JP2004195756A - Mold for optical disk substrate - Google Patents

Mold for optical disk substrate Download PDF

Info

Publication number
JP2004195756A
JP2004195756A JP2002365783A JP2002365783A JP2004195756A JP 2004195756 A JP2004195756 A JP 2004195756A JP 2002365783 A JP2002365783 A JP 2002365783A JP 2002365783 A JP2002365783 A JP 2002365783A JP 2004195756 A JP2004195756 A JP 2004195756A
Authority
JP
Japan
Prior art keywords
mold
stamper
insulating material
heat insulating
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002365783A
Other languages
Japanese (ja)
Inventor
Kazuo Inoue
和夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002365783A priority Critical patent/JP2004195756A/en
Publication of JP2004195756A publication Critical patent/JP2004195756A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold for an optical disk substrate enhancing transfer properties, strong against an impact and having sufficient strength. <P>SOLUTION: At least a part of the surface of the cavity (20) of a pair of fitted molds (1 and 2) at least one of which is provided with a stamper (3)or the rear surface of the stamper (3) is formed of a low heat conductive metal member of which the heat conductivity is 2/3 or less that of a member for forming another cavity surface other than the stamper, the tensile strength is 300 MPa or more and the melting point is 400°C or higher. The low heat conductive metal member preferably comprises a metal mainly comprising titanium and containing aluminum or vanadium. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スタンパに形成した凹凸を転写させる光ディスク基板用金型に関する。
【0002】
【従来の技術】
従来の金型としては、金型のコアの成形面にシートを介してスタンパを取り付けてキャビティ内圧が十分伝達されるまでは射出された溶融樹脂の熱が奪われないようにして成形基板の複屈折と転写性を向上させることが開示されている(例えば特許文献1参照)。材質としては、アルミニウムまたは銅、あるいは合成樹脂(例えば特許文献1)やセラミック(例えば特許文献2参照)がある。
【0003】
図1に従来の金型の断面図を示す。金型は固定金型1と可動金型2の嵌合する1つから構成される。ここでは、情報の凹凸を形成したスタンパ3を固定金型1に装着する場合を示す。
【0004】
固定金型1には中央部に溶融樹脂が流入するスプル部を持つスプルブッシュ4がある。スプルブッシュ4の周りにはスタンパホルダー5があり、スタンパ3の内側を保持している。スタンパ3の外周側には外周リング7があってスタンパ3の外側を保持している。スタンパ3の裏面には断熱材8があり、この断熱材8はスタンパ3と共に先のスタンパホルダー5と外周リング7によって固定側鏡面盤6に装着される。
【0005】
ここで、断熱材8はスタンパ3からの熱の伝導を遅らせる働きをする。固定側鏡面盤6は固定側基盤9に取り付けられている。固定側鏡面盤6の外周側には固定側突き当てリング17がある。
【0006】
可動金型2は、内側から、エジェクタピン10、カットパンチ11、エジェクタスリーブ12、可動側固定ブッシュ13、可動側鏡面盤14がある。可動側鏡面盤14は可動側基盤15に取り付けられている。
【0007】
可動金型2の最外周には可動側突き当てリング16があり、可動側基盤15に取り付けられており、固定側基盤9に取り付けられた固定側突き当てリング17と突き当たることで位置出しを行う。
【0008】
従来の金型でスタンパ以外の箇所に低熱伝導部材を設けた金型としては、キャビティ表面にセラミックまたは合成樹脂を設けることでヒケをなくして表面光沢や微細な凹凸を転写することが開示されている(例えば特許文献3参照)。また、キャビティの周端部を形成する環状部材にセラミックを用いて基板周端部にヒケや反りの発生しない基板を提供することが開示されている(例えば特許文献4参照)
【0009】
【特許文献1】
特開昭62−005824号公報
【0010】
【特許文献2】
特開平05−038721号公報
【0011】
【特許文献3】
特開平06−218769号公報
【0012】
【特許文献4】
特開昭63−074618号公報
【0013】
【発明が解決しようとする課題】
射出成形では金型内に溶融樹脂を流入させるためキャビティ表面の部材は急激な温度の上昇や下降が生じる。また、金型を閉じた後に型締力を発生させてスタンパ上の凹凸を転写させるので金型部材は衝撃を受ける。
【0014】
これに対してスタンパと鏡面盤との間、もしくはキャビティ表面に断熱材を用いているが、断熱材の材料としてセラミックを用いると脆くて衝撃に弱く割れやすい。また、合成樹脂は熱可塑性樹脂では軟らかく、熱硬化性樹脂では脆くて衝撃に弱い。金属としてアルミニウムや銅が特許文献1に開示されているが、これらの材料の場合は軟らかく強度が弱いという問題がある。
【0015】
本発明は、前記従来の問題を解決するため、衝撃に強く強度が十分な断熱材を用いた光ディスク基板用金型を提供することを目的とする。
【0016】
【課題を解決するための手段】
前記目的を達成するため、本発明の第1番目の光ディスク基板用金型は、少なくとも一方にスタンパを装着した一対の嵌合する金型であって、キャビティ表面の少なくとも一部を形成する部材を、熱伝導率がスタンパ以外の他のキャビティ表面を形成する部材の2/3以下、引張強度が300MPa以上、融点が400℃以上の低熱伝導金属部材で形成することを特徴とする。
【0017】
本発明の第2番目の光ディスク基板用金型は、少なくとも一方にスタンパを装着した一対の嵌合する金型であって、キャビティ表面の少なくとも一部を形成する部材を、熱伝導率が13W/mK以下、引張強度が300MPa以上、融点が400℃以上の低熱伝導金属部材で形成することを特徴とする。
【0018】
本発明の第3番目の光ディスク基板用金型は、少なくとも一方にスタンパを装着した一対の嵌合する金型であって、前記スタンパと前記スタンパを装着する側の温度調整用媒体を流した鏡面部材との間に、熱伝導率が前記鏡面部材の3/4以下、引張強度が300MPa以上、融点が400℃以上の低熱伝導金属部材を配設することを特徴とする。
【0019】
本発明の第4番目の光ディスク基板用金型は、少なくとも一方にスタンパを装着した一対の嵌合する金型であって、スタンパと金型表面との間に熱伝導率が15W/mK以下である低熱伝導金属部材を配設することを特徴とする。
【0020】
【発明の実施の形態】
本発明は、衝撃に強く強度が十分な断熱材を用いた光ディスク基板用金型である。このため、キャビティ表面の少なくとも一部を形成する部材を低熱伝導金属部材とする。前記低熱伝導金属部材としては、チタンを主成分とする材料が好ましい。ここで「主成分」とは、70重量%以上をいう。
【0021】
また、前記低熱伝導金属材料は、アルミニウムまたはバナジウムを含有することが好ましい。好ましい含有量は、2〜7重量%の範囲である。
【0022】
前記低熱伝導金属部材の厚みは、0.5mm以上3mm以下の範囲が好ましい。また、前記低熱伝導金属部材のキャビティ表面の粗さを0.4S以下とすることが好ましい。
【0023】
また、低熱伝導金属部材のキャビティ側面の粗さを0.1S以下とすることが好ましい。
【0024】
また、低熱伝導金属部材のスタンパとの接触面の粗さを0.4S以下とすることが好ましい。
【0025】
本発明の具体的実施の形態について、以下に図を用いて詳細に説明する。
【0026】
(実施の形態1)
本発明の実施の形態1に用いる光ディスク基板用金型の構成は、図1に示した従来の断熱構造と同じである。金型は固定金型1と可動金型2とからなる。スタンパ3は固定金型1に装着している。
【0027】
固定金型1には中央部に溶融樹脂が流入するスプル部を持つスプルブッシュ4がある。スプルブッシュ4の周りにはスタンパホルダー5があり、スタンパ3の内側を保持している。スタンパ3の外周側には外周リング7があってスタンパ3の外側を保持している。スタンパ3の裏面には断熱材8があり、この断熱材8はスタンパ3と共に先のスタンパホルダー5と外周リング7によって固定側鏡面盤6に装着される。固定側鏡面盤6には温度調整用の流体を流す溝が設けられていて、固定側基盤9に取り付けられている。また、固定側鏡面盤6の外周側には固定側突き当てリング17がある。
【0028】
可動金型2は、内側から、エジェクタピン10、カットパンチ11、エジェクタスリーブ12、可動側固定ブッシュ13、可動側鏡面盤14がある。カットパンチ11は成形品に内孔を形成するためのものである。エジェクタピン10とエジェクタスリーブ12は成形品を金型から取り出す際に、それぞれ、スプルと成形品とを押し出す働きをする。可動側鏡面盤14にも固定側鏡面盤6と同様に温度調整用の流体を流す溝が設けられていて、可動側基盤15に取り付けられている。20はキャビティである。
【0029】
可動金型2の最外周には可動側突き当てリング16があり、可動側基盤15に取り付けられている。この可動側突き当てリング16は、固定側基盤9に取り付けられた固定側突き当てリング17と突き当たることで位置出しを行う。
【0030】
光ディスク基板用金型の材料は錆ないようにステンレス鋼からできている場合が多い。この場合の熱伝導率は20〜25W/mKである。スタンパ3はニッケルからできており、熱伝導率は約90W/mKである。断熱材8としてはステンレス鋼より低い熱伝導率の金属としてチタン合金を選んだ。チタン合金としては主成分(70重量%以上)がチタンで、アルミニウムやバナジウムを含む(2〜7重量%)ものが薄板に仕上げやすい。熱伝導率は7〜12W/mKである。
【0031】
断熱材8の厚さは他の金型部材同様用に精度が必要である。特に面内ばらつきを抑制するために平行度も重要である。しかし、0.5mmより薄いと、厚み精度や平行度などの機械加工精度を出しにくい。このため0.5mmより厚く作製するのが好ましい。また、転写に必要な金型温度と断熱材の厚みとの関係を調べるためにシミュレーションでスタンパの到達温度がポリカーボネート樹脂のガラス転移温度より高い150℃ないし160℃になる金型温度を計算した結果、厚さが2mm以上になるとスタンパがこの特定の到達温度になる場合の金型温度がほぼ飽和する。したがって、断熱板の厚みは2mm以下が好ましく、さらに好ましくは3mm以下もあれば十分である。そこで、断熱材の厚さは0.5mm以上3mm以下が好適である。
【0032】
断熱材を熱伝導率10W/mK、厚み2mmのチタン合金で作製し、他の部材をステンレス鋼で作製した。スタンパにはピットが形成されており、形状はトラックピッチ0.20μm、ピットピッチ0.24μm、ピット長80〜160nm、深さ65nmのものを用いた。
【0033】
直径120mm、厚さ1.1mmの基板をポリカーボネート樹脂で作製した。最大射出速度250mm/s、最大型締め力30トン、成形サイクル10秒で射出成形した。
【0034】
半径58mmで十分な転写が得られる金型温度は、断熱材8がある時が70℃以上であるのに対して、断熱材8がない通常の場合が90℃以上であり、転写する下限の金型温度は下がった。
【0035】
金型内に流入する樹脂の粘度を下げて流れやすくするため樹脂は最高で400℃近傍まで加熱される。金型内のキャビティ面はこの溶融した樹脂で加熱され、最高で200℃近傍まで温度が上昇する。そこで、金型部材の融点は形状を安定して維持する上で400℃以上は必要である。チタン合金の融点は約1600℃である。
【0036】
また、機械的衝撃や型締力に耐える安定な形状を維持するには、引張強度が300MPa以上必要である。チタン合金の引張強度は800MPa以上である。金型が断熱材8以外はステンレス鋼からなる場合に、シミュレーションで断熱材8の熱伝導率を変えて転写下限の金型温度を求めると、通常の全部がステンレス鋼からなる場合の転写下限の金型温度より10K以上低い金型温度で転写するのは断熱材の熱伝導率が15W/mK以下の場合であった。
【0037】
上記の金型は部材の殆どがステンレス鋼でできている場合であるが、金型は炭素鋼等の他の鋼鉄でもアルミニウム合金でも作製できる。この場合、転写下限の金型温度は断熱材8と他の部材との熱伝導率の比で決まる。そこで、断熱材8の厚みを2mmに固定してシミュレーションで断熱材の熱伝導率を変えて転写下限の金型温度を求めた。すると、通常の全部が同一材からなる場合の転写下限の金型温度より10K以上低い金型温度で転写するのは断熱材8の熱伝導率が断熱材8以外の部材の熱伝導率の3/4倍以下の場合であった。
【0038】
例えば、断熱材8以外がアルミニウム合金で断熱材8がニッケル、鋼鉄、黄銅、青銅、ステンレス鋼等がある。
【0039】
これまでは断熱材8以外の金型部材が全て同じ材料の場合を取扱ったが、断熱材8と接しており温調されている固定側鏡面盤6の材料の熱伝導率が支配的であった。すなわち、断熱材8の熱伝導率が断熱材8に接する固定側鏡面盤6の熱伝導率の3/4倍以下の場合に断熱材8がない場合に比べて転写下限の金型温度は10K以上下がった。
【0040】
同様に、断熱材8の熱伝導率が15W/mK以下であり断熱材8の下の固定側鏡面盤6がステンレス鋼でできている場合は断熱材8がない場合に比べて転写下限の金型温度は10K以上下がった。
【0041】
本発明の金型では断熱材8がスタンパ3の最高到達温度より十分高い融点を持ち、セラミックに比べて延性があって、剛性も十分ある金属であるため、成形中に断熱材が破損することはなく、金型強度は十分であった。
【0042】
次に断熱材8の表面粗さについて調べた。スタンパ3の厚さは0.3mmほどであるため断熱材8の表面に傷や凹凸等があると成形した基板に転写される。表面粗さが最大粗さで0.4μm以下であれば鏡面スタンパを用いて成形した場合に成形基板の表面粗さは一定で変わらないことから、この表面粗さの範囲であれば成形基板にスタンパ3を通して転写されない。
【0043】
実施の形態1ではスタンパ3を固定金型1側に装着する場合について示したが、スタンパ3は可動金型2の方に装着しても良いし、固定金型1と可動金型2の両方に装着しても良い。同様に、断熱材8も固定金型1側でなく、可動金型2側に装着されたスタンパ3の裏側に設けても構わない。
【0044】
(実施の形態2)
本発明の実施の形態2に用いる光ディスク基板用金型の構成を図2に示す。図1と比べて図2ではスタンパ3の裏面に断熱材8はなく、スタンパ3を装着したのとは反対側、すなわち、ここでは可動金型2側で、可動側鏡面盤14のキャビティ側の面に断熱材18を設けている。この断熱材18は着脱の必要がないため、可動側鏡面盤14と溶着している。
【0045】
この場合は、転写にかかわるスタンパ3の熱伝導には直接は働かないが、金型内に流入した溶融樹脂の冷却が遅れるため溶融樹脂によってスタンパ3が温められる時間が長くなり転写が良化する。
【0046】
実施の形態2でも断熱材18の厚さは他の金型部材同様用に精度が必要である。特に面内ばらつきを抑制するために平行度も重要である。しかし、0.5mmより薄いと厚み精度や平行度などの機械加工精度を出しにくい。このため0.5mmより厚く作製する必要がある。また、金型温度と断熱材の厚みとの関係を調べるためにシミュレーションで金型温度を一定にして断熱材の到達温度を計算した結果、厚さが2mm以上になると断熱材の到達温度がほぼ飽和する。したがって、断熱板の厚みは2mm以下、好ましくは3mm以下もあれば十分である。そこで、断熱材の厚さは0.5mm以上3mm以下が好適である。
【0047】
断熱材18を熱伝導率10W/mK、厚み2mmのチタン合金で作製し、他の部材をステンレス鋼で作製した。スタンパにはピットが形成されており、形状はトラックピッチ0.20μm、ピットピッチ0.24μm、ピット長80〜160nm、深さ65nmのものを用いた。
【0048】
直径120mm、厚さ1.1mmの基板をポリカーボネート樹脂で作製した。最大射出速度250mm/s、最大型締め力30トン、成形サイクル10秒で射出成形した。
【0049】
半径58mmで十分な転写が得られる金型温度は、断熱材18がない通常の場合が90℃以上であり、断熱材18がある時が75℃以上であった。
【0050】
金型内に流入する樹脂の粘度を下げて流れやすくするため樹脂は最高で400℃近傍まで加熱される。金型内のキャビティ面はこの溶融した樹脂で加熱され、最高で200℃近傍まで温度が上昇する。そこで、金型部材の融点は形状を安定して維持する上で400℃以上は必要である。
【0051】
また、機械的衝撃や型締力に耐ええる安定な形状を維持するには引張強度が300MPa以上必要である。
【0052】
金型が断熱材18以外はステンレス鋼からなる場合に、シミュレーションで断熱材18の熱伝導率を変えて転写下限の金型温度を求めると、通常の全部がステンレス鋼からなる場合の転写下限の金型温度より10K低い金型温度で転写するのは断熱材18の熱伝導率が13W/mK以下の場合であった。
【0053】
上記の金型は部材の殆どがステンレス鋼でできている場合であるが、金型は炭素鋼等の他の鋼鉄でもアルミニウム合金でも作製できる。この場合も転写下限の金型温度は断熱材18と他の部材との熱伝導率の比で決まる。そこで、断熱材18の熱伝導率を変えて転写下限の金型温度を求めると、通常の全部が同一材からなる場合の転写下限の金型温度より10K以上低い金型温度で転写するのは断熱材18の熱伝導率が断熱材18以外の部材の熱伝導率の2/3倍以下の場合であった。
【0054】
例えば、断熱材18以外がアルミニウム合金で断熱材18がニッケル、鋼鉄、黄銅、青銅、ステンレス鋼等がある。
【0055】
これまでは断熱材18以外の金型部材が全て同じ材料の場合を取扱ったが、断熱材18と同様にキャビティ近傍の部材、特に温調されている可動側鏡面盤14の材料の熱伝導率が支配的であった。すなわち、断熱材18の熱伝導率が断熱材18の下の可動側鏡面盤14の熱伝導率の2/3倍以下の場合に断熱材18がない場合に比べて転写下限の金型温度は10K以上下がった。
【0056】
同様に、断熱材18の熱伝導率が13W/mK以下であり断熱材18の下の可動側鏡面盤14がステンレス鋼でできている場合は断熱材18がない場合に比べて転写下限の金型温度は10K以上下がった。
【0057】
本発明の金型では断熱材18がスタンパ3の最高到達温度より十分高い融点を持ち、セラミックに比べて延性があって、剛性も十分ある金属であるため、成形中に断熱材18が破損することはなく、金型強度は十分であった。
【0058】
次に断熱材18の表面状態であるが、断熱材18の表面に傷や凹凸等があると成形した基板に転写される。そこで、断熱材18がある側が光ディスクの再生面側になる場合は断熱材18の表面粗さは、最大粗さで0.1μm以下が好ましかった。
【0059】
実施の形態2では断熱材18は可動側鏡面部材14のキャビティ表面に用いたが、スタンパ3が可動金型2に装着する場合は、もちろん、固定側鏡面盤6のキャビティ表面に用いればよい。ここでは可動側鏡面盤14と断熱材18とを溶着したが、もちろん、他の手段で固定しても良い。さらに、実施の形態2を実施の形態1に加えた金型構造でも良い。
【0060】
(実施の形態3)
本発明の実施の形態3に用いる光ディスク基板用金型の構成を図3に示す。図1と比べて図3ではスタンパ3の裏面に断熱材8はなく、外周リングを断熱材19と外周リング7から形成している。
【0061】
この断熱材19は着脱の必要がないため、外周リング7と溶着している。この場合は、転写にかかわるスタンパ3の熱伝導には直接は働かないが、金型内に流入した溶融樹脂の冷却が遅れるため溶融樹脂によってスタンパ3が温められる時間が長くなり転写が良化する。
【0062】
実施の形態3でも断熱材19の厚さは他の金型部材同様用に精度が必要である。しかし、0.5mmより薄いと厚み精度や平行度などの機械加工精度を出しにくい。このため0.5mmより厚く作製することが好ましい。また、金型温度と断熱材19の厚みとの関係を調べるためにシミュレーションで金型温度を一定にして断熱材19の到達温度を計算した結果、厚さが2mm以上になると断熱材19の到達温度がほぼ飽和した。
【0063】
断熱材19を熱伝導率10W/mK、厚み2mmのチタン合金で作製し、他の部材をステンレス鋼で作製した。スタンパ3にはピットが形成されており、形状はトラックピッチ0.20μm、ピットピッチ0.24μm、ピット長80〜160nm、深さ65nmのものを用いた。
【0064】
直径120mm、厚さ1.1mmの基板をポリカーボネート樹脂で作製した。最大射出速度250mm/s、最大型締め力30トン、成形サイクル10秒で射出成形した。半径58mmで十分な転写が得られる金型温度は、断熱材19がない通常の場合が90℃以上であり、断熱材19がある時が75℃以上であった。
【0065】
金型内に流入する樹脂の粘度を下げて流れやすくするため樹脂は最高で400℃近傍まで加熱される。金型内のキャビティ面はこの溶融した樹脂で加熱され、最高で200℃近傍まで温度が上昇する。そこで、金型部材の融点は形状を安定して維持する上で400℃以上は必要である。
【0066】
また、機械的衝撃や型締力に耐ええる安定な形状を維持するには引張強度が300MPa以上必要である。
【0067】
金型が断熱材19以外はステンレス鋼からなる場合に、シミュレーションで断熱材19の熱伝導率を変えて転写下限の金型温度を求めると、通常の全部がステンレス鋼からなる場合の転写下限の金型温度より10K低い金型温度で転写するのは断熱材19の熱伝導率が13W/mK以下の場合であった。
【0068】
上記の金型は部材の殆どがステンレス鋼でできている場合であるが、金型は炭素鋼等の他の鋼鉄でもアルミニウム合金でも作製できる。この場合も転写下限の金型温度は断熱材19と他の部材との熱伝導率の比で決まる。そこで、断熱材19の厚さを2mmに固定して断熱材19の熱伝導率を変えて転写下限の金型温度を求めると、通常の全部が同一材からなる場合の転写下限の金型温度より10K以上低い金型温度で転写するのは断熱材19の熱伝導率が断熱材19以外の部材の熱伝導率の2/3倍以下の場合であった。
【0069】
例えば、断熱材19以外がアルミニウム合金で断熱材19がニッケル、鋼鉄、黄銅、青銅、ステンレス鋼等がある。
【0070】
これまでは断熱材19以外の金型部材を全て同じ材料としたが、断熱材19と同様にキャビティ近傍の部材、特に温調されている可動側鏡面盤14の材料の熱伝導率が支配的であった。すなわち、断熱材19の熱伝導率が断熱材19と接する可動側鏡面盤14の熱伝導率の2/3倍以下の場合に断熱材19がない場合に比べて転写下限の金型温度は10K以上下がった。
【0071】
同様に、断熱材19の熱伝導率が13W/mK以下であり、断熱材19の下の可動側鏡面盤14がステンレス鋼でできている場合は、断熱材19がない場合に比べて転写下限の金型温度は10K以上下がった。
【0072】
本実施形態の金型では断熱材19がスタンパの最高到達温度より十分高い融点を持ち、セラミックに比べて延性があって、剛性も十分ある金属であるため、成形中に断熱材が破損することはなく、金型強度は十分であった。
【0073】
次に断熱材19の表面状態は、断熱材19の表面に傷や凹凸等があると成形した基板に転写される。また、断熱材19は可動側鏡面盤14と摺動する。そこで、断熱材19の表面粗さは最大粗さで0.4μm以下が好ましかった。
【0074】
本発明の実施の形態3では従来の外周リングが外周リング7と断熱材19とで構成されていたが、もちろん断熱材19だけで外周リング7を構成しても良い。
【0075】
本発明の実施の形態3に実施の形態1や実施の形態2を加えても良い。
【0076】
実施の形態2では断熱材18を可動側鏡面盤14のキャビティ表面に用いたが、もちろん、エジェクタピン10、カットパンチ11、エジェクタスリーブ12、可動側固定ブッシュ13、スプルブッシュ4、スタンパホルダー5の表面に用いても良いし、それ自体を断熱材で作製しても良い。
【0077】
【発明の効果】
本発明により、金型温度が低くても成形基板の転写が得られ、かつ、衝撃に強く強度が十分な光ディスク基板用金型が得られる。したがって、高密度スタンパを用いた成形が可能になる。
【図面の簡単な説明】
【図1】本発明の実施の形態1および従来例に用いる金型の構成を示す概略断面図
【図2】本発明の実施の形態2の構成を示す概略断面図
【図3】本発明の実施の形態3の構成を示す概略断面図
【符号の説明】
1 固定金型
2 可動金型
3 スタンパ
4 スプルブッシュ
5 スタンパホルダー
6 固定側鏡面盤
7 外周リング
8,18,19 断熱材
9 固定側基盤
10 エジェクタピン
11 カットパンチ
12 エジェクタスリーブ
13 可動側固定ブッシュ
14 可動側鏡面盤
15 可動側基盤
16 可動側突き当てリング
17 固定側突き当てリング
20 キャビティ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mold for an optical disk substrate that transfers irregularities formed on a stamper.
[0002]
[Prior art]
In a conventional mold, a stamper is attached to a molding surface of a mold core via a sheet so that the heat of the injected molten resin is not taken away until the internal pressure of the cavity is sufficiently transmitted. It is disclosed that refraction and transferability are improved (for example, see Patent Document 1). Examples of the material include aluminum or copper, a synthetic resin (for example, Patent Document 1), and a ceramic (for example, see Patent Document 2).
[0003]
FIG. 1 shows a sectional view of a conventional mold. The mold includes one in which the fixed mold 1 and the movable mold 2 are fitted. Here, a case is shown in which the stamper 3 having the information unevenness is mounted on the fixed mold 1.
[0004]
The stationary mold 1 has a sprue bush 4 having a sprue portion into which a molten resin flows into a central portion. A stamper holder 5 is provided around the sprue bush 4 and holds the inside of the stamper 3. An outer peripheral ring 7 is provided on the outer peripheral side of the stamper 3 to hold the outside of the stamper 3. A heat insulating material 8 is provided on the back surface of the stamper 3, and the heat insulating material 8 is mounted on the fixed mirror plate 6 together with the stamper 3 by the stamper holder 5 and the outer peripheral ring 7.
[0005]
Here, the heat insulating material 8 functions to delay the conduction of heat from the stamper 3. The fixed mirror panel 6 is mounted on a fixed base 9. A fixed-side butting ring 17 is provided on the outer peripheral side of the fixed-side mirror panel 6.
[0006]
The movable mold 2 includes an ejector pin 10, a cut punch 11, an ejector sleeve 12, a movable-side fixed bush 13, and a movable-side mirror plate 14 from the inside. The movable mirror 14 is attached to a movable base 15.
[0007]
A movable abutting ring 16 is provided on the outermost periphery of the movable mold 2, is attached to the movable base 15, and is positioned by abutting against a fixed abutting ring 17 attached to the fixed base 9. .
[0008]
As a mold provided with a low heat conductive member at a place other than the stamper in a conventional mold, it is disclosed that surface gloss and fine irregularities are transferred by eliminating ceramic sinks by providing ceramic or synthetic resin on the cavity surface. (For example, see Patent Document 3). Further, it is disclosed that a ceramic is used for an annular member forming a peripheral end of a cavity to provide a substrate free from sink marks and warpage at the peripheral end of the substrate (for example, see Patent Document 4).
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Sho 62-005824
[Patent Document 2]
Japanese Patent Application Laid-Open No. 05-038721
[Patent Document 3]
Japanese Patent Application Laid-Open No. 06-218768
[Patent Document 4]
JP-A-63-074618
[Problems to be solved by the invention]
In the injection molding, the temperature of the members on the surface of the cavity rapidly rises and falls because the molten resin flows into the mold. Further, after the mold is closed, a mold clamping force is generated to transfer the irregularities on the stamper, so that the mold member receives an impact.
[0014]
On the other hand, a heat insulating material is used between the stamper and the mirror-finished surface or on the cavity surface. However, if ceramic is used as the heat insulating material, it is brittle, weak to impact, and easily broken. The synthetic resin is soft as a thermoplastic resin, and brittle as a thermosetting resin and is vulnerable to impact. Patent Literature 1 discloses aluminum and copper as metals, but these materials have a problem that they are soft and have low strength.
[0015]
SUMMARY OF THE INVENTION An object of the present invention is to provide a mold for an optical disk substrate using a heat-insulating material that is strong against impact and has sufficient strength in order to solve the conventional problem.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a first mold for an optical disk substrate of the present invention is a pair of fitting molds each having a stamper mounted on at least one side thereof, and a member forming at least a part of a cavity surface. It is characterized by being formed of a low heat conductive metal member having a thermal conductivity of 2/3 or less of the member forming the cavity surface other than the stamper, a tensile strength of 300 MPa or more, and a melting point of 400 ° C. or more.
[0017]
A second mold for an optical disk substrate according to the present invention is a pair of fitting molds each having a stamper mounted on at least one of the molds, and a member forming at least a part of the cavity surface has a thermal conductivity of 13 W / It is characterized by being formed of a low heat conductive metal member having a mK or less, a tensile strength of 300 MPa or more, and a melting point of 400 ° C. or more.
[0018]
A third optical disk substrate mold according to the present invention is a pair of fitting molds each having a stamper mounted on at least one of the molds, and has a mirror surface on which the stamper and the temperature adjusting medium on the side to which the stamper is mounted flow. A low thermal conductive metal member having a thermal conductivity of 3/4 or less, a tensile strength of 300 MPa or more, and a melting point of 400 ° C. or more is provided between the member and the mirror surface member.
[0019]
A fourth mold for an optical disk substrate according to the present invention is a pair of fitted molds having a stamper mounted on at least one of them, and has a thermal conductivity of 15 W / mK or less between the stamper and the mold surface. It is characterized in that a certain low heat conductive metal member is provided.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a mold for an optical disk substrate using a heat-insulating material that is strong against impact and has sufficient strength. Therefore, a member that forms at least a part of the cavity surface is a low heat conductive metal member. As the low thermal conductive metal member, a material containing titanium as a main component is preferable. Here, “main component” refers to 70% by weight or more.
[0021]
Further, it is preferable that the low thermal conductive metal material contains aluminum or vanadium. The preferred content is in the range of 2 to 7% by weight.
[0022]
The thickness of the low heat conductive metal member is preferably in the range of 0.5 mm or more and 3 mm or less. Preferably, the roughness of the cavity surface of the low thermal conductive metal member is 0.4 S or less.
[0023]
Further, it is preferable that the roughness of the side surface of the cavity of the low thermal conductive metal member be 0.1 S or less.
[0024]
Further, it is preferable that the roughness of the contact surface of the low heat conductive metal member with the stamper be 0.4 S or less.
[0025]
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
[0026]
(Embodiment 1)
The configuration of the optical disk substrate mold used in the first embodiment of the present invention is the same as the conventional heat insulating structure shown in FIG. The mold includes a fixed mold 1 and a movable mold 2. The stamper 3 is mounted on the fixed mold 1.
[0027]
The stationary mold 1 has a sprue bush 4 having a sprue portion into which a molten resin flows into a central portion. A stamper holder 5 is provided around the sprue bush 4 and holds the inside of the stamper 3. An outer peripheral ring 7 is provided on the outer peripheral side of the stamper 3 to hold the outside of the stamper 3. A heat insulating material 8 is provided on the back surface of the stamper 3, and the heat insulating material 8 is mounted on the fixed mirror plate 6 together with the stamper 3 by the stamper holder 5 and the outer peripheral ring 7. A groove for flowing a fluid for temperature adjustment is provided in the fixed side mirror plate 6, and is attached to the fixed side base 9. A fixed-side butting ring 17 is provided on the outer peripheral side of the fixed-side mirror panel 6.
[0028]
The movable mold 2 includes an ejector pin 10, a cut punch 11, an ejector sleeve 12, a movable-side fixed bush 13, and a movable-side mirror plate 14 from the inside. The cut punch 11 is for forming an inner hole in a molded product. The ejector pin 10 and the ejector sleeve 12 serve to push out the sprue and the molded product, respectively, when removing the molded product from the mold. The movable mirror plate 14 is also provided with a groove for flowing a fluid for temperature adjustment similarly to the fixed mirror disk 6, and is attached to the movable base 15. 20 is a cavity.
[0029]
A movable-side abutment ring 16 is provided at the outermost periphery of the movable mold 2, and is attached to the movable-side base 15. The movable-side abutment ring 16 performs positioning by abutting against a fixed-side abutment ring 17 attached to the fixed-side base 9.
[0030]
The material of the optical disk substrate mold is often made of stainless steel so as not to rust. The thermal conductivity in this case is 20 to 25 W / mK. The stamper 3 is made of nickel and has a thermal conductivity of about 90 W / mK. As the heat insulating material 8, a titanium alloy was selected as a metal having a lower thermal conductivity than stainless steel. As a titanium alloy, the main component (70% by weight or more) is titanium, and an alloy containing aluminum or vanadium (2 to 7% by weight) is easily finished into a thin plate. Thermal conductivity is 7-12 W / mK.
[0031]
The thickness of the heat insulating material 8 needs to be as precise as other mold members. In particular, parallelism is also important for suppressing in-plane variation. However, if it is thinner than 0.5 mm, it is difficult to obtain machining accuracy such as thickness accuracy and parallelism. For this reason, it is preferable to manufacture it thicker than 0.5 mm. Also, in order to investigate the relationship between the mold temperature required for the transfer and the thickness of the heat insulating material, the result of calculating the mold temperature at which the temperature reached by the stamper becomes 150 ° C. to 160 ° C. higher than the glass transition temperature of the polycarbonate resin by simulation. When the thickness is 2 mm or more, the mold temperature when the stamper reaches this specific ultimate temperature is almost saturated. Therefore, the thickness of the heat insulating plate is preferably 2 mm or less, more preferably 3 mm or less. Therefore, the thickness of the heat insulating material is preferably 0.5 mm or more and 3 mm or less.
[0032]
The heat insulating material was made of a titanium alloy having a thermal conductivity of 10 W / mK and a thickness of 2 mm, and the other members were made of stainless steel. Pits are formed on the stamper, and the stamper has a track pitch of 0.20 μm, a pit pitch of 0.24 μm, a pit length of 80 to 160 nm, and a depth of 65 nm.
[0033]
A substrate having a diameter of 120 mm and a thickness of 1.1 mm was made of a polycarbonate resin. The injection molding was performed at a maximum injection speed of 250 mm / s, a maximum clamping force of 30 tons, and a molding cycle of 10 seconds.
[0034]
The mold temperature at which a sufficient transfer can be obtained with a radius of 58 mm is 70 ° C. or higher when the heat insulating material 8 is provided, and is 90 ° C. or higher in the normal case without the heat insulating material 8. The mold temperature has dropped.
[0035]
The resin is heated to a maximum of around 400 ° C. in order to lower the viscosity of the resin flowing into the mold and make it easier to flow. The cavity surface in the mold is heated by the molten resin, and the temperature rises up to around 200 ° C. at the maximum. Therefore, the melting point of the mold member needs to be 400 ° C. or higher in order to stably maintain the shape. The melting point of the titanium alloy is about 1600 ° C.
[0036]
Further, in order to maintain a stable shape that can withstand a mechanical impact and a mold clamping force, a tensile strength of 300 MPa or more is required. The tensile strength of the titanium alloy is 800 MPa or more. When the mold is made of stainless steel except for the heat insulating material 8, when the thermal conductivity of the heat insulating material 8 is changed by simulation to obtain the mold temperature of the lower transfer limit, the lower limit of the transfer temperature when the entire mold is made of stainless steel is obtained. The transfer at a mold temperature lower than the mold temperature by 10 K or more was performed when the thermal conductivity of the heat insulating material was 15 W / mK or less.
[0037]
Although the above-mentioned mold is a case where most of the members are made of stainless steel, the mold can be made of another steel such as carbon steel or an aluminum alloy. In this case, the mold temperature at the lower transfer limit is determined by the ratio of the thermal conductivity between the heat insulating material 8 and another member. Therefore, the thickness of the heat insulating material 8 was fixed at 2 mm, and the heat conductivity of the heat insulating material was changed by simulation to determine the mold temperature at the lower transfer limit. Then, the transfer at a mold temperature 10 K or more lower than the mold lower limit of the transfer lower limit in the case where the whole is made of the same material is performed when the heat conductivity of the heat insulating material 8 is 3 times the heat conductivity of the members other than the heat insulating material 8. / 4 times or less.
[0038]
For example, the material other than the heat insulating material 8 is an aluminum alloy, and the heat insulating material 8 is nickel, steel, brass, bronze, stainless steel, or the like.
[0039]
So far, the case where all the mold members other than the heat insulating material 8 are made of the same material has been handled, but the thermal conductivity of the material of the fixed side mirror panel 6 which is in contact with the heat insulating material 8 and whose temperature is controlled is dominant. Was. That is, when the thermal conductivity of the heat insulating material 8 is 3/4 or less of the thermal conductivity of the fixed side mirror surface plate 6 in contact with the heat insulating material 8, the mold temperature at the transfer lower limit is 10K as compared with the case where the heat insulating material 8 is not provided. That's it.
[0040]
Similarly, when the thermal conductivity of the heat insulating material 8 is 15 W / mK or less and the fixed side mirror plate 6 below the heat insulating material 8 is made of stainless steel, the lower transfer limit of gold is lower than when the heat insulating material 8 is not provided. The mold temperature dropped by more than 10K.
[0041]
In the mold of the present invention, since the heat insulating material 8 has a melting point sufficiently higher than the highest temperature of the stamper 3 and is a metal having ductility and sufficient rigidity as compared with ceramic, the heat insulating material may be damaged during molding. However, the mold strength was sufficient.
[0042]
Next, the surface roughness of the heat insulating material 8 was examined. Since the thickness of the stamper 3 is about 0.3 mm, if the surface of the heat insulating material 8 has scratches or irregularities, it is transferred to the formed substrate. If the maximum surface roughness is 0.4 μm or less, the surface roughness of the molded substrate will not change when molded using a mirror-finished stamper. Not transferred through the stamper 3.
[0043]
In the first embodiment, the case where the stamper 3 is mounted on the fixed mold 1 side has been described. However, the stamper 3 may be mounted on the movable mold 2 or both the fixed mold 1 and the movable mold 2. It may be attached to. Similarly, the heat insulating material 8 may be provided not on the fixed mold 1 side but on the back side of the stamper 3 mounted on the movable mold 2 side.
[0044]
(Embodiment 2)
FIG. 2 shows the configuration of the optical disk substrate mold used in the second embodiment of the present invention. Compared to FIG. 1, in FIG. 2, there is no heat insulating material 8 on the back surface of the stamper 3 and the side opposite to the side where the stamper 3 is mounted, that is, here, on the movable mold 2 side, on the cavity side of the movable mirror plate 14. A heat insulating material 18 is provided on the surface. Since the heat insulating material 18 does not need to be attached or detached, it is welded to the movable mirror panel 14.
[0045]
In this case, it does not directly work on the heat conduction of the stamper 3 involved in the transfer, but the cooling of the molten resin that has flowed into the mold is delayed, so that the time required for the stamper 3 to be warmed by the molten resin is increased, and the transfer is improved. .
[0046]
Also in the second embodiment, the thickness of the heat insulating material 18 needs to be as precise as other mold members. In particular, parallelism is also important for suppressing in-plane variation. However, if it is thinner than 0.5 mm, it is difficult to obtain machining accuracy such as thickness accuracy and parallelism. For this reason, it is necessary to manufacture it thicker than 0.5 mm. In addition, in order to investigate the relationship between the mold temperature and the thickness of the heat-insulating material, the ultimate temperature of the heat-insulating material was calculated by making the mold temperature constant by simulation. Saturates. Therefore, it is sufficient that the thickness of the heat insulating plate is 2 mm or less, preferably 3 mm or less. Therefore, the thickness of the heat insulating material is preferably 0.5 mm or more and 3 mm or less.
[0047]
The heat insulating material 18 was made of a titanium alloy having a thermal conductivity of 10 W / mK and a thickness of 2 mm, and the other members were made of stainless steel. Pits are formed on the stamper, and the stamper has a track pitch of 0.20 μm, a pit pitch of 0.24 μm, a pit length of 80 to 160 nm, and a depth of 65 nm.
[0048]
A substrate having a diameter of 120 mm and a thickness of 1.1 mm was made of a polycarbonate resin. The injection molding was performed at a maximum injection speed of 250 mm / s, a maximum clamping force of 30 tons, and a molding cycle of 10 seconds.
[0049]
The mold temperature at which a sufficient transfer was obtained with a radius of 58 mm was 90 ° C. or higher in a normal case without the heat insulating material 18, and was 75 ° C. or higher in the case with the heat insulating material 18.
[0050]
The resin is heated to a maximum of around 400 ° C. in order to lower the viscosity of the resin flowing into the mold and make it easier to flow. The cavity surface in the mold is heated by the molten resin, and the temperature rises up to around 200 ° C. at the maximum. Therefore, the melting point of the mold member needs to be 400 ° C. or higher in order to stably maintain the shape.
[0051]
In addition, a tensile strength of 300 MPa or more is required to maintain a stable shape that can withstand mechanical shock and mold clamping force.
[0052]
When the mold is made of stainless steel except for the heat insulating material 18, when the thermal conductivity of the heat insulating material 18 is changed by simulation to determine the mold temperature of the lower transfer limit, the lower limit of the transfer temperature when the normal whole is made of stainless steel is obtained. The transfer at a mold temperature 10 K lower than the mold temperature was performed when the thermal conductivity of the heat insulating material 18 was 13 W / mK or less.
[0053]
Although the above-mentioned mold is a case where most of the members are made of stainless steel, the mold can be made of another steel such as carbon steel or an aluminum alloy. Also in this case, the mold temperature at the lower transfer limit is determined by the ratio of the thermal conductivity between the heat insulating material 18 and other members. Therefore, when the mold temperature of the lower transfer limit is obtained by changing the thermal conductivity of the heat insulating material 18, the transfer at the mold temperature lower by 10K or more than the mold temperature of the lower transfer limit when all the members are made of the same material is usually used. In this case, the heat conductivity of the heat insulating material 18 was not more than 2/3 times the heat conductivity of members other than the heat insulating material 18.
[0054]
For example, there is an aluminum alloy other than the heat insulating material 18 and the heat insulating material 18 is nickel, steel, brass, bronze, stainless steel, or the like.
[0055]
Up to now, the case where all the mold members other than the heat insulating material 18 are made of the same material has been handled. However, similarly to the heat insulating material 18, the heat conductivity of the members near the cavity, especially the material of the movable mirror panel 14 whose temperature is controlled. Was dominant. That is, when the thermal conductivity of the heat insulating material 18 is 2/3 times or less of the thermal conductivity of the movable mirror 14 below the heat insulating material 18, the mold temperature at the lower transfer limit is lower than when the heat insulating material 18 is not provided. It has dropped by more than 10K.
[0056]
Similarly, when the thermal conductivity of the heat insulating material 18 is 13 W / mK or less and the movable mirror 14 below the heat insulating material 18 is made of stainless steel, the lower transfer limit of gold is lower than when the heat insulating material 18 is not provided. The mold temperature dropped by more than 10K.
[0057]
In the mold of the present invention, since the heat insulating material 18 has a melting point sufficiently higher than the maximum temperature of the stamper 3 and is a metal having ductility and sufficient rigidity as compared with ceramic, the heat insulating material 18 is damaged during molding. The mold strength was sufficient.
[0058]
Next, regarding the surface state of the heat insulating material 18, if the surface of the heat insulating material 18 has scratches or irregularities, it is transferred to the molded substrate. Therefore, when the side where the heat insulating material 18 is located is the reproduction surface side of the optical disk, the surface roughness of the heat insulating material 18 is preferably 0.1 μm or less in maximum roughness.
[0059]
In the second embodiment, the heat insulating material 18 is used on the cavity surface of the movable mirror member 14. However, when the stamper 3 is mounted on the movable mold 2, the heat insulator 18 may be used on the cavity surface of the fixed mirror disk 6. Here, the movable mirror panel 14 and the heat insulating material 18 are welded, but of course, may be fixed by other means. Further, a mold structure in which the second embodiment is added to the first embodiment may be used.
[0060]
(Embodiment 3)
FIG. 3 shows the configuration of the optical disk substrate mold used in the third embodiment of the present invention. Compared to FIG. 1, in FIG. 3, the heat insulating material 8 is not provided on the back surface of the stamper 3, and the outer peripheral ring is formed by the heat insulating material 19 and the outer peripheral ring 7.
[0061]
Since the heat insulating material 19 does not need to be attached or detached, it is welded to the outer peripheral ring 7. In this case, it does not directly work on the heat conduction of the stamper 3 involved in the transfer, but the cooling of the molten resin that has flowed into the mold is delayed, so that the time required for the stamper 3 to be warmed by the molten resin is increased, and the transfer is improved. .
[0062]
Also in the third embodiment, the thickness of the heat insulating material 19 needs to be as accurate as other mold members. However, if it is thinner than 0.5 mm, it is difficult to obtain machining accuracy such as thickness accuracy and parallelism. For this reason, it is preferable to manufacture it thicker than 0.5 mm. In addition, in order to investigate the relationship between the mold temperature and the thickness of the heat insulating material 19, the ultimate temperature of the heat insulating material 19 was calculated with the mold temperature kept constant by simulation. The temperature was almost saturated.
[0063]
The heat insulating material 19 was made of a titanium alloy having a thermal conductivity of 10 W / mK and a thickness of 2 mm, and the other members were made of stainless steel. The stamper 3 has pits formed therein, and has a track pitch of 0.20 μm, a pit pitch of 0.24 μm, a pit length of 80 to 160 nm, and a depth of 65 nm.
[0064]
A substrate having a diameter of 120 mm and a thickness of 1.1 mm was made of a polycarbonate resin. The injection molding was performed at a maximum injection speed of 250 mm / s, a maximum clamping force of 30 tons, and a molding cycle of 10 seconds. The mold temperature at which a sufficient transfer was obtained with a radius of 58 mm was 90 ° C. or higher in a normal case without the heat insulating material 19 and was 75 ° C. or higher when the heat insulating material 19 was present.
[0065]
The resin is heated to a maximum of around 400 ° C. in order to lower the viscosity of the resin flowing into the mold and make it easier to flow. The cavity surface in the mold is heated by the molten resin, and the temperature rises up to around 200 ° C. at the maximum. Therefore, the melting point of the mold member needs to be 400 ° C. or higher in order to stably maintain the shape.
[0066]
In addition, a tensile strength of 300 MPa or more is required to maintain a stable shape that can withstand mechanical shock and mold clamping force.
[0067]
When the mold is made of stainless steel except for the heat insulating material 19, when the heat conductivity of the heat insulating material 19 is changed by simulation to obtain the mold temperature of the lower transfer limit, the lower limit of the transfer temperature when the normal whole is made of stainless steel is obtained. The transfer at the mold temperature 10 K lower than the mold temperature was performed when the thermal conductivity of the heat insulating material 19 was 13 W / mK or less.
[0068]
Although the above-mentioned mold is a case where most of the members are made of stainless steel, the mold can be made of another steel such as carbon steel or an aluminum alloy. Also in this case, the mold temperature at the lower transfer limit is determined by the ratio of the thermal conductivity between the heat insulating material 19 and other members. Therefore, when the thickness of the heat insulating material 19 is fixed at 2 mm and the thermal conductivity of the heat insulating material 19 is changed to obtain the mold temperature at the lower transfer limit, the mold temperature at the lower transfer limit when all the members are made of the same material is usually used. The transfer at a mold temperature lower by 10 K or more was performed when the thermal conductivity of the heat insulating material 19 was 2/3 or less of the thermal conductivity of the members other than the heat insulating material 19.
[0069]
For example, the material other than the heat insulating material 19 is an aluminum alloy, and the heat insulating material 19 is nickel, steel, brass, bronze, stainless steel, or the like.
[0070]
Until now, all the mold members other than the heat insulating material 19 were made of the same material. However, similarly to the heat insulating material 19, the thermal conductivity of the material in the vicinity of the cavity, particularly the material of the movable mirror 14 whose temperature is controlled is dominant. Met. That is, when the thermal conductivity of the heat insulating material 19 is 2/3 or less of the thermal conductivity of the movable mirror 14 in contact with the heat insulating material 19, the mold temperature at the lower transfer limit is 10K compared to the case where the heat insulating material 19 is not provided. That's it.
[0071]
Similarly, when the thermal conductivity of the heat insulating material 19 is 13 W / mK or less and the movable mirror 14 below the heat insulating material 19 is made of stainless steel, the transfer lower limit is lower than when the heat insulating material 19 is not provided. Of the mold decreased by 10K or more.
[0072]
In the mold of the present embodiment, the heat insulating material 19 has a melting point sufficiently higher than the maximum temperature of the stamper, and is a metal having ductility and sufficient rigidity as compared with ceramic. However, the mold strength was sufficient.
[0073]
Next, the surface state of the heat insulating material 19 is transferred to the molded substrate if the surface of the heat insulating material 19 has scratches, irregularities, or the like. Further, the heat insulating material 19 slides on the movable mirror panel 14. Therefore, the surface roughness of the heat insulating material 19 is preferably 0.4 μm or less in maximum roughness.
[0074]
In the third embodiment of the present invention, the conventional outer ring is constituted by the outer ring 7 and the heat insulator 19, but the outer ring 7 may be constituted by the heat insulator 19 alone.
[0075]
Embodiment 1 and Embodiment 2 may be added to Embodiment 3 of the present invention.
[0076]
In the second embodiment, the heat insulating material 18 is used for the cavity surface of the movable-side mirror surface plate 14. It may be used for the surface, or may be made of a heat insulating material itself.
[0077]
【The invention's effect】
According to the present invention, it is possible to obtain a mold for an optical disk substrate which can transfer a molded substrate even at a low mold temperature and has sufficient strength against impact. Therefore, molding using a high-density stamper becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a configuration of a mold used in a first embodiment of the present invention and a conventional example. FIG. 2 is a schematic cross-sectional view showing a configuration of a second embodiment of the present invention. Schematic sectional view showing the structure of the third embodiment.
REFERENCE SIGNS LIST 1 fixed mold 2 movable mold 3 stamper 4 sprue bush 5 stamper holder 6 fixed side mirror face plate 7 outer ring 8, 18, 19 heat insulating material 9 fixed side base 10 ejector pin 11 cut punch 12 ejector sleeve 13 movable side fixed bush 14 Movable mirror plate 15 Movable base 16 Movable butting ring 17 Fixed butting ring 20 Cavity

Claims (10)

少なくとも一方にスタンパを装着した一対の嵌合する金型であって、
キャビティ表面の少なくとも一部を形成する部材を、熱伝導率がスタンパ以外の他のキャビティ表面を形成する部材の2/3以下、引張強度が300MPa以上、融点が400℃以上の低熱伝導金属部材で形成することを特徴とする光ディスク基板用金型。
A pair of mating dies with a stamper mounted on at least one,
The member forming at least a part of the cavity surface is a low heat conductive metal member having a thermal conductivity of 2/3 or less of a member forming the cavity surface other than the stamper, a tensile strength of 300 MPa or more, and a melting point of 400 ° C. or more. A mold for an optical disc substrate characterized by being formed.
少なくとも一方にスタンパを装着した一対の嵌合する金型であって、
キャビティ表面の少なくとも一部を形成する部材を、熱伝導率が13W/mK以下、引張強度が300MPa以上、融点が400℃以上の低熱伝導金属部材で形成することを特徴とする光ディスク基板用金型。
A pair of mating dies with a stamper mounted on at least one,
A mold for an optical disc substrate, wherein a member forming at least a part of a cavity surface is formed of a low heat conductive metal member having a thermal conductivity of 13 W / mK or less, a tensile strength of 300 MPa or more, and a melting point of 400 ° C. or more. .
少なくとも一方にスタンパを装着した一対の嵌合する金型であって、
前記スタンパと前記スタンパを装着する側の温度調整用媒体を流した鏡面部材との間に、熱伝導率が前記鏡面部材の3/4以下、引張強度が300MPa以上、融点が400℃以上の低熱伝導金属部材を配設することを特徴とする光ディスク基板用金型。
A pair of mating dies with a stamper mounted on at least one,
Low heat having a thermal conductivity of 3 or less of the mirror member, a tensile strength of 300 MPa or more, and a melting point of 400 ° C. or more between the stamper and the mirror member on which the temperature adjusting medium on the side where the stamper is mounted is flown. A mold for an optical disk substrate, comprising a conductive metal member.
少なくとも一方にスタンパを装着した一対の嵌合する金型であって、
スタンパと金型表面との間に熱伝導率が15W/mK以下である低熱伝導金属部材を配設することを特徴とする光ディスク基板用金型。
A pair of mating dies with a stamper mounted on at least one,
A mold for an optical disc substrate, wherein a low heat conductive metal member having a thermal conductivity of 15 W / mK or less is provided between a stamper and a mold surface.
前記低熱伝導金属部材が、チタンを主成分とする材料で構成されている請求項2または請求項4に記載の光ディスク基板用金型。5. The optical disk substrate mold according to claim 2, wherein the low thermal conductive metal member is made of a material containing titanium as a main component. 前記低熱伝導金属部材が、アルミニウムまたはバナジウムを含有する請求項5に記載の光ディスク基板用金型。The optical disk substrate mold according to claim 5, wherein the low thermal conductive metal member contains aluminum or vanadium. 前記低熱伝導金属部材の厚みが、0.5mm以上3mm以下の範囲にする請求項1〜4のいずれかに記載の光ディスク基板用金型。The mold for an optical disk substrate according to any one of claims 1 to 4, wherein the thickness of the low thermal conductive metal member is in a range of 0.5 mm or more and 3 mm or less. 前記低熱伝導金属部材のキャビティ表面の粗さを0.4S以下とする請求項1または2に記載の光ディスク基板用金型。The mold for an optical disk substrate according to claim 1 or 2, wherein the roughness of the cavity surface of the low thermal conductive metal member is 0.4S or less. 前記低熱伝導金属部材のキャビティ側面の粗さを0.1S以下とする請求項8に記載の光ディスク基板用金型。9. The optical disk substrate mold according to claim 8, wherein the roughness of the side surface of the cavity of the low thermal conductive metal member is 0.1 S or less. 前記低熱伝導金属部材のスタンパとの接触面の粗さを0.4S以下とする請求項3または4に記載の光ディスク基板用金型。5. The optical disk substrate mold according to claim 3, wherein a roughness of a contact surface of the low thermal conductive metal member with the stamper is 0.4 S or less.
JP2002365783A 2002-12-17 2002-12-17 Mold for optical disk substrate Withdrawn JP2004195756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365783A JP2004195756A (en) 2002-12-17 2002-12-17 Mold for optical disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365783A JP2004195756A (en) 2002-12-17 2002-12-17 Mold for optical disk substrate

Publications (1)

Publication Number Publication Date
JP2004195756A true JP2004195756A (en) 2004-07-15

Family

ID=32763234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365783A Withdrawn JP2004195756A (en) 2002-12-17 2002-12-17 Mold for optical disk substrate

Country Status (1)

Country Link
JP (1) JP2004195756A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116759A (en) * 2004-10-20 2006-05-11 Nippon Zeon Co Ltd Die for optical material injection-molding, and manufacturing method for optical material
JP2013238208A (en) * 2012-05-17 2013-11-28 Ihi Aerospace Co Ltd Thruster device and spacecraft
KR101840986B1 (en) 2017-11-24 2018-03-22 전춘재 Molding apparatus
KR101840988B1 (en) 2017-12-20 2018-03-22 전춘재 Method for manufacturing molding apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116759A (en) * 2004-10-20 2006-05-11 Nippon Zeon Co Ltd Die for optical material injection-molding, and manufacturing method for optical material
JP2013238208A (en) * 2012-05-17 2013-11-28 Ihi Aerospace Co Ltd Thruster device and spacecraft
US9376987B2 (en) 2012-05-17 2016-06-28 Ihi Aerospace Co., Ltd. Thruster and spacecraft
KR101840986B1 (en) 2017-11-24 2018-03-22 전춘재 Molding apparatus
KR101840988B1 (en) 2017-12-20 2018-03-22 전춘재 Method for manufacturing molding apparatus

Similar Documents

Publication Publication Date Title
JP4975021B2 (en) Thermoplastic resin mold, cavity mold, and method of manufacturing the cavity mold
JP4181017B2 (en) Mold for molding
JP4197183B2 (en) Disk substrate molding die and disk substrate manufacturing method
JP4223537B2 (en) Mold for molding disk substrate, mirror plate thereof, method for molding disk substrate, and disk substrate
JP2004195756A (en) Mold for optical disk substrate
JP5650641B2 (en) Disc substrate molding apparatus, disc substrate molding method, and disc substrate molding die
US20020067688A1 (en) Optical disc and mold for manufacturing the optical disc
JP4789818B2 (en) Mold for molding optical product and method for molding optical product
JP3550461B2 (en) Plastic molding method and optical disk manufacturing method
JPH1186352A (en) Method for molidng thin disk substrate and metal mold for molding the same
JP2009113423A (en) Mold for injection molding
JP4097954B2 (en) Optical element, optical element molding die, and optical element molding method
JP2008183765A5 (en)
JPH11115013A (en) Plastic injection molding method
JP4320179B2 (en) Injection molding method and mold for thermoplastic member having no weld line, especially spectacle lens
JPH03146318A (en) Molding mold
JPS58177327A (en) Apparatus for molding disklike recording medium
JP2009241273A (en) Molding mold
JPH09207176A (en) Mold assembly for injection compression molding and injection compression molding method
US20080138510A1 (en) Optical disk mold and method of forming the same
JP2000094480A (en) Molding die and injection molding machine for disk-shaped recording medium
JPH11291292A (en) Molding die
JP2007280582A (en) Metallic mold for manufacturing optical recording medium substrate
JP2002347093A (en) Mold for injection molding
JPH0531777A (en) Method of molding optical disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061130