JP4097954B2 - Optical element, optical element molding die, and optical element molding method - Google Patents

Optical element, optical element molding die, and optical element molding method Download PDF

Info

Publication number
JP4097954B2
JP4097954B2 JP2002048424A JP2002048424A JP4097954B2 JP 4097954 B2 JP4097954 B2 JP 4097954B2 JP 2002048424 A JP2002048424 A JP 2002048424A JP 2002048424 A JP2002048424 A JP 2002048424A JP 4097954 B2 JP4097954 B2 JP 4097954B2
Authority
JP
Japan
Prior art keywords
optical element
gate
thickness
optical
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002048424A
Other languages
Japanese (ja)
Other versions
JP2003245946A (en
Inventor
利昭 高野
淳 村田
貴志 森本
晃久 山田
紀雄 桐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002048424A priority Critical patent/JP4097954B2/en
Publication of JP2003245946A publication Critical patent/JP2003245946A/en
Application granted granted Critical
Publication of JP4097954B2 publication Critical patent/JP4097954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学機器に使用されるレンズ、プリズム、ミラー等の高精度光学素子、及び該光学素子を形成するための光学素子成形型と該光学素子の成形方法に関する。
【0002】
【従来の技術】
従来の光学素子の成形方法としては、例えば、特開平5−177725号公報に記載のように、ペレットを加熱混錬溶融し、光学素子の光学有効部を成形するためのインサート部材を備えた成形型のキャビティ内に射出充填して得る射出成形法が知られている。
【0003】
以下に従来の成形方法及び得られる光学素子について図を用いて簡単に説明する。
【0004】
図4は、射出成形方法に用いられる射出成形機の概略断面図である。図4において、7はホッパ、8は成形材料、9は射出シリンダ、10は加熱シリンダ、11はスクリュ、12はノズル、13は固定ダイプレート、14は移動ダイプレート、15は型締めシリンダ、5は光学素子成形型(固定側)、6は光学素子成形型(可動側)、4はスプル、3はランナ、2はゲート、1は光学素子である。
【0005】
図3は前述の射出成形方法で得られた成形品の概略図であり、図3(A)は上面図、図3(B)は図3(A)の3B−3B線での矢視断面図である。図中、4はスプル、3はランナ、2はゲート、1は光学素子である。
【0006】
ホッパ7に成形材料8を投入する。成形材料8はスクリュ11の回転に伴い、ノズル12の方向へと移動する。成形材料8は、スクリュ11及び加熱シリンダ10により加熱溶融混錬される。そして、ノズル12から光学素子成形型5、6内のスプルー4、ランナ3、及びゲート2を順に通過し、所望する光学素子形状のキャビティ内に射出され充填される。光学素子成形型5,6は所定の温度、例えば、成形材料8の荷重たわみ温度近傍に設定されている。光学素子1が取り出し可能な状態に冷却されると、光学素子成形型6を開き、ゲートカットを行い、スプル4、ランナー3、及びゲート2から切り離し、光学素子1を取り出す。
【0007】
【発明が解決しようとする課題】
前述した従来の光学素子の成形型、成形方法、及び光学素子では、射出成形条件をいかにコントロールしても、ひけ、ジェッティング、ウエルドなどの発生を十分に抑えることが困難であった。
【0008】
また、得られる光学素子が良好な転写性、すなわち、軸対称性に優れた光学特性を有していると、光学素子を光学機器に組み付ける際に、光学素子の組み付け方向を考慮しなくて済むので、作業効率が向上する。従って、光学特性の軸対称性が優れた光学素子を安定して高い歩留まりで得ることが望まれる。
【0009】
本発明の目的は、ひけ、ジェッティング、ウエルドなどの発生を抑えながら、良好な転写性、すなわち、軸対称性に優れた光学特性を有した光学素子を安定して高い歩留まりで得ることができる光学素子の成形型、成形方法、及び光学素子を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の事項よりなる。
【0011】
本発明の光学素子は、成形材料を加熱混錬溶融し、ゲートを介してキャビティ内に射出充填して得られた両面凸形状の光学素子であって、光学素子の外径をφG、光学素子の光学有効面径をφLY、光学素子の中心厚みをLT、光学素子のコバ厚みをLK、光学素子の外周に接続されるゲートの円周方向の幅をGH、ゲートの厚みをGT、光学素子の中心厚みLTとコバ厚みLKとの比をx(=LT/LK)、ゲートの厚みGTと光学素子のコバ厚みLKとの比をy(=GT/LK)としたとき、下記式(1)〜式(3)を満足することを特徴とする。
【0012】
0.8>φLY/φG ・・・(1)
0.1<GH/φG<0.35 ・・・(2)
y≧0.0977x+0.47 ・・・(3)
【0013】
また、本発明の光学素子成形型は、加熱混錬溶融された成形樹脂を射出充填して両面凸形状の光学素子を成形するためのキャビティと、前記キャビティの一部を構成し、前記光学素子の光学有効面を形成するためのインサート部材と、前記キャビティ内に前記成形樹脂を導入するためのゲートとを備えた光学素子成形型であって、成形される前記光学素子の外径をφG、光学素子の光学有効面径をφLY、光学素子の中心厚みをLT、光学素子のコバ厚みをLK、光学素子の外周に接続される前記ゲートの円周方向の幅をGH、ゲートの厚みをGT、光学素子の中心厚みLTとコバ厚みLKとの比をx(=LT/LK)、ゲートの厚みGTと光学素子のコバ厚みLKとの比をy(=GT/LK)としたとき、下記式(1)〜式(3)を満足することを特徴とする。
【0014】
0.8>φLY/φG ・・・(1)
0.1<GH/φG<0.35 ・・・(2)
y≧0.0977x+0.47 ・・・(3)
【0015】
また、本発明の光学素子を成形方法は、加熱混錬溶融された成形樹脂を光学素子成形型のゲートを介してキャビティ内に射出充填して両面凸形状の光学素子を成形する方法であって、前記光学素子成形型は、前記光学素子の光学有効面を形成するためのインサート部材を備え、成形される前記光学素子の外径をφG、光学素子の光学有効面径をφLY、光学素子の中心厚みをLT、光学素子のコバ厚みをLK、光学素子の外周に接続される前記ゲートの円周方向の幅をGH、ゲートの厚みをGT、光学素子の中心厚みLTとコバ厚みLKとの比をx(=LT/LK)、ゲートの厚みGTと光学素子のコバ厚みLKとの比をy(=GT/LK)としたとき、下記式(1)〜式(3)を満足することを特徴とする。
【0016】
0.8>φLY/φG ・・・(1)
0.1<GH/φG<0.35 ・・・(2)
y≧0.0977x+0.47 ・・・(3)
【0017】
上記の本発明の光学素子、光学素子成形型及び光学素子成形方法によれば、ひけ、ジェッティング、ウエルドなどの発生を抑えながら、ゲートが光学有効面に影響を与えることがなく良好な転写性(軸対称性)を有する両面凸形状の光学素子を安定して得ることが可能となる。
【0018】
【発明の実施の形態】
本発明者らは、光学素子を成形型内で成形する際に、その外周端に成形材料の充填や保圧のために設けられるゲートの形状の違いにより、得られる光学素子の光学性能が異なることに着目し、本発明を完成した。
【0019】
成形して得られる光学素子が所望する光学性能を具備しないという問題は、成形材料の充填工程で成形材料がスムーズに充填ができない、あるいは、冷却工程で成形材料の適正な保圧ができないなどにより、光学素子の光学有効面を形成するインサート部材の表面形状が光学素子に良好に転写できない、あるいは、無理な成形条件を選択せざるを得ないために、ゲート近傍で生じる応力歪みなどが光学有効面に影響するなどの現象が生じ、これらの結果、光軸に対して軸対称性を損なった光学性能すなわち大きな非点収差を備えた光学素子となってしまうということに起因している。
【0020】
このことから、本発明は、ゲートが光学有効面に影響しない、すなわち、光学素子の光学性能に影響を与えないように、光学素子の外径と光学素子の光学有効面との間隔を制御する、あるいは、光学素子の外周端に設けるゲートの形状を制御するという技術的手段を用いることにより、上記の問題を解決した。
【0021】
以下、本発明の光学素子と光学素子成形型と光学素子成形方法の実施の形態を具体的な実施例とともに、図面及び表を参照しながら説明する。
【0022】
図1は、本発明の一実施形態に係る光学素子及びゲートの形状を示した概略図であり、図1(A)は上面図、図1(B)は図1(A)の1B−1B線での矢視断面図である。図2は、光学素子成形型の形状を示した概略図であり、図2(A)は概略断面図、図2(B)はパーティング面からみた可動側成形型の正面図、図2(C)はパーティング面からみた固定側成形型の正面図である。これらの図において、1は光学素子、1aは光学素子1の周囲に形成されたコバ、2は光学素子1のコバ1aに接続されたゲート、3はゲート2と接続されたランナー、4は周囲にランナー3を放射状に備えるスプルー、5は固定側光学素子成形型、6は可動側光学素子成形型、5aは固定側光学素子成形型5に組み込まれたインサート部材、6aは可動側光学素子成形型6に組み込まれたインサート部材、18は固定側光学素子成形型5と可動側光学素子成形型6とが突き合わされるパーティング面である。
【0023】
実施例として、図1に示す光学素子1の各部の形状、すなわち、外径φG(光学素子1の最外径)、中心厚LT(光学素子1の光軸方向の厚み)、コバ厚LK(コバ1aの光軸方向の厚み)、光学素子の第1面(1面)の光学有効面径φLY1、第2面(R2面)の光学有効面径φLY2、第1面の加工径φLK1、第2面の加工径φLK2などと、ゲート2の形状、すなわち、ゲート2の幅GH(光学素子1の円周方向の寸法)とゲート2の厚みGT(光学素子の光軸方向の寸法)とを変化させた光学素子成形型を製作し、その光学素子成形型で光学素子を成形して、光学特性を評価確認した。ここで言う光学有効面とは、光学素子に要求される光学特性を生み出すために最小限必要とされる光学作用面のことで、光線の経路になる。
【0024】
射出成形条件は、それぞれの光学素子の形状、ゲートの形状などが異なることから、その都度、条件検討を行い、最適な条件、すなわち、もっとも良好な光学特性が得られる成形条件を抽出していった。
【0025】
より具体的に、光学素子成形型、光学素子、光学素子成形方法について記述する。
【0026】
実施例において、光学素子1の材料として、ポリオレフィン樹脂(ガラス転移点Tg=150℃、熱変形温度温度Tt=125℃)を用いた。光学素子成形型5、6はプリハードン鋼、ステンレス鋼(S55C、HPM(例えば、日立金属株式会社の商標)、NAK(大同特殊鋼株式会社の商標))などを用いて構成し、光学素子の光学有効面を形成するインサート部材5a、6aは、超硬合金を材料として製作した。言うまでもないが、本発明において光学素子成形型5、6は前述の材料以外でも射出成形に使用可能な材料であれば何ら問題はない。また、インサート部材5a、6aの材料として、光学素子としての表面性を得られる材料であればステンレス鋼(例えばSTAVAX(ウッデホルム社の商標))などを基材として、その表面に例えば無電解ニッケルメッキを施し加工したものをインサート部材として用いても問題はない。ただし、強度を考えた場合、超硬合金を基材として用いるのが好ましい。また、離型性の向上や、型の酸化、腐食防止のために表面に保護膜などを施しても問題はない。
【0027】
得ようとする光学素子の主な形状寸法の一例は、外径φG=φ4.8mm、第1面(R1面)有効面径φLY1=φ3.6mm、中心厚LT=1.7mm、コバ厚LK=0.412mmで、両面凸形状を有し、所望の光学仕様で光学特性が得られるように設計し、製作した。また、ゲートの形状の一例は、ゲート幅GH=1.0mm、ゲート厚みGT=0.4mmで、光学素子の外周部に連接配置されるように成形型を製作、組立した。
【0028】
次に前述の光学素子成形型を用いた成形工程を述べる。成形は図4に示した従来の射出成形機と同様の構成の射出成形機を用いて行なった。まず、ホッパ7に成形材料8を投入した。成形材料8はスクリュ11の回転に伴い、ノズル12の方向へと移動する。成形材料8は、スクリュ11及び加熱シリンダ10により、所望の温度に加熱溶融混錬される。ここでは、加熱シリンダの設定温度を260℃に設定した。そして、同じく260℃に加熱されたノズル12から光学素子成形型5、6内のスプルー4、ランナ3、及びゲート2を順に通過し、所望する光学素子形状のキャビティ内に射出し充填した。その後、射出シリンダにて保圧した。光学素子成形型5,6は所定の一定温度(ここでは、130℃に設定した)に保たれており、成形材料は、キャビティ内への充填が始まると同時に、冷却されていく。適正な、射出条件、充填条件、保圧条件、光学素子成形型の温度の条件を選択しなければ、所望の光学素子の光学特性は得られない。光学素子1が取り出し可能な状態に達した後、光学素子成形型6を開き、ゲートカットを行い、スプル4、ランナー3、及びゲート2から切り離し、光学素子1を取り出した。
【0029】
上記の成形条件は一例であり、成形材料、光学素子の形状、ゲートの形状に応じて、各種成形条件を最適化する必要があることは言うまでもない。
【0030】
得られた光学素子の光学特性の評価は、干渉計を用いて透過波面収差(測定波長632.8nm)を測定して非点収差を求め、これにより光学素子の有効面の転写性および軸対称性を評価した。非点収差は小さければ小さいほど望ましいが、ここでは、非点収差が20mλ以下のものを良好な光学特性であるとした。それを超える非点収差を有した光学素子では、有効面の光学特性に回転軸対称性が乏しく、光学機器に搭載する際、非点収差の方向を把握し、方向を決めて光学機器に搭載しなくては、光学機器として所望の光学特性が得られない。
【0031】
前述の光学素子は、非点収差は8mλであり、非常に良好な光学特性を有していた。
【0032】
光学素子形状とゲート形状とを種々に変更して同様に光学素子成形型を製作し、最適化した成形条件により光学素子を得た。表1,表2に各サンプルの光学素子形状とゲート形状を、表3に得られた光学素子の光学特性(非点収差)と良否評価結果を示す。
【0033】
【表1】

Figure 0004097954
【0034】
【表2】
Figure 0004097954
【0035】
【表3】
Figure 0004097954
【0036】
表3において、「非点収差」の欄に「−」があるのは、成形条件を種々に変更してみても、上記の光学特性の評価を実施できる程度の光学素子を得ることができなかったことを示している。
【0037】
表1〜表3から分かるように、本発明の目的とする、回転軸対称性に優れた光学特性を備えた光学素子を得るためには以下の3つの条件を満足する必要がある。
【0038】
第1に、ゲート2を設けた光学素子1の外径φGと光学素子1の光学有効径φLY(ここで言う光学有効径φLYは、光学素子の第1面(R1面)光学有効径φLY1と第2面(R2面)光学有効径φLY2とのうちの何れか大きい方を意味する)との比φLY/φGが、φLY/φG<0.8を満足するように、光学素子1の光学有効径φLYと外径φGとを設定することが必要である。比φLY/φGが上記の範囲を満足しないとき、如何にゲート2の形状や射出成形条件を変更しても、ゲート2部分での応力歪みなどの影響が光学素子1の光学有効面に及び、非点収差が大きな光学素子になってしまう。
【0039】
第2に、光学素子1の外径φGとゲート2の幅GHとの比GH/φGが、0.1<GH/φG<0.35を満足することが必要である。比GH/φGがこの関係を満たさない場合、如何に射出成形条件を変更しても、転写性が光軸に対して非対称になってしまう。言い換えれば、軸非対称な光学素子が必要な場合、ゲート幅GHを前述の関係を満たさない関係にすればよいと言える。
【0040】
第3に、光学素子1の偏肉比やコバに対するゲート2の厚み形状を適正な寸法にする必要がある。即ち、光学素子1の中心厚みをLT、光学素子1のコバ厚みをLK、ゲート2の厚みをGTとし、光学素子1の中心厚みLTとコバ厚みLKとの比をx=LT/LK、ゲート2の厚みGTと光学素子1のコバ厚みLKとの比をy=GT/LKとしたとき、y≧0.0977x+0.47である関係を有することが必要である。
【0041】
前述した実験結果から明らかなように、光学素子形状及び光学素子成形型が上記の3つの条件を満たしたとき、光学素子は良好な非点収差を備える。
【0042】
即ち、光学素子及び成形型(ゲート)が上記の3つの条件を同時に備える場合には良好な光学特性を有した光学素子を得ることが出来るので、光学素子及び光学素子成形型を試行錯誤して製作する必要がなくなり、光学素子成形型及び光学素子をより安価に提供できる。
【0043】
従って、上記の3つの条件を満たすように光学素子及び成形型を設計し、実際の射出成形において、ひけ、ジェッティング、ウエルドなどが発生しないように射出成形条件をコントロールすることにより、軸対称性に優れた光学特性を有した光学素子を安定して高い歩留まりで得ることができる。
【0044】
尚、上記の実施例においては、成形材料として、ポリオレフィン樹脂を用いたが、これに限らず、その他の成形材料を用いても同様であることはいうまでもない。
【0045】
また、成形における温度条件、圧力条件は、成形材料のガラス転移点、荷重たわみ温度等の特性により異なることは言うまでもない。
【0046】
【発明の効果】
以上のように、本発明によれば、ひけ、ジェッティング、ウエルドなどの発生を抑えながら、ゲートが光学有効面に影響を与えることがなく良好な転写性(軸対称性)を有する両面凸形状の光学素子を安定して得ることが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る光学素子及びゲートの形状を示した概略図であり、図1(A)は上面図、図1(B)は図1(A)の1B−1B線での矢視断面図である。
【図2】 本発明の一実施形態に係る光学素子成形型の形状を示した概略図であり、図2(A)は概略断面図、図2(B)はパーティング面からみた可動側成形型の正面図、図2(C)はパーティング面からみた固定側成形型の正面図である。
【図3】 本発明及び従来の射出成形方法で得られる成形品の概略図であり、図3(A)は上面図、図3(B)は図3(A)の3B−3B線での矢視断面図である。
【図4】 光学素子の成形方法に用いられる射出成形機の概略断面図である。
【符号の説明】
1 光学素子
1a コバ
2 ゲート
3 ランナー
4 スプルー
5 固定側光学素子成形型
5a インサート部材
6 可動側光学素子成形型
6a インサート部材
7 ホッパ
8 成形材料
9 射出シリンダ
10 加熱シリンダ
11 スクリュ
12 ノズル
13 固定ダイプレート
14 移動ダイプレート
15 型締めシリンダ
18 パーティング面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-precision optical elements such as lenses, prisms, and mirrors used in optical equipment, an optical element molding die for forming the optical elements, and a method for molding the optical elements.
[0002]
[Prior art]
As a conventional method for molding an optical element, for example, as described in JP-A-5-177725, molding including an insert member for heating and kneading and melting pellets to mold an optically effective portion of the optical element An injection molding method obtained by injection filling into a cavity of a mold is known.
[0003]
The conventional molding method and the obtained optical element will be briefly described below with reference to the drawings.
[0004]
FIG. 4 is a schematic cross-sectional view of an injection molding machine used in the injection molding method. In FIG. 4, 7 is a hopper, 8 is a molding material, 9 is an injection cylinder, 10 is a heating cylinder, 11 is a screw, 12 is a nozzle, 13 is a fixed die plate, 14 is a moving die plate, 15 is a clamping cylinder, 5 Is an optical element mold (fixed side), 6 is an optical element mold (movable side), 4 is a sprue, 3 is a runner, 2 is a gate, and 1 is an optical element.
[0005]
FIG. 3 is a schematic view of a molded product obtained by the above-described injection molding method, FIG. 3 (A) is a top view, and FIG. 3 (B) is a cross-sectional view taken along line 3B-3B in FIG. 3 (A). FIG. In the figure, 4 is a sprue, 3 is a runner, 2 is a gate, and 1 is an optical element.
[0006]
The molding material 8 is put into the hopper 7. The molding material 8 moves in the direction of the nozzle 12 as the screw 11 rotates. The molding material 8 is heated and melted and kneaded by the screw 11 and the heating cylinder 10. Then, the nozzle 12 sequentially passes through the sprue 4, the runner 3, and the gate 2 in the optical element molds 5 and 6, and is injected and filled into a cavity having a desired optical element shape. The optical element molds 5 and 6 are set at a predetermined temperature, for example, near the deflection temperature under load of the molding material 8. When the optical element 1 is cooled to a state where it can be taken out, the optical element mold 6 is opened, gate cutting is performed, the optical element 1 is separated from the sprue 4, the runner 3, and the gate 2, and the optical element 1 is taken out.
[0007]
[Problems to be solved by the invention]
With the conventional optical element mold, molding method, and optical element described above, it is difficult to sufficiently suppress the occurrence of sink marks, jetting, welds, etc., no matter how the injection molding conditions are controlled.
[0008]
Further, when the obtained optical element has good transferability, that is, optical characteristics excellent in axial symmetry, it is not necessary to consider the assembly direction of the optical element when assembling the optical element in an optical device. So work efficiency is improved. Accordingly, it is desirable to obtain an optical element having excellent axial symmetry of optical characteristics with high yield.
[0009]
An object of the present invention is to stably obtain an optical element having excellent transfer properties, that is, optical properties excellent in axial symmetry, with high yield while suppressing the occurrence of sink marks, jetting, welds and the like. An object is to provide a mold for an optical element, a molding method, and an optical element.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises the following items.
[0011]
An optical element of the present invention is a double-sided convex optical element obtained by kneading and melting a molding material and injection-filling it into a cavity through a gate, the outer diameter of the optical element being φG, The optical effective surface diameter is φLY, the center thickness of the optical element is LT, the edge thickness of the optical element is LK, the circumferential width of the gate connected to the outer periphery of the optical element is GH, the gate thickness is GT, and the optical element When the ratio of the center thickness LT to the edge thickness LK is x (= LT / LK), and the ratio of the gate thickness GT to the edge thickness LK of the optical element is y (= GT / LK), the following formula (1) ) To Expression (3) are satisfied.
[0012]
0.8> φLY / φG (1)
0.1 <GH / φG <0.35 (2)
y ≧ 0.0977x + 0.47 (3)
[0013]
The optical element mold according to the present invention comprises a cavity for injection-filling a heat-kneaded and melted molding resin to form a double-sided convex optical element, and a part of the cavity. An optical element molding die comprising an insert member for forming an optically effective surface of the optical element and a gate for introducing the molding resin into the cavity, wherein the outer diameter of the optical element to be molded is φG, The optical effective surface diameter of the optical element is φLY, the center thickness of the optical element is LT, the edge thickness of the optical element is LK, the circumferential width of the gate connected to the outer periphery of the optical element is GH, and the gate thickness is GT When the ratio between the center thickness LT of the optical element LT and the edge thickness LK is x (= LT / LK) and the ratio between the gate thickness GT and the edge thickness LK of the optical element is y (= GT / LK), Satisfy Formula (1) to Formula (3) It is characterized by that.
[0014]
0.8> φLY / φG (1)
0.1 <GH / φG <0.35 (2)
y ≧ 0.0977x + 0.47 (3)
[0015]
The optical element molding method of the present invention is a method for molding a double-sided convex optical element by injection-filling a mold resin melted by heating and kneading into a cavity through a gate of an optical element molding die. The optical element mold includes an insert member for forming an optically effective surface of the optical element, the outer diameter of the optical element to be molded is φG, the optically effective surface diameter of the optical element is φLY, The center thickness is LT, the edge thickness of the optical element is LK, the circumferential width of the gate connected to the outer periphery of the optical element is GH, the gate thickness is GT, the center thickness LT of the optical element and the edge thickness LK When the ratio is x (= LT / LK) and the ratio between the gate thickness GT and the edge thickness LK of the optical element is y (= GT / LK), the following expressions (1) to (3) are satisfied. It is characterized by.
[0016]
0.8> φLY / φG (1)
0.1 <GH / φG <0.35 (2)
y ≧ 0.0977x + 0.47 (3)
[0017]
According to the above-described optical element, optical element molding die, and optical element molding method of the present invention, the gate does not affect the optically effective surface while suppressing the occurrence of sink marks, jetting, welds, etc. It becomes possible to stably obtain a double-sided convex optical element having (axial symmetry).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
When the optical element is molded in a mold, the present inventors differ in the optical performance of the obtained optical element due to the difference in the shape of the gate provided for filling or holding pressure of the molding material at the outer peripheral end of the optical element. In particular, the present invention has been completed.
[0019]
The problem that the optical element obtained by molding does not have the desired optical performance is that the molding material cannot be filled smoothly in the molding material filling process, or the molding material cannot be properly held in the cooling process. Because the surface shape of the insert member that forms the optically effective surface of the optical element cannot be transferred to the optical element satisfactorily or forced molding conditions must be selected, the stress strain generated near the gate is optically effective. Phenomena such as affecting the surface occur, and as a result, the optical performance is impaired in the axial symmetry with respect to the optical axis, that is, the optical element has a large astigmatism.
[0020]
Therefore, the present invention controls the distance between the outer diameter of the optical element and the optical effective surface of the optical element so that the gate does not affect the optical effective surface, that is, does not affect the optical performance of the optical element. Alternatively, the above problem was solved by using a technical means for controlling the shape of the gate provided at the outer peripheral edge of the optical element.
[0021]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an optical element, an optical element molding die, and an optical element molding method according to the present invention will be described below together with specific examples with reference to the drawings and tables.
[0022]
1A and 1B are schematic views showing shapes of an optical element and a gate according to an embodiment of the present invention, in which FIG. 1A is a top view, and FIG. 1B is 1B-1B of FIG. It is arrow sectional drawing in a line. 2A and 2B are schematic views showing the shape of the optical element molding die, FIG. 2A is a schematic sectional view, FIG. 2B is a front view of the movable-side molding die as seen from the parting surface, and FIG. C) is a front view of the fixed-side mold as seen from the parting surface. In these figures, 1 is an optical element, 1a is an edge formed around the optical element 1, 2 is a gate connected to the edge 1a of the optical element 1, 3 is a runner connected to the gate 2, and 4 is the surroundings. Sprue provided with runners 3 radially, 5 is a fixed side optical element molding die, 6 is a movable side optical element molding die, 5a is an insert member incorporated in the fixed side optical element molding die 5, and 6a is a movable side optical element molding. An insert member 18 incorporated in the mold 6 is a parting surface on which the fixed-side optical element mold 5 and the movable-side optical element mold 6 are abutted.
[0023]
As an example, the shape of each part of the optical element 1 shown in FIG. 1, that is, the outer diameter φG (the outermost diameter of the optical element 1), the center thickness LT (the thickness of the optical element 1 in the optical axis direction), the edge thickness LK ( Thickness of the edge 1a in the optical axis direction), the optical effective surface diameter φLY1 of the first surface (one surface) of the optical element, the optical effective surface diameter φLY2 of the second surface (R2 surface), the processing diameter φLK1 of the first surface, The processing diameter φLK2 of the two surfaces, the shape of the gate 2, that is, the width GH of the gate 2 (dimension in the circumferential direction of the optical element 1) and the thickness GT of the gate 2 (dimension in the optical axis direction of the optical element) The changed optical element mold was manufactured, the optical element was molded with the optical element mold, and the optical characteristics were evaluated and confirmed. The optically effective surface referred to here is an optical action surface that is minimally required to produce optical characteristics required for the optical element, and serves as a path of light rays.
[0024]
Since the injection molding conditions differ in the shape of each optical element, the shape of the gate, etc., the conditions are examined each time, and the optimal conditions, i.e., molding conditions that provide the best optical characteristics are extracted. It was.
[0025]
More specifically, an optical element mold, an optical element, and an optical element molding method will be described.
[0026]
In the examples, polyolefin resin (glass transition point Tg = 150 ° C., heat distortion temperature Tt = 125 ° C.) was used as the material of the optical element 1. The optical element molds 5 and 6 are made of pre-hardened steel, stainless steel (S55C, HPM (for example, trademark of Hitachi Metals, Ltd.), NAK (trademark of Daido Steel), etc. The insert members 5a and 6a forming the effective surface were made of cemented carbide. Needless to say, in the present invention, there is no problem as long as the optical element molds 5 and 6 are materials that can be used for injection molding other than the above-described materials. Further, as a material of the insert members 5a and 6a, if the material can obtain surface properties as an optical element, stainless steel (for example, STAVAX (trademark of Woodeholm)) or the like is used as a base material, and the surface thereof is electroless nickel-plated, for example. There is no problem even if the processed material is used as an insert member. However, when the strength is considered, it is preferable to use a cemented carbide as the base material. Further, there is no problem even if a protective film or the like is provided on the surface in order to improve releasability, to prevent mold oxidation or corrosion.
[0027]
An example of main dimensions of the optical element to be obtained is as follows: outer diameter φG = φ4.8 mm, first surface (R1 surface) effective surface diameter φLY1 = φ3.6 mm, center thickness LT = 1.7 mm, edge thickness LK = 0.412 mm, has a convex shape on both sides, and was designed and manufactured so as to obtain optical characteristics with desired optical specifications. An example of the shape of the gate was a gate width GH = 1.0 mm and a gate thickness GT = 0.4 mm, and a mold was manufactured and assembled so as to be connected to the outer peripheral portion of the optical element.
[0028]
Next, a molding process using the above-described optical element mold will be described. Molding was performed using an injection molding machine having the same configuration as the conventional injection molding machine shown in FIG. First, the molding material 8 was put into the hopper 7. The molding material 8 moves in the direction of the nozzle 12 as the screw 11 rotates. The molding material 8 is heated, melted and kneaded to a desired temperature by the screw 11 and the heating cylinder 10. Here, the set temperature of the heating cylinder was set to 260 ° C. Then, the nozzle 12 heated to 260 ° C. was passed through the sprue 4, the runner 3, and the gate 2 in the optical element molds 5 and 6 in that order, and injected into a cavity having a desired optical element shape. Thereafter, the pressure was maintained with an injection cylinder. The optical element molds 5 and 6 are maintained at a predetermined constant temperature (here, set to 130 ° C.), and the molding material is cooled as soon as filling into the cavity starts. Unless proper injection conditions, filling conditions, pressure holding conditions, and temperature conditions of the optical element mold are selected, desired optical characteristics of the optical element cannot be obtained. After reaching the state where the optical element 1 can be taken out, the optical element mold 6 was opened, gate cutting was performed, and the optical element 1 was taken out from the sprue 4, the runner 3, and the gate 2.
[0029]
The above molding conditions are merely examples, and it goes without saying that various molding conditions need to be optimized according to the molding material, the shape of the optical element, and the shape of the gate.
[0030]
The optical characteristics of the obtained optical element are evaluated by measuring the transmitted wavefront aberration (measurement wavelength 632.8 nm) using an interferometer to obtain astigmatism, thereby transferring the effective surface of the optical element and its axial symmetry. Sex was evaluated. The smaller the astigmatism, the better. However, in this case, the one having astigmatism of 20 mλ or less is regarded as a good optical characteristic. Optical elements with astigmatism exceeding that range have poor rotational axis symmetry in the optical characteristics of the effective surface, and when mounted on optical equipment, the direction of astigmatism is determined, the direction is determined, and the optical equipment is installed. Otherwise, the desired optical characteristics cannot be obtained as an optical instrument.
[0031]
The aforementioned optical element had astigmatism of 8 mλ and had very good optical characteristics.
[0032]
The optical element shape and the gate shape were variously changed to produce an optical element mold in the same manner, and an optical element was obtained under optimized molding conditions. Tables 1 and 2 show the optical element shape and gate shape of each sample, and Table 3 shows the optical characteristics (astigmatism) and pass / fail evaluation results of the optical elements obtained.
[0033]
[Table 1]
Figure 0004097954
[0034]
[Table 2]
Figure 0004097954
[0035]
[Table 3]
Figure 0004097954
[0036]
In Table 3, “-” is present in the column of “astigmatism” because an optical element capable of evaluating the above optical characteristics cannot be obtained even when various molding conditions are changed. It shows that.
[0037]
As can be seen from Tables 1 to 3, it is necessary to satisfy the following three conditions in order to obtain an optical element having an optical characteristic excellent in rotational axis symmetry, which is an object of the present invention.
[0038]
First, the outer diameter φG of the optical element 1 provided with the gate 2 and the optical effective diameter φLY of the optical element 1 (the optical effective diameter φLY referred to here is the first surface (R1 surface) of the optical element and the optical effective diameter φLY1). The optical effectiveness of the optical element 1 is such that the ratio φLY / φG with respect to the second surface (R2 surface) means the larger one of the optical effective diameters φLY2 and φLY / φG <0.8. It is necessary to set the diameter φLY and the outer diameter φG. When the ratio φLY / φG does not satisfy the above range, no matter how the shape of the gate 2 and the injection molding conditions are changed, the influence of the stress strain at the gate 2 portion affects the optically effective surface of the optical element 1. This results in an optical element with large astigmatism.
[0039]
Second, the ratio GH / φG between the outer diameter φG of the optical element 1 and the width GH of the gate 2 needs to satisfy 0.1 <GH / φG <0.35. If the ratio GH / φG does not satisfy this relationship, the transferability becomes asymmetric with respect to the optical axis no matter how the injection molding conditions are changed. In other words, when an axially asymmetric optical element is required, it can be said that the gate width GH should be a relationship that does not satisfy the above-described relationship.
[0040]
Thirdly, the thickness ratio of the optical element 1 and the thickness of the gate 2 with respect to the edge need to be set to appropriate dimensions. That is, the center thickness of the optical element 1 is LT, the edge thickness of the optical element 1 is LK, the thickness of the gate 2 is GT, and the ratio of the center thickness LT to the edge thickness LK of the optical element 1 is x = LT / LK, gate. When the ratio between the thickness GT of 2 and the edge thickness LK of the optical element 1 is y = GT / LK, it is necessary that y ≧ 0.0977x + 0.47.
[0041]
As is clear from the experimental results described above, when the optical element shape and the optical element mold satisfy the above three conditions, the optical element has good astigmatism.
[0042]
That is, when the optical element and the mold (gate) have the above three conditions at the same time, an optical element having good optical characteristics can be obtained. There is no need to manufacture the optical element molding die and the optical element at a lower cost.
[0043]
Therefore, by designing the optical element and the mold so as to satisfy the above three conditions and controlling the injection molding conditions so that sinks, jetting, welds, etc. do not occur in actual injection molding, axial symmetry is achieved. Thus, an optical element having excellent optical characteristics can be obtained stably with a high yield.
[0044]
In the above embodiment, the polyolefin resin is used as the molding material. However, the present invention is not limited to this, and it goes without saying that the same applies when other molding materials are used.
[0045]
Needless to say, temperature conditions and pressure conditions in molding differ depending on characteristics such as a glass transition point of the molding material and a deflection temperature under load.
[0046]
【The invention's effect】
As described above, according to the present invention, the double-sided convex shape having good transferability (axial symmetry) without affecting the optically effective surface while suppressing the occurrence of sink marks, jetting, and welds. It is possible to stably obtain the optical element.
[Brief description of the drawings]
1A and 1B are schematic views showing shapes of an optical element and a gate according to an embodiment of the present invention, in which FIG. 1A is a top view and FIG. 1B is 1B-1B in FIG. It is arrow sectional drawing in a line.
FIGS. 2A and 2B are schematic views showing the shape of an optical element molding die according to an embodiment of the present invention, FIG. 2A is a schematic cross-sectional view, and FIG. 2B is a movable side molding viewed from a parting surface. FIG. 2 (C) is a front view of the fixed-side mold as seen from the parting surface.
3 is a schematic view of a molded product obtained by the present invention and a conventional injection molding method, FIG. 3 (A) is a top view, and FIG. 3 (B) is a line 3B-3B in FIG. 3 (A). It is arrow sectional drawing.
FIG. 4 is a schematic cross-sectional view of an injection molding machine used in a method for molding an optical element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical element 1a Edge 2 Gate 3 Runner 4 Sprue 5 Fixed side optical element shaping | molding die 5a Insert member 6 Movable side optical element shaping | molding die 6a Insert member 7 Hopper 8 Molding material 9 Injection cylinder 10 Heating cylinder 11 Screw 12 Nozzle 13 Fixed die plate 14 Moving die plate 15 Clamping cylinder 18 Parting surface

Claims (3)

成形材料を加熱混錬溶融し、ゲートを介してキャビティ内に射出充填して得られた両面凸形状の光学素子であって、
光学素子の外径をφG、光学素子の光学有効面径をφLY、光学素子の中心厚みをLT、光学素子のコバ厚みをLK、光学素子の外周に接続されるゲートの円周方向の幅をGH、ゲートの厚みをGT、光学素子の中心厚みLTとコバ厚みLKとの比をx(=LT/LK)、ゲートの厚みGTと光学素子のコバ厚みLKとの比をy(=GT/LK)としたとき、下記式(1)〜式(3)を満足することを特徴とする両面凸形状の光学素子。
0.8>φLY/φG ・・・(1)
0.1<GH/φG<0.35 ・・・(2)
y≧0.0977x+0.47 ・・・(3)
A double-sided convex optical element obtained by kneading and melting a molding material and injection-filling it into a cavity through a gate,
The outer diameter of the optical element is φG, the optical effective surface diameter of the optical element is φLY, the center thickness of the optical element is LT, the edge thickness of the optical element is LK, and the circumferential width of the gate connected to the outer periphery of the optical element is GH, the thickness of the gate is GT, the ratio of the center thickness LT of the optical element to the edge thickness LK is x (= LT / LK), and the ratio of the gate thickness GT to the edge thickness LK of the optical element is y (= GT / LK), a double-sided convex optical element satisfying the following formulas (1) to (3):
0.8> φLY / φG (1)
0.1 <GH / φG <0.35 (2)
y ≧ 0.0977x + 0.47 (3)
加熱混錬溶融された成形樹脂を射出充填して両面凸形状の光学素子を成形するためのキャビティと、
前記キャビティの一部を構成し、前記光学素子の光学有効面を形成するためのインサート部材と、
前記キャビティ内に前記成形樹脂を導入するためのゲートとを備えた光学素子成形型であって、
成形される前記光学素子の外径をφG、光学素子の光学有効面径をφLY、光学素子の中心厚みをLT、光学素子のコバ厚みをLK、光学素子の外周に接続される前記ゲートの円周方向の幅をGH、ゲートの厚みをGT、光学素子の中心厚みLTとコバ厚みLKとの比をx(=LT/LK)、ゲートの厚みGTと光学素子のコバ厚みLKとの比をy(=GT/LK)としたとき、下記式(1)〜式(3)を満足することを特徴とする光学素子成形型。
0.8>φLY/φG ・・・(1)
0.1<GH/φG<0.35 ・・・(2)
y≧0.0977x+0.47 ・・・(3)
A cavity for injection-filling a heat-kneaded and melted molding resin to mold a double-sided convex optical element;
An insert member for forming a part of the cavity and forming an optically effective surface of the optical element;
An optical element molding die comprising a gate for introducing the molding resin into the cavity,
The outer diameter of the optical element to be molded is φG, the optical effective surface diameter of the optical element is φLY, the center thickness of the optical element is LT, the edge thickness of the optical element is LK, and the circle of the gate connected to the outer periphery of the optical element The circumferential width is GH, the gate thickness is GT, the ratio of the center thickness LT of the optical element to the edge thickness LK is x (= LT / LK), and the ratio of the gate thickness GT to the edge thickness LK of the optical element is An optical element molding die characterized by satisfying the following formulas (1) to (3) when y (= GT / LK).
0.8> φLY / φG (1)
0.1 <GH / φG <0.35 (2)
y ≧ 0.0977x + 0.47 (3)
加熱混錬溶融された成形樹脂を光学素子成形型のゲートを介してキャビティ内に射出充填して両面凸形状の光学素子を成形する方法であって、 前記光学素子成形型は、前記光学素子の光学有効面を形成するためのインサート部材を備え、
成形される前記光学素子の外径をφG、光学素子の光学有効面径をφLY、光学素子の中心厚みをLT、光学素子のコバ厚みをLK、光学素子の外周に接続される前記ゲートの円周方向の幅をGH、ゲートの厚みをGT、光学素子の中心厚みLTとコバ厚みLKとの比をx(=LT/LK)、ゲートの厚みGTと光学素子のコバ厚みLKとの比をy(=GT/LK)としたとき、下記式(1)〜式(3)を満足することを特徴とする両面凸形状の光学素子の成形方法。
0.8>φLY/φG ・・・(1)
0.1<GH/φG<0.35 ・・・(2)
y≧0.0977x+0.47 ・・・(3)
A method of molding a double-sided convex optical element by injection-filling a mold resin melted by heating and kneading into a cavity through a gate of an optical element molding die, wherein the optical element molding die comprises: An insert member for forming an optically effective surface;
The outer diameter of the optical element to be molded is φG, the optical effective surface diameter of the optical element is φLY, the center thickness of the optical element is LT, the edge thickness of the optical element is LK, and the circle of the gate connected to the outer periphery of the optical element The circumferential width is GH, the gate thickness is GT, the ratio of the center thickness LT of the optical element to the edge thickness LK is x (= LT / LK), and the ratio of the gate thickness GT to the edge thickness LK of the optical element is A molding method for a double-sided convex optical element, wherein y (= GT / LK) satisfies the following formulas (1) to (3):
0.8> φLY / φG (1)
0.1 <GH / φG <0.35 (2)
y ≧ 0.0977x + 0.47 (3)
JP2002048424A 2002-02-25 2002-02-25 Optical element, optical element molding die, and optical element molding method Expired - Lifetime JP4097954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048424A JP4097954B2 (en) 2002-02-25 2002-02-25 Optical element, optical element molding die, and optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048424A JP4097954B2 (en) 2002-02-25 2002-02-25 Optical element, optical element molding die, and optical element molding method

Publications (2)

Publication Number Publication Date
JP2003245946A JP2003245946A (en) 2003-09-02
JP4097954B2 true JP4097954B2 (en) 2008-06-11

Family

ID=28661229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048424A Expired - Lifetime JP4097954B2 (en) 2002-02-25 2002-02-25 Optical element, optical element molding die, and optical element molding method

Country Status (1)

Country Link
JP (1) JP4097954B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208330A (en) * 2004-01-22 2005-08-04 Nippon Sheet Glass Co Ltd Formed optical component with holder and manufacturing method therefor
WO2006013744A1 (en) 2004-08-02 2006-02-09 Konica Minolta Opto, Inc. Manufacturing apparatus for optical part
WO2006046437A1 (en) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. Optical component production system
KR101271772B1 (en) * 2004-10-29 2013-06-07 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Optical component production system
JP2006150902A (en) * 2004-12-01 2006-06-15 Enplas Corp Optical element, optical element molding die and manufacturing method of optical element
DE102006050382A1 (en) * 2006-10-25 2008-04-30 Bayer Materialscience Ag High-pressure injection molding process for the production of optical components

Also Published As

Publication number Publication date
JP2003245946A (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP4730307B2 (en) Plastic lens manufacturing equipment
JP4097954B2 (en) Optical element, optical element molding die, and optical element molding method
JP2006281765A (en) Method and apparatus for improving surface accuracy of optical element
JP2007022905A (en) Optical element device manufacturing method, optical element device and forming apparatus
KR101271772B1 (en) Optical component production system
US7854879B2 (en) Optical element molding die, and optical element manufacturing method
US10022926B2 (en) Injection molding method and injection molding die
JP2004318055A (en) Optical element, optical element molding die, and method for molding optical element
JPS6054822A (en) Manufacture of plastic convex lens
JP2005161849A (en) Mold for molding optical element, optical element molding method and optical element
JP5103768B2 (en) Optical lens injection mold
JP5103772B2 (en) Optical lens injection mold
JP2008257261A (en) Optical device, optical device molding die, and method for molding optical device
JP2008230005A (en) Plastic lens molding method and lens preform
KR20110133181A (en) Sprue bush for injection mold
JP2004195756A (en) Mold for optical disk substrate
JPH03230920A (en) Plastic lens, manufacture of plastic lens and die for molding plastic lens
JPH03193322A (en) Mold for plastic lens
JP2008087407A (en) Injection-molding method
CN215242505U (en) Multi-insert high-precision injection mold
JP2005305797A (en) Optical element molding mold, optical element molding method, and optical element
JP2004291341A5 (en)
JPH07266391A (en) Manufacture and manufacturing device of plastic lens
CN206568485U (en) Preventing covering upside down demoulding device
JPH07323085A (en) Outer cylinder of syringe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Ref document number: 4097954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

EXPY Cancellation because of completion of term