JP4815897B2 - Injection mold and injection molding method - Google Patents

Injection mold and injection molding method Download PDF

Info

Publication number
JP4815897B2
JP4815897B2 JP2005190618A JP2005190618A JP4815897B2 JP 4815897 B2 JP4815897 B2 JP 4815897B2 JP 2005190618 A JP2005190618 A JP 2005190618A JP 2005190618 A JP2005190618 A JP 2005190618A JP 4815897 B2 JP4815897 B2 JP 4815897B2
Authority
JP
Japan
Prior art keywords
mold
resin
heat insulating
injection
molding space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005190618A
Other languages
Japanese (ja)
Other versions
JP2006044245A (en
Inventor
幹司 関原
篤 内藤
佳弘 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005190618A priority Critical patent/JP4815897B2/en
Publication of JP2006044245A publication Critical patent/JP2006044245A/en
Application granted granted Critical
Publication of JP4815897B2 publication Critical patent/JP4815897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、射出成形用金型及び射出成形方法、特に、レンズなど小型軽量の光学素子を成形するための射出成形用金型及び該金型を用いた射出成形方法に関する。   The present invention relates to an injection mold and an injection molding method, and more particularly to an injection mold for molding a small and light optical element such as a lens and an injection molding method using the mold.

近年では、樹脂材料及び射出成形技術の発展により、小型軽量の樹脂製レンズが種々開発されており、光ピックアップ装置や携帯電話などの光学素子としての需要が高まっている。この種の樹脂製レンズにあっては、回折光学素子などの微細形状や平滑面を高精度に転写することのできる金型が要求されている。   In recent years, various small and light resin lenses have been developed due to the development of resin materials and injection molding technology, and the demand for optical elements such as optical pickup devices and mobile phones is increasing. In this type of resin lens, there is a demand for a mold that can accurately transfer a fine shape and a smooth surface such as a diffractive optical element.

一般に、金型の樹脂成形空間とランナ部分との間に位置するゲート部分は細いため、樹脂成形空間への樹脂の充填完了後の保圧工程でゲート部分に充填されている樹脂が樹脂成形空間の成形品よりも比較的早く固化する。そのため、樹脂成形空間内の樹脂への保圧が減少して収縮分を補う樹脂の供給が不足し、成形品においては表面の微細形状や平滑面の面精度の低下(転写性の低下)、樹脂の収縮による中心部分への引っ張り応力で複屈折が大きくなるなどの問題点を生じていた。   Generally, since the gate portion located between the resin molding space of the mold and the runner portion is thin, the resin filled in the gate portion in the pressure-holding step after the resin filling into the resin molding space is completed is the resin molding space. It solidifies relatively quickly than the molded product. Therefore, the holding pressure to the resin in the resin molding space is reduced and the supply of resin to compensate for the shrinkage is insufficient, and in the molded product, the surface fine shape and the smooth surface are deteriorated (transferability is reduced), There have been problems such as an increase in birefringence due to a tensile stress applied to the central portion due to resin shrinkage.

特許文献1には、高い面精度と少ない残留歪みの光学素子を得るための金型が開示されている。この金型は、ゲートを配置した側面部分を除く他の側面部分を構成する金型部材をスライド構造とし、成形品をスムーズに離型できるようにしたものである。しかしながら、この金型では、前述のゲート部分における樹脂の固化に起因する転写性の低下や、樹脂成形空間内での樹脂の収縮による引っ張り応力の増大には対処できていない。
特開2002−187168号公報
Patent Document 1 discloses a mold for obtaining an optical element with high surface accuracy and low residual distortion. In this mold, the mold member constituting the other side surface portion excluding the side surface portion where the gate is arranged has a slide structure so that the molded product can be released smoothly. However, this mold cannot cope with a decrease in transferability due to the solidification of the resin at the gate portion and an increase in tensile stress due to the shrinkage of the resin in the resin molding space.
JP 2002-187168 A

そこで、本発明の目的は、ゲート部分での樹脂の温度低下を抑制することにより、転写性の向上を図り、かつ、樹脂の収縮による応力の緩和を図ることのできる射出成形用金型を提供することにある。   Accordingly, an object of the present invention is to provide an injection mold that can improve the transferability by suppressing the temperature drop of the resin at the gate portion and can alleviate the stress due to the shrinkage of the resin. There is to do.

以上の目的を達成するため、第1の発明は、樹脂成形空間、ランナ部、及び該樹脂成形空間とランナ部との間に位置するゲート部分を備えた射出成形用金型であって、前記樹脂成形空間、前記ランナ部、及び前記ゲート部分のうちの前記ゲート部分のみの少なくとも表面部が断熱材によって構成されており、前記ゲート部分は金型に嵌入された断熱材からなり、前記断熱材はチップ状部材又は樹脂成型空間を構成するコアを囲むスリーブ状であること、を特徴とする。前記断熱材の表面に別の素材でゲート部分を構成する面が形成されていてもよい。 To achieve the above object, a first invention is an injection mold comprising a resin molding space, a runner portion, and a gate portion positioned between the resin molding space and the runner portion, Of the resin molding space, the runner part, and the gate part, at least the surface part of only the gate part is constituted by a heat insulating material, and the gate part is made of a heat insulating material fitted in a mold, and the heat insulating material It is characterized by a sleeve-like der Rukoto surrounding a core constituting a chip-shaped member or a resin molding space. The surface which comprises a gate part with another raw material may be formed in the surface of the said heat insulating material.

第1の発明に係る射出成形用金型にあっては、ゲート部分のみの少なくとも表面部分が断熱されているため、樹脂成形空間への樹脂充填後の保圧工程においてゲート部分に充填されている樹脂の温度低下が抑制され、固化する時間が若干遅れる。このことは、保圧工程においてゲート部分の樹脂が流動性を有することを意味し、樹脂成形空間内での収縮分を補う樹脂の供給が行われる。従って、成形品においては表面の微細形状や平滑面の面精度が低下することがなく、転写性が向上する。また、樹脂の収縮による中心部分への引っ張り応力が緩和され、複屈折が低減して高性能の成形品(光学素子)を得ることができる。 In the injection mold according to the first invention, since at least the surface portion of only the gate portion is thermally insulated, the gate portion is filled in the pressure holding step after filling the resin molding space with the resin. The temperature drop of the resin is suppressed, and the time for solidification is slightly delayed. This means that the resin in the gate portion has fluidity in the pressure-holding step, and the resin that compensates for the shrinkage in the resin molding space is supplied. Therefore, in the molded product, the fine shape of the surface and the surface accuracy of the smooth surface are not lowered, and the transferability is improved. Further, the tensile stress to the central portion due to the shrinkage of the resin is alleviated, and the birefringence is reduced, so that a high-performance molded article (optical element) can be obtained.

さらに、断熱材の熱伝導率は20W/m・K以下であることが好ましい。このような断熱材としてはステンレス鋼、チタン合金、ニッケル合金又はセラミックのいずれかを用いることができる。 Further, it is preferable that the thermal conductivity of the sectional heat material is less 20W / m · K. As such a heat insulating material, any of stainless steel, titanium alloy, nickel alloy, or ceramic can be used.

第2の発明に係る射出成形方法は、前記射出成形用金型を用いて光学素子を成形することを特徴とする。前記射出成形用金型の利点を活かして高性能の光学素子を得ることができる。   An injection molding method according to a second invention is characterized in that an optical element is molded using the injection molding die. A high-performance optical element can be obtained by taking advantage of the injection mold.

第2の発明に係る射出成形方法において、溶融した樹脂を金型内に流入させる際に、樹脂成形空間への樹脂充填完了時においても成形品の肉厚中心温度がガラス転移点温度以上であることが好ましい。あるいは、溶融した樹脂を金型内に流入させる際に、成形品の肉厚中心温度がガラス転移点温度以下になった時点においてもゲート部分の肉厚中心温度がガラス転移点温度を保持していること、または、成形品の肉厚中心温度がガラス転移点温度になると同時にゲート部分の肉厚中心温度がガラス転移点温度になることが好ましい。   In the injection molding method according to the second invention, when the molten resin is allowed to flow into the mold, the thickness center temperature of the molded product is equal to or higher than the glass transition temperature even when the resin filling into the resin molding space is completed. It is preferable. Alternatively, when the molten resin is allowed to flow into the mold, the thickness center temperature of the gate portion maintains the glass transition temperature even when the thickness center temperature of the molded article is equal to or lower than the glass transition temperature. It is preferable that the thickness center temperature of the molded product becomes the glass transition temperature, and at the same time the thickness center temperature of the gate portion becomes the glass transition temperature.

以下、本発明に係る射出成形用金型及び射出成形方法の実施例について、添付図面を参照して説明する。なお、各実施例を示す図面においては、共通する部材には同じ符号を付し、重複した説明は省略する。   Hereinafter, embodiments of an injection mold and an injection molding method according to the present invention will be described with reference to the accompanying drawings. In the drawings showing the embodiments, common members are given the same reference numerals, and redundant descriptions are omitted.

(第1実施例、図1及び図2参照)
第1実施例である金型1Aは、図1に示すように、可動側金型10と固定側金型20とからなる。可動側金型10は、一様に中実な型板11と、一様に中実なコア型12と、スリーブ状の断熱材13とで構成されている。固定側金型20は、一様に中実な型板21と、一様に中実なコア型22と、スリーブ状の断熱材23とで構成されている。樹脂成形空間30はコア型12,22の互いに対向する端面と、断熱材13,23の縁部にて構成されている。コア型12,22及び断熱材13,23を金型コアと称し、型板11,21を金型キャビティと称する。
(Refer to the first embodiment, FIGS. 1 and 2)
A mold 1 </ b> A according to the first embodiment includes a movable mold 10 and a fixed mold 20 as shown in FIG. 1. The movable mold 10 includes a uniformly solid template 11, a uniformly solid core mold 12, and a sleeve-like heat insulating material 13. The fixed-side mold 20 includes a uniformly solid mold plate 21, a uniformly solid core mold 22, and a sleeve-like heat insulating material 23. The resin molding space 30 is configured by end faces of the core molds 12 and 22 facing each other and edges of the heat insulating materials 13 and 23. The core molds 12 and 22 and the heat insulating materials 13 and 23 are referred to as mold cores, and the mold plates 11 and 21 are referred to as mold cavities.

また、型板11,21の分割面の一側部にはランナ15が形成されている。そして、断熱材13,23にはランナ15から樹脂成形空間30に至るゲート16が形成されている。即ち、ゲート16は断熱材13,23の互いに対向する端面に凹部として形成されている。   A runner 15 is formed on one side of the dividing surfaces of the templates 11 and 21. A gate 16 extending from the runner 15 to the resin molding space 30 is formed in the heat insulating materials 13 and 23. That is, the gate 16 is formed as a recess on the end surfaces of the heat insulating materials 13 and 23 facing each other.

なお、樹脂成形空間30の表面はレンズなどの成形品の所定形状に対応して仕上げられており、ニッケルメッキなどで表面加工層が形成されていてもよい。   The surface of the resin molding space 30 is finished corresponding to a predetermined shape of a molded product such as a lens, and a surface processing layer may be formed by nickel plating or the like.

型板11,21及びコア型12,22は、通常の金型母材材料である炭素鋼などの金属材料で製作されている。例えば、汎用熱間ダイス鋼(JIS規格、SKD61)を材料とする場合、その熱伝導率は34W/m・Kである。   The mold plates 11 and 21 and the core molds 12 and 22 are made of a metal material such as carbon steel, which is a normal mold base material. For example, when general-purpose hot die steel (JIS standard, SKD61) is used as a material, the thermal conductivity is 34 W / m · K.

断熱材13,23は、熱伝導率が型板11,21及びコア型12,22よりも低い種々の材料が用いられる。熱伝導率は20W/m・K以下であることが好ましい。例えば、マルテンサイト系ステンレス鋼(熱伝導率20W/m・K)、オーステナイト系ステンレス鋼(16W/m・K)、チタン合金(Ti−6Al−4V、熱伝導率7.5W/m・K)、ニッケル合金(インコネル、熱伝導率15W/m・K)、セラミックである窒化珪素(Si34、20W/m・K)やチタン酸アルミニウム(Al23・TiO2、1.2W/m・K)などである。勿論、これら以外の材料を使用することは可能であり、セラミックは各種の組成のものを使用でき、金属はステンレス合金、チタン合金、ニッケル合金を好適に使用できる。また、ポリイミド樹脂などの有機系材料(耐熱重合体)であってもよい。 For the heat insulating materials 13 and 23, various materials having lower thermal conductivity than the mold plates 11 and 21 and the core molds 12 and 22 are used. The thermal conductivity is preferably 20 W / m · K or less. For example, martensitic stainless steel (thermal conductivity 20 W / m · K), austenitic stainless steel (16 W / m · K), titanium alloy (Ti-6Al-4V, thermal conductivity 7.5 W / m · K) , Nickel alloy (Inconel, thermal conductivity 15 W / m · K), ceramic silicon nitride (Si 3 N 4 , 20 W / m · K) and aluminum titanate (Al 2 O 3 · TiO 2 , 1.2 W / m · K). Of course, materials other than these can be used, ceramics having various compositions can be used, and metals such as stainless alloys, titanium alloys, and nickel alloys can be suitably used. Further, it may be an organic material (heat resistant polymer) such as polyimide resin.

図2は前記第1実施例である金型1Aの変形例を示す。この金型1A’は、スリーブ状の断熱材13を可動側金型10にのみ設け、固定側金型20からは断熱材を省略したものである。   FIG. 2 shows a modification of the mold 1A according to the first embodiment. In this mold 1A ′, a sleeve-like heat insulating material 13 is provided only on the movable mold 10, and the heat insulating material is omitted from the fixed mold 20.

以下に説明する本発明の作用効果は、断熱材13,23を設けたことによって発揮されるが、可動側金型10のみに断熱材13を設けた場合にあっても発揮される。逆に、固定側金型20のみに断熱材23を設けてもよい。   The effects of the present invention described below are exhibited by providing the heat insulating materials 13 and 23, but are also exhibited when the heat insulating material 13 is provided only on the movable mold 10. Conversely, the heat insulating material 23 may be provided only on the fixed mold 20.

(第2実施例、図3参照)
第2実施例である金型1Bは、図3に示すように、型板11,21に形成した溝部にチップ状の断熱材14,24を設けたものである。樹脂成形空間30はコア型12,22の互いに対向する端面にて構成されている。
(Refer to the second embodiment, FIG. 3)
As shown in FIG. 3, the mold 1 </ b> B according to the second embodiment is provided with chip-like heat insulating materials 14 and 24 in grooves formed in the mold plates 11 and 21. The resin molding space 30 is constituted by end faces of the core molds 12 and 22 facing each other.

また、型板11,21の分割面の一側部に形成されたランナ15から樹脂成形空間30に至るゲート16は、断熱材14,24の互いに対向する端面に凹部として形成されている。   The gate 16 extending from the runner 15 formed on one side of the dividing surfaces of the mold plates 11 and 21 to the resin molding space 30 is formed as a recess on the end surfaces of the heat insulating materials 14 and 24 facing each other.

型板11,21及びコア型12,22の材料は前記第1実施例で説明したとおりである。チップ状の断熱材14,24の材料も第1実施例で説明した熱伝導率が比較的低い、ステンレス鋼、チタン合金、ニッケル合金、セラミックなどを使用することができる。   The materials of the mold plates 11 and 21 and the core molds 12 and 22 are as described in the first embodiment. As the material of the chip-like heat insulating materials 14 and 24, the stainless steel, titanium alloy, nickel alloy, ceramic, etc., which have a relatively low thermal conductivity described in the first embodiment, can be used.

また、本第2実施例においても、図2に示した変形例と同様に、チップ状の断熱材14を可動側金型10にのみ設けてもよい。以下に説明する本発明の作用効果は、断熱材14,24を設けたことによって発揮されるが、可動側金型10のみに断熱材14を設けた場合にあっても発揮される。逆に、固定側金型20のみに断熱材24を設けてもよい。   Also in the second embodiment, similarly to the modification shown in FIG. 2, the chip-like heat insulating material 14 may be provided only on the movable mold 10. The effects of the present invention described below are exhibited by providing the heat insulating materials 14 and 24, but are also exhibited when the heat insulating material 14 is provided only on the movable mold 10. Conversely, the heat insulating material 24 may be provided only on the fixed mold 20.

(第3実施例、図4参照)
第3実施例である金型1Cは、図4に示すように、型板11,21に凹部として形成したゲート16の内面に断熱材を被膜として形成したものである。この断熱被膜はセラミックの溶射膜、ニッケル、コバルトなどの金属メッキ膜、窒化チタンなどのチタン系の蒸着膜、チタン系(TiNなど)のコート膜、ポリイミド樹脂(熱伝導率0.28W/m・K)などの耐熱性重合体の塗布膜として形成されている。なお、膜厚は任意に設定できる。型板11,21及びコア型12,22の材料は前記第1実施例で説明したとおりである。
(Refer to the third embodiment, FIG. 4)
As shown in FIG. 4, the mold 1 </ b> C according to the third embodiment is formed by forming a heat insulating material as a coating on the inner surface of the gate 16 formed as a recess in the mold plates 11 and 21. This thermal insulation coating is a ceramic sprayed film, a metal plating film such as nickel or cobalt, a titanium-based deposition film such as titanium nitride, a titanium-based (TiN etc.) coating film, a polyimide resin (thermal conductivity 0.28 W / m · It is formed as a coating film of a heat-resistant polymer such as K). The film thickness can be arbitrarily set. The materials of the mold plates 11 and 21 and the core molds 12 and 22 are as described in the first embodiment.

また、本第3実施例においても、図2に示した変形例と同様に、断熱被膜を可動側金型10にのみ設けてもよい。以下に説明する本発明の作用効果は、断熱被膜を設けたことによって発揮されるが、可動側金型10のみに断熱被膜を設けた場合にあっても発揮される。逆に、固定側金型20のみに断熱被膜を設けてもよい。   Also in the third embodiment, the heat insulating coating may be provided only on the movable mold 10 as in the modification shown in FIG. The operational effects of the present invention described below are exhibited by providing the heat insulating coating, but are also exhibited even when the heat insulating coating is provided only on the movable mold 10. Conversely, a heat insulating coating may be provided only on the fixed mold 20.

さらに、前記断熱材の表面に該断熱材とは別の素材でゲート16を構成する面が形成されていてもよい。例えば、断熱材をセラミックの溶射膜で形成し、その表面にニッケルメッキを施してもよい。   Furthermore, the surface which comprises the gate 16 with the raw material different from this heat insulating material may be formed in the surface of the said heat insulating material. For example, the heat insulating material may be formed of a ceramic sprayed film and the surface thereof may be nickel-plated.

(第4〜第7実施例、図5〜図8参照)
以下に示す第4〜第7実施例は、主に、樹脂成形空間30の構成に関するものである。基本的には前記第1実施例として示した金型1Aの変形例として説明するが、第2及び第3実施例の変形例として適用することも可能である。
(Refer to the fourth to seventh embodiments, FIGS. 5 to 8)
The following fourth to seventh embodiments mainly relate to the configuration of the resin molding space 30. Basically, it will be described as a modification of the mold 1A shown as the first embodiment, but it can also be applied as a modification of the second and third embodiments.

図5は第4実施例を示し、この金型1Aにおいては、コア型12,22に断熱材31,41を設け、該断熱材31,41の表面が成形品の表面加工面とされている。   FIG. 5 shows a fourth embodiment. In this mold 1A, the core molds 12 and 22 are provided with heat insulating materials 31 and 41, and the surfaces of the heat insulating materials 31 and 41 are used as surface processed surfaces of molded products. .

図6は第5実施例を示し、この金型1Aにおいては、コア型12,22に設けた断熱材31,41上に表面加工層32,42が形成されている。表面加工層32,42は非鉄金属材料、例えば、ニッケルをメッキして形成されている。   FIG. 6 shows a fifth embodiment. In this mold 1A, surface processed layers 32 and 42 are formed on heat insulating materials 31 and 41 provided on the core molds 12 and 22, respectively. The surface processed layers 32 and 42 are formed by plating a non-ferrous metal material, for example, nickel.

図7は第6実施例を示し、この金型1Aにおいては、コア型が断熱材31,41で構成され、該断熱材31,41の表面が成形品の表面加工面とされている。   FIG. 7 shows a sixth embodiment. In this mold 1A, the core mold is composed of heat insulating materials 31 and 41, and the surfaces of the heat insulating materials 31 and 41 are the surface processed surfaces of the molded product.

図8は第7実施例を示し、この金型1Aにおいては、コア型である断熱材31,41上に表面加工層32,42が形成されている。表面加工層32,42の材料は前記第5実施例で示したとおりである。   FIG. 8 shows a seventh embodiment. In the mold 1A, surface processed layers 32 and 42 are formed on heat insulating materials 31 and 41 which are core types. The material of the surface processed layers 32 and 42 is as shown in the fifth embodiment.

以上の如く、樹脂成形空間30の周囲に断熱材31,41を配置することにより、溶融させた樹脂が樹脂成形空間30に充填されたときの該樹脂成形空間の表面温度が高く保たれ、充填された樹脂の表面部分(スキン層)と中心部分との温度差が小さく、その後の保圧工程や冷却工程で生じる残留応力が低減される。   As described above, by disposing the heat insulating materials 31 and 41 around the resin molding space 30, the surface temperature of the resin molding space when the molten resin is filled into the resin molding space 30 is kept high. The temperature difference between the surface portion (skin layer) and the center portion of the resin is small, and the residual stress generated in the subsequent pressure holding step and cooling step is reduced.

(成形工程、図9及び図10参照)
次に、本発明に係る射出成形方法について説明する。ここでは、前記金型1A〜1Cを用いた射出成形の工程について説明する。
(See molding process, FIG. 9 and FIG. 10)
Next, the injection molding method according to the present invention will be described. Here, an injection molding process using the molds 1A to 1C will be described.

図9は金型内における樹脂の温度の変化を時間(横軸)に沿って示している。図9中、曲線aはゲート16の中心部分での樹脂の温度変化を示し、曲線bは樹脂成形空間30の中心部分での樹脂の温度変化を示している。また、曲線cは、比較のために、断熱材を設けていない従来の金型のゲートの中心部分における樹脂の温度変化を示している。   FIG. 9 shows the change in the temperature of the resin in the mold along the time (horizontal axis). In FIG. 9, the curve “a” indicates the temperature change of the resin at the center portion of the gate 16, and the curve “b” indicates the temperature change of the resin at the center portion of the resin molding space 30. Further, for comparison, a curve c shows the temperature change of the resin in the central portion of the gate of the conventional mold not provided with a heat insulating material.

成形は、まず、所定の温度に溶融された樹脂(例えば、非晶質ポリオレフィン樹脂)をランナ15からゲート16を通じて樹脂成形空間30内に充填し、充填が完了すると直ちに保圧工程に入る。保圧工程は樹脂成形空間30に充填された樹脂が温度低下によって若干収縮する分を補うために樹脂に対して所定の圧力を所定の時間だけ保持しておく工程である。保圧工程の後、冷却工程(自然冷却)に入り、少なくとも樹脂(成形品)の表面が熱変形温度以下にまで低下した時点で成形品を金型から取り出す。   In the molding, first, a resin (for example, amorphous polyolefin resin) melted at a predetermined temperature is filled into the resin molding space 30 from the runner 15 through the gate 16, and immediately after the filling is completed, the pressure holding step is started. The pressure holding step is a step of holding a predetermined pressure on the resin for a predetermined time in order to compensate for the amount of the resin filled in the resin molding space 30 slightly shrinking due to a temperature drop. After the pressure-holding step, the cooling step (natural cooling) is entered, and at least when the surface of the resin (molded product) is lowered to the heat deformation temperature or less, the molded product is taken out from the mold.

樹脂の温度は充填完了直後から低下し始める。断熱材を設けていない従来の金型では、図9の曲線cで示すように、保圧工程中にゲート16部分の樹脂がガラス転移点温度以下にまで低下し(点B参照)、固化し始める。この状態を図10(B)に示し、ランナ15の中心部分31と樹脂成形空間30の中心部分33の樹脂はガラス転移点温度以上であって流動性を保持している。しかし、ゲート16部分の樹脂は固化して流動性をほとんど失っているため、樹脂成形空間30内の樹脂への保圧はかからず、収縮分を補う樹脂が供給されなくなる。そのため、成形品においては表面形状の転写性が低下し、収縮による中心部分への引っ張り応力で複屈折率が大きくなるなどの不具合を有していた。   The resin temperature begins to decrease immediately after filling. In a conventional mold not provided with a heat insulating material, as indicated by a curve c in FIG. 9, the resin in the gate 16 portion is lowered to a glass transition temperature or lower during the pressure-holding process (see point B) and solidifies. start. This state is shown in FIG. 10 (B), and the resin in the central portion 31 of the runner 15 and the central portion 33 of the resin molding space 30 has a glass transition temperature or higher and maintains fluidity. However, since the resin in the gate 16 portion is solidified and almost loses fluidity, no pressure is applied to the resin in the resin molding space 30, and the resin that compensates for the shrinkage is not supplied. Therefore, in the molded product, the transferability of the surface shape is lowered, and the birefringence increases due to the tensile stress to the central portion due to the shrinkage.

これに対して、前記金型1A〜1Cでは、ゲート16部分に断熱材を設けているため、図9の曲線aで示すように、保圧工程完了後の点Aに至ってゲート16部分の樹脂がガラス転移点温度以下に低下し、固化し始める。前記点Bから点Aまでの時間差ΔAでの樹脂の状態を図10(A)に示し、ランナ15の中心部分31、樹脂成形空間30の中心部分33の樹脂のみならず、ゲート16の中心部分32の樹脂もガラス転移点温度以上であって流動性を保持している。なお、中心部分33の樹脂がガラス転移点温度になると同時にゲート16の中心部分32がガラス転移点温度になってもよい。   On the other hand, since the metal molds 1A to 1C are provided with a heat insulating material in the gate 16 portion, as shown by a curve a in FIG. Drops below the glass transition temperature and begins to solidify. FIG. 10A shows the state of the resin at the time difference ΔA from the point B to the point A, and not only the resin in the central portion 31 of the runner 15 and the central portion 33 of the resin molding space 30 but also the central portion of the gate 16. The resin No. 32 has a glass transition temperature or higher and retains fluidity. It should be noted that the central portion 32 of the gate 16 may become the glass transition temperature at the same time that the resin of the central portion 33 becomes the glass transition temperature.

このように、保圧工程においてゲート16部分の樹脂が流動性を保持しているため、樹脂成形空間30での収縮分を補う樹脂がゲート16を通じて補充される。従って、成形品においては表面の微細形状や平滑面の面精度が低下することなく、転写性が向上する。また、樹脂の収縮による中心部分への引っ張り応力が緩和され、複屈折が低減して高性能の成形品(光学素子)を得ることができる。   As described above, since the resin in the gate 16 portion maintains fluidity in the pressure holding step, the resin that supplements the shrinkage in the resin molding space 30 is replenished through the gate 16. Therefore, in the molded product, the transferability is improved without deteriorating the fine shape of the surface and the surface accuracy of the smooth surface. Further, the tensile stress to the central portion due to the shrinkage of the resin is alleviated, and the birefringence is reduced, so that a high-performance molded article (optical element) can be obtained.

ちなみに、非晶質ポリオレフィン樹脂のガラス転移点温度の具体例を示すと、例えば、日本ゼオン社製ZEONEX、E48Rは139℃、同じくZEONEX、330Rは123℃である。さらに、三井石油化学工業社製APEL、APL5014は135℃であり、JSR社製ARTON、FX4727は125℃である。   Incidentally, specific examples of the glass transition temperature of the amorphous polyolefin resin are, for example, 139 ° C for ZEONEX and E48R manufactured by Nippon Zeon, and 123 ° C for ZEONEX and 330R. Further, APEL and APL5014 manufactured by Mitsui Petrochemical Industries, Ltd. are 135 ° C., and ARTON and FX4727 manufactured by JSR are 125 ° C.

また、ゲート16に設けた前記断熱材に関して、その熱伝導率が4W/m・K、7W/m・K、17W/m・K、20W/m・Kの種々の材料を用いて実験を行ったところ、好ましい転写性が得られた。   In addition, with respect to the heat insulating material provided on the gate 16, experiments were performed using various materials having thermal conductivity of 4 W / m · K, 7 W / m · K, 17 W / m · K, and 20 W / m · K. As a result, preferable transferability was obtained.

(断熱材を片側にのみ設ける場合)
なお、ゲート16部分に断熱材を設ける形態は、図1、図3及び図4に示したように、可動側金型10及び固定側金型20の両方に設けること好ましい。しかし、図2に示したように、可動側又は固定側いずれか一方の金型にのみ設けた場合であってもゲート部分の樹脂の温度低下を抑制する効果を有する。
(Insulating material only on one side)
In addition, the form which provides a heat insulating material in the gate 16 part is preferable to provide in both the movable mold 10 and the fixed mold 20 as shown in FIG.1, FIG3 and FIG.4. However, as shown in FIG. 2, even if it is provided only on either the movable side or fixed side mold, it has the effect of suppressing the temperature drop of the resin in the gate portion.

ゲート16の形状は、通常、可動側及び固定側に均等な大きさに振り分けられている場合もあるが、この振り分けが不均等な場合もある。可動側又は固定側のいずれかの金型にのみ断熱材を設ける場合、ゲート16の形状が大きく振り分けられている可動側又は固定側の金型に設けることが好ましい。   The shape of the gate 16 is usually distributed in equal sizes on the movable side and the fixed side, but this distribution may be uneven. When the heat insulating material is provided only on either the movable side or the fixed side mold, it is preferably provided on the movable side or fixed side mold in which the shape of the gate 16 is largely distributed.

(他の実施例)
なお、本発明に係る射出成形用金型及び射出成形方法は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できる。
(Other examples)
The injection mold and the injection molding method according to the present invention are not limited to the above-described embodiments, and can be variously changed within the scope of the gist.

特に、金型構造の細部は任意であり、使用材料として前記実施例で示した具体的な材料は例示であることは勿論である。また、図1〜図8において、金型10が固定側であり、金型20が可動側であってもよい。あるいは、中間金型部材を備えたスリープレート方式の成形用金型であってもよい。   In particular, the details of the mold structure are arbitrary, and it is needless to say that the specific materials shown in the above-described embodiments are examples. 1 to 8, the mold 10 may be a fixed side, and the mold 20 may be a movable side. Alternatively, it may be a sleep rate type molding die provided with an intermediate die member.

本発明に係る金型の第1実施例を示し、(A)は断面図、(B)は可動側金型の平面図である。The 1st Example of the metal mold | die which concerns on this invention is shown, (A) is sectional drawing, (B) is a top view of a movable side metal mold | die. 前記第1実施例の変形例を示す断面図である。It is sectional drawing which shows the modification of the said 1st Example. 本発明に係る金型の第2実施例を示し、(A)は断面図、(B)は可動側金型の平面図である。The 2nd Example of the metal mold | die which concerns on this invention is shown, (A) is sectional drawing, (B) is a top view of a movable side metal mold | die. 本発明に係る金型の第3実施例を示し、(A)は断面図、(B)は可動側金型の平面図である。The 3rd Example of the metal mold | die which concerns on this invention is shown, (A) is sectional drawing, (B) is a top view of a movable side metal mold | die. 金型の第4実施例を示す断面図である。It is sectional drawing which shows 4th Example of a metal mold | die . 金型の第5実施例を示す断面図である。It is sectional drawing which shows 5th Example of a metal mold | die . 金型の第6実施例を示す断面図である。It is sectional drawing which shows 6th Example of a metal mold | die . 金型の第7実施例を示す断面図である。It is sectional drawing which shows 7th Example of a metal mold | die . 本発明に係る金型を使用する射出成形工程での金型内おける樹脂の温度変化を示すグラフである。It is a graph showing the temperature change of the resin definitive into a mold in an injection molding process using a mold according to the present invention. 射出成形の保圧工程での樹脂の状態を示し、(A)は本発明に係る金型を使用した場合の説明図、(B)は従来の金型を使用した場合の説明図である。The state of the resin in the pressure-holding process of injection molding is shown, (A) is an explanatory view when the mold according to the present invention is used, and (B) is an explanatory view when a conventional mold is used.

符号の説明Explanation of symbols

1A〜1C…金型
11,21…型板
12,22…コア型
13,23…スリーブ状断熱材
14,24…チップ状断熱材
15…ランナ
16…ゲート
30…樹脂成形空間
31,41…断熱材
32,42…表面加工層
DESCRIPTION OF SYMBOLS 1A-1C ... Metal mold | die 11,21 ... Template 12,22 ... Core type | mold 13,23 ... Sleeve-like heat insulating material 14, 24 ... Chip-shaped heat insulating material 15 ... Runner 16 ... Gate 30 ... Resin molding space 31,41 ... Heat insulation Material 32, 42 ... Surface processed layer

Claims (7)

樹脂成形空間、ランナ部、及び該樹脂成形空間とランナ部との間に位置するゲート部分を備えた射出成形用金型であって、
前記樹脂成形空間、前記ランナ部、及び前記ゲート部分のうちの前記ゲート部分のみの少なくとも表面部が断熱材によって構成されており、
前記ゲート部分は金型に嵌入された断熱材からなり、
前記断熱材はチップ状部材又は樹脂成型空間を構成するコアを囲むスリーブ状であること、
を特徴とする射出成形用金型。
An injection mold having a resin molding space, a runner portion, and a gate portion located between the resin molding space and the runner portion,
At least the surface portion of only the gate portion of the resin molding space, the runner portion, and the gate portion is composed of a heat insulating material ,
The gate portion is made of a heat insulating material fitted in a mold,
The insulation sleeve der Rukoto surrounding a core constituting a chip-shaped member or a resin molding space,
Mold for injection molding characterized by
前記断熱材の表面に別の素材でゲート部分を構成する面が形成されていることを特徴とする請求項1に記載の射出成形用金型。   2. The injection mold according to claim 1, wherein a surface constituting the gate portion is formed of another material on the surface of the heat insulating material. 前記断熱材の熱伝導率は20W/m・K以下であることを特徴とする請求項1又は請求項のいずれかに記載の射出成形用金型。 The injection mold according to claim 1 or 2 , wherein the heat conductivity of the heat insulating material is 20 W / m · K or less. 前記断熱材はステンレス鋼、チタン合金、ニッケル合金又はセラミックのいずれかからなることを特徴とする請求項1ないし請求項のいずれかに記載の射出成形用金型。 The insulation is stainless steel, titanium alloy, injection mold according to any one of claims 1 to 3, characterized in that it consists either of a nickel alloy or a ceramic. 請求項1ないし請求項のいずれかに記載の射出成形用金型を用いて光学素子を成形することを特徴とする射出成形方法。 An injection molding method, wherein an optical element is molded using the injection mold according to any one of claims 1 to 4 . 溶融した樹脂を金型内に流入させる際に、樹脂成形空間への樹脂充填完了時においても成形品の肉厚中心温度がガラス転移点温度以上であることを特徴とする請求項に記載の射出成形方法。 The molten resin when causing to flow into the mold, the molded article even when completed resin filling into the resin molding space center thickness temperature according to claim 5, characterized in that the glass transition temperature or higher Injection molding method. 溶融した樹脂を金型内に流入させる際に、成形品の肉厚中心温度がガラス転移点温度以下になった時点においても前記ゲート部分の肉厚中心温度がガラス転移点温度を保持していること、または、成形品の肉厚中心温度がガラス転移点温度になると同時に前記ゲート部分の肉厚中心温度がガラス転移点温度になることを特徴とする請求項又は請求項に記載の射出成形方法。 When the molten resin flows into the mold, the thickness center temperature of the gate portion maintains the glass transition temperature even when the thickness center temperature of the molded product is equal to or lower than the glass transition temperature. The injection according to claim 5 or 6 , wherein the thickness center temperature of the molded product becomes the glass transition temperature and at the same time the thickness center temperature of the gate portion becomes the glass transition temperature. Molding method.
JP2005190618A 2004-06-29 2005-06-29 Injection mold and injection molding method Expired - Fee Related JP4815897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190618A JP4815897B2 (en) 2004-06-29 2005-06-29 Injection mold and injection molding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004191835 2004-06-29
JP2004191835 2004-06-29
JP2005190618A JP4815897B2 (en) 2004-06-29 2005-06-29 Injection mold and injection molding method

Publications (2)

Publication Number Publication Date
JP2006044245A JP2006044245A (en) 2006-02-16
JP4815897B2 true JP4815897B2 (en) 2011-11-16

Family

ID=36023336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190618A Expired - Fee Related JP4815897B2 (en) 2004-06-29 2005-06-29 Injection mold and injection molding method

Country Status (1)

Country Link
JP (1) JP4815897B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980848A (en) * 2008-03-31 2011-02-23 柯尼卡美能达精密光学株式会社 Optical element manufacturing method, optical element molding die, and optical element
KR101088294B1 (en) 2010-03-15 2011-11-30 주식회사 코렌 Mold for forming precision lens
JPWO2011122174A1 (en) * 2010-03-30 2013-07-08 コニカミノルタ株式会社 Mold
CN101961908A (en) * 2010-11-01 2011-02-02 天津市中环三峰电子有限公司 Carrier rod type gate for injection mold
WO2013054592A1 (en) * 2011-10-11 2013-04-18 ポリプラスチックス株式会社 Die and method for producing resin molded body
KR101354777B1 (en) * 2011-12-23 2014-01-27 삼성전기주식회사 Injection mold for forming lens
KR101354831B1 (en) * 2011-12-23 2014-01-27 삼성전기주식회사 Injection mold for forming lens
JP2017040324A (en) * 2015-08-20 2017-02-23 Nok株式会社 gasket

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537231B2 (en) * 1987-05-07 1996-09-25 キヤノン株式会社 Plastic lens molding method
JPH03505185A (en) * 1988-05-06 1991-11-14 ベアシツチ、フランク ジエイ Plastic molding method and its mold
JPH05154880A (en) * 1991-12-06 1993-06-22 Hitachi Ltd Metal mold and method for molding plastic lens
JP3382281B2 (en) * 1993-01-22 2003-03-04 株式会社太洋工作所 Mold for thermoplastic resin injection molding
JPH1134112A (en) * 1997-07-11 1999-02-09 Toshiba Mach Co Ltd Precise mold
JP4135304B2 (en) * 2000-09-25 2008-08-20 コニカミノルタオプト株式会社 Manufacturing method of mold for molding optical element
JP2002240110A (en) * 2001-02-19 2002-08-28 Olympus Optical Co Ltd Method for injection molding plastic optical element

Also Published As

Publication number Publication date
JP2006044245A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4815897B2 (en) Injection mold and injection molding method
JP4815898B2 (en) Injection mold and injection molding method
JP4972760B2 (en) Optical element manufacturing method
US7708550B2 (en) Cold runner injection mold having an insulated gate
US20130249128A1 (en) Injection mold and method for molding an optical element
JP4135304B2 (en) Manufacturing method of mold for molding optical element
JP5475928B2 (en) How to assemble parts
US20190283290A1 (en) Optical element and method for manufacturing optical element
JP4650514B2 (en) Optical element molding method
JP4919413B2 (en) Method and apparatus for manufacturing plastic molded product
JP2007245685A (en) Optical element molding mold and optical element
JP5228352B2 (en) Optical element molding die, optical element molding die preparation method, and optical element manufacturing method
JP4057385B2 (en) Molding method of plastic molded product and injection mold
JP5203259B2 (en) Manufacturing method of optical components
JPWO2008035521A1 (en) Manufacturing method of mold for molding optical element
JP2009113423A (en) Mold for injection molding
JP2009045816A (en) Method and apparatus for manufacture of plastic molding
JP2005201789A (en) Molding method for member, time piece facing component, and decorative accessories
JP5652027B2 (en) Plastic molded product, method for molding plastic molded product, and optical scanning device having the plastic molded product
JP2006051822A (en) Plastic part and its shaping method
JP2006044246A (en) Injection mold and injection molding method
JP2004195756A (en) Mold for optical disk substrate
JP2008239406A (en) Method for molding optical element and optical element
JP2008221773A (en) Injection molding mold
JP2009241297A (en) Method for manufacturing optical element, optical element molding mold, and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4815897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees