JP2005161849A - Mold for molding optical element, optical element molding method and optical element - Google Patents

Mold for molding optical element, optical element molding method and optical element Download PDF

Info

Publication number
JP2005161849A
JP2005161849A JP2004328742A JP2004328742A JP2005161849A JP 2005161849 A JP2005161849 A JP 2005161849A JP 2004328742 A JP2004328742 A JP 2004328742A JP 2004328742 A JP2004328742 A JP 2004328742A JP 2005161849 A JP2005161849 A JP 2005161849A
Authority
JP
Japan
Prior art keywords
optical
optical element
molding
cavities
optical elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004328742A
Other languages
Japanese (ja)
Inventor
Takahisa Kondo
隆久 近藤
Toshiaki Takano
利昭 高野
Atsushi Murata
淳 村田
Yoshiyuki Shimizu
義之 清水
Tomoaki Shimazaki
智章 嶋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004328742A priority Critical patent/JP2005161849A/en
Publication of JP2005161849A publication Critical patent/JP2005161849A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0022Multi-cavity moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C2045/2683Plurality of independent mould cavities in a single mould
    • B29C2045/2687Plurality of independent mould cavities in a single mould controlling the filling thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that though the conventional simultaneous molding of optical elements such as a plurality of lenses by an injection molding method is suitable for mass production because their molded optical elements have the same optical characteristics, but in the case of the limited production of diversified elements, for example, when a required optical characteristic is composed of a group lens, a plurality of expensive molds for molding such elements are needed. <P>SOLUTION: In a plurality of cavities of the mold for molding the optical element, the shape different optical formation faces are formed to simultaneously mold the optical elements having at least two different optical characteristics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えばデジタルビデオディスクプレヤー等の光学機器に使用されるレンズ、プリズム、ミラー等の高精度な光学素子の成形型、成形方法及び光学素子に関するものである。   The present invention relates to a molding die, a molding method, and an optical element for high-precision optical elements such as lenses, prisms, and mirrors used in optical equipment such as a digital video disk player.

従来、光学機器に使用されるレンズ等の光学素子の成形方法としては、特許文献1に開示されているように、光学素子の成形材料である樹脂ペレットを加熱混錬溶融し、これを成形型に形成されたキャビティ内に射出充填して成形する射出成形方法がある。   Conventionally, as a method for molding an optical element such as a lens used in an optical device, as disclosed in Patent Document 1, resin pellets, which are molding materials for the optical element, are heated and kneaded and melted, and this is molded. There is an injection molding method in which molding is performed by injection filling into a cavity formed in the above.

以下に一般的な従来の成形型及び成形方法で得られる光学素子について、図7、図8を用いて説明する。   An optical element obtained by a general conventional mold and molding method will be described below with reference to FIGS.

図7は、複数個の光学素子を射出成形方法により同時に成形する射出成形機の概略断面図であり、15はホッパ、16は樹脂ペレットからなる成形材料、17は射出シリンダ、18は加熱シリンダ、19はスクリュ、20はノズル、21は固定ダイプレート、22は移動ダイプレート、23は型締めシリンダ、5は固定側の光学素子成形型、10は可動側の光学素子成形型、4はスプルー、3はランナー、2はゲート、1は成形中の光学素子である。   FIG. 7 is a schematic cross-sectional view of an injection molding machine that simultaneously molds a plurality of optical elements by an injection molding method. 15 is a hopper, 16 is a molding material made of resin pellets, 17 is an injection cylinder, 18 is a heating cylinder, 19 is a screw, 20 is a nozzle, 21 is a fixed die plate, 22 is a movable die plate, 23 is a clamping cylinder, 5 is a fixed-side optical element mold, 10 is a movable-side optical element mold, 4 is a sprue, 3 is a runner, 2 is a gate, and 1 is an optical element being molded.

まず、ホッパ15に成形材料16を投入し、この成形材料16はスクリュ19の回転に伴い、ノズル20の方向へと移動する。成形材料16はスクリュ19及び加熱シリンダ18により加熱混錬溶融される。そして、ノズル20から、スプルー4、ランナー3、及びゲート2を通過して、各々に必要な光学形成面が形成された光学素子成形型5、10のキャビティ内に射出され、充填される。光学素子成形型5、10は所定の温度、例えば成形材料16の荷重たわみ温度近傍に設定されており、そして光学素子1が成形されて冷却され、取り出し可能な状態になると、光学素子成形型10を開き、ゲートカットを行い、スプルー4、ランナー3、ゲート2から切り離し、成形された光学素子1を取り出す。   First, the molding material 16 is put into the hopper 15, and the molding material 16 moves in the direction of the nozzle 20 as the screw 19 rotates. The molding material 16 is heated and kneaded and melted by the screw 19 and the heating cylinder 18. Then, the nozzle 20 passes through the sprue 4, the runner 3, and the gate 2, and is injected and filled into the cavities of the optical element molds 5 and 10 on which the necessary optical forming surfaces are formed. The optical element molds 5, 10 are set to a predetermined temperature, for example, near the deflection temperature under load of the molding material 16, and when the optical element 1 is molded, cooled, and ready for removal, the optical element mold 10 Is opened, gate cut is performed, the sprue 4, the runner 3, and the gate 2 are separated, and the molded optical element 1 is taken out.

図8(a)は前述の射出成形方法で同一の光学特性をもつ6つの光学素子が成形された成形品30の概略上面図であり、図8(b)は同概略断面図である。4はスプルー、3は前記スプルー4から放射状に延びたランナー、2は各ランナー3の先端のゲート、1は各ゲート2の先端に放射状に成形された光学素子である。
特開平5−177725号公報
FIG. 8A is a schematic top view of a molded product 30 in which six optical elements having the same optical characteristics are molded by the above-described injection molding method, and FIG. 8B is a schematic cross-sectional view thereof. 4 is a sprue, 3 is a runner extending radially from the sprue 4, 2 is a gate at the tip of each runner 3, and 1 is an optical element formed radially at the tip of each gate 2.
JP-A-5-177725

前述した従来の固定側及び可動側の光学素子成形型には、複数個のインサート型が取付けられ、かつこの各インサート型によるキャビティの形状と光学形成面は同一形状であるため、射出成形方法によって得られた光学素子は同じ光学特性のもの、すなわち1種類の光学素子であることから、これは大量生産には適している。しかしながら少量他品種生産や例えば光学機器に要求される光学特性として複数個のレンズを組み合わせた組レンズで構成する必要がある場合には、それぞれ光学素子毎の成形型を用意する必要があり、非常に高価な光学素子成形型を複数種用意することは非経済的である。また光学素子毎の成形型とその射出成形条件の設定や、各光学素子毎に成形型の切り替え等の手間や時間を必要とするため、設備の稼働率や作業効率が悪く、その結果、得られた光学素子が非常に高価なものとなる。   A plurality of insert molds are attached to the above-mentioned conventional fixed side and movable side optical element molding dies, and the shape of the cavity and the optical forming surface of each insert mold are the same, so that the injection molding method is used. Since the obtained optical element has the same optical characteristics, that is, one type of optical element, it is suitable for mass production. However, when it is necessary to construct a small amount of other varieties or a combination lens that combines a plurality of lenses as optical characteristics required for optical equipment, for example, it is necessary to prepare a mold for each optical element. It is uneconomical to prepare a plurality of expensive optical element molds. In addition, it takes time and effort to set the mold for each optical element and its injection molding conditions, and to switch the mold for each optical element, resulting in poor equipment availability and work efficiency. The obtained optical element becomes very expensive.

本発明は、少なくとも2種類の異なる光学特性を持つ光学素子を同時に成形することにより、上記のような従来の課題を解決するものである。   The present invention solves the above-described conventional problems by simultaneously molding at least two types of optical elements having different optical characteristics.

この本発明によれば、高価な成形型の数が削減され、射出成形条件の設定回数も低減されるため、少量他品種生産や光学特性の異なる複数個のレンズを組み合わせた組レンズの成形等に最適であり、そして設備の稼働率や作業効率が向上し、光学素子を安価に提供できる利点がある。   According to the present invention, the number of expensive molding dies is reduced and the number of injection molding conditions set is also reduced. Therefore, the production of a combination lens combining a plurality of lenses with a small amount of other types of production and optical characteristics, etc. In addition, there is an advantage that the operating rate and work efficiency of the equipment are improved, and the optical element can be provided at a low cost.

以下に説明する各実施の形態における射出成形機については、図7を参照して説明した複数個の光学素子を射出成形方法により同時に成形する射出成形機と同種のものであるため、これを適用し、その説明は省略する。また、光学素子成形型及び成形品等の各構成部分について、従来例と同一構成部分については同一符号が附してあり、その重複部分の説明は省略する。   The injection molding machine in each embodiment described below is the same type as the injection molding machine that simultaneously molds a plurality of optical elements described with reference to FIG. The description is omitted. Moreover, about each component part, such as an optical element shaping | molding die and a molded product, the same code | symbol is attached | subjected about the same component part as a prior art example, and description of the duplication part is abbreviate | omitted.

(実施の形態1)
まず、本発明の実施の形態1について、図1及び図2を用いて説明する。
(Embodiment 1)
First, Embodiment 1 of the present invention will be described with reference to FIGS.

図1は本発明の実施の形態1における光学素子成形型の概略断面図であり、図2は実施の形態1における射出成形方法で成形された成形品30の概略上面図である。   FIG. 1 is a schematic sectional view of an optical element molding die according to Embodiment 1 of the present invention, and FIG. 2 is a schematic top view of a molded product 30 molded by the injection molding method according to Embodiment 1.

図1に示す光学素子成形型5、10は、プリハードン鋼、ステンレス鋼(S55C、HPM、NAK)等を材料とし、この成形型5、10に形成された凹部等に取付けられ、所望の光学面を有する光学素子を形成するための光学形成面を有するインサート型(図示せず)は、超硬合金を材料として製作したものを用いた。言うまでもないが、光学素子成形型5、10は前述の材料以外でも射出成形に使用可能なものであればよい。また、インサート型の材料は所望の光学特性を有する光学素子の成形が可能であればステンレス鋼(STAVAX)等を基材として、その表面に例えば無電解ニッケルメッキを施したものを加工してインサート型として用いてもよい。ただし、強度を考えた場合、超硬合金を基材として用いるのが好ましい。また、離型性の向上や、型の酸化、腐食防止のために表面に保護膜等を施してもよい。   The optical element forming molds 5 and 10 shown in FIG. 1 are made of pre-hardened steel, stainless steel (S55C, HPM, NAK) or the like, and are attached to recesses or the like formed in the forming molds 5 and 10 to obtain a desired optical surface. As the insert mold (not shown) having an optical forming surface for forming an optical element having the above, a cemented carbide material was used. Needless to say, the optical element molds 5 and 10 may be made of any material other than the materials described above as long as it can be used for injection molding. In addition, the insert type material is made by processing, for example, an electroless nickel-plated surface using stainless steel (STAVAX) as a base material if an optical element having desired optical characteristics can be molded. It may be used as a mold. However, when the strength is considered, it is preferable to use a cemented carbide as the base material. Further, a protective film or the like may be applied to the surface in order to improve releasability and prevent mold oxidation and corrosion.

本発明は、光学特性が異なる少なくとも2種類の光学素子を同時成形により成形することにあり、図2はその成形品30の例を示している。ここでは3つの光学素子1aは同じ光学特性を有するグループであり、また他の3つの光学素子1bはそれぞれ同じ光学特性を有するグループである。ただし、前記光学素子1aのグループは光学素子1bのグループよりも小径で体積が異なり、かつ光学素子1bのグループとは異なる光学特性を有している。   The present invention is to mold at least two types of optical elements having different optical characteristics by simultaneous molding, and FIG. 2 shows an example of the molded product 30. Here, the three optical elements 1a are groups having the same optical characteristics, and the other three optical elements 1b are groups having the same optical characteristics. However, the group of optical elements 1a has a smaller diameter and a different volume than the group of optical elements 1b, and has different optical characteristics from the group of optical elements 1b.

なお、上記の成形品30において、2a、2bはゲート、3a、3bはランナー、4はスプルーであり、これらは光学素子1a、1bの成形のために光学素子成形型5,10に射出される成形材料の通路によりスプルー4を中心に一体成形される。   In the molded product 30, 2a and 2b are gates, 3a and 3b are runners, and 4 is a sprue. These are injected into the optical element molds 5 and 10 for molding the optical elements 1a and 1b. The sprue 4 is integrally molded around the passage of the molding material.

前記成形品30を成形する光学素子成形型5、10に備えられた複数の対をなすインサート型によって形成されるキャビティは大径の光学素子1bを成形する大径のキャビティ31と、それよりも小径の光学素子1aを成形する小径のキャビティ32が構成され、そしてこれらの光学形成面によって光学素子1a、1bに所望の光学面が形成されるように設計製作されており、その2種類のキャビティ31と32の容積差は2:1である。   A cavity formed by a plurality of pairs of insert molds provided in the optical element molds 5 and 10 for molding the molded article 30 is a large-diameter cavity 31 for molding the large-diameter optical element 1b, and more than that. A small-diameter cavity 32 for molding the small-diameter optical element 1a is constructed, and these optical forming surfaces are designed and manufactured to form desired optical surfaces on the optical elements 1a and 1b. The volume difference between 31 and 32 is 2: 1.

この実施の形態1における光学素子成形型5、10では、上述のように一回の成形工程で6個の光学素子が成形されるようにキャビティ31と32が放射状に配置され、かつキャビティバランスをとるために容積の異なる(種類が異なる)キャビティを交互に配置している。すなわち、体積が異なる光学素子1aを成形するキャビティ32と光学素子1bを成形するキャビティ31を交互に配置する理由は、光学素子成形型5、10において、成形材料をキャビティに充填する時に生じる成形材料量差によってその光学素子成形型5、10に伝わる温度差のバランスを取り、また成形材料の異なる充填力で高められたキャビティ内圧で光学素子成形型5、10を押し開こうとする力のバランスを取り、また、光学素子成形型5、10の型閉め力の均一化を図ることによって安定に体積が異なる光学素子が成形されるようにするためである。本実施の形態に示す金型を使用し、容積の異なるキャビティを交互に配置せずに成形した場合の光学素子は、一部の光学素子が所望の特性が得られなかったが、容積が異なるキャビティを交互に配置して成形して得られた光学素子は、すべての光学素子の性能が良好であった。   In the optical element molds 5 and 10 according to the first embodiment, the cavities 31 and 32 are radially arranged so that six optical elements are molded in one molding process as described above, and the cavity balance is adjusted. For this purpose, cavities having different volumes (different types) are alternately arranged. That is, the reason why the cavities 32 for molding the optical elements 1a having different volumes and the cavities 31 for molding the optical elements 1b are alternately arranged is that the molding material generated when the molding material is filled into the cavities in the optical element molds 5 and 10. Balance of the temperature difference transmitted to the optical element molds 5 and 10 due to the amount difference, and balance of the force to open the optical element molds 5 and 10 with the cavity internal pressure increased by the different filling force of the molding material In addition, the optical element forming molds 5 and 10 are made uniform in the mold closing force so that optical elements having different volumes can be stably formed. The optical elements in the case where the mold shown in this embodiment is used and molding is performed without alternately arranging cavities having different volumes, some optical elements did not obtain desired characteristics, but the volumes are different. The optical elements obtained by alternately forming the cavities were excellent in performance of all the optical elements.

上記光学素子成形型5、10において、キャビティの容積が異なる2種類の光学素子の同時成形において、成形材料の射出条件、充填条件、保圧条件、成形型温度条件等の射出成形条件に加え、異なる容積のキャビティのバランスをとるためにキャビティの小さい光学素子1aのランナー3aの形状が大きくなるように光学素子成形型5のランナー形成部5aを光学素子1bのランナー形成部5bよりも図1に示すように左右方向に幅広に形成し、各光学素子1aに対する各光学素子1bのキャビティの容積差をランナ−形成部5aの容積増大により吸収するようにしている。したがって、ランナー形成部5aは容積差吸収部を兼ねている。   In the optical element molds 5 and 10, in the simultaneous molding of two types of optical elements having different cavity volumes, in addition to the injection molding conditions such as the injection conditions, filling conditions, holding pressure conditions, molding mold temperature conditions of the molding material, In order to balance the cavities of different volumes, the runner forming portion 5a of the optical element mold 5 is made to be larger than the runner forming portion 5b of the optical element 1b so that the shape of the runner 3a of the optical element 1a having a small cavity is larger. As shown in the figure, it is formed wide in the left-right direction so that the volume difference of the cavity of each optical element 1b with respect to each optical element 1a is absorbed by the increase in the volume of the runner forming portion 5a. Therefore, the runner forming part 5a also serves as a volume difference absorbing part.

このように、各光学素子1aと1bを成形するキャビティの容積差をランナー形成部の容積を変える手段を用い、これにより成形される2種類の光学素子の光学特性がもっとも良好で、安定した成形が行われる最適な条件を得る。   As described above, the means for changing the volume of the runner forming portion is used to change the volume difference between the cavities for molding the optical elements 1a and 1b, and the optical characteristics of the two types of optical elements molded thereby are the best and stable molding. Get the optimal conditions under which is done.

次に、上記の光学素子成形型を用いて2種類の光学素子の成形について説明する。射出成形機は図7に示す従来の一般的な成形機を使用し、これに組み込まれた光学素子成形型5、10のキャビティ31、32内に加熱溶融混錬された成形材料を射出充填する。成形材料としては、ポリオレフィン系樹脂(ガラス転移点Tg=150℃、熱変形温度Tt=125℃)を用いた。   Next, molding of two types of optical elements using the above-described optical element mold will be described. As the injection molding machine, a conventional general molding machine shown in FIG. 7 is used, and the melted and kneaded molding material is injected and filled into the cavities 31 and 32 of the optical element molding dies 5 and 10 incorporated therein. . As the molding material, a polyolefin-based resin (glass transition point Tg = 150 ° C., heat distortion temperature Tt = 125 ° C.) was used.

そして、射出成形条件(射出条件、充填条件、保圧条件、成形型温度条件等)として最適と思われる条件にて各光学素子を成形した結果、その光学素子の光学特性、すなわち各収差は下記表1のようになった。なお収差の単位はmλであり、光学特性の評価方法は、干渉計を用いて透過波面収差(測定波長λ=632.8nm)の測定を行い、代表的な光学特性である非点収差、コマ収差、球面収差を確認した。各収差は小さければ小さいほど望ましいが、ここでは各収差の規格範囲を35mλ以下とし、良好な光学特性であるとした。   As a result of molding each optical element under conditions that seem to be optimal as injection molding conditions (injection conditions, filling conditions, holding pressure conditions, mold temperature conditions, etc.), the optical characteristics of the optical elements, that is, the respective aberrations are as follows: It became like Table 1. The unit of aberration is mλ, and the optical property evaluation method is to measure the transmitted wavefront aberration (measurement wavelength λ = 632.8 nm) using an interferometer, and to obtain representative optical properties such as astigmatism and coma. Aberration and spherical aberration were confirmed. Each aberration is preferably as small as possible, but here, the standard range of each aberration is set to 35 mλ or less, and good optical characteristics are assumed.

下記の表1において、3つの光学素子1aはそれぞれ1a−1、1a−2、1a−3で示し、また3つの光学素子1bはそれぞれ1b−1、1b−2、1b−3で示している。   In Table 1 below, the three optical elements 1a are indicated by 1a-1, 1a-2, and 1a-3, respectively, and the three optical elements 1b are indicated by 1b-1, 1b-2, and 1b-3, respectively. .

Figure 2005161849
Figure 2005161849

上記表1に示したように、2種類の異なる光学特性からなる光学素子1a、1bの全ての収差が規格を満たすことができた。   As shown in Table 1, all the aberrations of the optical elements 1a and 1b having two different optical characteristics were able to satisfy the standard.

なお、高性能の光学特性を必要とする場合は、可能な限りキャビティ容積差が少ない光学特性の異なる光学素子を同時成形するようにすればよい。   When high performance optical characteristics are required, optical elements having different optical characteristics with as little cavity volume difference as possible may be simultaneously molded.

上記の例では、ランナー形成部5aが容積差吸収部を兼ねたものであるが、ゲート2部に容積差吸収部を設けてもよく、これは成形材料の通路であればよい。   In the above example, the runner forming portion 5a also serves as a volume difference absorbing portion. However, the gate 2 portion may be provided with a volume difference absorbing portion as long as it is a passage for a molding material.

ここで、上記実施の形態1の比較例として、ランナー形成部5aに容積吸収部を設けることなく、すなわちゲート2a、2b、ランナー3a、3b等をそれぞれにおいて同一形状として上記と同じ2種類のキャビティにて成形した光学素子1a、1bの光学特性、すなわち各収差を下記表2に示す。この比較例における光学特性の評価方法は、上記の実施形態1におけるものと同様である。   Here, as a comparative example of the first embodiment, the runner forming portion 5a is not provided with a volume absorbing portion, that is, the gates 2a, 2b, the runners 3a, 3b, etc. are respectively formed in the same shape and the same two types of cavities as described above. Table 2 below shows the optical characteristics of the optical elements 1a and 1b molded by the above method, that is, the respective aberrations. The optical property evaluation method in this comparative example is the same as that in the first embodiment.

なお、この表2においても3つの光学素子1aはそれぞれ1a−1、1a−2、1a−3で示し、また3つの光学素子1bはそれぞれ1b−1、1b−2、1b−3で示している。   In Table 2, the three optical elements 1a are indicated by 1a-1, 1a-2, and 1a-3, respectively, and the three optical elements 1b are indicated by 1b-1, 1b-2, and 1b-3, respectively. Yes.

Figure 2005161849
Figure 2005161849

上記表2から明らかなように、光学素子1aのグループは全ての収差について規格を満たしているが、光学素子1bのグループは全ての収差について規格を満たしてはいなかった。   As apparent from Table 2 above, the group of optical elements 1a satisfies the standards for all aberrations, but the group of optical elements 1b does not meet the standards for all aberrations.

なお、この比較例においては、光学素子成形型の各ゲート部に成形材料の流入を止めるストッパーを設けることにより、このストッパーを操作して同じ光学特性の光学素子のみ成形、または必要な光学素子のみを選択して成形することができるものである。   In this comparative example, by providing a stopper for stopping the inflow of the molding material at each gate portion of the optical element molding die, only the optical element having the same optical characteristics is molded by operating this stopper, or only the necessary optical element. Can be selected and molded.

(実施の形態2)
次に、実施の形態2について、図3及び図4を参照して説明する。この実施の形態2において、実施の形態1と同一構成部分には同一符号を附し、実施の形態1と異なる点について説明する。
(Embodiment 2)
Next, a second embodiment will be described with reference to FIGS. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be described.

まず、図4に示す成形品30において、各光学素子1aの周囲にその各光学素子1aの光学特性に影響しない延在部33が一体に設けられている。この延在部33は図3に示すようにキャビティ31の容積に対するキャビティ32の容積差を吸収するために、光学形成面に影響しない部分のキャビティ32の径を大きくした容積差吸収部32aによって成形された部分である。   First, in the molded product 30 shown in FIG. 4, an extending portion 33 that does not affect the optical characteristics of each optical element 1a is integrally provided around each optical element 1a. As shown in FIG. 3, the extending portion 33 is formed by a volume difference absorbing portion 32a in which the diameter of the cavity 32 in the portion that does not affect the optical forming surface is increased in order to absorb the volume difference of the cavity 32 with respect to the volume of the cavity 31. It is the part which was done.

上記のように、キャビティ32に容積差吸収部32aを設けることによっても上記の実施の形態1と同様に光学特性の異なる光学素子1a、1bを同時に成形することができるものである。   As described above, by providing the volume difference absorbing portion 32a in the cavity 32, the optical elements 1a and 1b having different optical characteristics can be simultaneously molded as in the first embodiment.

なお、光学素子1aに形成される延在部33はその光学特性に何ら影響するものではないことから、そのままの状態で光学機器に搭載されてもよく、また必要に応じて切り離してもよい。   In addition, since the extension part 33 formed in the optical element 1a does not affect the optical characteristic at all, it may be mounted on the optical apparatus as it is, or may be separated as necessary.

(実施の形態3)
この実施の形態3について、図5の成形品30を参照して説明する。なお、ここの説明では上記実施の形態1と同一構成部分には同一符号を附し、異なる部分について説明する。
(Embodiment 3)
This Embodiment 3 is demonstrated with reference to the molded article 30 of FIG. In this description, the same components as those in the first embodiment are denoted by the same reference numerals, and different portions will be described.

図5において、実施の形態1と同様に、3つの光学素子1aは同一の光学特性を有し、また3つの光学素子1bは前記光学素子1aと異なる光学特性を有する。そして前記光学素子1aのグループと光学素子1bのグループはそれぞれ光学素子1a、1b、ゲート2a、2b、ランナー3a、3bともに実質的に同一の形状と体積からなる。また、光学素子成形型5、10においてはキャビティ31、32、ゲート2、ランナー3はそれぞれ実質的に同一の形状と容積に形成されている。   In FIG. 5, like the first embodiment, the three optical elements 1a have the same optical characteristics, and the three optical elements 1b have optical characteristics different from those of the optical element 1a. The optical element 1a group and the optical element 1b group have substantially the same shape and volume for the optical elements 1a and 1b, the gates 2a and 2b, and the runners 3a and 3b, respectively. In the optical element molds 5 and 10, the cavities 31, 32, the gate 2, and the runner 3 are formed in substantially the same shape and volume.

前記光学素子1aのグループのキャビティ31は光学形成面の形状は同一であり、また光学素子1bのグループのキャビティ32は光学形成面の形状も同一である。しかし光学素子1aのグループのキャビティ31は光学形成面の形状と、光学素子1bのグループのキャビティ32の光学形成面の形状は異なる。   The cavities 31 of the group of optical elements 1a have the same shape of the optical formation surface, and the cavities 32 of the group of optical elements 1b have the same shape of the optical formation surface. However, the shape of the optical formation surface of the cavity 31 of the group of optical elements 1a is different from the shape of the optical formation surface of the cavity 32 of the group of optical elements 1b.

このような構成によっても、光学特性の異なる光学素子を同時に成形することができるものであり、高価な成形型の数が削減され、射出成形条件の設定回数も低減されるため、少量他品種生産や光学特性の異なる複数個のレンズを組み合わせた組レンズの成形等に最適である。   Even with such a configuration, optical elements having different optical characteristics can be molded simultaneously, the number of expensive molds is reduced, and the number of injection molding conditions set is also reduced. It is most suitable for molding a combination lens that combines a plurality of lenses having different optical characteristics.

なお、上記の各実施の形態では光学特性が異なる2種類の光学素子を各複数個成形するものについて説明したが、これらの数は上記の数に限られるものではない。   In each of the above-described embodiments, two types of optical elements having different optical characteristics are molded. However, the number is not limited to the above-described number.

(実施の形態4)
次に、実施の形態4について図6を参照して説明する。この実施の形態4は例えば上記実施の形態1における光学素子1a、1bの成形において、その光学素子の光学性能に影響するゲート部の幅を規定するものであり、光学素子成形型の構成は、実施の形態1と同様であるため、これを援用し、その説明は省略する。この実施の形態4では、実施の形態1と同様に異なる容積のキャビティのバランスをとるために小さいキャビティで成形される小さい光学素子1aのランナー3aの形状が大きくなるように光学素子成形型5のランナー形成部5aを大きいキャビティで成形される光学素子1bのランナー形成部5bよりも図1に示すように左右方向に幅広に形成し、各光学素子1aに対する各光学素子1bのキャビティの容積差をランナー形成部5aの容積増大により吸収するようにしている。したがって、ランナー形成部5aは容積差吸収部を兼ねている。
(Embodiment 4)
Next, a fourth embodiment will be described with reference to FIG. In the fourth embodiment, for example, in the molding of the optical elements 1a and 1b in the first embodiment, the width of the gate part that affects the optical performance of the optical element is defined. Since it is the same as that of Embodiment 1, this is used and the description is omitted. In the fourth embodiment, as in the first embodiment, the shape of the runner 3a of the small optical element 1a molded with a small cavity is increased so as to balance the cavities of different volumes. As shown in FIG. 1, the runner forming portion 5a is formed wider in the left-right direction than the runner forming portion 5b of the optical element 1b formed with a large cavity, and the volume difference of the cavity of each optical element 1b with respect to each optical element 1a is determined. Absorption is performed by increasing the volume of the runner forming portion 5a. Therefore, the runner forming part 5a also serves as a volume difference absorbing part.

さらに、実施の形態1と同様に、6個の光学素子が成形されるように同一容積の3個のキャビティ31とこれとは容積が異なる同一容積のキャビティ32が放射状に配置され、かつキャビティバランスをとるためにその異なる容積のキャビティを交互に配置している。   Further, similarly to the first embodiment, three cavities 31 having the same volume and cavities 32 having the same volume different from each other are radially arranged so that six optical elements are molded, and cavity balance is achieved. In order to achieve this, cavities of different volumes are alternately arranged.

図6(a)と(b)は前記キャビティ32と31により成形された異なる大きさの光学素子1a、1bを含む成形体の形状を示した平面図であり、各々の光学素子1a、1bの外径をL1、L2、各ゲート部2a、2bの幅をG1、G2とし、そして、各ゲート部およびランナー部を含んで光学素子1a、1bの外形端から所定の寸法までの総容積をT1、T2とする。なお、光学素子1a、1bの外形端から寸法X=15mmの長さまでの各容積T1とT2が略同容積となるように成形型を設計した。   6 (a) and 6 (b) are plan views showing the shape of a molded body including optical elements 1a and 1b of different sizes formed by the cavities 32 and 31, and each of the optical elements 1a and 1b. The outer diameters are L1 and L2, the widths of the gate portions 2a and 2b are G1 and G2, and the total volume from the outer end of the optical elements 1a and 1b to a predetermined dimension including each gate portion and the runner portion is T1. , T2. The mold was designed so that the volumes T1 and T2 from the outer edges of the optical elements 1a and 1b to the length of the dimension X = 15 mm are substantially the same.

このような光学素子成形型を用い、実施の形態1と同様の成形方法で直径が4mmの3個の光学素子1aと直径が8mmの3個の光学素子1bをゲート部2a、2bの幅を変えて成形した。外径の小さい光学素子1a(G1/L1=K1)と外径の大きい光学素子1b(G2/L2=K2)について、これらの光学素子としての光学面の性能を透過波面収差で評価したところ、表3の(a)、(b)に示すように、光学素子1aと光学素子1bのいずれにおいても光学性能の良品範囲は0.1<G/L<0.4であった。   Using such an optical element mold, three optical elements 1a having a diameter of 4 mm and three optical elements 1b having a diameter of 8 mm are formed with the gate portions 2a and 2b having the same width as that of the first embodiment. Changed and molded. For the optical element 1a (G1 / L1 = K1) having a small outer diameter and the optical element 1b (G2 / L2 = K2) having a large outer diameter, the performance of the optical surface as these optical elements was evaluated by transmission wavefront aberration. As shown in (a) and (b) of Table 3, the non-defective range of optical performance was 0.1 <G / L <0.4 in both the optical element 1a and the optical element 1b.

なお、前記のようにゲート幅が、成形される光学素子の光学性能、すなわち、収差に影響することは、成形時に樹脂成形材料のキャビティへの充填時にそのキャビティの内圧がゲート幅の大きさによって変化することに起因するものと思われ、光学素子の外径に対してゲート幅が小さすぎる場合には、キャビティの内圧が高くなり過ぎ、一方、ゲート幅が大きすぎる場合には、キャビティの内圧が適正値より低くなり過ぎることによるものと推測される。   As described above, the gate width affects the optical performance of the optical element to be molded, that is, aberration, because the internal pressure of the cavity when the resin molding material is filled into the cavity during molding depends on the size of the gate width. If the gate width is too small with respect to the outer diameter of the optical element, the internal pressure of the cavity becomes too high, whereas if the gate width is too large, the internal pressure of the cavity Is presumably due to the fact that the value becomes too lower than the appropriate value.

上記の評価結果から、異なる体積の光学素子を同時に成形する成形方法においては、複数のキャビティの容積差をそれぞれ吸収する容積差吸収部を設けてスプルー、ランナー部を含んだ容積を各々略同容積とし、かつ、光学素子の外径Lとゲート幅Gの関係が0.1<K<0.4となる成形型を用いて成形することにより、光学性能の良好な複数の体積が異なる光学素子を得ることができる。   From the above evaluation results, in the molding method for molding optical elements having different volumes at the same time, a volume difference absorbing portion that absorbs the volume difference between the plurality of cavities is provided, and the volume including the sprue and the runner portion is substantially the same volume. In addition, by molding using a mold in which the relationship between the outer diameter L of the optical element and the gate width G is 0.1 <K <0.4, it is possible to obtain a plurality of optical elements having different optical volumes and different optical volumes. it can.

この実施の形態4では2種類の光学素子について検討したが、これに限らず、体積が異なる3種類以上の光学素子を同時に同一成形型で成形する場合にも、同様に成形型を設計すれば、光学性能の良好な光学素子が得られる。   In the fourth embodiment, two types of optical elements have been studied. However, the present invention is not limited to this, and when three or more types of optical elements having different volumes are simultaneously molded with the same molding die, the molding die can be similarly designed. An optical element with good optical performance can be obtained.

Figure 2005161849
Figure 2005161849

以上のように本発明は、少なくとも2種類の異なる光学特性を持つ光学素子を同時に成形することができるため、少量他品種生産や光学特性の異なる複数個の光学素子を組み合わせた組レンズの成形等に最適である。   As described above, since the present invention can simultaneously mold at least two types of optical elements having different optical characteristics, it is possible to produce a small amount of other kinds of products, molding a combination lens combining a plurality of optical elements having different optical characteristics, etc. Ideal for.

本発明の実施の形態1における光学素子成形型の概略断面図1 is a schematic cross-sectional view of an optical element mold according to Embodiment 1 of the present invention. 本発明の実施の形態1における成形品の概略上面図Schematic top view of a molded product in Embodiment 1 of the present invention 本発明の実施の形態2における光学素子成形型の概略断面図Schematic cross-sectional view of an optical element mold according to Embodiment 2 of the present invention 本発明の実施の形態2における成形品の概略上面図Schematic top view of a molded product in Embodiment 2 of the present invention 本発明の実施の形態3における成形品の概略上面図Schematic top view of a molded product in Embodiment 3 of the present invention 本発明の実施の形態4における成形品の概略上面図Schematic top view of the molded product in Embodiment 4 of the present invention 光学素子の製造に用いられる射出成形機の概略断面図Schematic cross-sectional view of an injection molding machine used for manufacturing optical elements 従来の成形品の概略上面図と概略断面図Schematic top view and schematic cross-sectional view of a conventional molded product

符号の説明Explanation of symbols

1a、1b 光学素子
2a、2b ゲート
3a、3b ランナー
4 スプルー
5、10 光学素子成形型
5a ランナー形成部(容積差吸収部)
31、32 キャビティ
32a 容積差吸収部
33 延在部
DESCRIPTION OF SYMBOLS 1a, 1b Optical element 2a, 2b Gate 3a, 3b Runner 4 Sprue 5, 10 Optical element shaping | molding die 5a Runner formation part (volume difference absorption part)
31, 32 Cavity 32a Volume difference absorption part 33 Extension part

Claims (8)

加熱混錬溶融された成形材料を複数のキャビティ内に射出充填し、前記複数のキャビティに形成された光学形成面により複数個の光学素子を同時に成形する光学素子成形型であって、前記複数のキャビティに形成された光学形成面は、これにより形成される光学素子の光学特性が異なる少なくとも2種類の形状を有することを特徴とする光学素子成形型。 An optical element molding die for injecting and filling a molding material melted by heating and kneading into a plurality of cavities, and simultaneously molding a plurality of optical elements by an optical forming surface formed in the plurality of cavities. An optical element molding die, wherein the optical forming surface formed in the cavity has at least two types of shapes having different optical characteristics of the optical element formed thereby. 加熱混錬溶融された成形材料を複数のキャビティ内に射出充填し、前記複数のキャビティに形成された光学形成面により複数個の光学素子を同時に成形する光学素子成形型であって、前記複数のキャビティは、前記光学形成面とともにその容積が異なる少なくとも2種類の形状からなり、かつ前記少なくとも2種類のキャビティの容積差をそれぞれ吸収する容積差吸収部を設けたことを特徴とする光学素子成形型。 An optical element molding die for injecting and filling a molding material melted by heating and kneading into a plurality of cavities, and simultaneously molding a plurality of optical elements by an optical forming surface formed in the plurality of cavities. An optical element molding die characterized in that the cavity has at least two types of shapes having different volumes together with the optical forming surface, and is provided with a volume difference absorbing portion that absorbs the volume difference between the at least two types of cavities. . 前記容積差吸収部は前記複数のキャビティのうち容積が小さい方のキャビティにおいて、これにより成形される光学素子の光学面に影響しない部分に設けたことを特徴とする請求項2に記載の光学素子成形型。 3. The optical element according to claim 2, wherein the volume difference absorbing portion is provided in a portion of the plurality of cavities having a smaller volume, which does not affect the optical surface of the optical element molded thereby. Mold. 容積差吸収部は、ゲート部かあるいは、ゲートに近接するランナー部に設けたことを特徴とする請求項2乃至請求項3に記載の光学素子の成形型。 The optical element molding die according to any one of claims 2 to 3, wherein the volume difference absorbing portion is provided in a gate portion or a runner portion adjacent to the gate. 異なる容積のキャビティが交互に配置されたことを特徴とする請求項2乃至請求項4に記載の光学素子の成形型。 5. The mold for an optical element according to claim 2, wherein cavities having different volumes are alternately arranged. 加熱混錬溶融された成形材料を複数のキャビティ内に射出充填し、前記複数のキャビティに形成された光学形成面により光学特性が異なる少なくとも2種類の光学素子を同時に成形する光学素子成形方法であって、前記光学特性が異なる少なくとも2種類の光学素子はキャビティに形成された形状が異なる光学形成面により成形されることを特徴とする光学素子の成形方法。 This is an optical element molding method in which a heat-kneaded and melted molding material is injected and filled into a plurality of cavities, and at least two types of optical elements having different optical characteristics are simultaneously molded depending on the optical formation surfaces formed in the plurality of cavities. The method for molding an optical element is characterized in that at least two types of optical elements having different optical characteristics are molded by optical formation surfaces having different shapes formed in a cavity. 加熱混錬溶融された成形材料を容積が異なる複数のキャビティ内に射出充填し、前記複数のキャビティに形成された光学形成面により複数個の光学素子を同時に成形する成形方法であって、前記複数のキャビティの容積差をそれぞれ吸収する容積差吸収部を設けて、スプルー、ランナー部を含んだ容積を各々略同容積とし、前記各光学素子の外径Lとゲート部の幅Gの関係が0.1<G/L<0.4であることを特徴とする光学素子の成形方法。 A molding method in which a heat-kneaded and melted molding material is injected and filled into a plurality of cavities having different volumes, and a plurality of optical elements are simultaneously molded by an optical forming surface formed in the plurality of cavities. The volume difference absorbing part for absorbing the volume difference of each of the cavities is provided so that the volume including the sprue and the runner part is substantially the same volume, and the relationship between the outer diameter L of each optical element and the width G of the gate part is 0.1. <G / L <0.4. A method for molding an optical element, wherein: 請求項1乃至請求項5のいずれかに記載の光学素子成形型または請求項6乃至請求項7に記載の光学素子の成形方法により成形された光学特性が異なる少なくとも2種類の光学素子。 An optical element molding die according to any one of claims 1 to 5 or an optical element molded by the method for molding an optical element according to claim 6 to at least two types of optical elements having different optical characteristics.
JP2004328742A 2003-11-13 2004-11-12 Mold for molding optical element, optical element molding method and optical element Pending JP2005161849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328742A JP2005161849A (en) 2003-11-13 2004-11-12 Mold for molding optical element, optical element molding method and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003383531 2003-11-13
JP2004328742A JP2005161849A (en) 2003-11-13 2004-11-12 Mold for molding optical element, optical element molding method and optical element

Publications (1)

Publication Number Publication Date
JP2005161849A true JP2005161849A (en) 2005-06-23

Family

ID=34741725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328742A Pending JP2005161849A (en) 2003-11-13 2004-11-12 Mold for molding optical element, optical element molding method and optical element

Country Status (1)

Country Link
JP (1) JP2005161849A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329450A (en) * 2006-06-09 2007-12-20 Lg Electronics Inc Apparatus and method for manufacturing light emitting unit, apparatus for molding lens of light emitting unit, and light emitting device package
JP2008265106A (en) * 2007-04-18 2008-11-06 Konica Minolta Opto Inc Mold, molding device, intermediate molded form, and optics
JP2011093151A (en) * 2009-10-28 2011-05-12 Hoya Corp Method for manufacturing plastic lens and injection compression molding machine
CN105377525A (en) * 2013-09-24 2016-03-02 奥林巴斯株式会社 Injection molding method and injection molding die
CN105538611A (en) * 2016-01-22 2016-05-04 苏州艾力光电科技有限公司 Ceramic mold capable of producing optical lenses at the same time
WO2017146358A1 (en) * 2016-02-26 2017-08-31 서울과학기술대학교 산학협력단 Lens injection molded product to which hot runner is applied

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329450A (en) * 2006-06-09 2007-12-20 Lg Electronics Inc Apparatus and method for manufacturing light emitting unit, apparatus for molding lens of light emitting unit, and light emitting device package
JP2008265106A (en) * 2007-04-18 2008-11-06 Konica Minolta Opto Inc Mold, molding device, intermediate molded form, and optics
JP2011093151A (en) * 2009-10-28 2011-05-12 Hoya Corp Method for manufacturing plastic lens and injection compression molding machine
CN105377525A (en) * 2013-09-24 2016-03-02 奥林巴斯株式会社 Injection molding method and injection molding die
CN105538611A (en) * 2016-01-22 2016-05-04 苏州艾力光电科技有限公司 Ceramic mold capable of producing optical lenses at the same time
WO2017146358A1 (en) * 2016-02-26 2017-08-31 서울과학기술대학교 산학협력단 Lens injection molded product to which hot runner is applied
KR101822565B1 (en) 2016-02-26 2018-01-26 서울과학기술대학교 산학협력단 Injection molded lens using hot runner
US10843424B2 (en) 2016-02-26 2020-11-24 Foundation For Research And Business, Seoul National University Of Science And Technology Lens injection molded product to which hot runner is applied

Similar Documents

Publication Publication Date Title
KR101243401B1 (en) Optical component production system and method for producing the same
CN104870123B (en) Metal alloy injection shaped projection
JP5755665B2 (en) Rotary injection molding machine for multilayer molded article, molding method for multilayer molded article, and multilayer molded article
JP2015536263A (en) Miniaturized runner for injection molding system
US20070104825A1 (en) Injection molding device
US3663145A (en) Synthetic resin injection molding apparatus
JP2006281765A (en) Method and apparatus for improving surface accuracy of optical element
JP2005161849A (en) Mold for molding optical element, optical element molding method and optical element
KR101271772B1 (en) Optical component production system
KR101699939B1 (en) Injection mold for forming curved tube
US7854879B2 (en) Optical element molding die, and optical element manufacturing method
JP4097954B2 (en) Optical element, optical element molding die, and optical element molding method
JP2010179621A (en) Production process of injection molding mold and injection molded article
ITO et al. Fundamental study on structure development of thin-wall injection molded products
JPH06238711A (en) Injection molding method and device for plastic
JP2008257261A (en) Optical device, optical device molding die, and method for molding optical device
JPS6295210A (en) Mold for molding plastic
JP2005305797A (en) Optical element molding mold, optical element molding method, and optical element
JP2004284116A (en) Mold for molding optical element, optical element molding method and optical element
JP5374424B2 (en) Mold for molding and molding method
JP2002264177A (en) Injection mold
JP2017217850A (en) Method for molding thick-walled molded article
JPS62179913A (en) Molding of plastic lens
JP5963522B2 (en) Parts manufacturing method
JPH07266391A (en) Manufacture and manufacturing device of plastic lens