JPS6295210A - Mold for molding plastic - Google Patents

Mold for molding plastic

Info

Publication number
JPS6295210A
JPS6295210A JP23518885A JP23518885A JPS6295210A JP S6295210 A JPS6295210 A JP S6295210A JP 23518885 A JP23518885 A JP 23518885A JP 23518885 A JP23518885 A JP 23518885A JP S6295210 A JPS6295210 A JP S6295210A
Authority
JP
Japan
Prior art keywords
heat medium
insert piece
cooling
medium flow
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23518885A
Other languages
Japanese (ja)
Inventor
Kiyoshi Wada
清 和田
Masayuki Muranaka
昌幸 村中
Masao Takagi
正雄 高木
Masamichi Takeshita
竹下 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23518885A priority Critical patent/JPS6295210A/en
Publication of JPS6295210A publication Critical patent/JPS6295210A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00413Production of simple or compound lenses made by moulding between two mould parts which are not in direct contact with one another, e.g. comprising a seal between or on the edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/76Cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To permit molding of a molded product having a large thickness ratio with a high accuracy by a method wherein cooling structure are arranged properly to equalize the cooling speed of the central portion of a thick portion and a thin portion. CONSTITUTION:A molded lens 6 is molded between a movable insert piece 4a and a fixed insert piece 4b while a movable mold 3a, a fixed mold 3b and cooling blocks 5a, 5b are provided with heat medium flow paths 7a, 7b, 8a, 8b to cool the molded lens 6. The heat medium flow paths 8a, 8b are connecting the centers of the surfaces of the cooling blocks 5a, 5b, which are contacted with the movable insert piece 4a or the fixed insert piece 4b, to the same which are not contacted with the movable insert piece 4a or the fixed insert piece 4b through straight lines while the surfaces which are not contacted with the insert pieces 4a, 4b are the inlet sides of the heat medium. The surfaces, which are contacted with the movable insert piece 4 or the fixed insert piece 4b, recede from the insert pieces 4a, 4b while being expanded outwardly. The heat medium flow path is a scroll type to make a temperature distribution symmetrical with respect to the axis thereof while the heat medium flow paths 7a, 7b are arranged at positions having the same depth substantially as the outer peripheral sections of the heat medium flow paths 8a, 8b. According to this method, the cooling speed of the surface of a thin portion can be slowed down, while the cooling speed of the surface of a thick portion can be quickened.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラスチックの射出成形、圧縮成形等に係り
、特に薄肉部と厚肉部の肉厚の比の大きい成形品、例え
ばレンズの高精度成形に好適な成形金型に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to injection molding, compression molding, etc. of plastics, and particularly to molded products with a large ratio of thickness between thin and thick parts, such as high precision lenses. This invention relates to a molding die suitable for molding.

〔発明の背景〕[Background of the invention]

プラスチックの射出成形、圧縮成形等において、成形品
の精度に成形金型の温度分布が大きく関与している。し
たがって高精度の成形品を得るには適正な温度分布を提
供できる成形金型が必要である。
In plastic injection molding, compression molding, etc., the temperature distribution of the molding die has a large effect on the accuracy of the molded product. Therefore, in order to obtain a molded product with high precision, a molding die that can provide an appropriate temperature distribution is required.

さらにレンズ等の光学部品の場合、回転軸対称であるこ
とが要求させるため、その成形においては金型温度も回
転軸対称でなげればならない。
Furthermore, in the case of optical parts such as lenses, it is required that they be symmetrical about the rotational axis, so the mold temperature must also be kept symmetrical about the rotational axis during molding.

金型の加熱、冷却を周期的に行つM、形において回転軸
対称の温度分布を実現する方法とじ二特開昭57−+8
72M号公報に記載のように、回転軸中心部から周辺部
へ同心的パターンの熱媒体流路乞配置し、金型温度を均
一にする装置が提案されている。金型温度を均一にする
のは、ビデオディスク等の板状すなわち肉厚がほぼ均一
の成形品に対しては有効である。しかし第4図に示すレ
ンズ1のように薄肉部と厚肉部の肉厚の比が大きい成形
品を成形する場合においては、金型温度7均−にするの
は不適当である。冷却工程時に金型温度が均一であると
第5図に示すように肉厚部分の中心部2aの冷却速度が
遅くなり、肉厚部分の中心部24が最後に冷却されるこ
とになる。その結果、収縮によるヒケが発生し精度が劣
化するという欠点があった。
JP-A-57-+8, JP-A-57-+8: A method of periodically heating and cooling a mold to achieve a temperature distribution that is symmetrical about the rotational axis in the shape.
As described in Japanese Patent No. 72M, an apparatus has been proposed in which heat medium flow paths are arranged in a concentric pattern from the center of the rotating shaft to the periphery to uniformize the mold temperature. Making the mold temperature uniform is effective for plate-shaped molded products such as video discs, that is, molded products with substantially uniform wall thickness. However, in the case of molding a molded product having a large ratio of thickness between the thin part and the thick part, such as the lens 1 shown in FIG. 4, it is inappropriate to set the mold temperature to 7 -. If the mold temperature is uniform during the cooling process, as shown in FIG. 5, the cooling rate of the central portion 2a of the thick portion will be slow, and the central portion 24 of the thick portion will be cooled last. As a result, there was a drawback that shrinkage occurred due to shrinkage and accuracy deteriorated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点をなくし、薄肉部と厚肉部の
肉厚比が大きい成形品、例えばレンズを高精度で成形す
ることができる成形金型を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a molding die that eliminates the above-mentioned drawbacks and is capable of molding a molded product, such as a lens, with a high thickness ratio between a thin part and a thick part with high precision.

〔発明の概要〕[Summary of the invention]

本発明は、上記欠点をなくすために、冷却構造を適正に
配置することにより、成形品の薄肉部と厚肉部の中心部
分の冷却速度を等しくすることにより、ヒケの発生を防
止し高精度のレンズ7得るものである。従って金型温度
は均一にするのではな(積極的に温度分布を発生させ℃
成形品の薄肉部の表面の冷却速度を遅く、厚肉部表面の
冷却速度を速(する。すなわち薄肉部では熱媒体流路も
しくはヒートパイプ等の冷却素子の配置を成形品から遠
ざけ、逆に厚肉部は熱媒体もしくは冷却素子を成形品に
近づける。
In order to eliminate the above-mentioned drawbacks, the present invention aims to prevent the occurrence of sink marks and achieve high accuracy by properly arranging the cooling structure and equalizing the cooling rate of the thin-walled part and the central part of the thick-walled part of the molded product. This is what you get with lens 7. Therefore, it is better to make the mold temperature uniform (by actively generating temperature distribution).
The cooling rate of the surface of the thin walled part of the molded product is slowed down, and the cooling rate of the surface of the thick walled part is set high.In other words, in the thin walled part, cooling elements such as heat medium channels or heat pipes are placed away from the molded product, and vice versa. The thick portion brings the heat medium or cooling element closer to the molded product.

さらに成形品内部の冷却速度を常に一致させるために、
上記冷却素子の配置を冷却工程中に変化させ冷却9y′
J率を変動させることが可能な構造としたものである。
Furthermore, in order to always match the cooling rate inside the molded product,
Cooling 9y' by changing the arrangement of the cooling element during the cooling process
It has a structure that allows the J rate to be varied.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。第1
図では成形金型の構成のうち、特に本発明の重要な部分
のみを示しである。金型は可動型3 ” e固定型3b
、一方の面がレンズを賦型するキャビテイ面となる可動
入駒4a、固定入駒4b、冷却ブロックsa、sb等で
構成されている。可動入駒44と固定入駒4bの間に成
形レンズ6が形成される。また可動型5 a。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure only shows particularly important parts of the present invention among the configuration of the molding die. Mold is movable type 3"e fixed type 3b
, a movable inserting piece 4a whose one surface serves as a cavity surface for shaping the lens, a fixed inserting piece 4b, cooling blocks sa, sb, etc. A molded lens 6 is formed between the movable insert piece 44 and the fixed insert piece 4b. Also movable type 5a.

固定fi3b、冷却ブロック5cL、5bにはそれぞれ
成形レンズ6を冷却するだめの熱媒体流路7a、7b、
+3a、abが設けである。熱媒体流路8”+8bはそ
れぞれ冷却ブロック5 ar5bの中央を可動入駒4a
、固定人駒4bと接していない面側と接している面を直
線で結んでいるが、この接していない面側か熱媒体の入
口側である。可動入駒4’+固定入駒4bと接している
面側は、その後、外周方向に拡がりながら可動入駒4a
、固定人駒4bから遠ざかっていく。すなわちキャビテ
イ面から遠ざかっていく。これは第3図が凸レンズの場
合を示しているためであり、凹レンズの場合だと逆に外
周に拡がりながらキャビティ面近づく配置となる。
The fixed fi 3b and the cooling blocks 5cL and 5b have heat medium flow paths 7a and 7b for cooling the molded lens 6, respectively.
+3a and ab are provided. The heat medium flow path 8''+8b is a movable entry piece 4a at the center of the cooling block 5ar5b.
A straight line connects the side of the surface that is not in contact with the fixed human piece 4b and the surface that is in contact with it, and the side that is not in contact with it is the inlet side of the heat medium. The surface side that is in contact with the movable insert piece 4'+fixed insert piece 4b then expands in the outer circumferential direction and becomes the movable insert piece 4a.
, moving away from the fixed human piece 4b. In other words, it moves away from the cavity surface. This is because FIG. 3 shows the case of a convex lens; in the case of a concave lens, on the contrary, the arrangement is such that it expands toward the outer periphery and approaches the cavity surface.

そして可動入駒4α、固定人駒4bと接していない面側
に到達する。これが熱媒体の出口である。熱媒体流路を
正面から見ると第2図に示すような渦巻状となっており
、温度分布の軸対称性の劣化を防止している。また熱媒
体流路7 a。
Then, the movable entered piece 4α reaches the side that is not in contact with the fixed human piece 4b. This is the outlet for the heat medium. When viewed from the front, the heat medium flow path has a spiral shape as shown in FIG. 2, which prevents deterioration of the axial symmetry of the temperature distribution. Also, the heat medium flow path 7a.

7bはそれぞれ熱媒体流路8a、8bの外周部とほぼ同
じ深さの位置に配置している。
7b are arranged at approximately the same depth as the outer periphery of the heat medium flow paths 8a and 8b, respectively.

この金型の動作を次に説明する。射出成形機(図示せず
)より溶融樹脂がキャビティ内に充填すれ成形レンズ6
となる。可動入駒4a、固定入駒4bにより両面が賦型
される。それと同時に温調機(図示せず)より、油や水
等の熱媒体が熱媒体流路7a、7b、B4,8bを通過
する。そして成形レンズ6が冷却されたら、可動型3Δ
と固定型3bが分離し、突出板(図示せず)により可動
入駒4aが突出され、成形レンズ6が取り出される。
The operation of this mold will be explained next. The molded lens 6 is filled with molten resin from an injection molding machine (not shown) into the cavity.
becomes. Both surfaces are shaped by the movable insert piece 4a and the fixed insert piece 4b. At the same time, a heat medium such as oil or water is passed through heat medium channels 7a, 7b, B4, and 8b from a temperature controller (not shown). After the molded lens 6 is cooled down, the movable mold 3Δ
The fixed mold 3b is separated, the movable inserting piece 4a is projected by a projecting plate (not shown), and the molded lens 6 is taken out.

なお、冷却ブロックstL、sbの熱媒体流路aa、8
bは複雑な形状をしているが、第3図に示すように複数
のブロックに分割することにより加工が容易となる。
Note that the heat medium flow paths aa and 8 of the cooling blocks stL and sb
Although b has a complicated shape, it can be easily processed by dividing it into a plurality of blocks as shown in FIG.

また他の一実施例を第6図に示す。これは第1図の実施
例おける複雑な形状の熱媒体流路84.8bの代わりに
ヒートパイプ9a、9b”&使用したものである。ヒー
トパイプ9α、9bの一端は熱媒体流路104.10b
  内に伸びている。他端は冷却ブロックsa、sb内
にあり、外周になるほど、キャビテイ面から離れて配置
している。これも第1図と同様に凸レンズ成形の場合で
あり、凹レンズの場合、外周になるはどキャビテイ面に
近づけて配置する。なおヒートパイプ9cL、9bは第
7図に示すように同心円状に多数配置する。その他の構
成および動作は第1図と同じである。冷却配置の変更を
行う場合第6図の実施例の方が、第1図の実施例よりも
修正が容易である。
Another embodiment is shown in FIG. In this case, heat pipes 9a, 9b''& are used in place of the heat medium flow path 84.8b having a complicated shape in the embodiment shown in FIG. 10b
It extends inward. The other ends are located within the cooling blocks sa and sb, and the closer to the outer periphery, the farther away from the cavity surface they are arranged. This also applies to convex lens molding as in FIG. 1, and in the case of a concave lens, the outer periphery is placed close to the cavity surface. Note that a large number of heat pipes 9cL and 9b are arranged concentrically as shown in FIG. Other configurations and operations are the same as in FIG. 1. When changing the cooling arrangement, the embodiment of FIG. 6 is easier to modify than the embodiment of FIG. 1.

以上の2実施例より、さらに成形品内部の冷却速度の均
一化を図った実施例を第8図に示す。
FIG. 8 shows an example in which the cooling rate inside the molded product is made more uniform than the above two examples.

図は可動側のみ示しているが固定側も同じ構成である。The figure shows only the movable side, but the fixed side has the same configuration.

第6図の実施例と同じ(ヒートパイプ9aと使用してい
る。異なっているのはヒートパイプqcL用の穴164
に空隙が存在し、ヒートパイプ9aが前後に摺動可能で
ある。ヒートパイプ9cLの先端にバネ1(5aが固定
されている。
Same as the embodiment shown in Fig. 6 (used with heat pipe 9a. The only difference is the hole 164 for heat pipe qcL.
A gap exists between the heat pipes 9a and the heat pipes 9a can slide back and forth. A spring 1 (5a) is fixed to the tip of the heat pipe 9cL.

一方ヒートパイブ9aの後端には油圧シリフタ1フa、
油圧弁j44油圧ボング(図示せず)が設置しである。
On the other hand, at the rear end of the heat pipe 9a, there is a hydraulic shifter 1a,
A hydraulic valve J44 hydraulic bong (not shown) is installed.

またヒートパイプ9αと連動して動作する変位センサt
Za、検知された変位を信号に変換する変換器13tL
および変位変換器136から入力された変位と設定の変
位を比較して油圧ポンプ14cL′?:制御する制御部
が取り付けられている。
In addition, a displacement sensor t that operates in conjunction with the heat pipe 9α
Za, a converter 13tL that converts the detected displacement into a signal
The displacement input from the displacement converter 136 and the set displacement are compared and the hydraulic pump 14cL'? : A control unit is installed.

この動作について説明する。まず冷却工程中の各ヒート
パイプ9αの位置を時間の関数で設定すしてお(。そし
て冷却工程が開始すると、各ヒートパイプ9aの位置を
変位センサ124て検知し、その結果を変換器13αを
介して制御部15に伝達する。制御部15では設定の変
位と実測の変位を比較し、ヒートパイプ9aの位置が設
定と同じになる様、油圧弁14α乞制御する。すなわち
ヒートパイプ9aをさらに前進させる場合には油圧を上
げると、油圧シリンダ17aでヒートバイブ9af押し
出す。−万、ヒートパイプ9αを後退させる場合には油
圧y!−さげると、バネ16aの力でヒートパイプ9α
は後退する。
This operation will be explained. First, the position of each heat pipe 9a during the cooling process is set as a function of time (. Then, when the cooling process starts, the position of each heat pipe 9a is detected by the displacement sensor 124, and the result is sent to the converter 13α. The control unit 15 compares the set displacement and the actually measured displacement, and controls the hydraulic valve 14α so that the position of the heat pipe 9a is the same as the set position.In other words, the heat pipe 9a is further To move the heat pipe 9α forward, increase the oil pressure, and the hydraulic cylinder 17a will push out the heat vibrator 9af.-If you want to move the heat pipe 9α backward, the oil pressure y!-If you lower it, the heat pipe 9α will be pushed out by the force of the spring 16a.
retreats.

ここで冷却効率を向上し、温度制御精度を向上するため
ヒートパイプ9αと冷却ブロック5aの接触は先端付近
のみとし、中間部は断熱とすることが望ましい。第9図
Aは、冷却ブロック5αの一部をヒートパイプ9αの径
より太き(して、エア断熱部18乞設けた実施例を示す
要部断面図である。エア断熱の代りに、第9図Bに要部
断面を示すように冷却ブロック5cLを薄肉化し、断熱
材19ヲ挿通したようにヒートパイプ9αを設置しても
よい。
Here, in order to improve cooling efficiency and temperature control accuracy, it is preferable that the heat pipe 9α and the cooling block 5a are in contact only near the tip, and that the middle portion is adiabatic. FIG. 9A is a cross-sectional view of a main part showing an embodiment in which a part of the cooling block 5α has a diameter larger than that of the heat pipe 9α (and is provided with an air insulation part 18). The cooling block 5cL may be made thinner as shown in FIG. 9B, a cross section of the main part, and the heat pipe 9α may be installed so as to pass through the heat insulating material 19.

以上のようにヒートパイプ9aの位置を時間によって変
化させることにより金型の温度分布を多様に変化させる
ことができる。すなわち成形品の内部の冷却速度をより
均一化することができる。
As described above, by changing the position of the heat pipe 9a over time, the temperature distribution of the mold can be varied in various ways. In other words, the cooling rate inside the molded product can be made more uniform.

上記第8図の実施例の成形金型を用いて第10図に示す
ように外径BOm、中心肉厚20aIで薄肉部と厚肉部
の肉厚比が1:6の両凸レンズの射出成形を行った。成
形レンズ1の素材にはポリメタクリル樹脂を使用した。
Using the mold of the embodiment shown in FIG. 8 above, injection molding of a biconvex lens with an outer diameter BOm, a center wall thickness of 20aI, and a thickness ratio of thin and thick parts of 1:6 as shown in FIG. I did it. Polymethacrylic resin was used as the material for the molded lens 1.

樹脂は2000c17c浴融し金型に充填した。金型は
200°C均一に刃口熱した。第11図に示すようにヒ
ートパイプのキャビティ側の先端の位置とキャビティ表
面との距離ktとする。成形開始時の各ヒートパイプの
位Rを第12図に示す。横軸は中心軸からの半径方向距
離を示し、縦軸は上記距離tを示している。中心軸での
ヒートパイプ9cLの先端とキャビティ表面との距離7
m25mとし、外周に向いその距Mを増力aし、最外周
近辺ではl−106腸の位置にヒートパイプ9cLを配
置した。冷却工程中にこのヒートパイプ9aの位置の変
化を第13図に示す。横軸は冷却時間2示し、縦軸はヒ
ートパイプ9Gとキャピテイ表面の距離t2示している
。中心軸から30鵡以内ではヒートパイプ9αの位置は
一定とした。最外周部ではヒートパイプ9aの位置を初
期状態j−106mであったものを約4分でt==80
鵡の位置まで前進させ、その後一定K保持した。ここで
熱媒体として20°Cの水を使用した。以上の条件にお
けるキャビティ表面の温度変化および成形品の中央部分
の温度変化ぞそれぞれ第14図第15図に示す。キャビ
ティ表面は中心軸上(r W Ois )で冷却速度が
大きく、外周部すなわち薄肉部に向うにしたがって冷却
速度が小さくなっている。−万戊形品の中央温度は中心
軸上から最外周部まで冷却速度が均一となった。この結
果、成形品中央部分の冷却速度の違いから発生するヒケ
を防止することができ、レンズの精度を従来の1/2に
向上することができた。
The resin was melted in a 2000c17c bath and filled into a mold. The die edge of the mold was uniformly heated to 200°C. As shown in FIG. 11, the distance between the position of the tip of the heat pipe on the cavity side and the cavity surface is kt. FIG. 12 shows the position R of each heat pipe at the start of molding. The horizontal axis indicates the radial distance from the central axis, and the vertical axis indicates the distance t. Distance between the tip of the heat pipe 9cL and the cavity surface at the central axis 7
m25m, the distance M was increased toward the outer periphery, and a heat pipe 9cL was placed near the outermost periphery at the position of l-106. FIG. 13 shows the change in the position of the heat pipe 9a during the cooling process. The horizontal axis shows the cooling time 2, and the vertical axis shows the distance t2 between the heat pipe 9G and the cavity surface. The position of the heat pipe 9α was kept constant within 30 degrees from the central axis. At the outermost periphery, the position of the heat pipe 9a was changed from the initial state j-106m to t==80m in about 4 minutes.
It was advanced to the parrot's position and then held at a constant K. Here, water at 20°C was used as a heat medium. The temperature change on the cavity surface and the temperature change in the central part of the molded product under the above conditions are shown in FIG. 14 and FIG. 15, respectively. The cooling rate of the cavity surface is high on the central axis (r W Ois ), and the cooling rate decreases toward the outer periphery, that is, the thinner part. -The cooling rate of the central temperature of the round-shaped product was uniform from the center axis to the outermost periphery. As a result, it was possible to prevent sink marks caused by the difference in cooling rate in the central part of the molded product, and it was possible to improve the precision of the lens to 1/2 that of the conventional one.

また上記iA 8図の実施例においては、ヒートパイプ
の位置を時間の関数として表わしているが、キャビティ
表面温度の関数として表わしてもなんら問題はない。そ
の際にはキャビティ表面温度を検知するセンサを挿入、
検知温度を基に演算処理、制御するのがよい。
Further, in the embodiment shown in FIG. iA8 above, the position of the heat pipe is expressed as a function of time, but there is no problem in expressing it as a function of the cavity surface temperature. At that time, insert a sensor to detect the cavity surface temperature,
It is preferable to perform calculation processing and control based on the detected temperature.

また本実施例では射出成形の場合をとりあげて説明した
が、圧縮成形もしくは射出成形と圧縮成形を組合せた成
形に使用してもなんら問題はない。
Further, in this embodiment, the case of injection molding has been explained, but there is no problem in using it for compression molding or a combination of injection molding and compression molding.

〔弁明の効果〕[Effect of excuse]

以上、述べたように本発明によれば、薄肉部と厚肉部の
肉厚比の大きい成形品の成形において、成形品の内部の
冷却速度を均一にすることができるため、ヒケ発生を防
+h L精度を従来の1/2に向上できた。
As described above, according to the present invention, the cooling rate inside the molded product can be made uniform when molding a molded product with a large wall thickness ratio between the thin-walled part and the thick-walled part, thereby preventing the occurrence of sink marks. +h L accuracy was improved to 1/2 of the conventional level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図および第6図〜第9図は本発明の一実施
例を示す断面図、 第4図、第10図は本発明の対象である薄肉部と厚肉部
の肉厚比の大きい成形品の形状2示す断面図、 第5図は従来の欠点の説明図、 第11図〜第15図は本発明の詳細な説明図である。 3・・・可S聾、固定壓、 4・・・可動入駒、固定入駒、 5・・・冷却ブロック、 6・・・成形レンズ、 7、8.10・・・熱媒体流路、 9・・・ヒートパイプ。 第 1 凶 3a。 (、 第41 第6図 冷却時開 第乙■ 感80 a 易フ 凶 第1θ凶 捲//口 j久   4a 第72凶 員 チ陰方ケ■瓦堆テ江例) Oyl)  々却吟聞(井) 瑯/4暖 感/j口 ″。玲却時間(分ン
1 to 3 and 6 to 9 are cross-sectional views showing one embodiment of the present invention. A cross-sectional view showing shape 2 of a molded product with a large ratio, FIG. 5 is an explanatory view of the conventional drawbacks, and FIGS. 11 to 15 are detailed explanatory views of the present invention. 3...S deaf, fixed bottle, 4...movable insert piece, fixed insert piece, 5...cooling block, 6...molded lens, 7, 8.10... heat medium flow path, 9...Heat pipe. 1st evil 3a. (, 41 Figure 6 Opening during cooling ■ Feeling 80 a Eifu first θ evil turn//mouth jku 4a 72th evil member Chiingata ke ■ Kawarai Tee example) Oyl) (I) Enamel / 4 warm feeling / mouth''. Relaxation time (min.

Claims (1)

【特許請求の範囲】[Claims] 1、プラスチックの射出成形、圧縮成形もしくは、これ
らを組合わせた成形において、成形品形状の薄肉部分を
冷却する熱媒体流路もしくはヒートパイプ等の冷却素子
と、上記成形品形状の薄肉部分を賦型するキャビティ表
面の距離を、上記成形品形状の厚肉部分を冷却する熱媒
体流路もしくは冷却素子と、上記成形品形状の厚肉部分
を賦型するキャビティ表面の距離よりも大きくしたこと
を特徴とするプラスチック成形用金型。
1. In plastic injection molding, compression molding, or a combination of these, a cooling element such as a heat medium flow path or a heat pipe that cools the thin part of the molded product shape and a cooling element such as a heat pipe that cools the thin part of the molded product shape are provided. The distance between the cavity surface to be molded is made larger than the distance between the heating medium flow path or cooling element that cools the thick part of the molded product shape and the cavity surface that shapes the thick part of the molded product shape. Characteristic plastic molds.
JP23518885A 1985-10-23 1985-10-23 Mold for molding plastic Pending JPS6295210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23518885A JPS6295210A (en) 1985-10-23 1985-10-23 Mold for molding plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23518885A JPS6295210A (en) 1985-10-23 1985-10-23 Mold for molding plastic

Publications (1)

Publication Number Publication Date
JPS6295210A true JPS6295210A (en) 1987-05-01

Family

ID=16982375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23518885A Pending JPS6295210A (en) 1985-10-23 1985-10-23 Mold for molding plastic

Country Status (1)

Country Link
JP (1) JPS6295210A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200925A (en) * 1987-05-07 1989-08-14 Canon Inc Method for molding plastic lens
JPH03219936A (en) * 1990-01-26 1991-09-27 Nissei Plastics Ind Co Injection molding method and mold for plastic lens
EP0687551A3 (en) * 1994-06-10 1997-04-23 Johnson & Johnson Vision Prod Molding arrangement to achieve short mold cycle time
WO2003051616A2 (en) * 2001-12-17 2003-06-26 Essilor International (Compagnie Generale D'optique) Mould and method for the hot forming of a thermoplastic optical lens
US7402032B2 (en) * 2005-03-04 2008-07-22 Hon Hai Precision Industry Co., Ltd. Mold apparatus and manufacturing method for the mold apparatus
WO2011111718A1 (en) * 2010-03-09 2011-09-15 曙ブレーキ工業株式会社 Compression molding apparatus and molding die
CN109551709A (en) * 2017-09-27 2019-04-02 均贺科技股份有限公司 Optical sheet ejection formation modular structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200925A (en) * 1987-05-07 1989-08-14 Canon Inc Method for molding plastic lens
JPH03219936A (en) * 1990-01-26 1991-09-27 Nissei Plastics Ind Co Injection molding method and mold for plastic lens
EP0687551A3 (en) * 1994-06-10 1997-04-23 Johnson & Johnson Vision Prod Molding arrangement to achieve short mold cycle time
EP1084818A1 (en) * 1994-06-10 2001-03-21 JOHNSON & JOHNSON VISION PRODUCTS, INC. Moulding arrangement to achieve short mold cycle time
WO2003051616A2 (en) * 2001-12-17 2003-06-26 Essilor International (Compagnie Generale D'optique) Mould and method for the hot forming of a thermoplastic optical lens
WO2003051616A3 (en) * 2001-12-17 2004-06-03 Essilor Int Mould and method for the hot forming of a thermoplastic optical lens
US6884369B2 (en) 2001-12-17 2005-04-26 Essilor International (Compagnie Generale D'optique Mold and a method of hot-forming a thermoplastic lens
US7402032B2 (en) * 2005-03-04 2008-07-22 Hon Hai Precision Industry Co., Ltd. Mold apparatus and manufacturing method for the mold apparatus
WO2011111718A1 (en) * 2010-03-09 2011-09-15 曙ブレーキ工業株式会社 Compression molding apparatus and molding die
JP2011207212A (en) * 2010-03-09 2011-10-20 Akebono Brake Ind Co Ltd Compression molding apparatus and mold
US9108341B2 (en) 2010-03-09 2015-08-18 Akebono Brake Industry Co., Ltd. Compression molding apparatus and molding die
CN109551709A (en) * 2017-09-27 2019-04-02 均贺科技股份有限公司 Optical sheet ejection formation modular structure

Similar Documents

Publication Publication Date Title
SU1648244A3 (en) Device for manufacturing tubes with crosswise ribs from thermoplastic polymer
CA1199766A (en) Method and apparatus for the formation of profiled thermoplastic film
CN101094755A (en) Non-optical multi-piece core assembly for rapid tool change
JPH01285322A (en) Injection molding method and device
AU591693B2 (en) Apparatus and method for the production of ribbed pipes
JPS6295210A (en) Mold for molding plastic
US20100164129A1 (en) Heated Mold Tooling
JP2000000826A (en) Molding metal mold
JP2000141381A (en) Disc-shaped plastic molded product
JP2005161849A (en) Mold for molding optical element, optical element molding method and optical element
JPH0540984Y2 (en)
JP2003334852A (en) Molding method
JPS5878716A (en) Undercut molding method
JPH058261A (en) Mold for molding plastic lens
JPS61213107A (en) Blow molding head
JPH05212755A (en) Method for molding disk substrate
JPS61290024A (en) Mold for molding plastic lens
JPH03193322A (en) Mold for plastic lens
JPH0516179A (en) Injection-molded item
JPH0596576A (en) Mold
JPS60124240A (en) Preparation of double wall tube
JPH0243009A (en) Plastic molding mold
JP2008238687A (en) Mold device, injection molding method, and optical element
JP4695485B2 (en) Mold for molding and molding method
JP2009061677A (en) Mold apparatus for molding