JP2005193646A - Optical element and mold for molding optical element - Google Patents

Optical element and mold for molding optical element Download PDF

Info

Publication number
JP2005193646A
JP2005193646A JP2004275321A JP2004275321A JP2005193646A JP 2005193646 A JP2005193646 A JP 2005193646A JP 2004275321 A JP2004275321 A JP 2004275321A JP 2004275321 A JP2004275321 A JP 2004275321A JP 2005193646 A JP2005193646 A JP 2005193646A
Authority
JP
Japan
Prior art keywords
optical element
molding
optical
outer peripheral
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004275321A
Other languages
Japanese (ja)
Inventor
Toshiaki Takano
利昭 高野
Atsushi Murata
淳 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004275321A priority Critical patent/JP2005193646A/en
Publication of JP2005193646A publication Critical patent/JP2005193646A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a difficulty in obtaining a satisfied bonding strength for fixing an optical element with a small diameter and thin thickness to a holder and in keeping an optical characteristics under a high-temperature environment in a lens, a prism or a mirror used for an optical instrument. <P>SOLUTION: The optical element 1 has an optically functional face 1a, 1b and the outer peripheral part 1c used for fixing the optical element 1 and by making a surface roughness of at least one of the face of the outer peripheral part 1c larger than the roughness of the optically functional face 1a, 1b, the surface area and the bonding strength are increased and also a heat radiating cooling effect is improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学機器に使用されるレンズ、プリズム、ミラーなどの高精度光学素子及び光学素子を成形するための光学素子成形型に関する。   The present invention relates to a high-precision optical element such as a lens, a prism, and a mirror used in an optical apparatus and an optical element molding die for molding the optical element.

一般に、光情報信号の記録再生に供される光学素子は、例えば特許文献1に開示されているように、樹脂ペレットを加熱混練溶融し、これを成形型のキャビティ内に射出充填して成形する射出成形法や、特許文献2に開示されているように、略最終形状に前加工されたプラスチック素材を金型内に供給した後、加熱、加圧する圧縮成形法などにより成形されている。   In general, an optical element used for recording / reproduction of an optical information signal is molded by heating, kneading and melting resin pellets and injection-filling them into a cavity of a mold as disclosed in, for example, Patent Document 1. As disclosed in Patent Document 2, it is molded by a compression molding method in which a plastic material pre-processed into a substantially final shape is supplied into a mold and then heated and pressurized.

以下に、従来の光学素子の成形方法について図を用いて説明する。図7は従来の圧縮成形法により成形された光学素子の概略図であり、図7(a)は概略上面図、図7(b)は概略側面図である。図8は同従来の光学素子の成形型の概略断面図である。   Hereinafter, a conventional method for molding an optical element will be described with reference to the drawings. 7A and 7B are schematic views of an optical element formed by a conventional compression molding method. FIG. 7A is a schematic top view, and FIG. 7B is a schematic side view. FIG. 8 is a schematic cross-sectional view of the mold for the conventional optical element.

これらの図において、40は光学素子、40a、40bは光学素子40の光学機能を有する光学機能面、40cは前記光学機能面40a、40bの外周部に鍔状に一体に形成された外周縁部であり、この外周縁部40cは光学素子40のホルダーへの固定に供される。41は上型、42は下型、43は胴型、41a、42aは前記上型41、下型42に形成された前記光学素子40の光学機能面40a、40bを成形する光学機能面成形部、43aは前記上型41、下型42及び胴型43により構成された光学素子40の外周縁部40cを成形する外周縁部成形部、44は上型41への加熱加圧機構を有するプレスヘッド、45は下型42への加熱機構を有するプレスステージである。   In these drawings, 40 is an optical element, 40a and 40b are optical functional surfaces having the optical function of the optical element 40, and 40c is an outer peripheral edge portion integrally formed in a bowl shape on the outer peripheral portion of the optical functional surfaces 40a and 40b. The outer peripheral edge 40c is used for fixing the optical element 40 to the holder. 41 is an upper mold, 42 is a lower mold, 43 is a trunk mold, 41a and 42a are optical function surface molding parts for molding the optical function surfaces 40a and 40b of the optical element 40 formed on the upper mold 41 and the lower mold 42, respectively. 43a is an outer peripheral edge forming portion for forming the outer peripheral edge portion 40c of the optical element 40 constituted by the upper die 41, the lower die 42 and the body die 43, and 44 is a press having a heating and pressing mechanism for the upper die 41. A head 45 is a press stage having a heating mechanism for the lower die 42.

光学素子40の成形は、まず、射出成形などにより略最終形状に前加工された光学素材(ポリカーボネイト)を、上型41、下型42、胴型43で形成されたキャビティ内(成形型内)に供給する。その後、プレスヘッド44、プレスステージ45の加熱機構により、上型41、下型42、胴型43をガラス転移点近傍の所望温度まで昇温する。光学素材と上型41、下型42、胴型43が所望の温度(例えば、ガラス転移点温度+15〜40℃)になったとき、プレスヘッド44を下降し、上型41 により光学素材に約10kgf/cm2の加圧力を加えて変形保持し、そして荷重たわみ温度以下になるまで冷却する。その後、上型41を取り外して成形された光学素材、すなわち、光学素子40を取り出す。 The optical element 40 is molded by first using an optical material (polycarbonate) pre-processed into a final shape by injection molding or the like in a cavity formed by an upper mold 41, a lower mold 42, and a body mold 43 (in a molding mold). To supply. Thereafter, the upper die 41, the lower die 42, and the barrel die 43 are heated to desired temperatures near the glass transition point by the heating mechanism of the press head 44 and the press stage 45. When the optical material and the upper die 41, the lower die 42, and the barrel die 43 reach a desired temperature (for example, a glass transition temperature +15 to 40 ° C.), the press head 44 is lowered, and the upper die 41 is applied to the optical material. A pressure of 10 kgf / cm 2 is applied to maintain the deformation, and cooling is performed until the temperature is below the deflection temperature under load. Thereafter, the upper mold 41 is removed and the molded optical material, that is, the optical element 40 is taken out.

上記のようにして成形された光学素子40には、光学素子成形型である上型41、下型42の光学機能面成形部41a、42aにより光学機能面40a、40bが転写され、かつ上型41、下型42及び胴型43により構成された外周縁部成形部43aにより外周縁部40cが成形される。
特開昭61−233520号公報 特開平8−127077号公報
In the optical element 40 molded as described above, the optical function surfaces 40a and 40b are transferred by the optical function surface molding portions 41a and 42a of the upper mold 41 and the lower mold 42 which are optical element molding dies, and the upper mold The outer peripheral edge portion 40 c is formed by the outer peripheral edge portion forming portion 43 a constituted by the lower mold 42, the lower mold 42, and the body mold 43.
JP-A-61-233520 JP-A-8-127077

しかしながら、上記従来の光学素子は外周縁部の表面粗さが光学機能面と実質的に同等の表面粗さに仕上げられている。   However, the conventional optical element is finished so that the surface roughness of the outer peripheral edge is substantially the same as that of the optical functional surface.

デジタルビデオディスク(DVD)やブルーレイディスク(BD)などのピックアップに用いられる光学素子は、ピックアップの小型化、軽量化、高密度化、形状の多様化に伴い、その光学素子自体の小型薄肉化、例えば、外径が5mm以下、外周縁部の厚さが1.0mm未満が要求されている。そのため、光学素子を保持するためのホルダーとその光学素子の外周縁部との接着面の面積が非常に少なくなり、かつ外周縁部の表面が鏡面に近い表面粗さに成形されているため、接着強度を十分に得ることが極めて難しく、ホルダーへの固定が極めて困難となってピックアップの生産性が著しく低下し、常に安定した接着固定が困難で、歩留まりの低下要因となっている。   Optical elements used for pickups such as digital video discs (DVDs) and Blu-ray discs (BDs) are becoming smaller, thinner, lighter, denser, and diversified in shape. For example, the outer diameter is required to be 5 mm or less and the thickness of the outer peripheral edge is less than 1.0 mm. Therefore, the area of the adhesive surface between the holder for holding the optical element and the outer peripheral edge of the optical element is very small, and the surface of the outer peripheral edge is molded to a surface roughness close to a mirror surface. It is extremely difficult to obtain sufficient adhesive strength, fixing to the holder becomes extremely difficult, and the productivity of the pickup is remarkably reduced, and stable adhesive fixing is always difficult, which is a cause of a decrease in yield.

また、レーザー光による光学素子の発熱も非常に大きくなり、プラスチック材料を用いた光学素子では温度変化により、光学特性が大きく変化して実用上不安定になったり、光学機器によっては使用不可能な状態が生じる。   Also, the heat generated by the optical element due to the laser beam becomes very large, and in the optical element using a plastic material, the optical characteristics greatly change due to a temperature change and becomes practically unstable or cannot be used depending on the optical device. A state arises.

また、デジタルスチルカメラや携帯電話などの小型の機器における撮像装置に用いられる光学素子では、光学機能面を通過した光線の一部が外周縁部の内面に反射して迷光となり、これが光学系に入り込んで光学特性に悪影響を及ぼすことを防ぐために、外周縁部に黒色塗装を施すようにしている。   In addition, in an optical element used for an imaging device in a small device such as a digital still camera or a mobile phone, a part of the light beam that has passed through the optical function surface is reflected on the inner surface of the outer peripheral edge portion and becomes stray light. In order to prevent it from entering and adversely affecting the optical characteristics, black coating is applied to the outer peripheral edge.

本発明は、良好な光学特性を確保し、かつ光学素子の確実な固定が可能であるとともに、黒色塗装もなくすことができる光学素子及び光学素子成形型を提供することにある。   An object of the present invention is to provide an optical element and an optical element molding die that can secure good optical characteristics and can reliably fix the optical element and can eliminate black paint.

本発明は、成形材料を成形装置の成形型内に供給して光学機能面とその光学機能面よりも外径が大きい外周縁部が一体に成形された光学素子であって、光学素子の外周縁部を成形する前記成形型の外周縁部成形部の少なくとも1つの面の表面粗さが光学素子の光学機能面を成形する成形型の光学機能面成形部の表面粗さよりも大きい成形型により、外周縁部の少なくとも1つの面の表面粗さが光学機能面の表面粗さよりも大きく成形されたことを特徴とする光学素子である。   The present invention provides an optical element in which a molding material is supplied into a molding die of a molding apparatus, and an optical functional surface and an outer peripheral edge having a larger outer diameter than the optical functional surface are integrally molded. By a molding die in which the surface roughness of at least one surface of the outer peripheral portion molding portion of the molding die for molding the peripheral portion is larger than the surface roughness of the optical functional surface molding portion of the molding die for molding the optical functional surface of the optical element The optical element is characterized in that the surface roughness of at least one surface of the outer peripheral edge is formed to be larger than the surface roughness of the optical functional surface.

また、本発明は、前記外周縁部の少なくとも1つの面の表面粗さRaが0.1μm以上であることを特徴とする光学素子である。   Further, the present invention is an optical element characterized in that the surface roughness Ra of at least one surface of the outer peripheral edge is 0.1 μm or more.

また、本発明は、前記光学機能面の表面粗さRaが0.03μm以下であり、外周縁部の少なくとも1つの面の表面粗さRaが0.1μm以上であることを特徴とする光学素子である。   In the optical element according to the present invention, the surface roughness Ra of the optical functional surface is 0.03 μm or less, and the surface roughness Ra of at least one surface of the outer peripheral edge is 0.1 μm or more. It is.

また、本発明は、表面粗さRaが0.1μm以上である1つの面は、外周縁部の外径側面部であることを特徴とする光学素子である。   Further, the present invention is an optical element characterized in that one surface having a surface roughness Ra of 0.1 μm or more is an outer diameter side surface portion of an outer peripheral edge portion.

さらに、本発明は、成形材料が樹脂材料からなり、光学素子の外径φが5mm以下、外周縁部を構成する外径側面部の厚みが1.0mm未満であることを特徴とする光学素子である。   Further, the present invention is an optical element characterized in that the molding material is made of a resin material, the outer diameter φ of the optical element is 5 mm or less, and the thickness of the outer diameter side surface part constituting the outer peripheral edge is less than 1.0 mm. It is.

また、本発明は、成形型内に供給される成形材料から光学素子を成形するための光学素子成形型であって、光学素子に光学機能面を成形する光学機能面成形部及び外周縁部を成形する外周縁部成形部を有し、前記外周縁部成形部の少なくとも1つの面の表面粗さが前記光学機能面成形部の表面粗さよりも大きいことを特徴とする光学素子成形型である。   The present invention also provides an optical element molding die for molding an optical element from a molding material supplied into a molding die, comprising an optical functional surface molding part and an outer peripheral edge part for molding an optical functional surface on the optical element. An optical element molding die having an outer peripheral edge molding part to be molded, wherein the surface roughness of at least one surface of the outer peripheral edge molding part is larger than the surface roughness of the optical functional surface molding part .

また、本発明は、光学機能面成形部の表面粗さよりも表面粗さが大きい外周縁部成形部の1つの面はその外周縁部成形部の外径側面成形部であることを特徴とする光学素子成形型である。   Further, the present invention is characterized in that one surface of the outer peripheral edge molding portion having a surface roughness larger than the surface roughness of the optical function surface molding portion is an outer diameter side surface molding portion of the outer peripheral edge molding portion. This is an optical element molding die.

以上のように、本発明の光学素子は、外周縁部の少なくとも1つの面の表面粗さを光学機能面の表面粗さよりも大きく(粗く)したことにより、外周縁部の表面粗さが光学機能面の表面粗さと同等の粗さのものに比べて光学素子のホルダーへの固定に供される外周縁部の表面積が増加するため、小型で薄肉の光学素子においても接着などの固定面積が増大し、その結果、ホルダーとの固定強度が強くなって安定した保持状態が得られるものである。   As described above, in the optical element of the present invention, the surface roughness of at least one surface of the outer peripheral edge is larger (rougher) than the surface roughness of the optical functional surface, so that the surface roughness of the outer peripheral edge is optical. Since the surface area of the outer peripheral edge used for fixing the optical element to the holder is increased compared to the functional surface having the same surface roughness, the fixed area such as adhesion is reduced even in a small and thin optical element. As a result, the fixing strength with the holder is increased, and a stable holding state can be obtained.

また、光学素子の外周縁部の表面積が増加することにより、放熱、冷却効果も増大して光学機器の高温時の動作も安定するという効果も得られる。   Further, since the surface area of the outer peripheral edge of the optical element is increased, the effect of heat dissipation and cooling is also increased, and the effect of stabilizing the operation of the optical device at a high temperature can be obtained.

そして、この光学素子の外周縁部の少なくとも1つの面の表面粗さを大きくすることは、その成形型の外周縁部成形部の少なくとも1つの面の表面粗さを光学機能面成形部の表面粗さよりも大きくすることによって、光学素子の成形と同時に簡単にかつ精度よく成形することができるものである。   Then, increasing the surface roughness of at least one surface of the outer peripheral edge portion of the optical element means that the surface roughness of at least one surface of the outer peripheral edge molding portion of the mold is the surface of the optical functional surface molding portion. By making it larger than the roughness, it can be easily and accurately molded simultaneously with the molding of the optical element.

さらには、外周縁部の表面粗さを大きくしたことにより、この外周縁部での光の反射がほとんどなくなり、後工程で外周縁部に墨塗りなどを行わなくても、迷光などの悪影響を防止することができ、光学素子の生産性が向上し、コストが安価になるという効果が得られる。   Furthermore, by increasing the surface roughness of the outer peripheral edge, there is almost no reflection of light at the outer peripheral edge, and there is no adverse effect such as stray light even if the outer peripheral edge is not smeared in the subsequent process. Therefore, the productivity of the optical element can be improved and the cost can be reduced.

以下、本発明の実施の形態例について説明する。   Hereinafter, embodiments of the present invention will be described.

(実施例1)
図1は、本発明の実施例1における光学素子の概略図であり、図1(a)は概略上面図、図1(b)は概略側面図、図2は実施例1の光学素子の成形装置の概略断面図である。
(Example 1)
1A and 1B are schematic views of an optical element according to Example 1 of the present invention, in which FIG. 1A is a schematic top view, FIG. 1B is a schematic side view, and FIG. 2 is a molding of the optical element of Example 1. It is a schematic sectional drawing of an apparatus.

1は光学素子、1a、1bは光学素子1の光学機能を有する光学機能面、1cは前記光学機能面1a、1bの外周部に一体に形成されたその光学機能面1a、1bの外径よりも外径が大きい鍔状の外周縁部、1dは前記外周縁部1cの外径側面部であり、この外周縁部1cが光学素子1のホルダーへの固定に供される。2は上型、3は下型、4は胴型、2a、3aは前記上型2、下型3に形成された前記光学素子1の光学機能面1a、1bを成形する光学機能面成形部、4aは前記上型2、下型3及び胴型4により構成された光学素子1の外周縁部1cを成形する前記光学機能面成形部2a、3aの内径よりも大きい内径の外周縁部成形部、4dは前記光学素子1の外周縁部1cの外径側面部1dを成形する胴型4の内周部の外径側面成形部、5は上型2への加熱加圧機構を有するプレスヘッド、6は下型3への加熱機構を有するプレスステージである。   1 is an optical element, 1a and 1b are optical functional surfaces having the optical function of the optical element 1, and 1c is an outer diameter of the optical functional surfaces 1a and 1b integrally formed on the outer peripheral portion of the optical functional surfaces 1a and 1b. The outer peripheral edge portion 1d having a large outer diameter is an outer diameter side surface portion of the outer peripheral edge portion 1c, and the outer peripheral edge portion 1c is used for fixing the optical element 1 to the holder. 2 is an upper mold, 3 is a lower mold, 4 is a body mold, 2a and 3a are optical function surface molding portions for molding the optical function surfaces 1a and 1b of the optical element 1 formed on the upper mold 2 and the lower mold 3. Reference numeral 4a denotes an outer peripheral edge molding having an inner diameter larger than the inner diameter of the optical function surface molding parts 2a and 3a for molding the outer peripheral edge 1c of the optical element 1 constituted by the upper mold 2, the lower mold 3 and the body mold 4. 4d is an outer diameter side surface forming portion of the inner peripheral portion of the body mold 4 for forming the outer diameter side surface portion 1d of the outer peripheral edge portion 1c of the optical element 1, and 5 is a press having a heating and pressing mechanism for the upper die 2. A head 6 is a press stage having a heating mechanism for the lower mold 3.

なお、ここでいう光学機能面とは、光学素子1に要求される光学特性を生み出すために必要な光学作用面を含んだ面のことで光線の経路になる面である。   Here, the optical function surface is a surface including an optical action surface necessary for producing the optical characteristics required for the optical element 1, and is a surface that becomes a path of light rays.

本実施例1では、図1に示す光学素子1の各部の表面粗さ、すなわち、光学素子の光学機能面1a、1bの表面粗さと外径側面部1dの表面粗さを異ならせている。このため光学素子1の成形型においては上型2と下型3の各光学機能面成形部2a、3aの表面粗さに対して前記外径側面成形部4dの表面粗さを異ならせている。   In Example 1, the surface roughness of each part of the optical element 1 shown in FIG. 1, that is, the surface roughness of the optical functional surfaces 1a and 1b of the optical element is different from the surface roughness of the outer diameter side surface part 1d. For this reason, in the molding die of the optical element 1, the surface roughness of the outer-diameter side surface molding portion 4d is made different from the surface roughness of the optical function surface molding portions 2a and 3a of the upper die 2 and the lower die 3. .

次に、この実施例1の光学素子及びその成形装置について具体的に説明する。   Next, the optical element of Example 1 and its molding apparatus will be specifically described.

光学素子の成形材料としては、非晶質ポリオレフィン系樹脂(日本ゼオン株式会社製、商品名ZEONEX、ガラス転移点Tg=150℃、熱変形温度Tt=125℃)を用いた。   As a molding material for the optical element, an amorphous polyolefin resin (manufactured by Nippon Zeon Co., Ltd., trade name ZEONEEX, glass transition point Tg = 150 ° C., heat distortion temperature Tt = 125 ° C.) was used.

まず、光学素子1の成形素材(図示せず)を上型2 、下型3 、胴型4で構成される成形型内に供給し、この成形型をプレスヘッド5 、プレスステージ6間に配置する。成形素材は、ポリオレフィン樹脂(ガラス転移点Tg=140℃、荷重たわみ温度Tt=123℃)を射出成形により、光学素子1の概略形状に成形したものを用いた。   First, a molding material (not shown) of the optical element 1 is supplied into a molding die composed of an upper die 2, a lower die 3, and a barrel die 4, and this molding die is arranged between the press head 5 and the press stage 6. To do. As the molding material, a polyolefin resin (glass transition point Tg = 140 ° C., deflection temperature under load Tt = 123 ° C.) molded into an approximate shape of the optical element 1 by injection molding was used.

前記成形型を構成する上型2、下型3、胴型4は、超硬合金を母材としており、光学機能面成形部2a、3aは光学機能が得られるように所望の形状に加工してある。なお、上型2、下型3、胴型4は前述の材料以外でも成形に使用可能なものであれば、他の材料であってもよい。例えば上型2、下型3の材料として、ステンレス鋼(STAVAX)などを基材として、その表面に例えば無電解ニッケルメッキを施して光学機能面成形部2a、3aを形成してもよい。ただし、強度を考えた場合、超硬合金を基材とするのが好ましい。また、離型性の向上や、型の酸化、腐食防止のために成型面の表面に保護膜などを施してもよい。   The upper mold 2, the lower mold 3, and the body mold 4 constituting the mold are made of cemented carbide, and the optical function surface molding portions 2a and 3a are processed into desired shapes so as to obtain an optical function. It is. The upper mold 2, the lower mold 3, and the body mold 4 may be made of other materials as long as they can be used for molding other than the above-described materials. For example, as the material of the upper die 2 and the lower die 3, the optical functional surface molding portions 2a and 3a may be formed by using, for example, electroless nickel plating on the surface of stainless steel (STAVAX) as a base material. However, when the strength is considered, it is preferable to use a cemented carbide as a base material. In addition, a protective film or the like may be applied to the surface of the molding surface in order to improve mold release properties and prevent mold oxidation and corrosion.

前記成形型内に入れられた成形素材をプレスヘッド5、プレスステージ6で所定の温度170 ℃まで5分間加熱する。成形素材が所定の温度になると、プレスヘッド5を所望の速度0.1mm/secで下降させ、上型2を介して、成形素材を変形させていく。胴型4と上型2が接触すれば、下降すなわち加圧を停止する。この状態のまま所定温度で2分間保持した後、プレスヘッド5を下降させたままの状態で、荷重たわみ温度123℃まで7分で冷却する。そしてプレスヘッド5による押圧を解除し 、上型2を開けて成形された光学素子1を取り出す。   The molding material placed in the mold is heated by the press head 5 and the press stage 6 to a predetermined temperature of 170 ° C. for 5 minutes. When the molding material reaches a predetermined temperature, the press head 5 is lowered at a desired speed of 0.1 mm / sec, and the molding material is deformed via the upper mold 2. When the body mold 4 and the upper mold 2 come into contact with each other, the descent, that is, pressurization is stopped. After maintaining in this state for 2 minutes at a predetermined temperature, the press head 5 is cooled down to a deflection temperature under load of 123 ° C. in 7 minutes. Then, the pressing by the press head 5 is released, the upper mold 2 is opened, and the molded optical element 1 is taken out.

上記のようにして成形される光学素子1の概略形状は、一方の光学機能面1aの曲率半径R1=1.25mm、他方の光学機能面1bの曲率半径R2=4.18mm、中心厚t=0.98mm、外径(外周縁部の直径)=3.5mm、外径側面部の厚み=0.29mmである。   The schematic shape of the optical element 1 molded as described above is such that the curvature radius R1 of one optical functional surface 1a is 1.25 mm, the curvature radius R2 of the other optical functional surface 1b is 4.18 mm, and the center thickness t = 0.98 mm, outer diameter (diameter of outer peripheral edge portion) = 3.5 mm, and thickness of outer diameter side surface portion = 0.29 mm.

本実施例1では、光学素子1の外径側面部1dの表面粗さを光学機能面1a、1bの表面粗さよりも大きくして粗くするため、成形型の光学機能面成形部2a、3aの表面粗さよりも外径側面成形部4dの表面粗さが粗く(大きく)形成されている。   In Example 1, in order to make the surface roughness of the outer diameter side surface portion 1d of the optical element 1 larger than the surface roughness of the optical function surfaces 1a and 1b, the surface roughness of the optical function surface molding portions 2a and 3a of the mold is increased. The surface roughness of the outer diameter side surface molding portion 4d is formed to be rougher (larger) than the surface roughness.

ここで、表1を参照して、上記寸法形状の光学素子において、光学機能面1a、1bの表面粗さと外径側面部1dの表面粗さを種々変えた光学素子の検証について説明する。光学機能面1a、1bの表面粗さ(この両者は同一粗さ)Raとしては0.001μm〜0.05μmの5種類を、また外径側面部1dの表面粗さRaとしては0.001μm〜0.5μmの8種類を組合わせた光学素子を成形した。高精度な光学特性が要望される光学素子、例えば、デジタルビデオディスク(DVD)やブルーレイディスク(BD)用光学素子としては光学機能面1a、1bの表面粗さは0.03μm以下が望ましく、0.05μmの表面粗さのものは十分な光学特性が得られないことがこの検証で確認された。   Here, with reference to Table 1, verification of an optical element in which the surface roughness of the optical functional surfaces 1a and 1b and the surface roughness of the outer-diameter side surface portion 1d are variously changed will be described. As the surface roughness Ra of the optical functional surfaces 1a and 1b (both are the same roughness) Ra, five types of 0.001 μm to 0.05 μm are used, and as the surface roughness Ra of the outer diameter side surface portion 1d, 0.001 μm to An optical element in which 8 types of 0.5 μm were combined was molded. For optical elements that require high-precision optical characteristics, such as optical elements for digital video discs (DVD) and Blu-ray discs (BD), the surface roughness of the optical functional surfaces 1a and 1b is preferably 0.03 μm or less. It was confirmed by this verification that sufficient optical characteristics cannot be obtained with a surface roughness of .05 μm.

この表1に示す光学素子1を少なくともその外径側面部1dをもって接着剤により光学素子保持ホルダーに接着し、その接着強度を評価した。接着剤には紫外線硬化樹脂を用いた。接着強度の評価としては、粘着テープを貼り付けた後、これを剥がす作業による剥離試験、すなわち低温(−20℃)環境と高温(90℃)環境においてこの作業を交互に所定時間、所定回数繰り返すヒートサイクルなどの試験を行った。   The optical element 1 shown in Table 1 was adhered to the optical element holding holder with an adhesive with at least the outer diameter side surface portion 1d, and the adhesive strength was evaluated. An ultraviolet curable resin was used as the adhesive. As an evaluation of the adhesive strength, a peeling test is performed by attaching an adhesive tape and then removing it, that is, repeating this operation alternately for a predetermined time and a predetermined number of times in a low temperature (−20 ° C.) environment and a high temperature (90 ° C.) environment. Tests such as heat cycle were conducted.

表1に各々の光学素子1の接着強度の実験評価結果を示す。表中の○は、所望の接着強度が十分得られ良好であることを示し、×は、不十分であったことを示している。   Table 1 shows the experimental evaluation results of the adhesive strength of each optical element 1. In the table, ◯ indicates that the desired adhesive strength is sufficiently obtained and good, and X indicates that it is insufficient.

Figure 2005193646
Figure 2005193646

この表1から、外径側面部1dの表面粗さRaが、0.1μm以上であれば十分な接着強度が得られることが分かる。   From Table 1, it can be seen that sufficient adhesive strength can be obtained if the surface roughness Ra of the outer-diameter side surface portion 1d is 0.1 μm or more.

また、上記の形状寸法と同寸法で、かつ同じ表面粗さで成形材料をガラス材料でもって成形した光学素子を、上記と同様に接着強度の確認を行った結果、上記の樹脂材料を成形材料としたときと同じ結果、すなわち、外径側面部1dの表面粗さRaが0.1μm以上であれば良好な接着強度が得られた。   In addition, as a result of confirming the adhesive strength in the same manner as described above, the optical material obtained by molding a molding material with a glass material having the same size and the same surface roughness as described above was obtained. When the surface roughness Ra of the outer diameter side surface portion 1d is 0.1 μm or more, good adhesive strength is obtained.

ここで、上記検証に用いた光学素子1は、上述の寸法形状の光学素子1を成形する成形型において、光学機能面成形部2a、3aと外径側面成形部4dの表面粗さを、各検証光学素子1のそれぞれの光学機能面1a、1b、外径側面部1dの表面粗さと実質的に同じ表面粗さに形成したものをそれぞれ用意し、これらの成形型によって各光学素子1を成形して検証したものである。したがって、成形型においては、光学機能面成形部2a、3aの表面粗さよりも外径側面成形部4dの表面粗さを粗くし、かつその外径側面部1dの表面粗さRaが0.1μm以上であれば、接着強度が十分に得られる光学素子1を成形することができるものである。   Here, the optical element 1 used for the verification described above has a surface roughness of the optical function surface molding parts 2a and 3a and the outer diameter side surface molding part 4d in the molding die for molding the optical element 1 having the above-described dimensions. The optical function surfaces 1a and 1b and the outer diameter side surface portion 1d of the verification optical element 1 are prepared to have substantially the same surface roughness as the surface roughness, and each optical element 1 is molded with these molds. It has been verified. Accordingly, in the mold, the surface roughness Ra of the outer diameter side surface molding portion 4d is made larger than the surface roughness of the optical function surface molding portions 2a and 3a, and the surface roughness Ra of the outer diameter side surface portion 1d is 0.1 μm. If it is above, the optical element 1 with sufficient adhesive strength can be shape | molded.

(実施例2)
次に、実施例2について図3を用いて説明する。図3(a)は光学素子の概略上面図であり、図3(b)はその概略側面図である。この図において、図1の実施例1の光学素子と同一構成部分には同一符号が附してあり、実施例1と異なる個所についてのみ説明する。
(Example 2)
Next, Example 2 will be described with reference to FIG. FIG. 3A is a schematic top view of the optical element, and FIG. 3B is a schematic side view thereof. In this figure, the same components as those of the optical element of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and only different points from the first embodiment will be described.

この光学素子1は、外径側面部1dを、表面粗さRaが0.1μm以上の外径側面部1d1と、その表面粗さ以外の表面粗さ、例えば光学機能面1a、1bと同じ表面粗さを有する外径側面部1d2により形成したものである。これは光学素子1の固定のための主接着部分とされる外径側面部1d1のみの表面粗さを粗くしたものである。   The optical element 1 includes an outer diameter side surface portion 1d, an outer diameter side surface portion 1d1 having a surface roughness Ra of 0.1 μm or more, and a surface roughness other than the surface roughness, for example, the same surface as the optical functional surfaces 1a and 1b. The outer diameter side surface portion 1d2 having roughness is formed. This is obtained by roughening the surface roughness of only the outer-diameter side surface portion 1d1, which is the main bonding portion for fixing the optical element 1.

そして、この光学素子1の成形においてもその例として図2に示す成形装置が用いられ、光学素子1の外径側面部1d1を成形する成形型の外径側面成形部分のみの表面粗さが、光学機能面成形部2a、3a及び外径側面部1d2を成形する面の表面粗さよりも粗く形成されており、そして、この例においても光学素子1の外径側面部1d1を成形する成形型の外径側面成形部の表面粗さRaは0.1μm以上に形成されている。   And also in the shaping | molding of this optical element 1, the shaping | molding apparatus shown in FIG. 2 is used as the example, The surface roughness of only the outer diameter side surface molding part of the shaping | molding die which shape | molds the outer diameter side part 1d1 of the optical element 1 is carried out. The optical function surface molding portions 2a and 3a and the outer diameter side surface portion 1d2 are formed to be rougher than the surface roughness of the surfaces to be molded. In this example, the outer diameter side surface portion 1d1 of the optical element 1 is molded. The surface roughness Ra of the outer diameter side surface molding portion is formed to be 0.1 μm or more.

(実施例3)
次に、光学素子の光学特性面からの検証について説明する。この実施例3の光学素子は、実施例1における光学素子1と同様に光学機能面1a、1bとその光学機能面よりも外径が大きい外周縁部1cが一体に形成された光学素子であり、その成形も図2に示す成形装置により成形可能であるため、図1、図2を援用して説明する。この実施例3に係る光学素子1はその光学機能面1a、1bの表面粗さRaが0.03μmのものにおいて、その外径φを1〜8mm、外径側面部1d全面の表面粗さRaを0.001〜0.5μm、外径側面部1dの厚みを0.1〜1.6mmに変化させたサンプルを、実施例1と同じ樹脂材料と成形装置により成形したもので、すなわち、各サンプル値に対応する寸法形状と表面粗さに形成した成形型を用いて成形したものである。これらの光学素子1をその外径側面部1dを実施例1と同様に紫外線硬化樹脂からなる接着剤でホルダーに固定し、そしてこれを光学機器に搭載して高温環境(90℃)下で光学特性の評価を行ったものである。なお、光学特性の評価は透過波面による評価を実施した。
(Example 3)
Next, verification from the optical characteristic surface of the optical element will be described. The optical element of Example 3 is an optical element in which the optical function surfaces 1a and 1b and the outer peripheral edge 1c having an outer diameter larger than that of the optical function surface are integrally formed in the same manner as the optical element 1 in Example 1. Since the molding can be performed by the molding apparatus shown in FIG. 2, the description will be made with reference to FIGS. In the optical element 1 according to Example 3, the optical functional surfaces 1a and 1b have a surface roughness Ra of 0.03 μm, the outer diameter φ is 1 to 8 mm, and the surface roughness Ra of the entire outer diameter side surface portion 1d. A sample in which the thickness of the outer side surface portion 1d was changed to 0.1 to 1.6 mm was molded by the same resin material and molding apparatus as in Example 1, that is, each It is formed using a forming die formed to have a dimensional shape and surface roughness corresponding to the sample value. These optical elements 1 are fixed to a holder with an adhesive made of an ultraviolet curable resin on the outer diameter side surface 1d in the same manner as in Example 1, and mounted on an optical device to optically operate in a high temperature environment (90 ° C.). The characteristics were evaluated. In addition, the evaluation of the optical characteristics was performed by the transmitted wavefront.

表2にこれらサンプルの光学素子1の上記高温環境下での光学特性結果を示す。表中の○は高温下になっても使用可能な光学特性を維持していることを示し、×は高温度による光学特性の劣化が大きく、使用不可能となったことを示している。   Table 2 shows the results of optical characteristics of the optical element 1 of these samples under the above high temperature environment. In the table, ◯ indicates that the usable optical characteristics are maintained even at high temperatures, and x indicates that the optical characteristics are greatly deteriorated due to high temperatures and cannot be used.

Figure 2005193646
Figure 2005193646

上記表2から、従来、外径側面部1dの表面粗さRaが0.05μm以下の小さな表面粗さでは高温環境下では光学特性の劣化により使用不可能であった光学素子、例えば、外径φが3mm、外径側面部の厚みが0.3mmの光学素子が、外径側面部1dの表面粗さRaを0.1μm以上にすることで、接着剤との接着力が大きくなり、同時に放熱効果が増大して高温環境下でも使用可能な光学特性を維持することが分かった。また、外径φが5mm以上で、かつ外径側面部1dの厚みが1.0mm以上であれば、その外径側面部1dの表面粗さRaが0.1μm以下でも、使用可能な光学特性を維持することが分かった。なお、外径側面部1dの表面粗さRaが0.1μm以上であればこのサンプルの光学素子は全て高温下でも使用可能な光学特性を維持している。   From Table 2 above, an optical element that has conventionally been unusable due to deterioration of optical characteristics under a high temperature environment when the surface roughness Ra of the outer diameter side surface portion 1d is 0.05 μm or less, for example, outer diameter An optical element having a φ of 3 mm and an outer diameter side surface portion of 0.3 mm has a surface roughness Ra of 0.1 μm or more on the outer diameter side surface portion 1d, thereby increasing the adhesive force with the adhesive. It has been found that the heat dissipation effect is increased and the optical characteristics that can be used even in a high temperature environment are maintained. Further, when the outer diameter φ is 5 mm or more and the thickness of the outer diameter side surface portion 1d is 1.0 mm or more, the optical characteristics that can be used even if the surface roughness Ra of the outer diameter side surface portion 1d is 0.1 μm or less. It was found to maintain. If the surface roughness Ra of the outer diameter side surface portion 1d is 0.1 μm or more, all the optical elements of this sample maintain optical characteristics that can be used even at high temperatures.

上記のように、特に小径の光学素子であっても、少なくとも外径側面部1dの表面粗さを光学機能面の表面粗さよりも大きくすることにより、光学素子1自体の放熱効果が大きくなって使用不可能となる高温度まで上昇することはなく、高温環境下で使用可能な光学特性を維持するためと考えられる。   As described above, even in the case of an optical element having a particularly small diameter, the heat radiation effect of the optical element 1 itself is increased by making the surface roughness of at least the outer diameter side surface portion 1d greater than the surface roughness of the optical functional surface. This is because the temperature does not rise to a high temperature at which it cannot be used, and the optical characteristics that can be used in a high temperature environment are maintained.

上記の各サンプルによる光学素子1の検証は、光学機能面1a、1bの表面粗さRaが0.03μmの場合であるが、この光学機能面1a、1bの表面粗さRaを0.02μm及び0.01μmに設定し、外径φ及び外径側面部1d全面の表面粗さ、また、外径側面部1dの厚みは上記と同様の数値、すなわち、表2に示した数値と同様にした各サンプル光学素子を成形し、これらを上記と同様に紫外線硬化樹脂からなる接着剤でホルダーに固定し、そして、これらを光学機器に搭載して高温環境(90℃)下で光学特性の評価を行ったところ、表2と同じ光学特性結果が得られた。これは光学機能面1a、1bの表面粗さRaが0.03μm以下において外径φが5mm以下、外周縁部1cを構成する外径側面部1dの厚みが1.0mm未満、かつその外径側面部1dの表面粗さRaが光学機能面1a、1bの表面粗さRaよりも粗い光学素子1は少なくとも高温環境下で十分使用可能であることを見い出したものである。   The verification of the optical element 1 by the above samples is performed when the surface roughness Ra of the optical function surfaces 1a and 1b is 0.03 μm. The surface roughness Ra of the optical function surfaces 1a and 1b is 0.02 μm and Set to 0.01 μm, the outer diameter φ and the surface roughness of the entire surface of the outer diameter side surface portion 1d, and the thickness of the outer diameter side surface portion 1d were set to the same values as described above, that is, the values shown in Table 2. Each sample optical element is molded, and these are fixed to the holder with an adhesive made of an ultraviolet curable resin in the same manner as described above, and these are mounted on an optical device to evaluate optical characteristics in a high temperature environment (90 ° C.). As a result, the same optical characteristic results as in Table 2 were obtained. This is because when the surface roughness Ra of the optical function surfaces 1a and 1b is 0.03 μm or less, the outer diameter φ is 5 mm or less, the outer diameter side surface portion 1d constituting the outer peripheral edge portion 1c is less than 1.0 mm, and the outer diameter It has been found that the optical element 1 in which the surface roughness Ra of the side surface portion 1d is larger than the surface roughness Ra of the optical functional surfaces 1a and 1b can be sufficiently used at least in a high temperature environment.

一般に、この種光学素子の成形樹脂材料は、ガラス材料とは異なり温度変化により物性値(例えば屈折率)変化が大きいことから、従来高温下で使用することができなかった小径、薄肉の樹脂材料で成形された光学素子が上記のように少なくとも外径側面部1dの表面粗さを大きくすることで放熱効果が大きくなり、使用可能となったものである。したがって、レーザーパワーの大きい記録機構を搭載した光学機器では熱の発生も大きくなるが、それに耐えられる光学素子として有効である。   In general, the molding resin material of this type of optical element has a small change in physical properties (for example, refractive index) due to temperature change, unlike glass materials. As described above, at least the surface roughness of the outer-diameter side surface portion 1d increases the heat dissipation effect of the optical element molded in step 1 and becomes usable. Therefore, although an optical device equipped with a recording mechanism with a high laser power generates a large amount of heat, it is effective as an optical element that can withstand it.

また、同様に携帯電話用カメラに用いられる撮像系の光学素子(図示せず)を成形し、接着強度及び高温下で光学特性の評価を確認したところ、これについても前述と同様の効果が得られた。さらに、撮像系の光学特性として要求される迷光も、外径側面部の表面粗さRaが0.1μm以上では発生せず、迷光対策として従来施されていた後工程での墨塗り工程も必要がなくなるという効果も確認できた。   Similarly, when an imaging optical element (not shown) used for a mobile phone camera was molded and the evaluation of the optical characteristics under adhesive strength and high temperature was confirmed, the same effect as described above was obtained. It was. Furthermore, the stray light required as the optical characteristics of the imaging system does not occur when the surface roughness Ra of the outer diameter side surface portion is 0.1 μm or more, and a blacking process in the subsequent process, which has been conventionally applied as a countermeasure against stray light, is also necessary. It was also possible to confirm the effect of disappearing.

本発明では、前述した実験結果に基づき、外径側面部の表面粗さRaが0.1μm以上であることを満たした光学素子では、小さな外径(外径φが5mm以下や、外径側面部の厚みが1.0mm未満)の光学素子であっても、その外径側面部の凹凸による表面積の増大により十分な接着強度が得られ、しかも、厳しい高温環境下での使用であっても、放熱効果が大きくなって良好な光学特性が維持される。これにより、光学機器の小径薄肉化、高機能、高速化などの実現を可能とする光学素子を提供することができる。   In the present invention, an optical element satisfying that the surface roughness Ra of the outer diameter side surface portion is 0.1 μm or more based on the experimental results described above has a small outer diameter (the outer diameter φ is 5 mm or less, Even if it is an optical element having a thickness of less than 1.0 mm, sufficient adhesive strength can be obtained by increasing the surface area due to irregularities on the outer diameter side surface, and even in use in severe high temperature environments The heat dissipation effect is increased and good optical characteristics are maintained. Thereby, it is possible to provide an optical element that can realize the reduction in diameter and thickness of the optical device, high functionality, and high speed.

なお、上記の実施例では、加熱加圧、圧縮成形法を用いて光学素子を成形するものについて説明したが、これに限らず、例えば成形材料が樹脂材料の場合、より生産性の優れた射出成形法で光学素子を上記各実施例で掲げたものと同様のものに成形してもよい。   In the above-described embodiment, the optical element is molded using heat and pressure and compression molding. However, the present invention is not limited to this. For example, when the molding material is a resin material, the injection is more productive. You may shape | mold the optical element by the shaping | molding method in the thing similar to what was hung up in each said Example.

(実施例4)
図4に射出成形法にて成形した光学素子1を示す。図4(a)は光学素子の概略上面図であり、図4(b)は概略側面図である。この図4において、上記実施例1から3の光学素子1と同一構成部分には同一の符号が附してあり、その説明は省略する。射出成形法で成形される光学素子1は、成形材料を射出充填するためにゲート(図4の1eの想像線で示す)が成形される。成形完了後、ゲート1eは切断などの方法で光学素子1の外径側面部1dから除去される。前記ゲートが除去され、その除去部分が研磨された痕として外径側面部1dの一部にゲート除去痕1fが残存する。このように射出成形で得られた光学素子1もゲート除去痕1f以外の外径側面部1dの表面粗さRaを0.1μm以上にすれば、前述と同様の接着強度、放熱効果が得られる。
Example 4
FIG. 4 shows an optical element 1 molded by an injection molding method. 4A is a schematic top view of the optical element, and FIG. 4B is a schematic side view. In FIG. 4, the same components as those of the optical element 1 of the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted. In the optical element 1 molded by the injection molding method, a gate (shown by an imaginary line 1e in FIG. 4) is molded in order to injection-fill the molding material. After the molding is completed, the gate 1e is removed from the outer diameter side surface portion 1d of the optical element 1 by a method such as cutting. The gate removal trace 1f remains in a part of the outer diameter side surface portion 1d as a trace of the removal of the gate and polishing of the removed portion. Thus, the optical element 1 obtained by injection molding can obtain the same adhesive strength and heat dissipation effect as described above if the surface roughness Ra of the outer diameter side surface portion 1d other than the gate removal trace 1f is 0.1 μm or more. .

図5はこの実施例4に係る光学素子1の成形型の概略断面図であり、この成形型は可動型10、固定型11、胴型12からなり、可動型10と固定型11には光学素子1の光学機能面1a、1bを成形する光学機能面成形部10a、11aが形成されている。また、これらの可動型10、固定型11、胴型12により光学素子1の外周縁部1cを成形する外周縁部成形部12aが形成されており、かつ、胴型12にこの成形型内に樹脂を射出するゲート部13が形成されている。   FIG. 5 is a schematic cross-sectional view of a molding die of the optical element 1 according to the fourth embodiment. The molding die includes a movable die 10, a fixed die 11, and a body die 12. The movable die 10 and the fixed die 11 are optically connected. Optical function surface molding portions 10a and 11a for molding the optical function surfaces 1a and 1b of the element 1 are formed. Further, an outer peripheral edge forming portion 12a for forming the outer peripheral edge portion 1c of the optical element 1 is formed by the movable die 10, the fixed die 11, and the barrel die 12, and the barrel die 12 is provided in the forming die. A gate portion 13 for injecting resin is formed.

そして、前記光学素子1の外径側面部1dを成形する胴型12の外径側面成形部12bの表面粗さRaは0.1μm以上に形成され、この粗さは可動型10と固定型11の光学機能面成形部10a、11aの表面粗さ、例えばその粗さRa0.03μm以下よりも粗い。   Then, the surface roughness Ra of the outer diameter side surface forming portion 12b of the body mold 12 for forming the outer diameter side surface portion 1d of the optical element 1 is formed to be 0.1 μm or more, and this roughness is the movable die 10 and the fixed die 11. The surface roughness of the optical function surface molding portions 10a, 11a, for example, the roughness Ra is 0.03 μm or less.

図6は図5に示す成形型を用いて射出成形法にて図4に示す光学素子1を成形する成形装置の概略断面図である。   FIG. 6 is a schematic cross-sectional view of a molding apparatus for molding the optical element 1 shown in FIG. 4 by an injection molding method using the molding die shown in FIG.

図6において、14はホッパ、15は樹脂ペレットからなる樹脂成形材料、16は射出シリンダ、17は加熱シリンダ、18はスクリュ、19はノズル、20は固定ダイプレート、21は移動ダイプレート、22は型締めシリンダ、23は固定成形台、24は可動成形台であり、成形型を構成する固定型11と胴型12は固定成形台23側に固定され、また可動型10は可動成形台24側に固定されている。なお、この例では複数の成形型により複数の光学素子が同時に成形される。25はスプルー、26は前記ゲート部13に連なるランナー部である。   In FIG. 6, 14 is a hopper, 15 is a resin molding material made of resin pellets, 16 is an injection cylinder, 17 is a heating cylinder, 18 is a screw, 19 is a nozzle, 20 is a fixed die plate, 21 is a moving die plate, and 22 is a moving die plate. The clamping cylinder, 23 is a fixed molding table, and 24 is a movable molding table. The fixed mold 11 and the body mold 12 constituting the molding mold are fixed to the fixed molding table 23 side, and the movable mold 10 is the movable molding table 24 side. It is fixed to. In this example, a plurality of optical elements are simultaneously molded by a plurality of molds. Reference numeral 25 denotes a sprue, and 26 denotes a runner portion connected to the gate portion 13.

まず、ホッパ14に樹脂成形材料15を投入し、この成形材料15はスクリュ18の回転に伴い、ノズル19の方向へと移動する。樹脂成形材料15はスクリュ18及び加熱シリンダ17により加熱混錬溶融され、ノズル19から、スプルー25、ランナー部26、及びゲート部13を通過して、固定成形台23と可動成形台24にインサートされた成形型内に射出され、充填される。前記成形型は所定の温度、例えば樹脂成形材料15の荷重たわみ温度近傍に設定されているため、可動型10、固定型11の光学機能面成形部が転写され、かつ可動型10、固定型11、胴型13により外周縁部を有する光学素子1が成形される。そして、これが冷却された後、型締めシリンダ22により可動成形台24を後退させて成形型を開き、成形品を取り出してゲート除去と研磨を行って図4(b)に示す光学素子1を得る。   First, the resin molding material 15 is put into the hopper 14, and the molding material 15 moves in the direction of the nozzle 19 as the screw 18 rotates. The resin molding material 15 is heated and kneaded and melted by the screw 18 and the heating cylinder 17, passes through the sprue 25, the runner portion 26, and the gate portion 13 from the nozzle 19 and is inserted into the fixed molding table 23 and the movable molding table 24. It is injected into a mold and filled. Since the mold is set at a predetermined temperature, for example, near the deflection temperature under load of the resin molding material 15, the optical function surface molding portions of the movable mold 10 and the fixed mold 11 are transferred, and the movable mold 10 and the fixed mold 11 are transferred. The optical element 1 having the outer peripheral edge is molded by the body mold 13. Then, after this is cooled, the movable molding table 24 is retracted by the clamping cylinder 22 to open the molding die, the molded product is taken out, gate removal and polishing are performed, and the optical element 1 shown in FIG. 4B is obtained. .

このように樹脂の射出成形によっても光学機能面1a、1bの表面粗さよりも外径側面部1dの表面粗さが粗い光学素子1を得ることができるものであり、そして光学機能面1a、1bの表面粗さは可動型10と固定型11の光学機能面成形部10a、11aの表面粗さを変えることにより、また、外径側面部1dの表面粗さは胴型12の外径側面成形部12bの表面粗さを変えることにより、所望の表面粗さを有する光学素子1を成形することができる。   As described above, the optical element 1 having the outer side surface portion 1d having a larger surface roughness than the surface roughness of the optical functional surfaces 1a and 1b can be obtained by injection molding of the resin, and the optical functional surfaces 1a and 1b. By changing the surface roughness of the optical function surface molding portions 10a and 11a of the movable die 10 and the fixed die 11, the surface roughness of the outer side surface portion 1d is changed to the outer side surface molding of the barrel die 12. By changing the surface roughness of the portion 12b, the optical element 1 having a desired surface roughness can be molded.

なお、上記の各実施例では、光学素子の外周縁部において、その2つの平坦部(光軸と直交する2面)は光学機能面の表面粗さと同一の表面粗さに成形され、外径側面部の表面粗さを光学機能面の表面粗さよりも大きくしたものについて説明したが、これは光学素子のホルダーへの固定に供される主固定面が外径側面部である場合であり、外周縁部の2つの平坦部(光軸と直交する2面)の両方あるいは一方を主固定面とする場合は、少なくともその主固定面の表面粗さを本発明の主旨に沿って光学機能面のそれよりも大きくすればよいことは明らかであり、また、ホルダーの形状などにより主固定面が特定されない場合は、外周縁部を構成する全ての表面粗さを本発明の主旨に沿って大きく形成すればよいものである。そして、このように光学素子の外周縁部の表面粗さを光学機能面の表面粗さよりも粗くする面の選択はその成形型の成形面を選択することにより、例えば外周縁部の2つの平坦部の表面粗さを光学機能面の表面粗さよりも粗くする場合は、その外周縁部の平坦部を成形する上型、下型、可動型、固定型の成形面の表面粗さを光学機能面成形部の表面粗さよりも粗くすればよく、必要に応じて簡単に選択することができるものである。   In each of the above embodiments, at the outer peripheral edge of the optical element, the two flat portions (two surfaces orthogonal to the optical axis) are formed to have the same surface roughness as the optical functional surface, and the outer diameter Although the surface roughness of the side surface portion is larger than the surface roughness of the optical functional surface, this is a case where the main fixing surface used for fixing the optical element to the holder is the outer diameter side surface portion, When both or one of the two flat portions (two surfaces orthogonal to the optical axis) of the outer peripheral edge is a main fixing surface, at least the surface roughness of the main fixing surface is an optical functional surface in accordance with the gist of the present invention. Obviously, it is clear that the main fixing surface is not specified by the shape of the holder or the like, and all the surface roughnesses constituting the outer peripheral edge are increased in accordance with the gist of the present invention. What is necessary is just to form. Then, the selection of the surface that makes the surface roughness of the outer peripheral edge portion of the optical element rougher than the surface roughness of the optical functional surface in this way is made by selecting the molding surface of the mold, for example, two flat surfaces of the outer peripheral edge portion. When making the surface roughness of the surface more rough than the surface roughness of the optical function surface, the surface roughness of the molding surface of the upper mold, lower mold, movable mold, and fixed mold that molds the flat portion of the outer peripheral edge is optical function. What is necessary is just to make it rougher than the surface roughness of a surface molding part, and it can select easily as needed.

以上に説明した本発明の光学素子、すなわち、光学素子の外周縁部の少なくとも1つの面の表面粗さを光学機能面の表面粗さよりも大きする構成は、その成形型の光学機能面成形部と外周縁部成形部の少なくとも1つの表面粗さをそれぞれ設定することにより、光学素子の成形と同時に簡単にかつ精度よく成形することができるものである。   The optical element of the present invention described above, that is, the configuration in which the surface roughness of at least one surface of the outer peripheral edge of the optical element is larger than the surface roughness of the optical function surface is the optical function surface molding portion of the mold By setting at least one surface roughness of the outer peripheral edge molding part, it is possible to easily and accurately mold the optical element simultaneously with the molding of the optical element.

本発明は、光学素子の外周縁部の少なくとも1つの面の表面粗さを光学機能面の表面粗さよりも大きくしたことにより、その外周縁部の表面積が増加し、光学素子とこれを保持するためのホルダーとの接着強度や、光学素子の放熱冷却効果が向上することから、光学機器の高機能化、高速化などによる耐熱使用に耐える小径、薄肉の光学素子として有用である。   According to the present invention, the surface roughness of at least one surface of the outer peripheral edge portion of the optical element is made larger than the surface roughness of the optical functional surface, thereby increasing the surface area of the outer peripheral edge portion and holding the optical element and the optical element. Therefore, it is useful as a small-diameter, thin-walled optical element that can withstand heat-resistant use due to high functionality and high speed of optical equipment.

本発明の実施例1における光学素子の概略図であり、(a)は概略上面図、(b)は概略側面図BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the optical element in Example 1 of this invention, (a) is a schematic top view, (b) is a schematic side view 本発明の実施例1における光学素子の成形装置を示す概略断面図1 is a schematic cross-sectional view showing an optical element molding apparatus in Embodiment 1 of the present invention. 本発明の実施例2における光学素子の概略図であり、(a)は概略上面図、(b)は概略側面図It is the schematic of the optical element in Example 2 of this invention, (a) is a schematic top view, (b) is a schematic side view 本発明の実施例4における光学素子の概略図であり、(a)は概略上面図、(b)は概略側面図It is the schematic of the optical element in Example 4 of this invention, (a) is a schematic top view, (b) is a schematic side view 本発明の実施例4における光学素子の成形型の概略断面図Schematic sectional view of an optical element molding die in Example 4 of the present invention 本発明の実施例4における光学素子の成形装置を示す概略断面図Schematic sectional view showing an optical element molding apparatus in Example 4 of the present invention. 従来の光学素子の概略図であり、(a)は概略上面図、(b)は概略側面図It is the schematic of the conventional optical element, (a) is a schematic top view, (b) is a schematic side view 従来の光学素子の成形装置を示す概略断面図Schematic cross-sectional view showing a conventional optical element molding apparatus

符号の説明Explanation of symbols

1 光学素子
1a、1b 光学機能面
1c 外周縁部
1d 外径側面部
1f ゲート除去痕
2 上型
2a、3a、10a、11a 光学機能面成形部
3 下型
4 胴型
4a、12a 外周縁部成形部
4d、12b 外径側面成形部
10 可動型
11 固定型
12 胴型
DESCRIPTION OF SYMBOLS 1 Optical element 1a, 1b Optical function surface 1c Outer peripheral edge part 1d Outer diameter side surface part 1f Gate removal trace 2 Upper mold | type 2a, 3a, 10a, 11a Optical functional surface shaping | molding part 3 Lower mold | type 4 trunk | die 4a, 12a Outer peripheral edge part shaping | molding Part 4d, 12b Outer diameter side surface molding part 10 Movable type 11 Fixed type 12 Body type

Claims (7)

成形材料を成形装置の成形型内に供給して光学機能面とその光学機能面よりも外径が大きい外周縁部が一体に成形された光学素子であって、光学素子の外周縁部を成形する前記成形型の外周縁部成形部の少なくとも1つの面の表面粗さが光学素子の光学機能面を成形する成形型の光学機能面成形部の表面粗さよりも大きい成形型により、外周縁部の少なくとも1つの面の表面粗さが光学機能面の表面粗さよりも大きく成形されたことを特徴とする光学素子。 An optical element in which a molding material is supplied into a molding die of a molding apparatus and an optical functional surface and an outer peripheral portion having an outer diameter larger than the optical functional surface are integrally molded, and the outer peripheral portion of the optical element is molded The outer peripheral edge portion is formed by a molding die in which the surface roughness of at least one surface of the outer peripheral edge molding portion of the molding die is larger than the surface roughness of the optical functional surface molding portion of the molding die for molding the optical functional surface of the optical element. An optical element, wherein the surface roughness of at least one of the surfaces is formed to be larger than the surface roughness of the optical functional surface. 前記外周縁部の少なくとも1つの面の表面粗さRaが0.1μm以上であることを特徴とする請求項1に記載の光学素子。 2. The optical element according to claim 1, wherein a surface roughness Ra of at least one surface of the outer peripheral edge is 0.1 μm or more. 前記光学機能面の表面粗さRaが0.03μm以下であり、外周縁部の少なくとも1つの面の表面粗さRaが0.1μm以上であることを特徴とする請求項1に記載の光学素子。 2. The optical element according to claim 1, wherein a surface roughness Ra of the optical functional surface is 0.03 [mu] m or less, and a surface roughness Ra of at least one surface of the outer peripheral edge is 0.1 [mu] m or more. . 表面粗さRaが0.1μm以上である1つの面は、外周縁部の外径側面部であることを特徴とする請求項2乃至請求項3のいずれかに記載の光学素子。 4. The optical element according to claim 2, wherein the one surface having a surface roughness Ra of 0.1 μm or more is an outer-diameter side surface portion of the outer peripheral edge portion. 成形材料が樹脂材料からなり、光学素子の外径φが5mm以下、外周縁部を構成する外径側面部の厚みが1.0mm未満であることを特徴とする請求項1に記載の光学素子。 2. The optical element according to claim 1, wherein the molding material is made of a resin material, the outer diameter φ of the optical element is 5 mm or less, and the thickness of the outer diameter side surface part constituting the outer peripheral edge part is less than 1.0 mm. . 成形型内に供給される成形材料から光学素子を成形するための光学素子成形型であって、光学素子に光学機能面を成形する光学機能面成形部及び外周縁部を成形する外周縁部成形部を有し、前記外周縁部成形部の少なくとも1つの面の表面粗さが前記光学機能面成形部の表面粗さよりも大きいことを特徴とする光学素子成形型。 An optical element molding die for molding an optical element from a molding material supplied into a molding die, an optical functional surface molding part for molding an optical functional surface on the optical element and an outer peripheral edge molding for molding an outer peripheral edge part An optical element molding die characterized in that the surface roughness of at least one surface of the outer peripheral edge molding part is larger than the surface roughness of the optical function surface molding part. 光学機能面成形部の表面粗さよりも表面粗さが大きい外周縁部成形部の1つの面はその外周縁部成形部の外径側面成形部であることを特徴とする請求項6に記載の光学素子成形型。 The one surface of the outer peripheral part molding part whose surface roughness is larger than the surface roughness of the optical function surface molding part is an outer diameter side molding part of the outer peripheral part molding part. Optical element mold.
JP2004275321A 2003-12-10 2004-09-22 Optical element and mold for molding optical element Pending JP2005193646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275321A JP2005193646A (en) 2003-12-10 2004-09-22 Optical element and mold for molding optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003411449 2003-12-10
JP2004275321A JP2005193646A (en) 2003-12-10 2004-09-22 Optical element and mold for molding optical element

Publications (1)

Publication Number Publication Date
JP2005193646A true JP2005193646A (en) 2005-07-21

Family

ID=34828962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275321A Pending JP2005193646A (en) 2003-12-10 2004-09-22 Optical element and mold for molding optical element

Country Status (1)

Country Link
JP (1) JP2005193646A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196665A (en) * 2005-12-26 2007-08-09 Konica Minolta Opto Inc Mold for resin molding, objective lens for optical pickup device and manufacturing method of optical element
EP1895341A1 (en) 2006-08-30 2008-03-05 Sony Corporation Optical element and production device for producing same
JP2008170534A (en) * 2007-01-09 2008-07-24 Konica Minolta Opto Inc Method of manufacturing optical element, the optical element, and optical element unit
JP2008233512A (en) * 2007-03-20 2008-10-02 Hitachi Maxell Ltd Lens unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196665A (en) * 2005-12-26 2007-08-09 Konica Minolta Opto Inc Mold for resin molding, objective lens for optical pickup device and manufacturing method of optical element
EP1895341A1 (en) 2006-08-30 2008-03-05 Sony Corporation Optical element and production device for producing same
JP2008170534A (en) * 2007-01-09 2008-07-24 Konica Minolta Opto Inc Method of manufacturing optical element, the optical element, and optical element unit
JP2008233512A (en) * 2007-03-20 2008-10-02 Hitachi Maxell Ltd Lens unit

Similar Documents

Publication Publication Date Title
JP4923704B2 (en) Optical element molding apparatus and molding method
US6764737B2 (en) Method of producing information recording medium, production apparatus and information recording medium
KR0152386B1 (en) Method and device for manufacturing optical elements
JP5275707B2 (en) Injection molding apparatus and molded product take-out method
JP2004318055A (en) Optical element, optical element molding die, and method for molding optical element
JP2005193646A (en) Optical element and mold for molding optical element
JP4808089B2 (en) Optical element molding method
JP2004046053A (en) Objective and optical head device
JP2008257261A (en) Optical device, optical device molding die, and method for molding optical device
JP2009045816A (en) Method and apparatus for manufacture of plastic molding
JP2006327147A (en) Forming method of plastic lens and plastic lens
JP2009043330A (en) Manufacturing method of optical disk
JP2005267738A (en) Metal mold device for forming optical disk substrate
JP2008230005A (en) Plastic lens molding method and lens preform
EP1308944A2 (en) Method of producing information recording medium, production apparatus and information recording medium
JP3383387B2 (en) Optical disc substrate and mold for molding this optical disc substrate
JP2006139822A (en) Manufacturing method of optical recording medium substrate, and optical recording medium substrate
JP2006260650A (en) Optical recording medium
JP2004291341A (en) Mold for optical element, method for molding optical element, and optical element
JP3558530B2 (en) Information recording substrate molding method and molding die
JP4519554B2 (en) Optical disc and manufacturing method thereof
JP2007226888A (en) Molding die for disk substrate, disk substrate and optical disk product
JPH07266391A (en) Manufacture and manufacturing device of plastic lens
JP2009241273A (en) Molding mold
JP2003281788A (en) Optical master disk, manufacturing method of optical master disk, molding method of optical disk substrate, optical disk substrate and optical information recording medium

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616