視図である。   3A to 3C are schematic perspective views illustrating main processes of a modified example of the manufacturing method according to the first embodiment.

図3Aに示すように、平坦な表面を有する超硬合金の板材を機械加工することにより、平行な側壁面と表面と平行な底面とを有する直線状溝22が平行に並んだ成形母型21を作製する。溝は同一寸法であり、所定ピッチで配置する。加工は直線に沿ったストライプ領域の除去であり、容易に行うことができる。平坦な表面を有する金属ガラスの板状被成形材24を支持板で保持して成形母型21上方に配置する。   As shown in FIG. 3A, by molding a cemented carbide plate having a flat surface, a molding die 21 in which linear grooves 22 having parallel side wall surfaces and a bottom surface parallel to the surface are arranged in parallel. Is made. The grooves have the same dimensions and are arranged at a predetermined pitch. The processing is removal of the stripe region along the straight line and can be easily performed. A metal glass plate-shaped material 24 having a flat surface is held by a support plate and disposed above the molding die 21.

金属ガラスは、原子が広範囲に亘って無秩序に配列したアモルファス合金(非晶質合金)であり、その金属組成を選択することにより、高強度、高硬度、高靭性、低ヤング率、高耐食性、軟磁性、低熱伝導率等の特性を持たせることができる。金属ガラスは転写成形性に優れており、ガラス転移温度以上に加熱して、加圧することで、容易に転写成形でき、高精度の転写を可能とする。したがって、微細構造を有し、耐久性に優れ、かつ扱いやすい断熱部材を実現することができる。   Metallic glass is an amorphous alloy (amorphous alloy) in which atoms are randomly arranged over a wide range. By selecting the metal composition, high strength, high hardness, high toughness, low Young's modulus, high corrosion resistance, Properties such as soft magnetism and low thermal conductivity can be imparted. Metallic glass is excellent in transfer moldability, and can be easily transfer-molded by heating and pressurizing to a temperature higher than the glass transition temperature to enable highly accurate transfer. Therefore, a heat insulating member having a fine structure, excellent durability, and easy to handle can be realized.

金属ガラスの板状被成形材24及び成形母型21を金属ガラスのガラス転移温度以上に加熱し、被成形材24を成形母型21に押し当て、プレスする。被成形材24は、変形しつつ、溝22に入り込む。溝22を埋め込んでプレスを終了し、冷却後、成形された被成形材24を溝と平行な方向に押し出し、成形母型21から離型して、取り出す。   The plate-shaped molding material 24 of metal glass and the molding die 21 are heated to the glass transition temperature or higher of the metallic glass, and the molding material 24 is pressed against the molding die 21 and pressed. The molding material 24 enters the groove 22 while being deformed. The groove 22 is embedded to finish the pressing, and after cooling, the molded material 24 is extruded in a direction parallel to the groove, released from the molding die 21 and taken out.

図3Bに示すように、板部1の上に直線状隔壁2a(2b)が平行に並んだ第1部材11が得られる。ハニカム構造ないし格子構造の隔壁を転写で作製しようとした場合、離型が困難であったが、直線状の平行溝の場合、成形母型から被成形材を容易に離型できることが確認された。同一成形母型を用いて繰り返しプレス転写を行なうことにより、各部材を機械加工により作製する場合より、効率的に複数の第1部材を作製することができる。第1部材11を2つ作製し、その一方をさらに加工して第2部材を作製する。   As shown in FIG. 3B, the first member 11 in which the linear partition walls 2a (2b) are arranged in parallel on the plate portion 1 is obtained. When trying to fabricate a honeycomb structure or lattice structure partition by transfer, it was difficult to release the mold, but in the case of straight parallel grooves, it was confirmed that the material to be molded could be easily released from the molding matrix. . By repeatedly performing press transfer using the same molding die, a plurality of first members can be produced more efficiently than when each member is produced by machining. Two first members 11 are produced, and one of them is further processed to produce a second member.

図3Cに示すように、一方の第1部材11を機械加工することにより、隔壁2bに直交する溝13を作製する。溝13は、隔壁2a(2b)の高さと同じ深さ、隔壁2aを挿入できる幅を有し、隔壁2aと同一ピッチで形成する。例えば、溝13の断面形状は、隔壁2aの断面形状と同一とする。得られた部材は、隔壁2bに溝13が形成された第2部材12となる。このようにして得られた第1部材11、第2部材12は、図2A,2Bに示す第1部材、第2部材と同等である。図2Cに示すように2つの部材を嵌合することにより、図2Dに示す断熱部材が得られる。   As shown in FIG. 3C, one first member 11 is machined to produce a groove 13 orthogonal to the partition wall 2b. The grooves 13 have the same depth as the height of the partition walls 2a (2b) and a width that allows the partition walls 2a to be inserted, and are formed at the same pitch as the partition walls 2a. For example, the cross-sectional shape of the groove 13 is the same as the cross-sectional shape of the partition wall 2a. The obtained member becomes the second member 12 in which the groove 13 is formed in the partition wall 2b. The first member 11 and the second member 12 thus obtained are equivalent to the first member and the second member shown in FIGS. 2A and 2B. By fitting two members as shown in FIG. 2C, the heat insulating member shown in FIG. 2D is obtained.

実施例1では隔壁の頂面は、対向する板部表面に接触している。すなわち、両表面間が連続する部材で占有されるのは、隔壁のみとなる。熱抵抗の調整は、1)隔壁の高さ調整によって、2)空隙部と隔壁との面積比の調整によって、行うことができる。隔壁2aが溝13底面には接するが、対向する板部表面からは離隔するようにすると、熱抵抗は大きく増大する。   In Example 1, the top surface of the partition wall is in contact with the opposing plate surface. That is, only the partition wall is occupied by a continuous member between both surfaces. The thermal resistance can be adjusted by 1) adjusting the height of the partition wall and 2) adjusting the area ratio between the gap and the partition wall. Although the partition wall 2a is in contact with the bottom surface of the groove 13, the thermal resistance is greatly increased if the partition wall 2a is separated from the opposing plate surface.

図4A−4Cは、高い熱抵抗を得ることが容易な、実施例2による断熱部材の製造方法の主要工程、および得られる構造を示す概略斜視図である。   FIGS. 4A to 4C are schematic perspective views showing main steps of the method for manufacturing a heat insulating member according to Example 2 and the resulting structure, which are easy to obtain high thermal resistance.

図4Aに示すように、実施例1ないしその変形例同様の工程により、板部1(3)の上に直線状隔壁2a(2b)が平行に並んだ第1部材11を2つ作製する。   As shown in FIG. 4A, two first members 11 in which linear partition walls 2a (2b) are arranged in parallel are produced on a plate portion 1 (3) by the same process as in the first embodiment or its modification.

図4Bに示すように、図2B,3C同様、一方の第1部材11を機械加工することにより、隔壁2bに直交する溝13を作製し、第2部材12Xを形成する。第2部材12Xは、平坦な背面と表面とを有する板部と、板部の表面上に平行に形成された直線状の複数の隔壁2bと、を含み、隔壁2bの各々は平行な側壁面と表面と平行な頂面とを有し、かつ第1部材の隔壁2aを挿入できる幅、隔壁2bの高さより浅い深さを有する溝13を有する。例えば、溝の深さを隔壁の高さの半分程度とする。   As shown in FIG. 4B, as in FIGS. 2B and 3C, one of the first members 11 is machined to produce a groove 13 perpendicular to the partition wall 2b, thereby forming a second member 12X. The second member 12X includes a plate portion having a flat back surface and a surface, and a plurality of linear partition walls 2b formed in parallel on the surface of the plate portion, each of the partition walls 2b being parallel side wall surfaces. And a groove 13 having a depth that is shallower than the height of the partition wall 2b and a width that allows the partition wall 2a of the first member to be inserted. For example, the depth of the groove is about half of the height of the partition wall.

図4Cに示すように、2つの部材11,12Xを嵌合することにより断熱部材が得られる。溝深さが隔壁高さより浅いので、隔壁2a,2bの頂面は、対向する板部1(3)の表面に達せず、間に空隙を形成する。空隙を挟むことにより、熱抵抗は大幅に増大する。本実施例において両表面間が連続する部材で占有されるのは隔壁2a,2bの交差部のみとなる。本実施例においては、第1部材、第2部材とも隔壁頂面が対向する板部表面から離されている。   As shown in FIG. 4C, the heat insulating member is obtained by fitting the two members 11 and 12X. Since the groove depth is shallower than the partition wall height, the top surfaces of the partition walls 2a and 2b do not reach the surface of the opposing plate portion 1 (3), and a gap is formed therebetween. By sandwiching the air gap, the thermal resistance is greatly increased. In the present embodiment, only the intersection of the partition walls 2a and 2b is occupied by the continuous member between both surfaces. In the present embodiment, the first member and the second member are separated from the surface of the plate portion opposite to the top surface of the partition wall.

図5A,5Bは、隔壁の一部は対向する板部表面に接するが、他の一部は対向する板部表面から離される実施例3による構成を示す。   5A and 5B show a configuration according to Example 3 in which a part of the partition wall is in contact with the opposing plate surface, while the other part is separated from the opposing plate surface.

図5Aは、第1部材11が高い隔壁2cを有し、第2部材12が低い隔壁2dを有する場合を示す。第2部材12の隔壁2dに、実施例1同様、隔壁2dの高さと同じ深さの溝を形成する。第1部材11の隔壁2cを第2部材12の隔壁2dに形成した溝に挿入すると、第1部材11の隔壁2cの頂面は対向する第2部材12の板部表面に達するが、第2部材12の隔壁2dの頂面は第1部材の板部表面には達しない。この場合、対向板部表面に達しない隔壁2dのピッチを短くして、機械的強度の方向による差を緩和してもよい。なお、高い隔壁2cに短い隔壁2dを収容する溝を形成することもできる。   FIG. 5A shows a case where the first member 11 has a high partition 2c and the second member 12 has a low partition 2d. A groove having the same depth as the height of the partition 2d is formed in the partition 2d of the second member 12 as in the first embodiment. When the partition wall 2c of the first member 11 is inserted into the groove formed in the partition wall 2d of the second member 12, the top surface of the partition wall 2c of the first member 11 reaches the surface of the plate portion of the opposing second member 12, but the second The top surface of the partition wall 2d of the member 12 does not reach the plate portion surface of the first member. In this case, the difference between the directions of the mechanical strength may be reduced by shortening the pitch of the partition walls 2d that do not reach the surface of the counter plate portion. In addition, the groove | channel which accommodates the short partition 2d can also be formed in the high partition 2c.

図5Bは、同一の板部上に高さの異なる隔壁を形成する場合を示す。板部1上に、高い隔壁2cと低い隔壁2dを、例えば交互に、作製した第1部材11(第2部材12)を作製する。図3Aに示す製造方法の場合、成形母型21に形成する溝22を深さの異なる2種類とすればよい。2つの第1部材11を作製し、一方の第1部材11の隔壁2c,2dに、実施例1同様、隔壁高さと同じ深さを有し、板部表面に達する溝を機械加工で作製して第2部材12とする。第1部材11の隔壁2c,2dを第2部材12の溝に挿入する。高い隔壁2cは対向する板部表面に達するが、低い隔壁2dは対向する板部表面に達しない。   FIG. 5B shows a case where partition walls having different heights are formed on the same plate portion. On the plate part 1, the first member 11 (second member 12) in which, for example, the high partition 2c and the low partition 2d are alternately manufactured is manufactured. In the case of the manufacturing method shown in FIG. 3A, the groove 22 formed in the molding die 21 may be two types having different depths. Two first members 11 are produced, and grooves 2c and 2d of one first member 11 have a depth that is the same as the height of the partition walls and reaches the plate part surface by machining as in the first embodiment. The second member 12 is used. The partition walls 2 c and 2 d of the first member 11 are inserted into the grooves of the second member 12. The high partition 2c reaches the opposing plate surface, but the low partition 2d does not reach the opposing plate surface.

図6Aは、このように作製した断熱部材を組み込んだ樹脂成形装置の構成を示す概略断面図である。樹脂成形装置150において、固定金型102、可動金型103は対向配置され、キャビティを画定する。固定金型102、可動金型103はそれぞれ冷却水路123を有する。固定金型102の上に断熱部材140が配設され、その上にスタンパ134が配設される。断熱部材140、転写部材としてのスタンパ134は固定金型102の表面にメカニカルチャックおよびエアチャックを介して把持される。   FIG. 6A is a schematic cross-sectional view showing the configuration of a resin molding apparatus incorporating a heat insulating member produced in this way. In the resin molding apparatus 150, the fixed mold 102 and the movable mold 103 are arranged to face each other to define a cavity. The fixed mold 102 and the movable mold 103 each have a cooling water channel 123. A heat insulating member 140 is disposed on the fixed mold 102, and a stamper 134 is disposed thereon. The heat insulating member 140 and the stamper 134 as a transfer member are held on the surface of the fixed mold 102 via a mechanical chuck and an air chuck.

図6Bに示すように、ヒートサイクルに基づく熱伸縮による、スタンパ134や固定金型102との摩擦を軽減するために、断熱部材140のスタンパ134側表面および固定金型102側表面にはDLC(ダイアモンドライクカーボン)などの低摩擦、耐磨耗性材料145がコーティングされている。低摩擦、耐磨耗性材料は断熱部材140のスタンパ134側表面だけにコーティングしてもよく、固定金型102側表面だけにコーティングしてもよい。固定金型102、可動金型103間のキャビティに樹脂130が流入する。   As shown in FIG. 6B, in order to reduce friction between the stamper 134 and the fixed mold 102 due to thermal expansion and contraction based on the heat cycle, DLC ( Low friction, wear resistant material 145 such as diamond-like carbon) is coated. The low friction, wear resistant material may be coated only on the surface of the heat insulating member 140 on the stamper 134 side, or may be coated only on the surface of the fixed mold 102 side. The resin 130 flows into the cavity between the fixed mold 102 and the movable mold 103.

光メディアの成形では、12cm直径の円盤に最大300kg/cm程度以上の圧力が印加される。スタンパ134は、例えばニッケルの電気めっきで製作され、0.3mm程度の厚さ、サブミクロンサイズの微細な凹凸模様を有する。断熱部材140は円盤状のプレートである。断熱部材140の厚さは、薄すぎると断熱効果が不十分となり、転写精度が低下し、厚すぎると、断熱効果が高くなりすぎ、長い冷却時間を必要として成形サイクルが長くなる。従って、断熱部材140の全厚さおよび隔壁部の厚さは適切な厚さに設定することが望ましい。 In forming optical media, a maximum pressure of about 300 kg / cm 2 or more is applied to a 12 cm diameter disk. The stamper 134 is manufactured by, for example, nickel electroplating, and has a fine unevenness pattern with a thickness of about 0.3 mm and a submicron size. The heat insulating member 140 is a disk-shaped plate. If the thickness of the heat insulating member 140 is too thin, the heat insulating effect will be insufficient, and the transfer accuracy will be lowered. Therefore, it is desirable to set the total thickness of the heat insulating member 140 and the thickness of the partition wall to appropriate thicknesses.

以上、実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、成形母型によって成形する被成形材として金属ガラスを用いたが、金属粉を含むグリーン等、被成形性を有する金属を用いることができる。その他、種々の変更、置換、改良、組み合わせ等が可能なことは当業者に自明であろう。   As mentioned above, although this invention was demonstrated along the Example, this invention is not restrict | limited to these. For example, metal glass is used as a material to be molded by the molding die, but a metal having moldability such as green containing metal powder can be used. It will be apparent to those skilled in the art that other various modifications, substitutions, improvements, combinations, and the like are possible.

1 下板部、
2 隔壁部、
3 上板部、
4 空隙部、
11 第1部材、
12 第2部材、
13 溝、
21 成形母型、
22 溝、
24 被成形材。
1 Lower plate part,
2 partition wall,
3 Upper plate,
4 voids,
11 first member,
12 Second member,
13 groove,
21 Molding mold,
22 grooves,
24 Material to be molded.

Claims (14)

一方の金型と、転写部材と、前記一方の金型と前記転写部材の間に配置された断熱部材とを有する金型装置において、前記断熱部材が、
平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有する、第1部材と、
平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有し、かつ前記第1部材の隔壁を挿入できる溝が形成された、第2部材と、
を有し、前記第1部材と前記第2部材とを前記背面を外側にして対向させ、前記第1部材の隔壁が前記第2部材の溝内に挿入されている、
金型装置。
In a mold apparatus having one mold, a transfer member, and a heat insulating member disposed between the one mold and the transfer member, the heat insulating member includes:
A plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion, each of the partition walls being parallel to the side wall surface and the surface A first member having a top surface;
A plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion, each of the partition walls being parallel to the side wall surface and the surface A second member having a top surface and formed with a groove into which the partition wall of the first member can be inserted;
The first member and the second member are opposed to each other with the back side facing outside, and the partition wall of the first member is inserted into the groove of the second member.
Mold equipment.
前記第1部材の隔壁と前記第2部材の隔壁は、直交している請求項1記載の金型装置。   The mold apparatus according to claim 1, wherein a partition wall of the first member and a partition wall of the second member are orthogonal to each other. 前記第1部材の隔壁と前記第2部材の隔壁は等しい高さを有する請求項1又は2記載の金型装置。   The mold apparatus according to claim 1, wherein the partition wall of the first member and the partition wall of the second member have the same height. 前記第2部材の溝の深さが前記第1部材の隔壁の高さと等しく、前記第1部材の隔壁の頂面は対向する前記第2部材の前記表面に接する請求項3記載の金型装置。   The mold apparatus according to claim 3, wherein the groove depth of the second member is equal to the height of the partition wall of the first member, and the top surface of the partition wall of the first member is in contact with the surface of the opposing second member. . 前記第2部材の溝の深さが、前記第1部材の隔壁の高さより浅い請求項3記載の金型装置。   The mold apparatus according to claim 3, wherein a depth of the groove of the second member is shallower than a height of the partition wall of the first member. 前記第1部材の隔壁と前記第2部材の隔壁は異なる高さを有する請求項1又は2記載の金型装置。   The mold apparatus according to claim 1 or 2, wherein the partition wall of the first member and the partition wall of the second member have different heights. 前記第1部材の隔壁と前記第2部材の隔壁の一部の前記頂面は対向する部材の前記表面に接し、前記第1部材の隔壁と前記第2部材の隔壁の残り部分の前記頂面は対向する部材の前記表面から離されている請求項1または2記載の金型装置。   The top surfaces of the partition walls of the first member and the partition walls of the second member are in contact with the surfaces of the opposing members, and the top surfaces of the remaining portions of the partition walls of the first member and the second member The mold apparatus according to claim 1, wherein the mold apparatus is separated from the surface of the opposing member. 前記第1部材、前記第2部材は金属ガラスで形成されている請求項1〜7のいずれか1項記載の金型装置。   The mold apparatus according to claim 1, wherein the first member and the second member are made of metal glass. 一方の金型と、転写部材と、前記一方の金型と前記転写部材の間に配置された断熱部材とを有する金型装置用の断熱部材であって、
平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有する、第1部材と、
平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有し、かつ前記第1部材の隔壁を挿入できる溝が形成された、第2部材と、
を有し、前記第1部材と前記第2部材とを前記背面を外側にして対向させ、前記第1部材の隔壁が前記第2部材の溝内に挿入されている、
金型装置用の断熱部材。
A heat insulating member for a mold apparatus having one mold, a transfer member, and a heat insulating member disposed between the one mold and the transfer member,
A plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion, each of the partition walls being parallel to the side wall surface and the surface A first member having a top surface;
A plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion, each of the partition walls being parallel to the side wall surface and the surface A second member having a top surface and formed with a groove into which the partition wall of the first member can be inserted;
The first member and the second member are opposed to each other with the back side facing outside, and the partition wall of the first member is inserted into the groove of the second member.
Thermal insulation member for mold equipment.
前記第1部材の隔壁と前記第2部材の隔壁は等しい高さを有し、前記第2部材の溝の深さが前記第1部材の隔壁の高さと等しく、前記第1部材の隔壁の頂面は対向する前記第2部材の前記表面に接し、前記第2部材の隔壁の頂面は対向する前記第1部材の前記表面に接する請求項9記載の金型装置用の断熱部材。   The partition wall of the first member and the partition wall of the second member have the same height, the depth of the groove of the second member is equal to the height of the partition wall of the first member, and the top of the partition wall of the first member. 10. The heat insulating member for a mold apparatus according to claim 9, wherein a surface is in contact with the surface of the opposing second member, and a top surface of the partition wall of the second member is in contact with the opposing surface of the first member. 一方の金型と、転写部材と、前記一方の金型と前記転写部材の間に配置された断熱部材とを有する金型装置の製造方法において、
a)平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有する、第1部材を2つ作製する工程と、
b)前記第1部材の一方の隔壁に、溝を作製して第2部材を作製する工程であって、前記第2部材の溝は前記第1部材の隔壁を挿入できるように作製する工程と、
c)前記第1部材の隔壁を前記第2部材の溝に挿入して、前記第1部材と前記第2部材を組み合わせて断熱部材を構成する工程と、
を含む金型装置の製造方法。
In a method of manufacturing a mold apparatus having one mold, a transfer member, and a heat insulating member disposed between the one mold and the transfer member,
a) a plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion, each of the partition walls having a parallel side wall surface and the surface Producing two first members having parallel top surfaces;
b) forming a groove in one partition wall of the first member to form a second member, wherein the groove of the second member is formed so that the partition wall of the first member can be inserted; ,
c) inserting the partition wall of the first member into the groove of the second member, and combining the first member and the second member to form a heat insulating member;
Method of manufacturing a mold apparatus including
前記工程a)は、
a-1)平坦な表面を有する超硬合金の板材に平行な側壁面と前記表面と平行な底面とを有する直線状の溝を複数平行に作製した成形母型を準備する工程と、
a-2)前記成形母型に金属ガラスの板材をプレスして、平坦な背面と表面とを有する板部と、前記板部の表面上に平行に形成された直線状の複数の隔壁と、を含み、前記隔壁の各々は平行な側壁面と前記表面と平行な頂面とを有する、第1部材を2つ作製する工程と、
を含む請求項11記載の金型装置の製造方法。
Said step a)
a-1) preparing a forming matrix in which a plurality of linear grooves having a side wall surface parallel to a cemented carbide plate material having a flat surface and a bottom surface parallel to the surface are prepared in parallel;
a-2) pressing a metal glass plate on the molding die, a plate portion having a flat back surface and a surface, and a plurality of linear partition walls formed in parallel on the surface of the plate portion; Each of the partition walls has a side wall surface parallel to the top surface and a top surface parallel to the surface.
The manufacturing method of the metal mold | die apparatus of Claim 11 containing this.
前記工程b)が、隔壁の高さと同じ深さの溝を形成する請求項11または12記載の金型装置の製造方法。   13. The method for manufacturing a mold apparatus according to claim 11, wherein the step b) forms a groove having the same depth as the height of the partition wall. 前記工程b)が、隔壁の高さより浅い深さの溝を形成する請求項11または12記載の金型装置の製造方法。   The method for manufacturing a mold apparatus according to claim 11 or 12, wherein the step b) forms a groove having a depth shallower than a height of the partition wall.
JP2009052196A 2009-03-05 2009-03-05 Metal mold device, heat insulating member and method of manufacturing metal mold device Withdrawn JP2010201866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052196A JP2010201866A (en) 2009-03-05 2009-03-05 Metal mold device, heat insulating member and method of manufacturing metal mold device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052196A JP2010201866A (en) 2009-03-05 2009-03-05 Metal mold device, heat insulating member and method of manufacturing metal mold device

Publications (1)

Publication Number Publication Date
JP2010201866A true JP2010201866A (en) 2010-09-16

Family

ID=42963825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052196A Withdrawn JP2010201866A (en) 2009-03-05 2009-03-05 Metal mold device, heat insulating member and method of manufacturing metal mold device

Country Status (1)

Country Link
JP (1) JP2010201866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187728A (en) * 2011-03-08 2012-10-04 Polyplastics Co Method for producing injection molding and injection molding
CN104690930A (en) * 2013-12-10 2015-06-10 深圳信息职业技术学院 Steam heating type rapid heat cycle molding injection mold
CN104690890A (en) * 2013-12-10 2015-06-10 深圳信息职业技术学院 Electric heating type rapid heat cycle molding injection mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187728A (en) * 2011-03-08 2012-10-04 Polyplastics Co Method for producing injection molding and injection molding
CN104690930A (en) * 2013-12-10 2015-06-10 深圳信息职业技术学院 Steam heating type rapid heat cycle molding injection mold
CN104690890A (en) * 2013-12-10 2015-06-10 深圳信息职业技术学院 Electric heating type rapid heat cycle molding injection mold

Similar Documents

Publication Publication Date Title
JP4829323B2 (en) Resin molding equipment
TW201127605A (en) Device and method for producing thick-walled moulded plastics parts with reduced sink marks by injection moulding or injection-compression moulding
WO2015076013A1 (en) Resin molding and manufacturing method therefor, injection molding apparatus for implementing same, injection molding die, and injection molding method
JP2010201866A (en) Metal mold device, heat insulating member and method of manufacturing metal mold device
JP5708640B2 (en) Mold and mold manufacturing method
JP3366739B2 (en) Mold for injection molding of thermoplastic resin
JP3550461B2 (en) Plastic molding method and optical disk manufacturing method
TW200536701A (en) Disc molding die, adjusting member and disc board molding method
US20040046281A1 (en) Localized compression molding process for fabricating microstructures on thermoplastic substrates
JP2009113423A (en) Mold for injection molding
KR100848707B1 (en) mold for injection molding
JP5969327B2 (en) Insulating mold manufacturing method
JP2005271429A (en) Molding die device and molding method
JP5360679B2 (en) Thermal control mold for injection molding and manufacturing method thereof
KR100828182B1 (en) Die with Three-Dimensional Heat Exchange Structure and Manufacturing Method thereof
JP3984498B2 (en) Mold for molding and plastic molding method using the same
JP4387531B2 (en) Casting mold
JP6143361B2 (en) Injection mold
JP2008284704A (en) Mold and method of manufacturing optical element
JP2010149421A (en) Resin molding apparatus and molding machine
JP2009241297A (en) Method for manufacturing optical element, optical element molding mold, and optical element
JP2006239983A (en) Molding method of optical disk, mold therefor and optical disk molded product
JP2006159630A (en) Mold for molding optical disk and optical disk molding method
JP2004181716A (en) Mold for injection molding optical disk
JP2019034456A (en) Molding die and method of manufacturing molded plastic article

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605