JP2008257261A - Optical device, optical device molding die, and method for molding optical device - Google Patents

Optical device, optical device molding die, and method for molding optical device Download PDF

Info

Publication number
JP2008257261A
JP2008257261A JP2008130434A JP2008130434A JP2008257261A JP 2008257261 A JP2008257261 A JP 2008257261A JP 2008130434 A JP2008130434 A JP 2008130434A JP 2008130434 A JP2008130434 A JP 2008130434A JP 2008257261 A JP2008257261 A JP 2008257261A
Authority
JP
Japan
Prior art keywords
optical element
molding
cavity
optical device
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008130434A
Other languages
Japanese (ja)
Inventor
Toshiaki Takano
利昭 高野
Atsushi Murata
淳 村田
Takashi Morimoto
貴志 森本
Akihisa Yamada
晃久 山田
Norio Kirita
紀雄 桐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2008130434A priority Critical patent/JP2008257261A/en
Publication of JP2008257261A publication Critical patent/JP2008257261A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an optical device having excellent optical characteristics based on a highly accurate transferability can not be stably obtained at high yield even by controlling molding conditions such as a gate shape formed in a molding die for filling a molding material, injection, pressure holding, and cooling, in an optical device requiring many apertures, a small size and a thin shape, and a multi-function property. <P>SOLUTION: Since the optical performance of an optical device is made different by making the outer diameter of the optical device and the shape of edge thickness different from each other, relation between the outer diameter size and the edge thickness of the optical device can be greatly affected to the transferability. When it is defined that the outer diameter of the optical device is ϕG and the thinnest edge thickness of the optical device is K, the optical device is set to satisfy relation ϕG/K≤12.5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばデジタルビデオディスクプレヤーやコンパクトディスクプレヤー等の光学機器に使用されるレンズ、プリズム、ミラー等の高精度な光学素子、及びその光学素子の成形に用いる成形型、さらにはその成形方法に関する。   The present invention relates to high-precision optical elements such as lenses, prisms, and mirrors used in optical equipment such as digital video disk players and compact disk players, and a molding die used for molding the optical elements, and a molding method therefor About.

従来、デジタルビデオディスクプレヤー等に使用されるレンズ等の光学素子の成形は、例えば、特許文献1に開示されているように、成形材料(樹脂ペレット)を加熱混練溶融し、これを成形型のキャビティ内に射出充填して成形する射出成形法が一般的である。   Conventionally, molding of an optical element such as a lens used in a digital video disk player or the like, for example, as disclosed in Patent Document 1, a molding material (resin pellet) is heated and kneaded and melted, and this is used as a molding die. An injection molding method in which a cavity is injection-filled and molded is generally used.

図3は、射出成形法により一度に複数の光学素子を成形中の射出成形機の概略断面図であり、7はホッパ、8は成形材料、9は射出シリンダ、10は加熱シリンダ、11はスクリュ、12はノズル、13は固定ダイプレート、14は移動ダイプレート、15は型締めシリンダ、5は固定側の光学素子成形型、5aは固定側の光学素子成形型5に埋め込み等により一体に構成された固定側インサート、6は可動側の光学素子成形型、6aは可動側の光学素子成形型6に埋め込み等により一体に構成された可動側インサート、4はスプルー、3はランナー、2はゲート、1は光学素子である。   FIG. 3 is a schematic cross-sectional view of an injection molding machine that is molding a plurality of optical elements at a time by an injection molding method, wherein 7 is a hopper, 8 is a molding material, 9 is an injection cylinder, 10 is a heating cylinder, and 11 is a screw. , 12 is a nozzle, 13 is a fixed die plate, 14 is a moving die plate, 15 is a clamping cylinder, 5 is an optical element molding die on the fixed side, 5a is integrally formed by embedding in the optical element molding die 5 on the fixed side, etc. Fixed side insert 6, 6 is a movable side optical element molding die, 6 a is a movable side insert integrally formed by embedding in the movable side optical element molding die 6, 4 is a sprue, 3 is a runner, 2 is a gate Reference numeral 1 denotes an optical element.

光学素子1は前記固定側インサート5aと可動側インサート6aの突き合わせ面に形成されたキャビティ16の形状によって転写成形される。   The optical element 1 is transfer-molded by the shape of the cavity 16 formed on the abutting surface of the fixed-side insert 5a and the movable-side insert 6a.

ホッパ7に投入された成形材料8は加熱シリンダ10内のスクリュ11の回転に伴い、ノズル12の方向へと移動する。この時成形材料8はスクリュ11および加熱シリンダ10により加熱混練溶融され、ノズル12から、スプルー4、ランナー3、およびゲート2が形成される部分を通過して、固定側インサート5aと可動側インサート6aの突き合わせ部のキャビティ16内に射出され充填される。なお光学素子成形型5,6は所定の温度、例えばガラス転移温度以上に設定されており、成形材料8の充填後にこの光学素子成形金型5,6を冷却してキャビティ16内の成形材料を冷却固化する。これにより光学素子1が取り出し可能な状態となるため、型締めシリンダ15により可動側の光学素子成形型6を後退移動させることにより、可動側のインサート6aを後退させてキャビティ16を開き、成形品を取り出して光学素子1をスプルー4、ランナー3、ゲート2から切り離す。
特開昭61−233520号公報
The molding material 8 put into the hopper 7 moves in the direction of the nozzle 12 as the screw 11 in the heating cylinder 10 rotates. At this time, the molding material 8 is heated and kneaded and melted by the screw 11 and the heating cylinder 10, and passes from the nozzle 12 through the portion where the sprue 4, the runner 3 and the gate 2 are formed, and then the fixed side insert 5a and the movable side insert 6a. Are injected and filled into the cavity 16 of the butt portion. The optical element molding dies 5 and 6 are set to a predetermined temperature, for example, a glass transition temperature or higher. After the molding material 8 is filled, the optical element molding dies 5 and 6 are cooled to change the molding material in the cavity 16. Cool and solidify. As a result, the optical element 1 can be taken out, and the movable side insert element 6a is moved backward by opening the cavity 16 by moving the movable side optical element forming die 6 back by the clamping cylinder 15. And the optical element 1 is separated from the sprue 4, runner 3, and gate 2.
JP-A-61-233520

近年及び将来多機能化を実現する光学機器装置、例えば、デジタルビデオディスクとコンパクトディスクの双方を再生、記録可能とするマルチタイプの光学機器装置等に必要とされる光学素子は、従来にない高開口数化、小型薄肉化、多機能化(複数の波長に対応可能な光学素子)の傾向にあり、そのために光学素子の光学素子有効面の外側に成形されるコバ部分が薄肉になったり、またレンズ有効径面に微細な段差形状である回折格子を高精度に形成することが望まれ、従来にない高精度、高転写性が要求されている。   In recent years and in the future, optical devices required for multi-function optical devices such as multi-type optical devices capable of reproducing and recording both digital video discs and compact discs have an unprecedented high optical element. There is a tendency to reduce the numerical aperture, reduce the thickness, and increase the number of functions (optical elements that can handle multiple wavelengths). For this reason, the edge part formed outside the effective surface of the optical element of the optical element becomes thinner, In addition, it is desired to form a diffraction grating having a fine step shape on the lens effective diameter surface with high accuracy, and high accuracy and high transferability that are not conventionally required are required.

前述したような高開口数、小型薄肉、多機能化が求められた光学素子は、成形材料を充填するための成形型に形成されるゲート形状や、射出、保圧、冷却などの成形条件を如何にコントロールしても、高精度な転写性を実現することが難しく、このため優れた光学特性を有した光学素子を安定して高い歩留まりで得ることは困難であった。   Optical elements that have been required to have a high numerical aperture, small thickness, and multi-function as described above have the gate shape formed in the mold for filling the molding material, and molding conditions such as injection, holding pressure, and cooling. Regardless of how it is controlled, it is difficult to achieve high-precision transferability, and it is therefore difficult to stably obtain an optical element having excellent optical characteristics at a high yield.

また、これらの光学素子は、小径なうえ、微細な表面があり、これまでの光学素子以上に扱いに注意が必要となり、成形後の工程で、例えば、光学素子を保持するためのホルダーへの接着時等の搬送等に細心の注意を払う必要があるばかりか、僅かな外力により光学特性へ悪影響を及ぼすなどの問題も生じていた。   In addition, these optical elements have a small diameter and a fine surface, which requires more care than conventional optical elements. In the post-molding process, for example, a holder for holding an optical element is used. In addition to the need to pay close attention to conveyance during bonding, etc., problems such as adverse effects on optical characteristics due to slight external forces have arisen.

上記課題を解決するため本発明者は、様々な実験検討と見極めを行った結果、光学素子成形型のゲートの形状や、射出、充填、保圧、冷却の条件以外に光学素子の転写性を左右する要因として、光学素子の外径とコバ厚みの形状を変えることにより、得られる光学素子の光学性能が異なることを見出したものである。   In order to solve the above-mentioned problems, the present inventor has conducted various experiments and identifications, and as a result, the transferability of the optical element other than the shape of the gate of the optical element mold and the injection, filling, holding pressure, and cooling conditions has been improved. As a factor which influences, it discovered that the optical performance of the optical element obtained changes by changing the shape of the outer diameter and edge thickness of an optical element.

これは、高精度な光学素子、特にレンズ有効径に回折面が形成される光学素子においては、その外径寸法とコバ厚の関係が転写性に大きく影響することを意味している。   This means that in a highly accurate optical element, particularly an optical element in which a diffractive surface is formed on the effective diameter of the lens, the relationship between the outer diameter dimension and the edge thickness greatly affects the transferability.

そして、種々検証の結果、光学素子の外径をφG(mm、以下単位は同じ)、光学素子の最薄コバ厚をK(mm、以下単位は同じ)とした時、φG/K≦12.5の関係に構成することが望ましいことを見出した。   As a result of various verifications, when the outer diameter of the optical element is φG (mm, the following is the same), and the thinnest edge thickness of the optical element is K (mm, the following is the same), φG / K ≦ 12. It has been found that it is desirable to configure the relationship of five.

また本発明にあっては、光学素子1に光線が通過するレンズ有効径φLY(mm、以下単位は同じ)とそれよりも若干大きいレンズ加工径φLK(mm、以下単位は同じ)を有し、レンズ加工径φLKと最薄コバ厚部は隣接する関係にある。   Further, in the present invention, the lens has an effective lens diameter φLY (mm, hereinafter the same unit) through which light passes through the optical element 1, and a lens processing diameter φLK (mm, hereinafter the same unit) slightly larger than that. The lens processing diameter φLK and the thinnest edge thickness portion are adjacent to each other.

さらに、光線の入射面側もしくは出射面側の何れかのレンズ有効径φLYに回折面が形成されていることを特徴とする。   Further, a diffractive surface is formed on the lens effective diameter φLY on either the light incident surface side or the light exit surface side.

また、光学素子の中心厚みをT(mm、以下単位は同じ)、最薄コバ厚をKとした時、T/K≦8.75である関係を有したことを特徴とする。   Further, when the center thickness of the optical element is T (mm, the following unit is the same) and the thinnest edge thickness is K, the relationship is T / K ≦ 8.75.

また、光学素子を形成する材料が、アクリル系、ポリ炭酸エステル系、ノルボルネン系、非晶質ポリオレフィン系の何れかであることを特徴とする。   Further, the material for forming the optical element is any one of acrylic, polycarbonate, norbornene, and amorphous polyolefin.

さらには、キャビティに成形材料を射出充填することによって光学素子の外径部に形成されたゲート部の一部を残存させることも特徴とする。   Furthermore, a part of the gate portion formed on the outer diameter portion of the optical element is left by injection-filling a molding material into the cavity.

本発明の光学素子、光学素子成形型、光学素子成形方法は、光学素子の外径と光学素子の最薄コバ厚を管理する等により、小径化、薄肉化、高開口数化、高機能化に対応した光学素子を良好な転写性(光学特性)で得ることができ、さらには、光学素子の低コスト化も可能となる。   The optical element, the optical element molding die, and the optical element molding method of the present invention are reduced in diameter, thinned, increased in numerical aperture, and enhanced in function by managing the outer diameter of the optical element and the thinnest edge thickness of the optical element. Can be obtained with good transferability (optical characteristics), and the cost of the optical element can be reduced.

以下、本発明の実施の形態について図面及び表を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings and tables.

図1は、実施の形態における光学素子の形状概略図で、図1(a)は概略上面図、図1(b)は概略断面図、図1(c)は図1(b)の1d部の拡大概略断面図である。図2は、図1に示す光学素子を一度に複数個成形した工程の光学素子成形品の形状概略図で、図2(a)は概略上面図、図2(b)は概略断面図である。なお、ここで説明する実施の形態における射出成形機については図3を用いる。   FIG. 1 is a schematic diagram of the shape of an optical element in the embodiment, FIG. 1 (a) is a schematic top view, FIG. 1 (b) is a schematic cross-sectional view, and FIG. 1 (c) is a 1d portion of FIG. FIG. FIG. 2 is a schematic diagram of the shape of an optical element molded product in the process of molding a plurality of optical elements shown in FIG. 1 at a time, FIG. 2 (a) is a schematic top view, and FIG. 2 (b) is a schematic cross-sectional view. . In addition, FIG. 3 is used about the injection molding machine in embodiment described here.

1は光学素子、1aは光学素子1のレンズ有効径φLYを含むレンズ部、1bは前記レンズ部1aの外縁に隣接して一体形成されたコバ部、1cはコバ部1bの外縁下端面に形成された凸部、2はゲート、3はランナー、4はスプルーである。   1 is an optical element, 1a is a lens portion including the effective lens diameter φLY of the optical element 1, 1b is an edge portion integrally formed adjacent to the outer edge of the lens portion 1a, and 1c is formed on a lower end surface of the outer edge of the edge portion 1b. , 2 is a gate, 3 is a runner, and 4 is a sprue.

レンズ部1aの有効径φLYは、光学素子1に要求される光学特性を生み出すために最小限必要とされる光学作用面のことで、光線の通路になる。   The effective diameter φLY of the lens portion 1a is an optical action surface that is minimally required to produce the optical characteristics required for the optical element 1, and serves as a light path.

レンズ有効径φLYに対応し転写する光学素子成形型5,6のインサート5aと6aの突き合わせ面には、レンズ有効径よりも少なくとも成形材料の収縮率0.1〜0.9%程度を見込んだ有効径でキャビティ16が形成されている。レンズ加工径φLKは、レンズ有効径φLYよりも若干大きく、具体的には少なくとも成形材料の収縮率0.1〜0.9%程度大きく形成されている。これにより、成形条件の変化に伴う微妙な成形材料の収縮やそりの発生に対応できる。   The shrinkage rate of the molding material is expected to be at least about 0.1 to 0.9% of the effective diameter of the lens on the butting surface of the inserts 5a and 6a of the optical element molds 5 and 6 to be transferred corresponding to the lens effective diameter φLY. A cavity 16 is formed with an effective diameter. The lens processing diameter φLK is slightly larger than the lens effective diameter φLY, specifically, it is formed to be at least about 0.1 to 0.9% shrinkage of the molding material. As a result, it is possible to cope with subtle shrinkage of the molding material and generation of warpage accompanying changes in molding conditions.

また、本例で言う最薄コバ厚Kとは、前述のレンズ加工径φLKと隣接して形成されたコバ部分1bの最も薄い部分の厚みである。   Further, the thinnest edge thickness K referred to in this example is the thickness of the thinnest part of the edge part 1b formed adjacent to the lens processing diameter φLK.

本発明者は、図1に示す光学素子の外径φG、最薄コバ厚Kを種々変化させるべく複数のインサートを製作し、この複数のインサートを光学素子成形型に埋め込み交換してそれぞれ形状寸法が異なる光学素子を成形してこれらの光学特性をそれぞれ評価確認した。この作業の中でそれぞれの光学素子の形状により、成形条件、成形型のゲート形状なども都度条件検討を行い、最適な条件を抽出し、それぞれの光学素子形状での転写性(光学特性)を検証した。   The inventor manufactured a plurality of inserts so as to variously change the outer diameter φG and the thinnest edge thickness K of the optical element shown in FIG. These optical characteristics were evaluated and confirmed by molding optical elements having different sizes. During this work, depending on the shape of each optical element, the molding conditions and the gate shape of the mold are examined each time, the optimum conditions are extracted, and the transferability (optical characteristics) of each optical element shape is determined. Verified.

ここで、具体的に光学素子成形方法について説明する。   Here, the optical element shaping | molding method is demonstrated concretely.

成形材料としては、非晶質ポリオレフィン系樹脂である三井化学株式会社製の商品名「APEL」、ガラス転移点Tg=135℃、熱変形温度Tt=125℃を用いた。   As the molding material, a trade name “APEL” manufactured by Mitsui Chemicals, Inc., which is an amorphous polyolefin resin, a glass transition point Tg = 135 ° C., and a thermal deformation temperature Tt = 125 ° C. were used.

射出成形機としては図3に示すタイプのもので、光学素子成形型5,6はプリハードン鋼、ステンレス鋼(S55C、HPM、NAK)等を用いて構成されており、光学素子1のレンズ有効径φLYに対応する転写面を形成したインサート5a,6aは超硬合金材料から製作したものを用いた。なお光学素子成形型5,6は前述の材料以外でも射出成形に使用可能なものであれば、何ら問題はない。また、インサート5a,6aの材料として、光学素子1としての表面性が得られる材料であればステンレス鋼(STAVAX)等を基材として、その表面に例えば無電解ニッケルメッキを施したものを加工して用いても問題はない。ただし、強度を考えた場合、超硬合金を基材として用いるのが好ましい。また、離型性の向上や、型の酸化、腐食防止のために表面に保護膜等を施してもよい。   The injection molding machine is of the type shown in FIG. 3, and the optical element molding dies 5 and 6 are made of prehardened steel, stainless steel (S55C, HPM, NAK) or the like, and the effective lens diameter of the optical element 1 The inserts 5a and 6a formed with a transfer surface corresponding to φLY were made of cemented carbide material. There are no problems with the optical element molds 5 and 6 as long as they can be used for injection molding other than the materials described above. In addition, as a material of the inserts 5a and 6a, if the surface property as the optical element 1 is obtained, a material having stainless steel (STAVAX) or the like as a base material and electroless nickel plating on the surface thereof is processed. There is no problem even if used. However, when the strength is considered, it is preferable to use a cemented carbide as the base material. Further, a protective film or the like may be applied to the surface in order to improve releasability and prevent mold oxidation and corrosion.

次に前述の光学素子成形型を用いた成形工程を図3を用いて述べる。   Next, a molding process using the above-described optical element mold will be described with reference to FIG.

ホッパ7に投入された成形材料8は加熱シリンダ10内のスクリュ11の回転に伴い、ノズル12の方向へと移動する。この時成形材料8は、スクリュ11及び設定温度を260℃に設定した加熱シリンダ10により加熱混練溶融され、同様に260℃に加熱されたノズル12から、スプルー4、ランナー3、及びゲート2の形成部を通過して、光学素子成形型5,6にそれぞれ埋め込まれて一体に構成された固定側インサート5aと可動側インサート6aにより構成されたキャビティ16内に射出充填され、保圧される。   The molding material 8 put into the hopper 7 moves in the direction of the nozzle 12 as the screw 11 in the heating cylinder 10 rotates. At this time, the molding material 8 is heated, kneaded and melted by the screw 11 and the heating cylinder 10 set at a set temperature of 260 ° C., and the sprue 4, the runner 3, and the gate 2 are formed from the nozzle 12 heated to 260 ° C. After passing through the section, the cavity 16 formed by the fixed-side insert 5a and the movable-side insert 6a that are integrally formed by being embedded in the optical element molds 5 and 6 is injected and filled, and the pressure is maintained.

光学素子成形型5,6は所定の一定温度、ここでは、ガラス転移温度Tgの135℃と同じ135℃に設定保持し、成形材料8がキャビティ16内に充填が始まると同時に、成
形材料8が冷却されていく。適正な、射出条件、充填条件、保圧条件、光学素子成形型5,6の温度の条件を選択しなければ、所望の光学素子1の光学特性は得られない。特に光学素子成形型5,6の設定温度は重要な要因であり、種々の検証から、光学素子成形型5,6の設定温度はガラス転移点に対して±10℃の範囲の温度に保持すれば、光学素子成形型5,6の設定温度を成形材料8の充填から冷却までの間に変化させることなく良好な転写性が得られることを見出した。
The optical element molds 5 and 6 are set and held at a predetermined constant temperature, here, 135 ° C. which is the same as the glass transition temperature Tg of 135 ° C., and at the same time the molding material 8 begins to fill the cavity 16, It will be cooled. Unless appropriate injection conditions, filling conditions, pressure holding conditions, and temperature conditions of the optical element molds 5 and 6 are selected, desired optical characteristics of the optical element 1 cannot be obtained. In particular, the set temperature of the optical element molds 5 and 6 is an important factor. From various verifications, the set temperature of the optical element molds 5 and 6 is maintained at a temperature within a range of ± 10 ° C. with respect to the glass transition point. For example, it has been found that good transferability can be obtained without changing the set temperature of the optical element molds 5 and 6 between filling of the molding material 8 and cooling.

なお、光学素子成形型5,6の設定温度が前述した範囲よりも高い場合は、光学素子1の充分な冷却が行えず、取り出し後に転写形状が崩れる現象が生じたり、また光学素子成形型5,6の設定温度を前述の範囲よりも低い温度に設定した場合は、溶融した成形材料がキャビティ16の内面に接触した際に早まる冷却で生じる表面層が、その後の冷却時間を経ても、改善されることはなかった。   When the set temperature of the optical element molds 5 and 6 is higher than the above-described range, the optical element 1 cannot be sufficiently cooled, and the transfer shape may be deformed after removal, or the optical element mold 5 , 6 is set to a temperature lower than the above-mentioned range, the surface layer generated by the premature cooling when the molten molding material comes into contact with the inner surface of the cavity 16 is improved even after the subsequent cooling time. It was never done.

前述したように光学素子成形型5,6の温度を所定温度135℃に保った状態で、光学素子1の形状に応じて10〜180秒の間、キャビティ16内で冷却工程を完了した後、可動側の光学素子成形型6を型締めシリンダ15により後退移動させてキャビティ16を開き、スプルー4、ランナー3、ゲート2および光学素子1が一体化された状態で成形品を取り出す。   As described above, after the cooling process is completed in the cavity 16 for 10 to 180 seconds depending on the shape of the optical element 1 in a state where the temperature of the optical element molds 5 and 6 is maintained at a predetermined temperature of 135 ° C. The movable optical element molding die 6 is moved backward by the clamping cylinder 15 to open the cavity 16, and the molded product is taken out with the sprue 4, the runner 3, the gate 2 and the optical element 1 being integrated.

光学素子のレンズ有効部において、上記キャビティ16の転写面に形成された回折形状形成面に基づいて光線の入射面側もしくは出射面側の何れかには、微細な回折面が形成されている。この回折面形状はマルチタイプの光学機器等に要求される光学素子の光学性能を得ることにあり、その形状は極めて微細な鋸歯形状であるために、成形条件と光学素子としての形状が転写性に大きく影響することが判明した。   In the effective lens portion of the optical element, a fine diffractive surface is formed on either the light incident surface side or the light exit surface side based on the diffractive shape forming surface formed on the transfer surface of the cavity 16. This diffractive surface shape is to obtain the optical performance of the optical element required for multi-type optical equipment, etc., and since the shape is an extremely fine sawtooth shape, the molding conditions and the shape as the optical element are transferable. It was found that it greatly affects

特に回折形状である鋸歯形状の転写精度、例えば鋸歯形状のピッチ間隔、鋸歯形状の高さ寸法、鋸歯形状の先鋭度、谷底部の形状等の転写性が光学素子の外径φGとその光学素子の外縁部に形成されるコバ部の最薄コバ厚K、また光学素子の中心厚みTによって大きく変わることが検証により判明した。   In particular, the transfer accuracy of the sawtooth shape, which is a diffractive shape, such as the pitch interval of the sawtooth shape, the height of the sawtooth shape, the sharpness of the sawtooth shape, the shape of the valley bottom, and the like, the outer diameter φG of the optical element and its optical element It has been proved by verification that the thickness changes greatly depending on the thinnest edge thickness K of the edge portion formed at the outer edge portion and the center thickness T of the optical element.

ここでは、図1(c)に示すように、光学素子1の光線入射側のレンズ有効径φLYのレンズ面に、その光学素子1の光軸を中心とする鋸歯形状が同心円状に複数形成された回折形状が形成されている。この回折形状をなす複数の鋸歯形状はそのピッチ間隔、高さ寸法などが異なり、最も狭いピッチ間隔が5μm、最も高い高さ寸法が1.2μm、先鋭角部の円弧形状の半径Rは0.1μmである。なお、この回折形状は光学素子1の用途によって所望の形状に設計される。   Here, as shown in FIG. 1C, a plurality of sawtooth shapes centering on the optical axis of the optical element 1 are concentrically formed on the lens surface of the optical element 1 having a lens effective diameter φLY on the light incident side. Diffractive shapes are formed. The plurality of sawtooth shapes forming the diffractive shape have different pitch intervals, height dimensions, and the like. The narrowest pitch interval is 5 μm, the highest height dimension is 1.2 μm, and the radius R of the arc shape of the acute angle portion is 0. 1 μm. This diffractive shape is designed into a desired shape depending on the application of the optical element 1.

回折形状を有する光学素子1の成形は、前述したような非常に微細な部分である鋸歯形状の先鋭角部分にまで、成形材料を充填転写しなければ、良好な光学特性が得られない。すなわち、回折形状を有していない光学素子の成形条件(温度や圧力だけの制御)で回折形状を有する光学素子を成形した場合、十分に微細な形状まで転写することが困難で、例えば前述の先鋭角部のR形状が0.1μmで転写されるべきが、例えば転写不十分のR形状0.8μmとなり、初期のレンズ性能を得ることができない。   When the optical element 1 having a diffractive shape is molded, good optical characteristics cannot be obtained unless the molding material is filled and transferred to the serrated acute angle portion which is a very fine portion as described above. That is, when an optical element having a diffractive shape is molded under molding conditions (control of only temperature and pressure) of an optical element having no diffractive shape, it is difficult to transfer to a sufficiently fine shape. Although the R shape at the acute angle portion should be transferred at 0.1 μm, for example, the R shape becomes 0.8 μm with insufficient transfer, and the initial lens performance cannot be obtained.

次に、光学素子の評価について説明する。   Next, evaluation of the optical element will be described.

まず、成形条件以外にも、光学素子成形型5,6のゲート形状も合わせて検討を行い、それぞれの光学素子形状で最良の転写性が得られるように検討を行った。   First, in addition to the molding conditions, the gate shapes of the optical element molds 5 and 6 were also examined, and the best transferability was obtained with each optical element shape.

転写性の評価は、干渉計を用いて透過波面収差測定により光学特性を確認した。光学特
性が良好であれば、転写性が良好であると判断できる。ここでは透過波面収差測定結果がRMS収差で40mλ以下(λ≒655nm)であれば良好で、RMS収差が40mλより大きければ否というようにそれぞれのサンプル光学素子を測定評価した。
For evaluation of transferability, optical characteristics were confirmed by measuring transmitted wavefront aberration using an interferometer. If the optical characteristics are good, it can be determined that the transferability is good. Here, each sample optical element was measured and evaluated so that it was satisfactory if the measurement result of the transmitted wavefront aberration was 40 mλ or less (λ≈655 nm) in terms of RMS aberration, and whether the RMS aberration was greater than 40 mλ.

表1に形状が異なる光学素子サンプルの光学特性(転写性)の評価確認結果を示す。表中の○は所望の光学特性が得られ、転写性が良好であることを示し、×は転写性が不充分であったことを示している。   Table 1 shows the evaluation confirmation results of optical characteristics (transferability) of optical element samples having different shapes. In the table, ◯ indicates that desired optical characteristics are obtained and transferability is good, and x indicates that transferability is insufficient.

表1から分かるように、外径φG/最薄コバ厚K≦12.5の関係が満たされる範囲であれば、良好な転写性が得られるということを見出すことができた。なお、表1において
も外径φG、最薄コバ厚K等の単位はmmである。
As can be seen from Table 1, it was found that good transferability could be obtained if the relationship of outer diameter φG / thinnest edge thickness K ≦ 12.5 was satisfied. In Table 1, the units such as the outer diameter φG and the thinnest edge thickness K are mm.

さらに発明者は、上記の関係が確実で応用性のあるものかどうかを検証するために、複数の成形材料、具体的には、アクリル材料である三菱レイヨン株式会社製の商品名「アクリペット」、ポリカーボネート材料(ポリ炭酸エステル系)である帝人化成株式会社製の商品名「パンライト」、ノルボルネン系材料である日本合成ゴム株式会社製の商品名「ARTON」を用い、表2に示すような寸法形状の複数の光学素子1を成形し、これらを前述と同様な評価条件にて検討を行い、転写性を確認した。なお、表中の中心厚Tとは、図1(b)に示すように光軸上の光学素子1の厚みを示している。   Furthermore, the inventor in order to verify whether or not the above relationship is reliable and applicable, a plurality of molding materials, specifically, a trade name “Acrypet” manufactured by Mitsubishi Rayon Co., Ltd., which is an acrylic material. The product name “Panlite” manufactured by Teijin Chemicals Co., Ltd., which is a polycarbonate material (polycarbonate ester type), and the product name “ARTON” manufactured by Nippon Synthetic Rubber Co., Ltd., which is a norbornene material, are used as shown in Table 2. A plurality of optical elements 1 having dimensions and shapes were molded, and these were examined under the same evaluation conditions as described above to confirm transferability. The center thickness T in the table indicates the thickness of the optical element 1 on the optical axis as shown in FIG.

この表2から、前述した何れの成形材料も、同様な結果が得られていることが確認できる。   From Table 2, it can be confirmed that the same results are obtained for any of the molding materials described above.

また、上記何れの成形材料においても、光学素子成形型5,6の設定保持温度は、先述した非晶質ポリオレフィン系材料と同様に、ガラス転移点Tg±10℃の範囲で有れば良好な転写性が得られた。   In any of the above molding materials, the set holding temperature of the optical element molds 5 and 6 is good if it is in the range of the glass transition point Tg ± 10 ° C., similar to the amorphous polyolefin-based material described above. Transferability was obtained.

本実施の形態の結果から、外径φG/最薄コバ厚K≦12.5の関係が満たされる範囲
であれば、中心厚Tと最薄コバ厚Kの比で表される偏肉比=中心厚T/最薄コバ厚Kが、サンプルNo14や30のように8.75と大きな場合においても、良好な転写性を得ることができた。
From the result of the present embodiment, if the relationship of the outer diameter φG / thinnest edge thickness K ≦ 12.5 is satisfied, the uneven thickness ratio represented by the ratio of the center thickness T and the thinnest edge thickness K = Even when the center thickness T / the thinnest edge thickness K was as large as 8.75 as in sample No. 14 or 30, good transferability could be obtained.

また、複数の光学メディア、例えばデジタルビデオディスクとコンパクトディスクの再生と記録の双方を実現するための光学機器装置に要求される光学素子は、小径化、薄肉化、高開口数化、高機能化と共に低コスト化が望まれており、これらを実現するために光学素子は、前述したように良好な転写性、すなわち光学特性を得ることはもちろんのこと、これ以外にも成形後の工程にも工夫が必要である。   In addition, optical elements required for optical equipment for realizing both reproduction and recording of a plurality of optical media such as digital video discs and compact discs are reduced in diameter, thinned, increased in numerical aperture, and improved in functionality. At the same time, cost reduction is desired, and in order to realize these, the optical element not only obtains good transferability, that is, optical characteristics as described above, but also in post-molding processes. Ingenuity is necessary.

この成形後の工程について具体的に説明する。光学素子1の外径φGが5mm以下で最薄コバ厚Kが0.5mm以下の比較的小さくコバ厚の薄い素子では、成形後のゲートカット時、光学素子1にこれを保持する際の保持力や、カット時に応力や熱等が発生し、これが原因でせっかく得られたレンズ有効径部の転写性が損なわれて歩留まりが大きく低下する。また、光学素子1を保持するためのホルダーに搬送する際にも保持力や応力がこの光学素子にかかり、扱いに細心の注意が必要である。特に外径が3mm以下、最薄コバ厚Kが0.4mm以下の小さな光学素子1では生産性が大きく阻害される。   The process after the molding will be specifically described. In a relatively small and thin element having an outer diameter φG of the optical element 1 of 5 mm or less and a thinnest edge thickness K of 0.5 mm or less, holding when holding the optical element 1 in the optical element 1 at the time of gate cutting after molding. Force, stress, heat, and the like are generated at the time of cutting, and the transferability of the lens effective diameter portion thus obtained is impaired and the yield is greatly reduced. In addition, holding force and stress are applied to the optical element when it is transported to a holder for holding the optical element 1, and careful handling is required. In particular, in the small optical element 1 having an outer diameter of 3 mm or less and the thinnest edge thickness K of 0.4 mm or less, the productivity is greatly hindered.

これらの課題を解決するために、本発明では光学素子1の外径部に形成されたゲート部を残存するようにゲートカットを行う。これによりゲートカット時の応力、熱等が光学素子のレンズ有効径部まで影響を及ぼすこともなく、良好な転写性が維持できる。また、ゲートカット時のカット寸法精度も高精度が要求されなくなり、ゲートカットそのものが容易になってゲートカット設備のコストダウンも可能となった。また、残存させたゲート部を利用して、光学素子1を搬送したり、ホルダーに位置決めの目安としてゲート部を用いることが可能となり、生産効率を高めることができる。   In order to solve these problems, in the present invention, the gate is cut so that the gate portion formed in the outer diameter portion of the optical element 1 remains. Thereby, stress, heat, etc. at the time of gate cutting do not affect the lens effective diameter portion of the optical element, and good transferability can be maintained. In addition, the high accuracy of the cut dimensions at the time of gate cut is no longer required, and the gate cut itself becomes easy and the cost of the gate cut equipment can be reduced. In addition, it is possible to transport the optical element 1 using the remaining gate portion, or to use the gate portion as a guide for positioning on the holder, thereby improving the production efficiency.

本発明は、前述した実施の形態による検証に基づき、前述の要件を満たした光学素子形状、光学素子成形型、光学素子成形方法によって、良好な転写性が得られることを見出したものであり、これにより、光学素子のより小径化、薄肉化、高開口数化、高機能化、低コスト化が実現できる。   The present invention has been found based on the verification by the above-described embodiment, that good transferability can be obtained by the optical element shape, the optical element molding die, and the optical element molding method that satisfy the above-mentioned requirements. As a result, the optical element can be made smaller in diameter, thinner, higher numerical aperture, higher functionality, and lower cost.

なお、上記実施の形態においては、光学素子の何れかのレンズ有効径面すなわち光線の入射面側もしくは出射面側に微細な回折面を形成したものであるが、本発明は、回折面を形成しない光学素子にも当然適用できる。また、光学素子のコバ部に凸部1cを設けたもので説明したが、この凸部の形状は、例えば光学素子を保持するホルダーの形状に合わせた形状としたり、光学素子の剛性を上げるために片面だけでなく両面に凸部を設けてもよい。さらに凸部を設けない形状の光学素子であってもよい。   In the above embodiment, a fine diffractive surface is formed on the lens effective diameter surface of one of the optical elements, that is, on the incident surface side or the exit surface side of the light beam, but the present invention forms a diffractive surface. Of course, the present invention can be applied to optical elements that do not. Further, the convex portion 1c is provided on the edge portion of the optical element. However, the shape of the convex portion is, for example, a shape that matches the shape of the holder that holds the optical element, or to increase the rigidity of the optical element. Convex portions may be provided on both sides as well as on one side. Furthermore, an optical element having a shape in which no convex portion is provided may be used.

本発明はレンズ、プリズム、ミラー等の高精度な光学素子、及びその成形に関し、例えばデジタルビデオディスクプレヤーやコンパクトディスクプレヤー等の光学機器に使用される光学素子に適している。   The present invention relates to high-precision optical elements such as lenses, prisms, and mirrors, and molding thereof, and is suitable for optical elements used in optical equipment such as digital video disk players and compact disk players.

本発明の実施の形態における光学素子の形状概略図で、(a)は概略上面図、(b)は概略断面図、(c)は(b)図の1d部分の拡大概略断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a shape schematic of the optical element in embodiment of this invention, (a) is a schematic top view, (b) is a schematic sectional drawing, (c) is an expanded schematic sectional drawing of the 1d part of (b) figure. 本発明の実施の形態である図1に示す光学素子を含む光学素子成形品の形状概略図で、(a)は概略上面図、(b)は概略断面図FIG. 2 is a schematic diagram of a shape of an optical element molded article including the optical element shown in FIG. 1 according to an embodiment of the present invention, where (a) is a schematic top view and (b) is a schematic cross-sectional view. 本発明の実施の形態における光学素子の成形中の射出成形機の概略断面図Schematic cross-sectional view of an injection molding machine during molding of an optical element in an embodiment of the present invention

符号の説明Explanation of symbols

1 光学素子
1a レンズ部
1b コバ部
1c 凸部
2 ゲート
3 ランナー
4 スプルー
5 固定側の光学素子成形型
5a 固定側インサート
6 可動側の光学素子成形型
6a 可動側インサート
7 ホッパ
8 成形材料
9 射出シリンダ
10 加熱シリンダ
11 スクリュ
12 ノズル
13 固定ダイプレート
14 移動ダイプレート
15 型締めシリンダ
16 キャビティ
DESCRIPTION OF SYMBOLS 1 Optical element 1a Lens part 1b Edge part 1c Convex part 2 Gate 3 Runner 4 Sprue 5 Fixed side optical element molding die 5a Fixed side insert 6 Movable side optical element molding die 6a Movable side insert 7 Hopper 8 Molding material 9 Injection cylinder DESCRIPTION OF SYMBOLS 10 Heating cylinder 11 Screw 12 Nozzle 13 Fixed die plate 14 Moving die plate 15 Clamping cylinder 16 Cavity

Claims (10)

加熱混練溶融された成形材料を、光学素子成形型に形成されたキャビティ内に射出充填して成形される光学素子であって、
光学素子の外径をφG(mm)、その光学素子の外縁部に形成されたコバ部の最薄コバ厚をK(mm)とした時、φG/K≦12.5の関係を有したことを特徴とする光学素子。
An optical element that is molded by injection-filling a molding material that has been heat-kneaded and melted into a cavity formed in an optical element mold,
When the outer diameter of the optical element is φG (mm) and the thinnest edge thickness of the edge portion formed at the outer edge of the optical element is K (mm), the relationship was φG / K ≦ 12.5 An optical element characterized by the above.
光学素子は、光線が通過するレンズ有効径φLY(mm)とそれよりも若干大きいレンズ加工径φLK(mm)を有し、レンズ加工径φLK(mm)の外縁部にはコバ部が形成され、そのコバ部の最薄コバ厚部が前記レンズ加工径φLK(mm)に隣接しており、さらに、光線の入射面側もしくは出射面側の何れかのレンズ有効径φLY(mm)に回折面が形成されていることを特徴とする請求項1記載の光学素子。 The optical element has a lens effective diameter φLY (mm) through which light passes and a lens processing diameter φLK (mm) slightly larger than that, and an edge portion is formed on the outer edge of the lens processing diameter φLK (mm). The thinnest edge of the edge is adjacent to the lens processing diameter φLK (mm), and the diffractive surface has a lens effective diameter φLY (mm) on either the incident surface side or the exit surface side of the light beam. The optical element according to claim 1, wherein the optical element is formed. 光学素子の中心厚みをT(mm)、コバ部の最薄コバ厚をK(mm)とした時、T/K≦8.75の関係を有したことを特徴とする請求項1または請求項2記載の光学素子。 2. The optical element according to claim 1, wherein T / K ≦ 8.75 is satisfied, where T (mm) is the center thickness of the optical element and K (mm) is the thinnest edge thickness of the edge portion. 2. The optical element according to 2. 光学素子を形成する材料が、アクリル系、ポリ炭酸エステル系、ノルボルネン系、非晶質ポリオレフィン系の何れかであることを特徴とする請求項1から請求項3の何れかに記載の光学素子。 The optical element according to any one of claims 1 to 3, wherein a material forming the optical element is any one of an acrylic, a polycarbonate, a norbornene, and an amorphous polyolefin. 成形材料の射出充填により成形される光学素子の外径部に形成されたゲートが残存していることを特徴とする請求項1から請求項4の何れかに記載の光学素子。 The optical element according to any one of claims 1 to 4, wherein a gate formed in an outer diameter portion of the optical element molded by injection filling of the molding material remains. 成形材料を加熱混練溶融し、これをキャビティ内に射出充填して光学素子を成形するための光学素子成形型であって、
光学素子の外径をφG(mm)、その光学素子の外縁部に形成されたコバ部の最薄コバ厚をK(mm)とした時、φG/K≦12.5の関係を有するキャビティに形成したことを特徴とする光学素子成形型。
An optical element mold for molding an optical element by heating and kneading and melting a molding material, and injection-filling this into a cavity,
When the outer diameter of the optical element is φG (mm) and the thinnest edge thickness of the edge portion formed on the outer edge of the optical element is K (mm), the cavity has a relationship of φG / K ≦ 12.5. An optical element molding die formed.
キャビティを構成する光学素子成形型の可動側インサートと固定側インサートのキャビティ形成面には、光学素子に光線が通過するレンズ有効径φLY(mm)と、それよりも若干大きいレンズ加工径φLK(mm)の転写面と、光線の入射面側もしくは出射面側の何れかのレンズ有効径φLY(mm)の転写面には回折面が形成されていることを特徴とする請求項6記載の光学素子成形型。 On the cavity forming surface of the movable side insert and the fixed side insert of the optical element forming die constituting the cavity, an effective lens diameter φLY (mm) through which light passes through the optical element and a lens processing diameter φLK (mm slightly larger than that) 7. An optical element according to claim 6, wherein a diffraction surface is formed on the transfer surface having a lens effective diameter φLY (mm) on either the light incident surface side or the light exit surface side. Mold. キャビティ内への成形材料の射出充填により成形される光学素子の中心厚みをT(mm)、最薄コバ厚をK(mm)とした時、T/K≦8.75である関係を有したことを特徴とする請求項6または請求項7記載の光学素子成形型。 When the center thickness of the optical element molded by injection filling of the molding material into the cavity is T (mm) and the thinnest edge thickness is K (mm), T / K ≦ 8.75. 8. The optical element mold according to claim 6, wherein the optical element mold is used. 加熱混練溶融された成形材料を、光学素子成形型に形成されたキャビティ内に射出充填して成形される光学素子成形方法であって、
光学素子の外径をφG(mm)、光学素子の最薄コバ厚をK(mm)とした時、φG/K≦12.5である関係を有するキャビティが形成された光学素子成形型を用い、前記光学素子成形型をガラス転移点近傍に温度設定し、加熱混練溶融された成形材料を前記キャビティ内に充填後保圧し、かつガラス転移点温度近傍で冷却することを特徴とする光学素子成形方法。
An optical element molding method in which a molding material heated and kneaded and melted is molded by injection filling into a cavity formed in an optical element molding die,
Using an optical element mold in which a cavity having a relationship of φG / K ≦ 12.5 is formed, where the outer diameter of the optical element is φG (mm) and the thinnest edge thickness of the optical element is K (mm) The optical element molding is characterized in that the temperature of the optical element molding die is set in the vicinity of the glass transition point, the molding material heated and kneaded and melted is filled in the cavity and then held in pressure, and cooled near the glass transition temperature. Method.
光学素子成形型の設定温度がガラス転移点温度を基準に−10℃から+10℃の範囲の温度であることを特徴とする請求項9記載の光学素子成形方法。 10. The optical element molding method according to claim 9, wherein the set temperature of the optical element mold is a temperature in the range of −10 ° C. to + 10 ° C. based on the glass transition temperature.
JP2008130434A 2003-03-28 2008-05-19 Optical device, optical device molding die, and method for molding optical device Withdrawn JP2008257261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130434A JP2008257261A (en) 2003-03-28 2008-05-19 Optical device, optical device molding die, and method for molding optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003091151 2003-03-28
JP2008130434A JP2008257261A (en) 2003-03-28 2008-05-19 Optical device, optical device molding die, and method for molding optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003344124A Division JP2004318055A (en) 2003-03-28 2003-10-02 Optical element, optical element molding die, and method for molding optical element

Publications (1)

Publication Number Publication Date
JP2008257261A true JP2008257261A (en) 2008-10-23

Family

ID=39980806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130434A Withdrawn JP2008257261A (en) 2003-03-28 2008-05-19 Optical device, optical device molding die, and method for molding optical device

Country Status (1)

Country Link
JP (1) JP2008257261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317690A (en) * 2013-06-27 2013-09-25 开平市盈光机电科技有限公司 Precise plastic mould with balanced cooling water channel
WO2016021577A1 (en) * 2014-08-08 2016-02-11 株式会社ダイセル Specially-shaped epoxy resin molded article, and optical device provided with same
WO2019202816A1 (en) 2018-04-17 2019-10-24 岡本硝子株式会社 Mold for glass-made optical component molding use, and method for manufacturing glass-made optical component using said mold

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317690A (en) * 2013-06-27 2013-09-25 开平市盈光机电科技有限公司 Precise plastic mould with balanced cooling water channel
WO2016021577A1 (en) * 2014-08-08 2016-02-11 株式会社ダイセル Specially-shaped epoxy resin molded article, and optical device provided with same
CN106662679A (en) * 2014-08-08 2017-05-10 株式会社大赛璐 Specially-shaped epoxy resin molded article, and optical device provided with same
JPWO2016021577A1 (en) * 2014-08-08 2017-05-25 株式会社ダイセル Epoxy resin molding having a special shape and optical device including the same
JP2019014909A (en) * 2014-08-08 2019-01-31 株式会社ダイセル Specially-shaped epoxy resin molded article, and optical device including with the same
US10843423B2 (en) 2014-08-08 2020-11-24 Daicel Corporation Specially-shaped epoxy resin molded article, and optical device provided with same
WO2019202816A1 (en) 2018-04-17 2019-10-24 岡本硝子株式会社 Mold for glass-made optical component molding use, and method for manufacturing glass-made optical component using said mold
CN111094195A (en) * 2018-04-17 2020-05-01 冈本硝子株式会社 Mold for molding glass optical component and method for manufacturing glass optical component using the same

Similar Documents

Publication Publication Date Title
JP4730307B2 (en) Plastic lens manufacturing equipment
WO2009122862A1 (en) Optical element manufacturing method, optical element molding die, and optical element
JP2004318055A (en) Optical element, optical element molding die, and method for molding optical element
US7365919B2 (en) Forming methods, forming devices for articles having a micro-sized shape and optical elements
JP5275707B2 (en) Injection molding apparatus and molded product take-out method
KR101271772B1 (en) Optical component production system
JP2008257261A (en) Optical device, optical device molding die, and method for molding optical device
JP4407148B2 (en) Optical element manufacturing method and apparatus, and optical element
JP2010082838A (en) Lens manufacturing method
JP2009045816A (en) Method and apparatus for manufacture of plastic molding
JP4097954B2 (en) Optical element, optical element molding die, and optical element molding method
JP2001269966A (en) Mold for injection molding of disk substrate
JP2006327147A (en) Forming method of plastic lens and plastic lens
JP4569744B2 (en) Optical element molding method
JP2005193646A (en) Optical element and mold for molding optical element
JP2008234724A (en) Compound objective lens forming mold, compound objective lens, and optical pickup device
JP2004291341A (en) Mold for optical element, method for molding optical element, and optical element
JP2009241297A (en) Method for manufacturing optical element, optical element molding mold, and optical element
JPH07266391A (en) Manufacture and manufacturing device of plastic lens
JP3383387B2 (en) Optical disc substrate and mold for molding this optical disc substrate
JP2005174380A (en) Optical element and manufacturing method for optical element and optical pickup device
JP2000158484A (en) Mold and method for molding optical element, and optical element
JPH07201091A (en) Molding method for substrate for magneto-optical disk
JP2007226888A (en) Molding die for disk substrate, disk substrate and optical disk product
JP2005305797A (en) Optical element molding mold, optical element molding method, and optical element

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090622