JP2008265106A - Mold, molding device, intermediate molded form, and optics - Google Patents

Mold, molding device, intermediate molded form, and optics Download PDF

Info

Publication number
JP2008265106A
JP2008265106A JP2007109657A JP2007109657A JP2008265106A JP 2008265106 A JP2008265106 A JP 2008265106A JP 2007109657 A JP2007109657 A JP 2007109657A JP 2007109657 A JP2007109657 A JP 2007109657A JP 2008265106 A JP2008265106 A JP 2008265106A
Authority
JP
Japan
Prior art keywords
core member
resin
mold
circumference
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007109657A
Other languages
Japanese (ja)
Other versions
JP5019167B2 (en
Inventor
Hide Hosoe
秀 細江
Takemi Miyazaki
岳美 宮崎
Yuichi Fujii
雄一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007109657A priority Critical patent/JP5019167B2/en
Publication of JP2008265106A publication Critical patent/JP2008265106A/en
Application granted granted Critical
Publication of JP5019167B2 publication Critical patent/JP5019167B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold which can easily form an optics using a low-viscosity resin, for example, and a molding device, an intermediate molded form and the optics. <P>SOLUTION: Core members 10 an 20 have a surface formed in a piece, with which a heat-curing resin comes into contact, so that the surface has no gap through which the low-viscosity heat-curing resin leaks. Consequently, it is possible to mold a high precision optics. In addition, a release failure due to the mingling of the cured resin and a molding resin in a piece, within a fitting gap, does not occur. Further, the maintenance service for removing the interlocking resin in the fitting gap, is no longer necessary. Thus the highly efficient molding can be realized and the molded form with high quality level and high performance can be obtained at a low cost. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学素子の成形技術に関し、特にエネルギー硬化性樹脂を用いて光学素子を成形するための金型、成形装置、中間成形体及び光学素子に関する。   The present invention relates to a technique for molding an optical element, and particularly relates to a mold, a molding apparatus, an intermediate molded body, and an optical element for molding an optical element using an energy curable resin.

近年においては、携帯電話等に撮像装置を搭載することが通常行われている。一般的な撮像装置は、基板上にレンズ等の光学素子を接合し、光学素子を介して固体撮像素子の受光面に被写体像を結像させるようになっている。ところで、製造プロセスの簡略化のために、基板に光学素子を搭載した状態で、高温のハンダリフロー槽内を通過させたいという要請がある。ところが、光学素子の素材として現在用いられているアクリルやポリカーボネートは耐熱性が低く、高温のハンダリフロー槽内を通過させたとき、容易に溶融・変形してしまうという問題がある。これに対し、例えば特許文献1に示すような熱硬化性の樹脂は、加熱することで粘度が低下して流れ易くなるが、さらに加熱して一旦固化すると、より高温下でもその形状を維持するという特徴を有する。又、光硬化性の樹脂も、光を当てない状態では液状であるが、光を当てて一旦固化すると、高温下でもその形状を維持するという特徴を有する。従って、熱硬化性の樹脂又は光硬化性の樹脂を用いれば、ハンダリフロー槽を通過させることができる光学素子を成形することができる。
特開2004−197009号公報
In recent years, it has been common practice to mount an imaging device on a mobile phone or the like. A general imaging device is configured to join an optical element such as a lens on a substrate and form a subject image on a light receiving surface of a solid-state imaging element via the optical element. By the way, in order to simplify the manufacturing process, there is a demand for passing through a high-temperature solder reflow bath with an optical element mounted on a substrate. However, acrylics and polycarbonates currently used as materials for optical elements have low heat resistance, and there is a problem that they easily melt and deform when passed through a high-temperature solder reflow bath. On the other hand, for example, a thermosetting resin as shown in Patent Document 1 tends to flow when heated to decrease its viscosity, but once heated and solidified, its shape is maintained even at higher temperatures. It has the characteristics. The photo-curable resin is also in a liquid state when not exposed to light, but has a characteristic of maintaining its shape even at a high temperature once solidified by exposure to light. Therefore, if a thermosetting resin or a photocurable resin is used, an optical element that can be passed through a solder reflow bath can be molded.
Japanese Patent Laid-Open No. 2004-197090

ここで、熱硬化性の樹脂や光硬化性の樹脂に代表されるエネルギー硬化性樹脂を用いて成形を行う際の問題点の一つは、一般的にエネルギー硬化性樹脂が、常温では液体状であって粘度が低いため、成形時に金型部品の隙間から漏れやすく、成形圧力を高めることができないということがある。また別の問題点としては、エネルギー硬化性樹脂が金型部品の隙間内で一旦固化すると、その除去に手間取るということがある。   Here, one of the problems when molding using energy curable resins typified by thermosetting resins and photocurable resins is that energy curable resins are generally liquid at room temperature. However, since the viscosity is low, it is easy to leak from the gap between the mold parts during molding, and the molding pressure cannot be increased. Another problem is that once the energy curable resin is solidified in the gap between the mold parts, it takes time to remove it.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、例えば粘度の低い樹脂を用いて光学素子を容易に成形することができる金型、成形装置、中間成形体及び光学素子を提供することを目的とする。   The present invention has been made in view of the problems of the prior art. For example, a mold, a molding apparatus, an intermediate molded body, and an optical element that can easily mold an optical element using a resin having a low viscosity are provided. The purpose is to provide.

請求項1に記載の金型は、第1の光学面転写面を複数個有する金型であって、各第1の光学面転写面に対向して配置される第2の光学面転写面を複数個有する対向金型に対して合わせられ、両金型間に形成されるキャビティに樹脂を供給することで光学素子を成形する金型において、
少なくとも前記キャビティに供給される樹脂が接触する面は、一体で形成されていることを特徴とする。
The mold according to claim 1 is a mold having a plurality of first optical surface transfer surfaces, wherein the second optical surface transfer surface disposed opposite to each first optical surface transfer surface is provided. In a mold that molds an optical element by supplying resin to a cavity formed between both molds, which is matched to a plurality of opposed molds,
At least the surface with which the resin supplied to the cavity comes into contact is formed integrally.

例えばエネルギー硬化性樹脂等を用いて成形する場合、常温での粘度が低く液体状態で金型内に供給できるので、加圧しながらキャビティ内に注入することにより、固化時に光学面転写面に付着して品質を低下させる泡などの発生を抑制でき、高精度な光学素子を成形できる。ところが金型に隙間が存在すると、その隙間より樹脂が漏れだしてしまい、十分に加圧できないという問題がある。これに対し、本発明によれば、少なくとも前記キャビティに供給される樹脂が接触する金型の面を一体で形成することで、隙間をなくして樹脂の漏れ出しを抑え、高精度な光学素子の成形を行うことができる。又、嵌合隙間内で硬化した樹脂と成形樹脂が一体化して離型不良が発生するという問題が無く,更に嵌合隙間内でに固着した樹脂を取り除くといったメンテナンスも不要となる。これにより、極めて効率の良い成形が実現でき,低コスト高品位高性能の成形品を得ることが可能となる。尚、「一体で形成された面」とは、複数部品を組み合わせた場合に生じるつなぎ目の隙間がない面であることを意味するので、例え複数の部品から構成された面であっても溶接などにより隙間なく接合された面は、一体で形成された面とする。   For example, when molding using energy curable resin, etc., it has a low viscosity at room temperature and can be supplied into the mold in a liquid state. By injecting into the cavity while applying pressure, it adheres to the optical surface transfer surface during solidification. Therefore, generation of bubbles and the like that deteriorate the quality can be suppressed, and a highly accurate optical element can be molded. However, if there is a gap in the mold, the resin leaks from the gap, and there is a problem that sufficient pressurization cannot be performed. On the other hand, according to the present invention, by forming at least the surface of the mold that comes into contact with the resin supplied to the cavity, it is possible to eliminate the gap and prevent the resin from leaking, and to provide a highly accurate optical element. Molding can be performed. Further, there is no problem that the resin hardened in the fitting gap and the molded resin are integrated to cause a mold release failure, and further maintenance such as removing the resin fixed in the fitting gap is not required. Thereby, extremely efficient molding can be realized, and a low-cost, high-quality and high-performance molded product can be obtained. In addition, since the “surface formed integrally” means a surface having no gap between joints generated when a plurality of parts are combined, even a surface composed of a plurality of parts is welded. The surfaces joined with no gaps are the surfaces formed integrally.

「光学素子」としては、例えばレンズ、プリズム、回折格子光学素子(回折レンズ、回折プリズム、回折板)、光学フィルター(空間ローパスフィルター、波長バンドパスフィルター、波長ローパスフィルター、波長ハイパスフィルター等々)、偏光フィルター(検光子、旋光子、偏光分離プリズム等々)、位相フィルター(位相板、ホログラム等々)があげられるが、以上に限られることはない。   “Optical elements” include, for example, lenses, prisms, diffraction grating optical elements (diffraction lenses, diffraction prisms, diffraction plates), optical filters (spatial low-pass filters, wavelength band-pass filters, wavelength low-pass filters, wavelength high-pass filters, etc.), polarized light Examples include filters (analyzers, optical rotators, polarization separation prisms, etc.) and phase filters (phase plates, holograms, etc.), but are not limited thereto.

請求項2に記載の金型は、請求項1に記載の発明において、前記樹脂はエネルギー硬化性樹脂であることを特徴とする。エネルギー硬化性樹脂としては、例えば熱硬化性樹脂、紫外線硬化性樹脂などがある。熱硬化性樹脂は、加熱することで硬化するので、常温で液体状の熱硬化性樹脂を、加熱した金型内に供給することで固化させることができる。一方、紫外線硬化性樹脂は、紫外線を照射することで硬化するので、常温で液体状の紫外線硬化性樹脂を、透明な金型内に供給した後、外部から紫外線を照射することで固化させることができる。   A mold according to a second aspect is characterized in that, in the invention according to the first aspect, the resin is an energy curable resin. Examples of the energy curable resin include a thermosetting resin and an ultraviolet curable resin. Since the thermosetting resin is cured by heating, it can be solidified by supplying a thermosetting resin that is liquid at room temperature into a heated mold. On the other hand, ultraviolet curable resin is cured by irradiating with ultraviolet rays, so after supplying ultraviolet curable resin that is liquid at room temperature into a transparent mold, it is solidified by irradiating ultraviolet rays from the outside. Can do.

請求項3に記載の金型は、請求項2に記載の発明において、前記エネルギー硬化性樹脂は,硬化前の粘度が100(poise)以下であることを特徴とする。このように粘度の低いエネルギー硬化性樹脂は流れ性が良く、また外部から加圧することで、成形圧力を高く維持することが出来るので,高圧で光学面転写面に樹脂を押しつけて硬化することが出来,金型形状の転写性に優れた高品質高性能の光学素子を得ることが出来る。   According to a third aspect of the present invention, in the invention of the second aspect, the energy curable resin has a viscosity before curing of 100 (poise) or less. The energy curable resin having a low viscosity has good flowability and can maintain a high molding pressure by applying pressure from the outside. Therefore, the resin can be cured by pressing the resin onto the optical surface transfer surface at a high pressure. It is possible to obtain a high-quality and high-performance optical element excellent in mold shape transferability.

請求項4に記載の金型は、請求項1〜3のいずれかに記載の発明において、前記第1の光学面転写面の中心は、金型表面の1点を中心とする第1の円周上に配置されていることを特徴とする。このように、中心が第1の円周上に配置されるような複数の光学面転写面を有する金型は、後述するようにして旋盤によって効率的に加工することが出来る。そのため,金型加工コストの低減と加工時間の大幅な短縮を実現できる。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the center of the first optical surface transfer surface is a first circle centered on one point on the surface of the mold. It is arranged on the circumference. Thus, a mold having a plurality of optical surface transfer surfaces whose centers are arranged on the first circumference can be efficiently processed by a lathe as described later. For this reason, it is possible to reduce the die machining cost and the machining time.

請求項5に記載の金型は、請求項1〜3のいずれかに記載の発明において、前記第1の光学面転写面の中心は、金型表面の1点を中心とする第1の円周上に少なくとも2個配置され、更に、前記第1の円周と同一表面上にあって、前記第1の円周と中心が同じであり、第1の円周と半径が異なる第2の円周上に少なくとも2個配置されていることを特徴とするので、更に効率的な加工を行うことが出来,金型加工コストの低減と加工時間の大幅な短縮を実現できる。   The mold according to claim 5 is the invention according to any one of claims 1 to 3, wherein the center of the first optical surface transfer surface is a first circle centered on one point on the mold surface. At least two on the circumference, and on the same surface as the first circumference, the same center as the first circumference, and a second radius different from the first circumference. Since at least two are arranged on the circumference, it is possible to perform more efficient machining, and it is possible to realize a reduction in die machining cost and a significant reduction in machining time.

尚、光学面転写面の円周上での配置は、等間隔(等角度)であれば、例えば光学面転写面を旋削加工する際に、コア部材を毎回一定角度回して次の加工面を旋盤の主軸回転中心に位置決めすれば良いので、作業として容易であり加工ミスを少なくできる。しかし、本発明の範囲はこれに限定されず、光学面転写面はコア部材の円周上であるが、等間隔(当角度)には配置されなくとも良い。例えば、光学面転写面の角度を適当に選ぶことによって、特に同心円上の光学面転写面同士を略直線上に並べることもできる。かかる場合、旋削加工では面加工時に毎回異なる角度にコア部材を回転せねばならず、煩雑な作業となるが、この金型により成形された光学面転写面を個片に切り出す際には、直線的に刃物を通すことができるので作業が容易になるというメリットが生じる。従って、円周上の光学面転写面の配置は、等間隔(等角度)である必要はなく、円周上に配置しているという点が、本発明において特に重要な事項である。   In addition, if the arrangement on the circumference of the optical surface transfer surface is an equal interval (equal angle), for example, when turning the optical surface transfer surface, the core member is rotated by a certain angle each time, and the next processing surface is moved. Since it only needs to be positioned at the center of rotation of the main spindle of the lathe, it is easy as work, and machining errors can be reduced. However, the scope of the present invention is not limited to this, and the optical surface transfer surface is on the circumference of the core member, but may not be arranged at equal intervals (the present angle). For example, by appropriately selecting the angle of the optical surface transfer surface, the optical surface transfer surfaces on concentric circles can be arranged on a substantially straight line. In such a case, in the turning process, the core member must be rotated at a different angle each time during surface processing, which is a complicated operation, but when cutting the optical surface transfer surface formed by this mold into individual pieces, Therefore, there is a merit that work can be easily performed because the blade can be passed through. Therefore, the arrangement of the optical surface transfer surfaces on the circumference does not need to be equidistant (equal angle), and the fact that they are arranged on the circumference is a particularly important matter in the present invention.

請求項6に記載の金型は、請求項4又は5に記載の発明において、前記円周の中心に向かって、外部より延在する供給路が設けられ、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする。前記供給路を介して樹脂を供給すると,各第1の光学面転写面及び各第2の光学面転写面に対して放射状に樹脂を供給できるので,前記供給路から各第1の光学面転写面及び各第2の光学面転写面までの樹脂の流路長が等しくなる。それにより転写される各光学素子の成形条件を均一化でき、成形条件と成形結果の対応が明確化され成形誤差を小さくできるので,厳格な成形条件を設定することが出来,それによって更に品質の揃った高性能な光学素子を得ることが出来る。   According to a sixth aspect of the present invention, in the invention according to the fourth or fifth aspect, a supply path extending from the outside is provided toward the center of the circumference, and the mold is pressurized through the supply path. The resin is supplied to the cavity. When the resin is supplied through the supply path, the resin can be supplied radially to each first optical surface transfer surface and each second optical surface transfer surface. The flow path length of the resin to the surface and each second optical surface transfer surface becomes equal. As a result, the molding conditions of each optical element to be transferred can be made uniform, the correspondence between the molding conditions and the molding results can be clarified, and molding errors can be reduced, so that strict molding conditions can be set. A uniform high-performance optical element can be obtained.

請求項7に記載の金型は、請求項4又は5に記載の発明において、前記円周の半径方向外方に、外部より延在する供給路が設けられ、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする。金型が上下方向に(縦に)開く場合は、キャビティへの樹脂の流れが回転対称となって、均等となり成形条件の偏りやバラツキが少なくなるが、金型が水平方向に(横に)開く場合は、キャビティの配列が縦となる。かかる金型に対して、前記円周の中心側から樹脂を充填すると、粘度が低いので樹脂は重力により一旦下側のキャビティに溜まり、充填と共に徐々に樹脂界面が上昇するように満たされる。そのため、前記円周の中心側から樹脂を充填すると、充填の前半はキャビティ内で自由落下により樹脂が流れるので基本的に不均一で、気泡を巻き込んだりする恐れがある。これに対し、水平方向に開く金型において、重力方向下方が予めわかっている場合には、最初からキャビティの下方に前記供給路を設けておき、ここから樹脂を充填すれば、一方向で均一な樹脂流となり、気泡を巻き込むこともなく良好な成形条件を確保できる。   According to a seventh aspect of the present invention, in the invention according to the fourth or fifth aspect, the supply path extending from the outside is provided on the outer side in the radial direction of the circumference, and the mold is pressurized via the supply path. The formed resin is supplied to the cavity. When the mold opens vertically (vertically), the flow of resin into the cavity becomes rotationally symmetric and becomes uniform, reducing unevenness in molding conditions and variations, but the mold is horizontally oriented (horizontally). When opened, the cavity array is vertical. When such a mold is filled with resin from the center side of the circumference, since the viscosity is low, the resin temporarily accumulates in the lower cavity due to gravity, and is filled so that the resin interface gradually rises with filling. Therefore, when the resin is filled from the center side of the circumference, the resin flows in the first half of the cavity due to free fall in the cavity, which is basically non-uniform and may involve bubbles. On the other hand, in the mold that opens in the horizontal direction, if the lower part in the direction of gravity is known in advance, the supply path is provided under the cavity from the beginning, and if the resin is filled from here, it is uniform in one direction. A good resin flow without entrapment of bubbles.

請求項8に記載の金型は、請求項1〜7のいずれかに記載の発明において、前記金型が、前記第1の光学面転写面を有する第1のコア部材と、前記第1のコア部材を保持する第1の保持部材とを有し、前記第1のコア部材は、前記対向金型に設けられた前記第2の光学面転写面を有する第2のコア部材に対して面接触し、且つ前記第1の保持部材は、前記対向金型に設けられた前記第2のコア部材を保持する第2の保持部材に対して面接触することを特徴とする。前記第1のコア部材と前記第1の保持部材とで本発明の金型を構成し、更に前記第1の保持部材と前記第2の保持部材でも型締め時の圧力を受けるようにすることで、大きな金型部品に直接,高精度な光学面を転写する第1の光学面転写面を形成する必要が無くなり,小さい半径の円周に沿って中心を配置するようにして前記第1の光学面転写面を前記第1のコア部材に加工すれば良いので,加工機などの設備を小さく抑えることができ,また空間の有効利用を図れ、設備投資が少なくて済み,金型製作費を低減できる。   The mold according to claim 8 is the invention according to any one of claims 1 to 7, wherein the mold includes a first core member having the first optical surface transfer surface, and the first core member. A first holding member that holds the core member, and the first core member faces the second core member having the second optical surface transfer surface provided in the counter mold. The first holding member is in contact with the second holding member that holds the second core member provided in the counter mold, and is in surface contact with the second holding member. The first core member and the first holding member constitute a mold according to the present invention, and the first holding member and the second holding member are also subjected to pressure during mold clamping. Thus, there is no need to form a first optical surface transfer surface that directly transfers a high-precision optical surface to a large mold part, and the first center is arranged along the circumference of a small radius. Since the optical surface transfer surface only needs to be processed into the first core member, the equipment such as processing machines can be kept small, the space can be used effectively, the capital investment can be reduced, and the mold production cost can be reduced. Can be reduced.

請求項9に記載の金型は、請求項1〜7のいずれかに記載の発明において、前記金型が、前記第1の光学面転写面を有する第1のコア部材と、前記第1のコア部材を保持する第1の保持部材とを有し、前記第1のコア部材は、前記対向金型に設けられた前記第2の光学面転写面を有する第2のコア部材に対して面接触するが、前記第1の保持部材は、前記対向金型に設けられた前記第2のコア部材を保持する第2の保持部材に対して、面接触しないことを特徴とする。前記金型と前記対向金型を合わせたときに,前記第1のコア部材と前記第2のコア部材のみが面接触して互いに押圧しあうので,相手の合わせ面に倣うことで,前記第1の光学面転写面と、それに対向する前記第2の光学面転写面とのティルト偏心が抑制され,同軸度の高い高精度なキャビティが構成され,これにより高精度な光学素子が成形される。また,押圧領域を,光学面転写面を円周上に沿って配置したコア部材の合わせ面に限定することで小さくできるので,合わせ面の面圧が高くなり,加圧供給された樹脂のシーリング効果が高まり漏れにくくなるという効果もある。樹脂が漏れにくくなると,成形圧力を高く維持することが出来,また成形圧力の再現性も高く維持できるので,樹脂が光学面転写面に強くバラツキ無く押しつけられて成形転写性が高まり,高精度かつ高品位な光学素子を高効率に得ることが出来る。   The mold according to claim 9 is the invention according to any one of claims 1 to 7, wherein the mold includes a first core member having the first optical surface transfer surface, and the first core member. A first holding member that holds the core member, and the first core member faces the second core member having the second optical surface transfer surface provided in the counter mold. The first holding member is in contact with the second holding member that holds the second core member provided in the opposing mold, but is not in surface contact. When the mold and the opposing mold are combined, only the first core member and the second core member are brought into surface contact with each other and are pressed against each other. Tilt eccentricity between the first optical surface transfer surface and the second optical surface transfer surface facing the first optical surface transfer surface is suppressed, and a high-precision cavity with high coaxiality is formed, thereby forming a high-precision optical element. . Further, since the pressing area can be reduced by limiting the optical surface transfer surface to the mating surface of the core member arranged along the circumference, the surface pressure of the mating surface is increased and sealing of the resin supplied under pressure is performed. There is also an effect that the effect is increased and it is difficult to leak. If the resin does not leak easily, the molding pressure can be maintained high, and the reproducibility of the molding pressure can also be maintained at a high level. A high-quality optical element can be obtained with high efficiency.

請求項10に記載の成形装置は、第1の光学面転写面を複数個有する第1のコア部材と、各第1の光学面転写面に対向して配置される第2の光学面転写面を複数個有する第2のコア部材とを有し、前記第1のコア部材と前記第2のコア部材とを合わせた状態で、両コア部材間に形成されるキャビティに、前記第1のコア部材又は前記第2のコア部材に形成された供給路を介して樹脂を供給することで光学素子を成形する成形装置であって、
前記コア部材のうち少なくとも一方において、前記キャビティに供給される樹脂が接触する面は一体で形成されていることを特徴とする。
The molding apparatus according to claim 10 includes a first core member having a plurality of first optical surface transfer surfaces, and a second optical surface transfer surface disposed to face each first optical surface transfer surface. A second core member having a plurality of the first core member and a cavity formed between the first core member and the second core member in a state where the first core member and the second core member are combined. A molding apparatus that molds an optical element by supplying resin through a supply path formed in a member or the second core member,
In at least one of the core members, a surface with which the resin supplied to the cavity comes into contact is formed integrally.

本発明によれば、少なくとも前記キャビティに供給される樹脂が接触する前記コア部材のうち少なくとも一方の面を一体で形成することで、隙間をなくして樹脂の漏れ出しを抑え、高精度な光学素子の成形を行うことができる。又、嵌合隙間内で硬化した樹脂と成形樹脂が一体化して離型不良が発生するという問題が無く,更に嵌合隙間内でに固着した樹脂を取り除くといったメンテナンスも不要となる。これにより、極めて効率の良い成形が実現でき,低コスト高品位高性能の成形品を得ることが可能となる。   According to the present invention, at least one surface of the core member that contacts at least the resin supplied to the cavity is integrally formed, thereby eliminating a gap and suppressing leakage of the resin. Can be formed. Further, there is no problem that the resin hardened in the fitting gap and the molded resin are integrated to cause a mold release failure, and further maintenance such as removing the resin fixed in the fitting gap is not required. Thereby, extremely efficient molding can be realized, and a low-cost, high-quality and high-performance molded product can be obtained.

請求項11に記載の成形装置は、請求項10に記載の発明において、前記樹脂はエネルギー硬化性樹脂であることを特徴とする。   According to an eleventh aspect of the present invention, in the invention according to the tenth aspect, the resin is an energy curable resin.

請求項12に記載の成形装置は、請求項11に記載の発明において、前記エネルギー硬化性樹脂は,硬化前の粘度が100(poise)以下であることを特徴とする。   According to a twelfth aspect of the present invention, in the invention of the eleventh aspect, the energy curable resin has a viscosity before curing of 100 (poise) or less.

請求項13に記載の成形装置は、請求項10〜12のいずれかに記載の発明において、前記第1の光学面転写面の中心は、前記第1のコア部材表面の1点を中心とする第1の円周上に配置されていることを特徴とする。   According to a thirteenth aspect of the present invention, in the invention according to any one of the tenth to twelfth aspects, the center of the first optical surface transfer surface is centered on one point on the surface of the first core member. It is arranged on the first circumference.

請求項14に記載の成形装置は、請求項10〜12のいずれかに記載の発明において、前記第1の光学面転写面の中心は、前記第1のコア部材表面の1点を中心とする第1の円周上に少なくとも2個配置され、更に、前記第1の円周と同一表面上にあって、前記第1の円周と中心が同じであり、第1の円周と半径が異なる第2の円周上に少なくとも2個配置されていることを特徴とする。   According to a fourteenth aspect of the present invention, in the invention according to any one of the tenth to twelfth aspects, the center of the first optical surface transfer surface is centered on one point on the surface of the first core member. At least two are arranged on the first circumference, are on the same surface as the first circumference, have the same center as the first circumference, and have a first circumference and a radius that are the same. It is characterized in that at least two are arranged on different second circumferences.

請求項15に記載の成形装置は、請求項13又は14に記載の発明において、前記第1のコア部材には、前記円周の中心に向かって、外部より延在する供給路が設けられ、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする。   The molding apparatus according to claim 15 is the invention according to claim 13 or 14, wherein the first core member is provided with a supply path extending from the outside toward the center of the circumference, The resin pressurized through the supply path is supplied to the cavity.

請求項16に記載の成形装置は、請求項13又は14に記載の発明において、前記第1のコア部材には、前記円周の半径方向外方に、外部より延在する供給路が設けられ、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする。   According to a sixteenth aspect of the present invention, in the invention according to the thirteenth or fourteenth aspect, the first core member is provided with a supply path extending from the outside outward in the radial direction of the circumference. The pressurized resin is supplied to the cavity through the supply path.

請求項17に記載の成形装置は、請求項13又は14に記載の発明において、前記第1のコア部材には、前記円周の中心に向かって延在する貫通孔が形成され、前記第2のコア部材には、前記貫通孔に対向して凹部が形成され、前記第1のコア部材と前記第2のコア部材とを合わせた状態で、前記凹部に液体状の樹脂を貯留させ、前記貫通孔に対して摺動するピストン部材で前記凹部の樹脂を押し出すことにより、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする。   According to a seventeenth aspect of the present invention, in the invention according to the thirteenth or fourteenth aspect, the first core member is formed with a through hole extending toward the center of the circumference, and the second core member. In the core member, a recess is formed facing the through hole, and in a state where the first core member and the second core member are combined, liquid resin is stored in the recess, By pressing the resin in the concave portion with a piston member that slides with respect to the through hole, the pressurized resin is supplied to the cavity through the supply path.

請求項18に記載の成形装置は、請求項10〜17のいずれかに記載の発明において、前記第1のコア部材を保持する第1の保持部材と、前記第2のコア部材を保持する第2の保持部材とを有し、前記第1のコア部材は、前記第2のコア部材に対して面接触し、且つ前記第1の保持部材は、前記第2の保持部材に対して面接触することを特徴とする。   The molding apparatus according to claim 18 is the invention according to any one of claims 10 to 17, wherein a first holding member that holds the first core member and a second holding member that holds the second core member. Two holding members, the first core member is in surface contact with the second core member, and the first holding member is in surface contact with the second holding member. It is characterized by doing.

請求項19に記載の成形装置は、請求項10〜17のいずれかに記載の発明において、前記第1のコア部材を保持する第1の保持部材と、前記第2のコア部材を保持する第2の保持部材とを有し、前記第1のコア部材は、前記第2のコア部材に対して面接触するが、前記第1の保持部材は、前記第2の保持部材に対して面接触しないことを特徴とする。   A molding apparatus according to a nineteenth aspect is the invention according to any one of the tenth to seventeenth aspects, wherein a first holding member that holds the first core member and a second holding member that holds the second core member. The first core member is in surface contact with the second core member, but the first holding member is in surface contact with the second holding member. It is characterized by not.

請求項20に記載の成形装置は、請求項10〜19のいずれかに記載の発明において、前記第1のコア部材と前記第2のコア部材との間にシーリング部材を配置したことを特徴とする。本発明の成形装置のように割り型を用いる限り、金型の合わせ面が生じることは避けられない。合わせ面の精度を向上することで、その隙間を小さく抑えることができるが、供給される樹脂の粘度が低く圧力が高い場合には、それでも漏れ出す恐れがある。これに対し本発明のように、前記第1のコア部材と前記第2のコア部材との間にシーリング部材を配置することにより、金型の合わせ面からの樹脂漏れを防ぐことが出来,成形圧力を更に高く維持できるので,高圧で光学面転写面に樹脂を押しつけて固化させることが出来,光学面転写面形状の転写性に優れた高品質高性能の光学素子を得ることが出来る。   A molding apparatus according to claim 20 is characterized in that, in the invention according to any one of claims 10 to 19, a sealing member is disposed between the first core member and the second core member. To do. As long as the split mold is used as in the molding apparatus of the present invention, it is inevitable that a mold mating surface is formed. By improving the accuracy of the mating surfaces, the gap can be kept small, but if the viscosity of the supplied resin is low and the pressure is high, there is still a risk of leakage. On the other hand, as in the present invention, by arranging a sealing member between the first core member and the second core member, resin leakage from the mating surface of the mold can be prevented, and molding is performed. Since the pressure can be maintained higher, the resin can be pressed against the optical surface transfer surface at a high pressure to be solidified, and a high-quality and high-performance optical element excellent in transferability of the optical surface transfer surface shape can be obtained.

請求項21に記載の成形装置は、請求項20に記載の発明において、前記シーリング部材は、複数の前記第1の光学面転写面と前記第2の光学面転写面とを囲うリング状であることを特徴とする。前記シーリング部材により、前記第1の光学面転写面と前記第2の光学面転写面の外側を一括的にシーリングすることで,粘度の低い樹脂のシーリングを確実に行え,また前記シーリング部材も最小で済むので,低コストで成形圧力を高く維持でき,成形再現性を高めることができる。シーリング部材としては,断面形状がOリング状であっても良いし,C状であっても良い。又、シーリング部材の材料は,ナイロン,バイトン,ニトリルゴム,シリコン樹脂,エポキシ等の高分子材料であっても良いし、銅、アルミ、鉛などの軟質金属であっても良い。   According to a twenty-first aspect of the present invention, in the invention according to the twentieth aspect, the sealing member has a ring shape that surrounds the plurality of first optical surface transfer surfaces and the second optical surface transfer surfaces. It is characterized by that. By sealing the outside of the first optical surface transfer surface and the second optical surface transfer surface collectively with the sealing member, it is possible to reliably seal a resin with low viscosity, and the sealing member is also minimal Therefore, high molding pressure can be maintained at low cost and molding reproducibility can be improved. As a sealing member, the cross-sectional shape may be an O-ring shape or a C shape. The material of the sealing member may be a polymer material such as nylon, viton, nitrile rubber, silicon resin, or epoxy, or may be a soft metal such as copper, aluminum, or lead.

請求項22に記載の成形装置は、請求項20又は21に記載の発明において、前記第2のコア部材に合わせる前に、前記第1のコア部材を、第3のコア部材に合わせ、前記第1のコア部材と前記第3のコア部材との間に樹脂を供給することで前記第1のコア部材上に前記シーリング部材を形成したことを特徴とする。   According to a twenty-second aspect of the present invention, in the invention according to the twentieth or twenty-first aspect, the first core member is aligned with the third core member before the second core member is aligned, and the first core member is aligned with the second core member. The sealing member is formed on the first core member by supplying resin between the first core member and the third core member.

本発明によれば、まず前記第1のコア部材と前記第3のコア部材とにより、前記第1のコア部材上に前記シーリング部材を形成するので、その後、前記第1のコア部材に対して前記第2のコア部材を合わせたときに、それらの間にシーリング部材が介在し、粘度が低い樹脂が金型の合わせ面から漏れ出すことが抑制される。例えばシーリング部材を別々に成形して接着する場合に比べて、部品同士の位置決めや接着の工数を削減できるので、コスト低減効果が大きい。   According to the present invention, the sealing member is first formed on the first core member by the first core member and the third core member. When the second core members are combined, a sealing member is interposed between them, and the resin having a low viscosity is suppressed from leaking from the mating surface of the mold. For example, compared with the case where the sealing member is separately molded and bonded, the number of steps for positioning and bonding the parts can be reduced, and the cost reduction effect is great.

請求項23に記載の中間成形体は、請求項10〜22のいずれかに記載の成形装置により成形された状態で、前記光学面転写面から成形された光学面を有する一つの光学素子と、それに隣接する光学素子とが樹脂材により連結されていることを特徴とする。   The intermediate molded body according to claim 23 is an optical element having an optical surface molded from the optical surface transfer surface in a state where the intermediate molded body is molded by the molding apparatus according to any one of claims 10 to 22. The optical element adjacent to it is connected by a resin material.

請求項24に記載の光学素子は、請求項23に記載の中間成形体を切断することによって製造されることを特徴とする。   An optical element according to a twenty-fourth aspect is manufactured by cutting the intermediate molded body according to the twenty-third aspect.

本発明によれば、例えば粘度の低い樹脂を用いて光学素子を容易に成形することができる金型、成形装置、中間成形体及び光学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the metal mold | die which can shape | mold an optical element easily, for example using low viscosity resin, a shaping | molding apparatus, an intermediate molded object, and an optical element can be provided.

以下、図面を参照して本発明の実施の形態について説明する。まず、本実施の形態にかかる金型の製造方法について述べる。図1は、本実施の形態にかかるコア部材を治具Jにより保持した状態で示す斜視図である。図1において、円筒状である治具Jは、一方の面に2つの円筒状の開口J1,J2を有している。開口J1には、超鋼等より形成された円筒状のコア部材(第1のコア部材)20が収容されており、不図示のインデックス装置を用いて、開口J1内で所定角度ピッチ毎に回転可能に配置されている。一方、開口J2には、コア部材20に相当する質量のカウンタバランスCBが収容されている。尚、コア部材20には、予め中央の供給路22や水平供給路24(図3)等が形成されていてよいが、その周囲の光学面転写面(第1の光学面転写面)21は、未加工であるものとする。   Embodiments of the present invention will be described below with reference to the drawings. First, the manufacturing method of the metal mold | die concerning this Embodiment is described. FIG. 1 is a perspective view showing a state in which the core member according to the present embodiment is held by a jig J. FIG. In FIG. 1, a jig J having a cylindrical shape has two cylindrical openings J1 and J2 on one surface. A cylindrical core member (first core member) 20 made of super steel or the like is accommodated in the opening J1, and is rotated at predetermined angular pitches in the opening J1 using an index device (not shown). Arranged to be possible. On the other hand, the counter balance CB having a mass corresponding to the core member 20 is accommodated in the opening J2. The core member 20 may be previously formed with a central supply path 22, a horizontal supply path 24 (FIG. 3), and the like, but the surrounding optical surface transfer surface (first optical surface transfer surface) 21 is It shall be raw.

図2は、本実施の形態に係るコア部材を加工装置するX、Y、Z、θ軸超精密旋盤の斜視図である。図2において、定盤110に対してZ軸方向に移動自在なZ軸ステージ105上に回転支持部109が設置され、回転支持部109が回転駆動するチャック109a上に、コア部材20を取り付けた治具Jを保持している。一方、定盤110に対してZ軸方向に交差するX軸方向に移動自在なX軸ステージ106上には、Z軸方向及びX軸方向に交差するY軸方向に移動可能なY軸ステージ107が配置されており、Y軸ステージ107にはダイヤモンド工具113が取り付けられている。X軸ステージ106と、Y軸ステージ107と、Z軸ステージ105と、回転支持部109とはNCプログラムにより独立して制御され、コア部材20と、ダイヤモンド工具113とを相対的に移動させることにより、光学面転写面21の加工を行うようになっている。   FIG. 2 is a perspective view of an X-, Y-, Z-, and θ-axis super-precision lathe for processing the core member according to the present embodiment. In FIG. 2, a rotation support unit 109 is installed on a Z-axis stage 105 that is movable in the Z-axis direction with respect to the surface plate 110, and the core member 20 is mounted on a chuck 109a that the rotation support unit 109 rotates. The jig J is held. On the other hand, on an X-axis stage 106 that is movable in the X-axis direction that intersects the Z-axis direction with respect to the surface plate 110, a Y-axis stage 107 that is movable in the Z-axis direction and the Y-axis direction that intersects the X-axis direction. Is arranged, and a diamond tool 113 is attached to the Y-axis stage 107. The X-axis stage 106, the Y-axis stage 107, the Z-axis stage 105, and the rotation support unit 109 are independently controlled by the NC program, and the core member 20 and the diamond tool 113 are moved relative to each other. The optical surface transfer surface 21 is processed.

より具体的に加工の態様を説明すると、チャック109a上に、コア部材20を取り付けた治具Jを保持した状態では、コア部材20の軸線AX(図1)とずれた位置に、チャック109aの回転軸線RX(図2)が配置されるようになっている。従って、チャック109aを回転させながら、ダイヤモンド工具113を接近させると、コア部材20の軸線AXから離れた位置に、光学面転写面21が旋削により形成されることとなる。一つの光学面転写面21が形成されたら、不図示のインデックス装置により、コア部材20を開口J1内で所定角度ピッチ(例えば45度)で回転させ、同様に旋削することで別な光学面転写面21が形成される。このように順次旋削を行いながら、コア部材20の端面に複数の光学面転写面を形成することができる。   More specifically, the processing mode will be described. When the jig J to which the core member 20 is attached is held on the chuck 109a, the chuck 109a is positioned at a position shifted from the axis AX (FIG. 1) of the core member 20. A rotation axis RX (FIG. 2) is arranged. Therefore, when the diamond tool 113 is moved closer while rotating the chuck 109a, the optical surface transfer surface 21 is formed by turning at a position away from the axis AX of the core member 20. When one optical surface transfer surface 21 is formed, another optical surface transfer is performed by rotating the core member 20 at a predetermined angle pitch (for example, 45 degrees) in the opening J1 by an index device (not shown) and turning similarly. A surface 21 is formed. A plurality of optical surface transfer surfaces can be formed on the end surface of the core member 20 while sequentially turning in this way.

コア部材20の端面に複数の光学面転写面21を形成する場合、例えば4軸や5軸の高価な多軸加工機を用いたエンドミル切削を行えば、マトリクス状に配置された複数の光学面転写面も任意に形成できるが、加工に時間がかかる。これに対し、図2に示すように、チャック109aの回転軸線RXに光学面転写面の軸線を一致させた状態で加工を行えば、2軸または3軸の汎用的な加工機を用いて、コア部材20の軸線AXを中心として、同一の円周上に複数の光学面転写面21の中心を配置するように加工することができ、4軸や5軸の高価な多軸加工機を用いたエンドミル切削加工に比べて、1/10以下の加工時間で効率よく、且つ3倍以上滑らかな光学面転写面の表面粗さを得ることが出来る、しかも、光学面転写面同士の形状バラツキも極力抑えることができる。   When forming a plurality of optical surface transfer surfaces 21 on the end surface of the core member 20, for example, by performing end mill cutting using an expensive multi-axis processing machine having four or five axes, a plurality of optical surfaces arranged in a matrix form The transfer surface can also be formed arbitrarily, but processing takes time. On the other hand, as shown in FIG. 2, if processing is performed in a state in which the axis of the optical surface transfer surface coincides with the rotation axis RX of the chuck 109a, a general-purpose processing machine having two or three axes is used. Centering on the axis AX of the core member 20, the center of the plurality of optical surface transfer surfaces 21 can be arranged on the same circumference, and an expensive multi-axis processing machine having four or five axes is used. Compared with the conventional end mill cutting process, the surface roughness of the optical surface transfer surface can be obtained more efficiently with a processing time of 1/10 or less and more than 3 times smoother, and the variation in shape between the optical surface transfer surfaces is also possible. It can be suppressed as much as possible.

図9,10は、本実施の形態の変形例にかかるコア部材を治具J’により保持した状態で示す斜視図である。本変形例の治具J’においては、軸線が平行な同径の円筒を重ね合わせたような開口J1’を形成している。従って、開口J1’には、円筒状のコア部材20は、図9に示す位置と図10に示す位置とに選択的に装着可能となっている。又、開口J1’内の、コア部材20以外の空間には、ハッチングで示すように、断面が三日月状のカウンタバランスCB1が装着されている。図9に示す位置と図10に示す位置とでは、カウンタバランスCB1の位置が逆になる。   9 and 10 are perspective views showing a state in which a core member according to a modification of the present embodiment is held by a jig J '. In the jig J ′ according to this modification, an opening J <b> 1 ′ is formed such that cylinders having the same diameter and parallel axes are overlapped. Therefore, the cylindrical core member 20 can be selectively attached to the opening J1 'at the position shown in FIG. 9 and the position shown in FIG. Further, in the space other than the core member 20 in the opening J1 ', as shown by hatching, a counterbalance CB1 having a crescent cross section is mounted. The position of the counter balance CB1 is reversed between the position shown in FIG. 9 and the position shown in FIG.

本実施の形態によれば、治具J’を用いることで、まず図9に示す状態で上述と同様にして、コア部材20の軸線AXを中心として、半径Rの第1の円周上に複数の光学面転写面21の中心を配置するように旋削加工することができる。続いて、コア部材20を入れ替えて、図10に示す状態で、コア部材20の軸線AXを中心として、半径R/2の第2の円周上に複数の光学面転写面21’の中心を配置するように旋削加工することができる。これにより、コア部材20の表面において、軸線AXの周囲に2列になった光学面転写面21、21’を形成でき、一つのコア部材20で多数の光学素子を効率よく成形できることとなる。尚、治具J’に対してコア部材20を位置決めする手段は、上述の態様に限られず、例えば治具J’の開口J1’を長孔として、その内部に配置されたコア部材20を微動ステージで変位させるようにしても良い。又、コア部材20と同径の開口を、治具J’の中心からの距離を異ならせて複数個設けても良い。   According to the present embodiment, by using the jig J ′, first, in the state shown in FIG. 9, on the first circumference of the radius R around the axis AX of the core member 20 as described above. Turning can be performed so that the centers of the plurality of optical surface transfer surfaces 21 are arranged. Subsequently, the core member 20 is replaced, and in the state shown in FIG. 10, the centers of the plurality of optical surface transfer surfaces 21 ′ are centered on the second circumference having the radius R / 2 around the axis AX of the core member 20. Can be turned to place. Thereby, on the surface of the core member 20, the optical surface transfer surfaces 21 and 21 ′ arranged in two rows around the axis AX can be formed, and a large number of optical elements can be efficiently molded by one core member 20. The means for positioning the core member 20 with respect to the jig J ′ is not limited to the above-described mode. For example, the opening J1 ′ of the jig J ′ is a long hole, and the core member 20 disposed therein is finely moved. It may be displaced on the stage. A plurality of openings having the same diameter as the core member 20 may be provided at different distances from the center of the jig J ′.

図3は、本実施の形態にかかるコア部材を含む成形装置により、光学素子を成形する工程を示す概略図である。上述のようにして形成されたコア部材20は、保持部材(第1の保持部材)60に保持されて成形装置に保持される。一方、同様にして光学面転写面(第2の光学面転写面)11を形成されたコア部材(第2のコア部材)10は、保持部材(第2の保持部材)70に保持されて、コア部材10に対向する形で成形装置に保持される。このとき、光学面転写面11,21は互いの軸線が一致するように整列される。尚、コア部材20と保持部材60と第1の金型を構成し、コア部材10と保持部材70と第2の金型を構成する。以下の例では、コア部材20の外周に段部23を形成しているが、これは通常の旋盤で形成できる。   FIG. 3 is a schematic view showing a process of molding an optical element by a molding apparatus including a core member according to the present embodiment. The core member 20 formed as described above is held by the holding member (first holding member) 60 and is held by the molding apparatus. On the other hand, the core member (second core member) 10 on which the optical surface transfer surface (second optical surface transfer surface) 11 is similarly formed is held by the holding member (second holding member) 70, The molding apparatus holds the core member 10 so as to face the core member 10. At this time, the optical surface transfer surfaces 11 and 21 are aligned so that their axes coincide with each other. In addition, the core member 20, the holding member 60, and the 1st metal mold | die are comprised, and the core member 10, the holding member 70, and the 2nd metal mold | die are comprised. In the following example, the step portion 23 is formed on the outer periphery of the core member 20, but this can be formed by a normal lathe.

光学素子を成形する工程について説明する。ここで、コア部材10,20の間に形成されるキャビティの温度は、コア部材10又はコア部材20内に配置したサーミスタ(不図示)などによって測定することができる。   The process of molding the optical element will be described. Here, the temperature of the cavity formed between the core members 10 and 20 can be measured by the core member 10 or a thermistor (not shown) disposed in the core member 20.

まず、図3(a)に示すように、コア部材20の段部23内の上面に、光学面転写面21を囲うようにしてリング状のシーリング部材30を載置し、その上方にコア部材10及び保持部材70をセットする。その後、図3(b)に示すように、コア部材20に対してシーリング部材30を介してコア部材10を密着させて、所定の保圧にて型締めを行う。このとき、コア部材10の下面とコア部材20の上面のみが互いに面接触し、保持部材60,70は当接しないので、コア部材同士が相手の合わせ面に倣うことで,光学面転写面11,21のティルト偏心が抑制され,同軸度の高い高精度なキャビティが構成され,これにより高精度な光学素子が成形される。また,押圧領域を,コア部材10,20の合わせ面に限定することで小さくできるので,合わせ面の面圧が高くなり,加圧供給された熱硬化性樹脂のシーリング効果が高まり漏れにくくなるという効果もある。樹脂が漏れにくくなると,成形圧力を高く維持することが出来,また成形圧力の再現性も高く維持できるので,熱硬化性樹脂が光学面転写面11,21に強く且つバラツキ無く押しつけられて成形転写性が高まり,高精度かつ高品位な光学素子を高効率に得ることが出来る。   First, as shown in FIG. 3A, a ring-shaped sealing member 30 is placed on the upper surface of the step portion 23 of the core member 20 so as to surround the optical surface transfer surface 21, and above the core member. 10 and the holding member 70 are set. Thereafter, as shown in FIG. 3B, the core member 10 is brought into close contact with the core member 20 via the sealing member 30, and the mold is clamped with a predetermined holding pressure. At this time, only the lower surface of the core member 10 and the upper surface of the core member 20 are in surface contact with each other and the holding members 60 and 70 are not in contact with each other. , 21 is suppressed, and a high-precision cavity with high coaxiality is formed, whereby a high-precision optical element is formed. Further, since the pressing area can be reduced by limiting to the mating surfaces of the core members 10 and 20, the surface pressure of the mating surfaces is increased, and the sealing effect of the thermosetting resin supplied under pressure is increased and the leakage is less likely to occur. There is also an effect. If the resin does not leak easily, the molding pressure can be maintained high, and the reproducibility of the molding pressure can be maintained at a high level, so that the thermosetting resin is strongly pressed against the optical surface transfer surfaces 11 and 21 without variation. As a result, high-precision and high-quality optical elements can be obtained with high efficiency.

更に、シーリング部材30はコア部材10とコア部材20との間で弾性変形するので、キャビティ内に液状の熱硬化性樹脂を加圧しながら充填しても、コア部材10,20の合わせ面から漏れることが抑制される。   Further, since the sealing member 30 is elastically deformed between the core member 10 and the core member 20, even if the liquid thermosetting resin is filled in the cavity while being pressurized, it leaks from the mating surfaces of the core members 10 and 20. It is suppressed.

更にコア部材10及び保持部材70とコア部材20及び保持部材60とを、ヒータ50により加熱する。又、コア部材20の供給路22に、液状の熱硬化性樹脂を加圧しながら吐出できるノズルNを接続する。ノズルNは、不図示の源から、所定の圧力に加圧された状態で熱硬化性樹脂を供給される。   Further, the core member 10 and the holding member 70 and the core member 20 and the holding member 60 are heated by the heater 50. In addition, a nozzle N that can discharge liquid thermosetting resin while being pressurized is connected to the supply path 22 of the core member 20. The nozzle N is supplied with a thermosetting resin from a source (not shown) while being pressurized to a predetermined pressure.

ここで、図3(c)を参照して、粘度の低い(硬化前の粘度が100(poise)以下)熱硬化性樹脂を、ノズルNから、同一の円周上に配置された光学面転写面11,21の中心に向かって延在する供給路22と、それから水平に延在する水平供給路24を介して、光学面転写面11,21の間に注入する。このとき、コア部材10,20は、熱硬化性樹脂の接触する面が一体となっているため、粘度が低い熱硬化性の樹脂が漏れ出る隙間がなく、従って高精度な光学素子の成形を行うことができる。又、嵌合隙間内で硬化した樹脂と成形樹脂が一体化して離型不良が発生するという問題が無く,更に嵌合隙間内でに固着した樹脂を取り除くといったメンテナンスも不要となる。これにより、極めて効率の良い成形が実現でき,低コスト、高品位、高性能の成形品を得ることが可能となる。   Here, with reference to FIG. 3C, an optical surface transfer in which a thermosetting resin having a low viscosity (viscosity before curing is 100 (poise) or less) is arranged from the nozzle N on the same circumference. It inject | pours between the optical surface transfer surfaces 11 and 21 via the supply path 22 extended toward the center of the surfaces 11 and 21, and the horizontal supply path 24 extended horizontally from it. At this time, since the core members 10 and 20 are integrally formed with the contact surface of the thermosetting resin, there is no gap through which the thermosetting resin having a low viscosity leaks. It can be carried out. Further, there is no problem that the resin hardened in the fitting gap and the molded resin are integrated to cause a mold release failure, and further maintenance such as removing the resin fixed in the fitting gap is not required. Thereby, extremely efficient molding can be realized, and a low-cost, high-quality and high-performance molded product can be obtained.

キャビティ内で加熱されることによって、熱硬化性樹脂が光学面転写面11,21の形状を転写した状態で固化した後、ヒータ50の加熱動作を停止させキャビティ温度を下げるとともに、成形圧力を大気圧まで減少させる。   By heating in the cavity, the thermosetting resin solidifies in a state where the shape of the optical surface transfer surfaces 11 and 21 is transferred, and then the heating operation of the heater 50 is stopped to lower the cavity temperature and increase the molding pressure. Reduce to atmospheric pressure.

その後、コア部材10及び保持部材70を上方に移動させて型開きを行うと、フランジ部がシーリング部材30に密着するように成形された樹脂成形物(中間成形体)Mが露出する。そこで、図3(d)に示すように、シーリング部材30をコア部材20から取り外すことにより、シーリング部材30に付着した樹脂成形物Mを一緒に取り外すことができる。樹脂成形物Mは、シーリング部材30から容易に分離でき、更に所定の位置で切り出すことで、光学面転写面11,21の形状を転写した複数の光学素子OEを得ることができる。以上で、光学素子成形の1サイクルが完了する。   Thereafter, when the core member 10 and the holding member 70 are moved upward to perform mold opening, the resin molded product (intermediate molded product) M molded so that the flange portion is in close contact with the sealing member 30 is exposed. Therefore, as shown in FIG. 3D, the resin molded product M attached to the sealing member 30 can be removed together by removing the sealing member 30 from the core member 20. The resin molded product M can be easily separated from the sealing member 30 and further cut out at a predetermined position to obtain a plurality of optical elements OE to which the shapes of the optical surface transfer surfaces 11 and 21 are transferred. Thus, one cycle of optical element molding is completed.

尚、コア部材10,20を合わせた状態で、保持部材60,70でも型締め時の圧力を受けるようにしても良い。これにより,大きな金型部品に直接,光学面転写面を形成する必要が無くなり,小さい半径の同一の円周に沿って光学面転写面11,21をコア部材10,20に加工すれば良いため,加工機などの設備を小さく抑えることができ,また空間の有効利用を図れ、設備投資が少なくて済み,金型製作費を低減できる。   In addition, you may make it receive the pressure at the time of a mold clamping also in the holding members 60 and 70 in the state which match | combined the core members 10 and 20. FIG. This eliminates the need to form an optical surface transfer surface directly on a large mold part, and the optical surface transfer surfaces 11 and 21 may be processed into the core members 10 and 20 along the same circumference with a small radius. , Equipment such as processing machines can be kept small, space can be used effectively, equipment investment can be reduced, and mold production costs can be reduced.

図4は、別な実施の形態にかかる成形装置における光学素子の成形工程を示す概略図である。尚、本実施の形態においては、説明を簡素化するために、シーリング部材が囲う光学面転写面は上下一対として示している。又、保持部材も省略している。回転駆動軸RSの下端には、第2のコア部材10と第3のコア部材40とが取り付けられている。   FIG. 4 is a schematic diagram illustrating a molding process of an optical element in a molding apparatus according to another embodiment. In the present embodiment, in order to simplify the description, the optical surface transfer surface surrounded by the sealing member is shown as a pair of upper and lower sides. The holding member is also omitted. The second core member 10 and the third core member 40 are attached to the lower end of the rotational drive shaft RS.

まず、図4(a)に示すように、不図示の定盤上に設置した第1のコア部材20の上に、第3のコア部材40を対向させるように回転駆動軸RSを回転して位置決めする。その後、回転駆動軸RSを下降させて、第1のコア部材20上に第3のコア部材40を密着させる。このとき、第1のコア部材20の光学素子用の加工面(光学面転写面とフランジ転写面を含む、10aも同様)20aには、対応する形状を有する第3のコア部材40の加工面40aが密着する。また、その周囲に環状の空間Aが形成される。   First, as shown in FIG. 4A, the rotary drive shaft RS is rotated so that the third core member 40 is opposed to the first core member 20 installed on a surface plate (not shown). Position. Thereafter, the rotary drive shaft RS is lowered to bring the third core member 40 into close contact with the first core member 20. At this time, the processing surface for the optical element of the first core member 20 (including the optical surface transfer surface and the flange transfer surface, 10a as well) 20a has a processing surface of the third core member 40 having a corresponding shape. 40a adheres. An annular space A is formed around the periphery.

ここで、第1のコア部材20と第3のコア部材40を不図示のヒータで加熱しながら、不図示の供給路を介して、外部より溶融した樹脂(ここでは熱可塑性樹脂)を環状の空間Aに充填する。しかし、光学素子用の加工面20aには第3のコア部材40の加工面40aが密着しているので、その間に樹脂が侵入せず、成形品としてリング状のシーリング部材30のみが形成されることとなる。又、熱可塑性樹脂はキャビティ注入時の粘度が比較的高いので、コア部材20、40の分割面から漏れ出す恐れは低い。   Here, while the first core member 20 and the third core member 40 are heated by a heater (not shown), a resin (here, a thermoplastic resin) melted from the outside through a supply path (not shown) is annular. Fill space A. However, since the processing surface 40a of the third core member 40 is in close contact with the processing surface 20a for the optical element, the resin does not enter between them, and only the ring-shaped sealing member 30 is formed as a molded product. It will be. Further, since the viscosity of the thermoplastic resin at the time of cavity injection is relatively high, there is little risk of leakage from the divided surfaces of the core members 20 and 40.

熱可塑性樹脂が固化した後、回転駆動軸RSを上昇させ更に180度回転させて、第1のコア部材20に第2のコア部材10を対向させるようにする。その後、回転駆動軸RSを下降させて、第1のコア部材20上に第2のコア部材10を密着させる(図4(b)参照)。このとき、シーリング部材30は、加工面(光学面転写面)20a、10aの周囲に配置された状態で、第1のコア部材20と第2のコア部材10との間に所定の面圧で密着することとなる。ここで、樹脂の弾性変形領域内で、回転駆動軸RSを介して付与されるプレス圧を調整することで、第1のコア部材20と第2のコア部材10との距離が変化するため、それにより、成形された後の光学素子の軸上厚さを調整することができる。   After the thermoplastic resin is solidified, the rotational drive shaft RS is raised and further rotated 180 degrees so that the second core member 10 faces the first core member 20. Thereafter, the rotary drive shaft RS is lowered to bring the second core member 10 into close contact with the first core member 20 (see FIG. 4B). At this time, the sealing member 30 is disposed between the first core member 20 and the second core member 10 with a predetermined surface pressure in a state where the sealing member 30 is disposed around the processing surfaces (optical surface transfer surfaces) 20a and 10a. It will be in close contact. Here, the distance between the first core member 20 and the second core member 10 is changed by adjusting the press pressure applied via the rotational drive shaft RS within the elastic deformation region of the resin. Thereby, the axial thickness of the optical element after being molded can be adjusted.

更に、上述の実施の形態と同様に、第1のコア部材20と第2のコア部材10とを不図示のヒータで熱硬化性樹脂の硬化温度に加熱しながら、不図示の供給路を介して、外部より液体状の熱硬化性樹脂を加工面20a、10aの間に充填する。かかる状態では、シーリング部材30により第1のコア部材20と第2のコア部材10との分割面がシールされているため、粘度の低い熱硬化性の樹脂を、加工面(光学面転写面)20a、10aの間に注入しても漏れが生じることはない。このとき、シーリング部材30の素材は、熱硬化性樹脂の硬化温度でも溶融・変形しない程度の耐熱性を有することが望ましい。   Further, similarly to the above-described embodiment, the first core member 20 and the second core member 10 are heated to the curing temperature of the thermosetting resin by a heater (not shown) through a supply path (not shown). Then, a liquid thermosetting resin is filled between the processed surfaces 20a and 10a from the outside. In such a state, since the dividing surface of the first core member 20 and the second core member 10 is sealed by the sealing member 30, a thermosetting resin having a low viscosity is used as a processing surface (optical surface transfer surface). Even if it inject | pours between 20a and 10a, a leak does not arise. At this time, it is desirable that the material of the sealing member 30 has heat resistance that does not melt or deform even at the curing temperature of the thermosetting resin.

熱硬化性樹脂を加熱して硬化した後に、回転駆動軸RSと共に第2のコア部材10を上方に移動させると、シーリング部材30に密着するように一体的に成形された光学素子OEが露出する。その後、図4(c)に示すように、回転駆動軸RSを180度回転させ、第1のコア部材20に第2のコア部材10を対向させてから、回転駆動軸RSを下降させて、第1のコア部材20上に第3のコア部材40を密着させる。これにより新たなシーリング部材30の成形を行えるが、この成形中に、先のシーリング部材30と光学素子OEとを一体として離型させることができる。離型した状態で、光学素子OEとシーリング部材30は一体成形品となっている。その後、同様の工程を繰り返すことで、光学素子OEの成形を行うことができる(図4(d)参照)。   After the thermosetting resin is heated and cured, when the second core member 10 is moved upward together with the rotary drive shaft RS, the optical element OE integrally formed so as to be in close contact with the sealing member 30 is exposed. . After that, as shown in FIG. 4C, the rotational drive shaft RS is rotated 180 degrees, the second core member 10 is opposed to the first core member 20, and then the rotational drive shaft RS is lowered. The third core member 40 is brought into close contact with the first core member 20. As a result, a new sealing member 30 can be molded. During the molding, the previous sealing member 30 and the optical element OE can be released as a single unit. In the released state, the optical element OE and the sealing member 30 are integrally formed. Thereafter, the optical element OE can be molded by repeating the same steps (see FIG. 4D).

図5は、別な実施の形態にかかる成形装置における光学素子の成形工程を示す概略図である。尚、本実施の形態においては、保持部材を省略している。図5において、下方のコア部材(第2のコア部材)10は、中心が同一の円周上に配置された光学面転写面11の真ん中に、袋穴状のポット(凹部ともいう)13を形成している。又、上方のコア部材(第1のコア部材)20は、中心が同一の円周上に配置された光学面転写面21と、ポット13に対応して形成された円筒状の貫通孔25とを有している。貫通孔25内には、ピストン部材PMが摺動可能に配置されている。   FIG. 5 is a schematic diagram illustrating a molding process of an optical element in a molding apparatus according to another embodiment. In the present embodiment, the holding member is omitted. In FIG. 5, the lower core member (second core member) 10 has a bag hole-like pot (also referred to as a recess) 13 in the middle of the optical surface transfer surface 11 arranged on the circumference having the same center. Forming. Further, the upper core member (first core member) 20 includes an optical surface transfer surface 21 disposed on the circumference having the same center, and a cylindrical through hole 25 formed corresponding to the pot 13. have. A piston member PM is slidably disposed in the through hole 25.

成形前に、ポット13内に熱硬化性樹脂HRを貯留しておく。かかる状態で、シーリング部材30を介在させながらコア部材10,20を合わせ、不図示のヒータで加熱した後、ピストン部材PMを、ポット13に向けて突き出す。これにより、ポット13内の熱硬化性樹脂HRは放射状に押し出されて、光学面転写面11,21の間のキャビティ内に侵入し、固化して光学素子を成形できることとなる。   Prior to molding, the thermosetting resin HR is stored in the pot 13. In this state, the core members 10 and 20 are combined with the sealing member 30 interposed therebetween, heated with a heater (not shown), and then the piston member PM is protruded toward the pot 13. As a result, the thermosetting resin HR in the pot 13 is pushed out radially, enters the cavity between the optical surface transfer surfaces 11 and 21, and is solidified to mold the optical element.

図6は、本実施の形態の変形例を示す図である。上述した実施の形態では、型締めされるコア部材10,20は単一であったが、図6に示すように、複数のコア部材10,20を単一の保持部材70,60で位置決めしつつ保持することにより、一度に合わせるようにしても良い。   FIG. 6 is a diagram illustrating a modification of the present embodiment. In the embodiment described above, the core members 10 and 20 to be clamped are single. However, as shown in FIG. 6, the plurality of core members 10 and 20 are positioned by the single holding members 70 and 60. By holding it, it may be adjusted at a time.

図7は、上述した実施の形態に適用できるエアベントの例を示す図である。図7において、コア部材10は、シーリング部材30の外方に、エアエスケープ孔14を形成している。一方、コア部材20は、シーリング部材30及びエアエスケープ孔14を囲うようにして、周溝26を形成しており、その中にO−リングORを配置している。   FIG. 7 is a diagram illustrating an example of an air vent applicable to the above-described embodiment. In FIG. 7, the core member 10 has an air escape hole 14 formed outside the sealing member 30. On the other hand, the core member 20 forms a circumferential groove 26 so as to surround the sealing member 30 and the air escape hole 14, and an O-ring OR is disposed therein.

成形前には、シーリング部材30を介在させた状態でコア部材10,20を合わせ、バルブVを介して不図示の真空ポンプをエアエスケープ孔14に接続して、コア部材10,20内のキャビティCVより空気を排出させる。キャビティCV内が所定の真空状態になった時点で、バルブVを閉じてエアエスケープ孔14からの吸引を中断し、不図示の供給路から熱硬化性樹脂を供給すれば、流れを阻害する空気がキャビティCV内に存在しないことから、熱硬化性樹脂はキャビティCVの隅々まで行き渡り、これにより高精度な光学素子を形成できる。尚、熱固化性樹脂はシーリング部材30によりシールされるので、エアエスケープ孔14に侵入してこれを閉塞させることはない。   Before molding, the core members 10 and 20 are combined with the sealing member 30 interposed therebetween, and a vacuum pump (not shown) is connected to the air escape hole 14 via the valve V, so that the cavity in the core members 10 and 20 is formed. Air is discharged from the CV. When the inside of the cavity CV is in a predetermined vacuum state, the valve V is closed, the suction from the air escape hole 14 is interrupted, and the thermosetting resin is supplied from a supply path (not shown), the air impeding the flow Is not present in the cavity CV, the thermosetting resin spreads to every corner of the cavity CV, and thereby a highly accurate optical element can be formed. In addition, since the thermosetting resin is sealed by the sealing member 30, it does not enter the air escape hole 14 and close it.

以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。例えば、コア部材の光学面転写面は同一の円周上に沿って配置することなくマトリクス状に配置しても良い。又、光学面転写面の中央に樹脂の供給路を配置する必要はない。熱硬化性樹脂は常温での粘度が低いため、流れ性がよいからである。従って、隣接する光学面転写面の間に水平供給路を設けることもでき、それにより図8に示すように、隣接する光学素子OE同士の外周が樹脂で一周つながっている中間成形体Mを得ることができる。かかる場合、樹脂は外部から注入口Bを介して注入される。   The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate. For example, the optical surface transfer surface of the core member may be arranged in a matrix without being arranged along the same circumference. Further, it is not necessary to arrange a resin supply path at the center of the optical surface transfer surface. This is because the thermosetting resin has a low viscosity at room temperature and thus has good flowability. Therefore, it is possible to provide a horizontal supply path between adjacent optical surface transfer surfaces, thereby obtaining an intermediate molded body M in which the outer periphery of adjacent optical elements OE is connected by a resin as shown in FIG. be able to. In such a case, the resin is injected from the outside through the injection port B.

更に、樹脂の供給路が同一の円周の中心に向かって外部より延在する場合だけでなく、例えば水平方向に金型が開く場合には、円周の半径方向外側に供給路を設けて、重力方向下方より成形キャビティ内に樹脂を供給したり、或いは各成形キャビティの外周に接続するような全体的に平板状の供給路を設けても良い。外部より延在する小断面積の供給路の場合は、成形圧力が供給路から光学面転写面の成形キャビティに伝達されるので、粘度が高くなる硬化時に収縮での残留応力が不均一になって残りやすく、そのため成形品に複屈折などの光学的な内部不均一を生じることがある。そこで、小断面積の供給路を設ける代わりに、成形キャビティを平板状の供給路に接続することで、光学面転写面の外周から均等に成形圧力がかかった状態で樹脂が硬化することとなり、これにより内部応力や歪みの少ない高品質な成形品を得ることができる。   Furthermore, in addition to the case where the resin supply path extends from the outside toward the center of the same circumference, for example, when the mold is opened in the horizontal direction, a supply path is provided outside the circumference in the radial direction. Alternatively, an entirely flat supply path may be provided so that resin is supplied into the molding cavities from below in the direction of gravity or connected to the outer periphery of each molding cavity. In the case of a supply path with a small cross-sectional area extending from the outside, the molding pressure is transmitted from the supply path to the molding cavity of the optical surface transfer surface, so the residual stress due to shrinkage becomes uneven during curing when the viscosity increases. Therefore, optical inhomogeneities such as birefringence may occur in the molded product. Therefore, instead of providing a small cross-sectional area supply path, by connecting the molding cavity to a flat plate-shaped supply path, the resin is cured in a state where molding pressure is evenly applied from the outer periphery of the optical surface transfer surface, As a result, a high-quality molded product with less internal stress and distortion can be obtained.

本実施の形態にかかるコア部材を治具Jにより保持した状態で示す斜視図である。It is a perspective view showing the core member concerning this embodiment held in jig J. 本実施の形態に係るコア部材を加工装置するX、Y、Z、θ軸超精密旋盤の斜視図である。It is a perspective view of an X, Y, Z, θ axis super-precision lathe for processing a core member according to the present embodiment. 本実施の形態にかかるコア部材を含む成形装置により、光学素子を成形する工程を示す概略図である。It is the schematic which shows the process of shape | molding an optical element with the shaping | molding apparatus containing the core member concerning this Embodiment. 別な実施の形態にかかる成形装置における光学素子の成形工程を示す概略図である。It is the schematic which shows the formation process of the optical element in the shaping | molding apparatus concerning another embodiment. 別な実施の形態にかかる成形装置における光学素子の成形工程を示す概略図である。It is the schematic which shows the formation process of the optical element in the shaping | molding apparatus concerning another embodiment. 本実施の形態の変形例を示す図である。It is a figure which shows the modification of this Embodiment. 上述した実施の形態に適用できるエアベントの例を示す図である。It is a figure which shows the example of the air vent applicable to embodiment mentioned above. 中間成形体の一例を示す図である。It is a figure which shows an example of an intermediate molded object. コア部材を変形例にかかる治具J’により保持した状態で示す斜視図である。It is a perspective view shown in the state where a core member was held by jig J 'concerning a modification. コア部材を変形例にかかる治具J’により保持した状態で示す斜視図である。It is a perspective view shown in the state where a core member was held by jig J 'concerning a modification.

符号の説明Explanation of symbols

10 コア部材
10a 加工面
11 光学面転写面
13 ポット
14 エアエスケープ孔
20 コア部材
20a 加工面
21、21’ 光学面転写面
22 供給路
23 段部
24 水平供給路
25 貫通孔
26 周溝
30 シーリング部材
40 コア部材
40a 加工面
50 ヒータ
60 保持部材
70 保持部材
105 Z軸ステージ
106 X軸ステージ
107 Y軸ステージ
109 回転支持部
109a チャック
110 定盤
113 ダイヤモンド工具
A 空間
AX 軸線
CB カウンタバランス
CV キャビティ
HR 熱硬化性樹脂
J、J’ 治具
J1、J1’、J2 開口
M 樹脂成形物
N ノズル
OE 光学素子
OR O−リング
PM ピストン部材
RS 回転駆動軸
RX 回転軸線
DESCRIPTION OF SYMBOLS 10 Core member 10a Processing surface 11 Optical surface transfer surface 13 Pot 14 Air escape hole 20 Core member 20a Processing surface 21, 21 'Optical surface transfer surface 22 Supply path 23 Step part 24 Horizontal supply path 25 Through hole 26 Circumferential groove 30 Sealing member 40 Core member 40a Work surface 50 Heater 60 Holding member 70 Holding member 105 Z-axis stage 106 X-axis stage 107 Y-axis stage 109 Rotation support 109a Chuck 110 Surface plate 113 Diamond tool A Space AX Axis line CB Counter balance CV Cavity HR Thermosetting Resin J, J 'Jig J1, J1', J2 Opening M Resin molding N Nozzle OE Optical element OR O-ring PM Piston member RS Rotation drive shaft RX Rotation axis

Claims (24)

第1の光学面転写面を複数個有する金型であって、各第1の光学面転写面に対向して配置される第2の光学面転写面を複数個有する対向金型に対して合わせられ、両金型間に形成されるキャビティに樹脂を供給することで光学素子を成形する金型において、
少なくとも前記キャビティに供給される樹脂が接触する面は、一体で形成されていることを特徴とする金型。
A mold having a plurality of first optical surface transfer surfaces, which is aligned with a counter mold having a plurality of second optical surface transfer surfaces arranged to face each first optical surface transfer surface. In a mold for molding an optical element by supplying resin to a cavity formed between both molds,
At least the surface with which the resin supplied to the cavity comes into contact is formed integrally.
前記樹脂はエネルギー硬化性樹脂であることを特徴とする請求項1に記載の金型。   The mold according to claim 1, wherein the resin is an energy curable resin. 前記エネルギー硬化性樹脂は,硬化前の粘度が100(poise)以下であることを特徴とする請求項2に記載の金型。   The mold according to claim 2, wherein the energy curable resin has a viscosity before curing of 100 (poise) or less. 前記第1の光学面転写面の中心は、金型表面の1点を中心とする第1の円周上に配置されていることを特徴とする請求項1〜3のいずれかに記載の金型。   4. The gold according to claim 1, wherein the center of the first optical surface transfer surface is disposed on a first circumference centered at one point on the mold surface. 5. Type. 前記第1の光学面転写面の中心は、金型表面の1点を中心とする第1の円周上に少なくとも2個配置され、更に、前記第1の円周と同一表面上にあって、前記第1の円周と中心が同じであり、第1の円周と半径が異なる第2の円周上に少なくとも2個配置されていることを特徴とする請求項1〜3のいずれかに記載の金型。   At least two centers of the first optical surface transfer surface are arranged on a first circumference centered on one point of the mold surface, and are further on the same surface as the first circumference. 4. At least two of the first circumference and the second circumference having the same center and different in radius from the first circumference are arranged. The mold as described in. 前記円周の中心に向かって、外部より延在する供給路が設けられ、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする請求項4又は5に記載の金型。   The supply path extending from the outside toward the center of the circumference is provided, and the pressurized resin is supplied to the cavity through the supply path. The mold according to 4 or 5. 前記円周の半径方向外方に、外部より延在する供給路が設けられ、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする請求項4又は5に記載の金型。   A supply path extending from the outside is provided outside the circumference in the radial direction, and pressurized resin is supplied to the cavity through the supply path. Item 6. The mold according to Item 4 or 5. 前記金型が、前記第1の光学面転写面を有する第1のコア部材と、前記第1のコア部材を保持する第1の保持部材とを有し、前記第1のコア部材は、前記対向金型に設けられた前記第2の光学面転写面を有する第2のコア部材に対して面接触し、且つ前記第1の保持部材は、前記対向金型に設けられた前記第2のコア部材を保持する第2の保持部材に対して面接触することを特徴とする請求項1〜7のいずれかに記載の金型。   The mold includes a first core member having the first optical surface transfer surface, and a first holding member for holding the first core member, and the first core member includes: The second core member having the second optical surface transfer surface provided in the counter mold is in surface contact with the second holding member, and the first holding member is provided in the second mold provided in the counter mold. The mold according to any one of claims 1 to 7, wherein the mold is in surface contact with the second holding member that holds the core member. 前記金型が、前記第1の光学面転写面を有する第1のコア部材と、前記第1のコア部材を保持する第1の保持部材とを有し、前記第1のコア部材は、前記対向金型に設けられた前記第2の光学面転写面を有する第2のコア部材に対して面接触するが、前記第1の保持部材は、前記対向金型に設けられた前記第2のコア部材を保持する第2の保持部材に対して、面接触しないことを特徴とする請求項1〜7のいずれかに記載の金型。   The mold includes a first core member having the first optical surface transfer surface, and a first holding member for holding the first core member, and the first core member includes: The second core member having the second optical surface transfer surface provided in the counter mold is in surface contact with the second core member, and the first holding member is provided in the second mold provided in the counter mold. The die according to any one of claims 1 to 7, wherein the second holding member that holds the core member is not in surface contact. 第1の光学面転写面を複数個有する第1のコア部材と、各第1の光学面転写面に対向して配置される第2の光学面転写面を複数個有する第2のコア部材とを有し、前記第1のコア部材と前記第2のコア部材とを合わせた状態で、両コア部材間に形成されるキャビティに、前記第1のコア部材又は前記第2のコア部材に形成された供給路を介して樹脂を供給することで光学素子を成形する成形装置であって、
前記コア部材のうち少なくとも一方において、前記キャビティに供給される樹脂が接触する面は一体で形成されていることを特徴とする成形装置。
A first core member having a plurality of first optical surface transfer surfaces; and a second core member having a plurality of second optical surface transfer surfaces disposed to face each first optical surface transfer surface; And formed in the first core member or the second core member in a cavity formed between the two core members in a state where the first core member and the second core member are combined. A molding apparatus for molding an optical element by supplying a resin through a supply path,
In at least one of the core members, a surface with which the resin supplied to the cavity contacts is integrally formed.
前記樹脂はエネルギー硬化性樹脂であることを特徴とする請求項10に記載の成形装置。   The molding apparatus according to claim 10, wherein the resin is an energy curable resin. 前記エネルギー硬化性樹脂は,硬化前の粘度が100(poise)以下であることを特徴とする請求項11に記載の成形装置。   The molding apparatus according to claim 11, wherein the energy curable resin has a viscosity before curing of 100 (poise) or less. 前記第1の光学面転写面の中心は、前記第1のコア部材表面の1点を中心とする第1の円周上に配置されていることを特徴とする請求項10〜12のいずれかに記載の成形装置。   The center of the first optical surface transfer surface is disposed on a first circumference centered on one point on the surface of the first core member. The molding apparatus described in 1. 前記第1の光学面転写面の中心は、前記第1のコア部材表面の1点を中心とする第1の円周上に少なくとも2個配置され、更に、前記第1の円周と同一表面上にあって、前記第1の円周と中心が同じであり、第1の円周と半径が異なる第2の円周上に少なくとも2個配置されていることを特徴とする請求項10〜12のいずれかに記載の成形装置。   At least two centers of the first optical surface transfer surface are arranged on a first circumference centered on one point on the surface of the first core member, and the same surface as the first circumference is further provided. 11. At least two of the first circumference and the second circumference having the same center as the first circumference and having a radius different from the first circumference are arranged. 12. The molding apparatus according to any one of 12 above. 前記第1のコア部材には、前記円周の中心に向かって、外部より延在する供給路が設けられ、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする請求項13又は14に記載の成形装置。   The first core member is provided with a supply path extending from the outside toward the center of the circumference, and the pressurized resin is supplied to the cavity through the supply path. The molding apparatus according to claim 13 or 14, wherein 前記第1のコア部材には、前記円周の半径方向外方に、外部より延在する供給路が設けられ、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする請求項13又は14に記載の成形装置。   The first core member is provided with a supply path extending from the outside on the outer side in the radial direction of the circumference so that the pressurized resin is supplied to the cavity through the supply path. The molding apparatus according to claim 13 or 14, wherein the molding apparatus is formed. 前記第1のコア部材には、前記円周の中心に向かって延在する貫通孔が形成され、前記第2のコア部材には、前記貫通孔に対向して凹部が形成され、前記第1のコア部材と前記第2のコア部材とを合わせた状態で、前記凹部に液体状の樹脂を貯留させ、前記貫通孔に対して摺動するピストン部材で前記凹部の樹脂を押し出すことにより、前記供給路を介して加圧された樹脂が前記キャビティに供給されるようになっていることを特徴とする請求項13又は14に記載の成形装置。   A through hole extending toward the center of the circumference is formed in the first core member, and a recess is formed in the second core member so as to face the through hole. In a state in which the core member and the second core member are combined, liquid resin is stored in the recess, and the resin in the recess is pushed out by a piston member that slides with respect to the through hole. The molding apparatus according to claim 13 or 14, wherein the pressurized resin is supplied to the cavity through a supply path. 前記第1のコア部材を保持する第1の保持部材と、前記第2のコア部材を保持する第2の保持部材とを有し、前記第1のコア部材は、前記第2のコア部材に対して面接触し、且つ前記第1の保持部材は、前記第2の保持部材に対して面接触することを特徴とする請求項10〜17のいずれかに記載の成形装置。   A first holding member that holds the first core member; and a second holding member that holds the second core member. The first core member is connected to the second core member. The molding apparatus according to claim 10, wherein the molding apparatus is in surface contact with the first holding member and is in surface contact with the second holding member. 前記第1のコア部材を保持する第1の保持部材と、前記第2のコア部材を保持する第2の保持部材とを有し、前記第1のコア部材は、前記第2のコア部材に対して面接触するが、前記第1の保持部材は、前記第2の保持部材に対して面接触しないことを特徴とする請求項10〜17のいずれかに記載の成形装置。   A first holding member that holds the first core member; and a second holding member that holds the second core member. The first core member is connected to the second core member. 18. The molding apparatus according to claim 10, wherein the first holding member is not in surface contact with the second holding member, although in surface contact with the second holding member. 前記第1のコア部材と前記第2のコア部材との間にシーリング部材を配置したことを特徴とする請求項10〜19のいずれかに記載の成形装置。   The molding apparatus according to claim 10, wherein a sealing member is disposed between the first core member and the second core member. 前記シーリング部材は、複数の前記第1の光学面転写面と前記第2の光学面転写面とを囲うリング状であることを特徴とする請求項20に記載の成形装置。   21. The molding apparatus according to claim 20, wherein the sealing member has a ring shape surrounding a plurality of the first optical surface transfer surfaces and the second optical surface transfer surfaces. 前記第2のコア部材に合わせる前に、前記第1のコア部材を、第3のコア部材に合わせ、前記第1のコア部材と前記第3のコア部材との間に樹脂を供給することで前記第1のコア部材上に前記シーリング部材を形成したことを特徴とする請求項20又は21に記載の成形装置。   Before aligning with the second core member, align the first core member with the third core member and supplying resin between the first core member and the third core member. The molding apparatus according to claim 20 or 21, wherein the sealing member is formed on the first core member. 請求項10〜22のいずれかに記載の成形装置により成形された状態で、前記光学面転写面から成形された光学面を有する一つの光学素子と、それに隣接する光学素子とが樹脂材により連結されていることを特徴とする中間成形体。   An optical element having an optical surface molded from the optical surface transfer surface in a state molded by the molding apparatus according to any one of claims 10 to 22, and an optical element adjacent thereto are connected by a resin material. An intermediate molded body characterized by being made. 請求項23に記載の中間成形体を切断することによって製造されることを特徴とする光学素子。   An optical element manufactured by cutting the intermediate molded body according to claim 23.
JP2007109657A 2007-04-18 2007-04-18 Mold and molding equipment Expired - Fee Related JP5019167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109657A JP5019167B2 (en) 2007-04-18 2007-04-18 Mold and molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109657A JP5019167B2 (en) 2007-04-18 2007-04-18 Mold and molding equipment

Publications (2)

Publication Number Publication Date
JP2008265106A true JP2008265106A (en) 2008-11-06
JP5019167B2 JP5019167B2 (en) 2012-09-05

Family

ID=40045315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109657A Expired - Fee Related JP5019167B2 (en) 2007-04-18 2007-04-18 Mold and molding equipment

Country Status (1)

Country Link
JP (1) JP5019167B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100835A (en) * 1993-09-30 1995-04-18 Ricoh Co Ltd Die for manufacturing optical parts, optical part manufacturing device using die and manufacture of optical parts
JPH08332643A (en) * 1995-06-08 1996-12-17 Asahi Optical Co Ltd Mold for synthetic resin
JP2002067105A (en) * 2000-08-25 2002-03-05 Asahi Optical Co Ltd Method and apparatus for separating multi-cavity plastic moldings
JP2005161849A (en) * 2003-11-13 2005-06-23 Matsushita Electric Ind Co Ltd Mold for molding optical element, optical element molding method and optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100835A (en) * 1993-09-30 1995-04-18 Ricoh Co Ltd Die for manufacturing optical parts, optical part manufacturing device using die and manufacture of optical parts
JPH08332643A (en) * 1995-06-08 1996-12-17 Asahi Optical Co Ltd Mold for synthetic resin
JP2002067105A (en) * 2000-08-25 2002-03-05 Asahi Optical Co Ltd Method and apparatus for separating multi-cavity plastic moldings
JP2005161849A (en) * 2003-11-13 2005-06-23 Matsushita Electric Ind Co Ltd Mold for molding optical element, optical element molding method and optical element

Also Published As

Publication number Publication date
JP5019167B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
TWI544248B (en) Manufacturing method of imaging lens unit and imageing lens unit
JPS6256111A (en) Resin sealing mold
CN101784378A (en) Molding method, optical element manufacturing method, and arrayed optical element
EP0769999A1 (en) Lens thickness adjustment in plastic injection mold
CN109290515B (en) Wax mold splicing tool and wax mold forming method for large complex annular thin-wall casing
WO2013154121A1 (en) Lens unit
CN106425750A (en) Clamping jig and process of glasses
JP2008170534A (en) Method of manufacturing optical element, the optical element, and optical element unit
JP3954346B2 (en) Injection molding apparatus and injection molding method
JP5019167B2 (en) Mold and molding equipment
JPWO2006046436A1 (en) Optical component manufacturing equipment
CN103796820B (en) For manufacturing the mold of contact lens or intraocular lens
CN102216812A (en) Aspheric lens manufacturing method
CN110465464B (en) Forming process of liquid silica gel for mobile phone camera support
KR20160133289A (en) Molding apparatus of lens for vehicle lamp and manufacturing method of lens for vehicle lamp using the same
CN111468676A (en) Preparation method of integral wax mold of large-scale closed annular casing casting
JPS61242921A (en) Molding device for glass lens
WO2013145754A1 (en) Method of manufacturing plastic lens, and method for manufacturing mold for forming optical lens
CN107825193A (en) Suitable for high-precision ring-type thin-walled parts without clamping stress processing method
EP2892712A1 (en) Method for manufacturing an optical insert for an injection mold for manufacturing an ophthalmic device
JP5023719B2 (en) Optical element molding method
CN110695622B (en) Copying processing method for complex shape and position of inlet eccentric shaft
KR102233297B1 (en) Non-dicing type grating structure mold for manufacturing microlens and method of manufacturing microlens using the same
CN110238611A (en) Generator list stream ring seal watt processing method
JP2017531569A (en) Apparatus and method for molding a micro member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees