JP2003245946A - Optical element, mold for molding optical element and optical element molding method - Google Patents

Optical element, mold for molding optical element and optical element molding method

Info

Publication number
JP2003245946A
JP2003245946A JP2002048424A JP2002048424A JP2003245946A JP 2003245946 A JP2003245946 A JP 2003245946A JP 2002048424 A JP2002048424 A JP 2002048424A JP 2002048424 A JP2002048424 A JP 2002048424A JP 2003245946 A JP2003245946 A JP 2003245946A
Authority
JP
Japan
Prior art keywords
optical element
gate
thickness
molding
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002048424A
Other languages
Japanese (ja)
Other versions
JP4097954B2 (en
Inventor
Toshiaki Takano
利昭 高野
Atsushi Murata
淳 村田
Takashi Morimoto
貴志 森本
Akihisa Yamada
晃久 山田
Norio Kirita
紀雄 桐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002048424A priority Critical patent/JP4097954B2/en
Publication of JP2003245946A publication Critical patent/JP2003245946A/en
Application granted granted Critical
Publication of JP4097954B2 publication Critical patent/JP4097954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To stably obtain an optical element having optical characteristics excellent in axisymmetric properties in a high yield. <P>SOLUTION: The optical element is obtained by kneading and melting a molding compound under heating and injecting the molten compound in a cavity through a gate to fill the cavity. When the outer diameter of the optical element is set to ϕG, the diameter of the optical effective surface of the optical element is set to ϕLY, the center thickness of the optical element is set to LT, the edge thickness thereof is set to LK, the width in the circumferential direction of the gate connected to the outer periphery of the optical element is set to GH and the thickness of the gate is set to GT to obtain formulae x=LT/LK and y=GT/LK, formulae (1), (2) and (3), that is, 0.8>ϕLY/ϕG, 0.1<GH/ϕG<0.35 and y≥0.0977x+0.47 are satisfied at the same time. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学機器に使用さ
れるレンズ、プリズム、ミラー等の高精度光学素子、及
び該光学素子を形成するための光学素子成形型と該光学
素子の成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-precision optical element such as a lens, a prism or a mirror used in an optical device, an optical element molding die for forming the optical element, and a molding method of the optical element. .

【0002】[0002]

【従来の技術】従来の光学素子の成形方法としては、例
えば、特開平5−177725号公報に記載のように、
ペレットを加熱混錬溶融し、光学素子の光学有効部を成
形するためのインサート部材を備えた成形型のキャビテ
ィ内に射出充填して得る射出成形法が知られている。
2. Description of the Related Art As a conventional method for molding an optical element, for example, as described in JP-A-5-177725,
An injection molding method is known in which pellets are heated, kneaded, melted, and injection-filled into a cavity of a mold having an insert member for molding an optically effective portion of an optical element.

【0003】以下に従来の成形方法及び得られる光学素
子について図を用いて簡単に説明する。
The conventional molding method and the resulting optical element will be briefly described below with reference to the drawings.

【0004】図4は、射出成形方法に用いられる射出成
形機の概略断面図である。図4において、7はホッパ、
8は成形材料、9は射出シリンダ、10は加熱シリン
ダ、11はスクリュ、12はノズル、13は固定ダイプ
レート、14は移動ダイプレート、15は型締めシリン
ダ、5は光学素子成形型(固定側)、6は光学素子成形
型(可動側)、4はスプル、3はランナ、2はゲート、
1は光学素子である。
FIG. 4 is a schematic sectional view of an injection molding machine used in the injection molding method. In FIG. 4, 7 is a hopper,
8 is a molding material, 9 is an injection cylinder, 10 is a heating cylinder, 11 is a screw, 12 is a nozzle, 13 is a fixed die plate, 14 is a movable die plate, 15 is a mold clamping cylinder, 5 is an optical element molding die (fixed side). ), 6 is an optical element molding die (movable side), 4 is a sprue, 3 is a runner, 2 is a gate,
Reference numeral 1 is an optical element.

【0005】図3は前述の射出成形方法で得られた成形
品の概略図であり、図3(A)は上面図、図3(B)は
図3(A)の3B−3B線での矢視断面図である。図
中、4はスプル、3はランナ、2はゲート、1は光学素
子である。
FIG. 3 is a schematic view of a molded product obtained by the above-mentioned injection molding method. FIG. 3 (A) is a top view and FIG. 3 (B) is a line 3B-3B in FIG. 3 (A). FIG. In the figure, 4 is a sprue, 3 is a runner, 2 is a gate, and 1 is an optical element.

【0006】ホッパ7に成形材料8を投入する。成形材
料8はスクリュ11の回転に伴い、ノズル12の方向へ
と移動する。成形材料8は、スクリュ11及び加熱シリ
ンダ10により加熱溶融混錬される。そして、ノズル1
2から光学素子成形型5、6内のスプルー4、ランナ
3、及びゲート2を順に通過し、所望する光学素子形状
のキャビティ内に射出され充填される。光学素子成形型
5,6は所定の温度、例えば、成形材料8の荷重たわみ
温度近傍に設定されている。光学素子1が取り出し可能
な状態に冷却されると、光学素子成形型6を開き、ゲー
トカットを行い、スプル4、ランナー3、及びゲート2
から切り離し、光学素子1を取り出す。
A molding material 8 is put into the hopper 7. The molding material 8 moves toward the nozzle 12 as the screw 11 rotates. The molding material 8 is heated and melted and kneaded by the screw 11 and the heating cylinder 10. And nozzle 1
2 through the sprue 4, the runner 3, and the gate 2 in the optical element molding dies 5 and 6 in order, and then injected and filled into a cavity having a desired optical element shape. The optical element molding dies 5 and 6 are set to a predetermined temperature, for example, near the deflection temperature of the molding material 8 under load. When the optical element 1 is cooled to a state where it can be taken out, the optical element molding die 6 is opened, gate cutting is performed, and the sprue 4, runner 3, and gate 2 are formed.
Then, the optical element 1 is taken out.

【0007】[0007]

【発明が解決しようとする課題】前述した従来の光学素
子の成形型、成形方法、及び光学素子では、射出成形条
件をいかにコントロールしても、ひけ、ジェッティン
グ、ウエルドなどの発生を十分に抑えることが困難であ
った。
In the above-described conventional optical element molding die, molding method, and optical element, the occurrence of sink marks, jetting, welds, etc. is sufficiently suppressed no matter how the injection molding conditions are controlled. Was difficult.

【0008】また、得られる光学素子が良好な転写性、
すなわち、軸対称性に優れた光学特性を有していると、
光学素子を光学機器に組み付ける際に、光学素子の組み
付け方向を考慮しなくて済むので、作業効率が向上す
る。従って、光学特性の軸対称性が優れた光学素子を安
定して高い歩留まりで得ることが望まれる。
Further, the obtained optical element has good transferability,
That is, if it has optical characteristics with excellent axial symmetry,
When assembling the optical element into the optical device, it is not necessary to consider the assembling direction of the optical element, so that the working efficiency is improved. Therefore, it is desired to stably obtain an optical element having excellent axial symmetry of optical characteristics with a high yield.

【0009】本発明の目的は、ひけ、ジェッティング、
ウエルドなどの発生を抑えながら、良好な転写性、すな
わち、軸対称性に優れた光学特性を有した光学素子を安
定して高い歩留まりで得ることができる光学素子の成形
型、成形方法、及び光学素子を提供することにある。
Objects of the present invention include sinking, jetting,
Molding method of optical element, molding method, and optical element capable of stably obtaining an optical element having good transferability, that is, optical characteristics having excellent axial symmetry with a high yield while suppressing occurrence of welds and the like. It is to provide an element.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の事項よりなる。
To achieve the above object, the present invention comprises the following items.

【0011】本発明の光学素子は、成形材料を加熱混錬
溶融し、ゲートを介してキャビティ内に射出充填して得
られた光学素子であって、光学素子の外径をφG、光学
素子の光学有効面径をφLY、光学素子の中心厚みをL
T、光学素子のコバ厚みをLK、光学素子の外周に接続
されるゲートの円周方向の幅をGH、ゲートの厚みをG
T、光学素子の中心厚みLTとコバ厚みLKとの比をx
(=LT/LK)、ゲートの厚みGTと光学素子のコバ
厚みLKとの比をy(=GT/LK)としたとき、下記
式(1)〜式(3)を満足することを特徴とする。
The optical element of the present invention is an optical element obtained by heating, kneading and melting a molding material and injecting and filling it into a cavity through a gate. The outer diameter of the optical element is φG, and the optical element ΦLY is the effective optical surface diameter and L is the center thickness of the optical element.
T, the edge thickness of the optical element is LK, the circumferential width of the gate connected to the outer periphery of the optical element is GH, and the thickness of the gate is G.
T, the ratio of the center thickness LT of the optical element to the edge thickness LK is x
(= LT / LK), when the ratio of the gate thickness GT to the edge thickness LK of the optical element is y (= GT / LK), the following formulas (1) to (3) are satisfied. To do.

【0012】 0.8>φLY/φG ・・・(1) 0.1<GH/φG<0.35 ・・・(2) y≧0.0977x+0.47 ・・・(3)[0012] 0.8> φLY / φG (1) 0.1 <GH / φG <0.35 (2) y ≧ 0.0977x + 0.47 (3)

【0013】また、本発明の光学素子成形型は、加熱混
錬溶融された成形樹脂を射出充填して光学素子を成形す
るためのキャビティと、前記キャビティの一部を構成
し、前記光学素子の光学有効面を形成するためのインサ
ート部材と、前記キャビティ内に前記成形樹脂を導入す
るためのゲートとを備えた光学素子成形型であって、成
形される前記光学素子の外径をφG、光学素子の光学有
効面径をφLY、光学素子の中心厚みをLT、光学素子
のコバ厚みをLK、光学素子の外周に接続される前記ゲ
ートの円周方向の幅をGH、ゲートの厚みをGT、光学
素子の中心厚みLTとコバ厚みLKとの比をx(=LT
/LK)、ゲートの厚みGTと光学素子のコバ厚みLK
との比をy(=GT/LK)としたとき、下記式(1)
〜式(3)を満足することを特徴とする。
Further, the optical element molding die of the present invention comprises a cavity for molding an optical element by injection-filling a molding resin which is kneaded and melted by heating, and constitutes a part of the cavity. An optical element molding die comprising an insert member for forming an optically effective surface and a gate for introducing the molding resin into the cavity, wherein an outer diameter of the optical element to be molded is φG, The optical effective surface diameter of the element is φLY, the center thickness of the optical element is LT, the edge thickness of the optical element is LK, the circumferential width of the gate connected to the outer periphery of the optical element is GH, the gate thickness is GT, The ratio of the center thickness LT of the optical element to the edge thickness LK is x (= LT
/ LK), gate thickness GT and optical element edge thickness LK
When the ratio with is y (= GT / LK), the following formula (1)
~ It is characterized by satisfying the expression (3).

【0014】 0.8>φLY/φG ・・・(1) 0.1<GH/φG<0.35 ・・・(2) y≧0.0977x+0.47 ・・・(3)[0014] 0.8> φLY / φG (1) 0.1 <GH / φG <0.35 (2) y ≧ 0.0977x + 0.47 (3)

【0015】また、本発明の光学素子を成形方法は、加
熱混錬溶融された成形樹脂を光学素子成形型のゲートを
介してキャビティ内に射出充填して光学素子を成形する
方法であって、前記光学素子成形型は、前記光学素子の
光学有効面を形成するためのインサート部材を備え、成
形される前記光学素子の外径をφG、光学素子の光学有
効面径をφLY、光学素子の中心厚みをLT、光学素子
のコバ厚みをLK、光学素子の外周に接続される前記ゲ
ートの円周方向の幅をGH、ゲートの厚みをGT、光学
素子の中心厚みLTとコバ厚みLKとの比をx(=LT
/LK)、ゲートの厚みGTと光学素子のコバ厚みLK
との比をy(=GT/LK)としたとき、下記式(1)
〜式(3)を満足することを特徴とする。
The optical element molding method of the present invention is a method of molding an optical element by injecting and filling a molding resin melted by heating, kneading and melting into a cavity through a gate of an optical element molding die. The optical element molding die includes an insert member for forming an optically effective surface of the optical element, an outer diameter of the optical element to be molded is φG, an optically effective surface diameter of the optical element is φLY, and a center of the optical element. The thickness is LT, the edge thickness of the optical element is LK, the circumferential width of the gate connected to the outer periphery of the optical element is GH, the gate thickness is GT, the center thickness LT of the optical element and the edge thickness LK are ratios. X (= LT
/ LK), gate thickness GT and optical element edge thickness LK
When the ratio with is y (= GT / LK), the following formula (1)
~ It is characterized by satisfying the expression (3).

【0016】 0.8>φLY/φG ・・・(1) 0.1<GH/φG<0.35 ・・・(2) y≧0.0977x+0.47 ・・・(3)[0016] 0.8> φLY / φG (1) 0.1 <GH / φG <0.35 (2) y ≧ 0.0977x + 0.47 (3)

【0017】上記の本発明の光学素子、光学素子成形型
及び光学素子成形方法によれば、ひけ、ジェッティン
グ、ウエルドなどの発生を抑えながら、ゲートが光学有
効面に影響を与えることがなく良好な転写性(軸対称
性)を有する光学素子を安定して得ることが可能とな
る。
According to the above-described optical element, optical element molding die and optical element molding method of the present invention, the generation of sink marks, jetting, welds, etc. is suppressed, and the gate does not affect the optically effective surface. It is possible to stably obtain an optical element having excellent transferability (axial symmetry).

【0018】[0018]

【発明の実施の形態】本発明者らは、光学素子を成形型
内で成形する際に、その外周端に成形材料の充填や保圧
のために設けられるゲートの形状の違いにより、得られ
る光学素子の光学性能が異なることに着目し、本発明を
完成した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention can be obtained by the difference in the shape of a gate provided at the outer peripheral end for filling a molding material and holding pressure when molding an optical element in a molding die. The present invention has been completed, focusing on the fact that the optical performance of optical elements is different.

【0019】成形して得られる光学素子が所望する光学
性能を具備しないという問題は、成形材料の充填工程で
成形材料がスムーズに充填ができない、あるいは、冷却
工程で成形材料の適正な保圧ができないなどにより、光
学素子の光学有効面を形成するインサート部材の表面形
状が光学素子に良好に転写できない、あるいは、無理な
成形条件を選択せざるを得ないために、ゲート近傍で生
じる応力歪みなどが光学有効面に影響するなどの現象が
生じ、これらの結果、光軸に対して軸対称性を損なった
光学性能すなわち大きな非点収差を備えた光学素子とな
ってしまうということに起因している。
The problem that the optical element obtained by molding does not have the desired optical performance is that the molding material cannot be filled smoothly in the molding material filling step, or the proper holding pressure of the molding material is not maintained in the cooling step. The surface shape of the insert member that forms the optical effective surface of the optical element cannot be satisfactorily transferred to the optical element due to failure to do so, or stress distortion that occurs in the vicinity of the gate because the molding conditions must be selected unreasonably. Is caused by the fact that a phenomenon such as that affects the optically effective surface occurs, and as a result of these, the optical element has a large astigmatism, which is the optical performance in which the axial symmetry is impaired with respect to the optical axis. There is.

【0020】このことから、本発明は、ゲートが光学有
効面に影響しない、すなわち、光学素子の光学性能に影
響を与えないように、光学素子の外径と光学素子の光学
有効面との間隔を制御する、あるいは、光学素子の外周
端に設けるゲートの形状を制御するという技術的手段を
用いることにより、上記の問題を解決した。
Therefore, according to the present invention, the distance between the outer diameter of the optical element and the optically effective surface of the optical element is adjusted so that the gate does not affect the optically effective surface, that is, the optical performance of the optical element is not affected. The above problem has been solved by using a technical means of controlling the shape of the gate provided on the outer peripheral edge of the optical element.

【0021】以下、本発明の光学素子と光学素子成形型
と光学素子成形方法の実施の形態を具体的な実施例とと
もに、図面及び表を参照しながら説明する。
Embodiments of an optical element, an optical element molding die, and an optical element molding method of the present invention will be described below together with specific examples with reference to the drawings and tables.

【0022】図1は、本発明の一実施形態に係る光学素
子及びゲートの形状を示した概略図であり、図1(A)
は上面図、図1(B)は図1(A)の1B−1B線での
矢視断面図である。図2は、光学素子成形型の形状を示
した概略図であり、図2(A)は概略断面図、図2
(B)はパーティング面からみた可動側成形型の正面
図、図2(C)はパーティング面からみた固定側成形型
の正面図である。これらの図において、1は光学素子、
1aは光学素子1の周囲に形成されたコバ、2は光学素
子1のコバ1aに接続されたゲート、3はゲート2と接
続されたランナー、4は周囲にランナー3を放射状に備
えるスプルー、5は固定側光学素子成形型、6は可動側
光学素子成形型、5aは固定側光学素子成形型5に組み
込まれたインサート部材、6aは可動側光学素子成形型
6に組み込まれたインサート部材、18は固定側光学素
子成形型5と可動側光学素子成形型6とが突き合わされ
るパーティング面である。
FIG. 1 is a schematic view showing the shapes of an optical element and a gate according to an embodiment of the present invention.
Is a top view, and FIG. 1B is a cross-sectional view taken along the line 1B-1B in FIG. FIG. 2 is a schematic view showing the shape of the optical element molding die, and FIG. 2 (A) is a schematic sectional view.
FIG. 2B is a front view of the movable mold as seen from the parting surface, and FIG. 2C is a front view of the fixed mold as seen from the parting surface. In these figures, 1 is an optical element,
Reference numeral 1a is an edge formed around the optical element 1, 2 is a gate connected to the edge 1a of the optical element 1, 3 is a runner connected to the gate 2, 4 is a sprue radially provided with runners 3 Is a fixed-side optical element molding die, 6 is a movable-side optical element molding die, 5a is an insert member incorporated in the fixed-side optical element molding die 5, 6a is an insert member incorporated in the movable-side optical element molding die, 18 Is a parting surface on which the fixed-side optical element molding die 5 and the movable-side optical element molding die 6 are butted.

【0023】実施例として、図1に示す光学素子1の各
部の形状、すなわち、外径φG(光学素子1の最外
径)、中心厚LT(光学素子1の光軸方向の厚み)、コ
バ厚LK(コバ1aの光軸方向の厚み)、光学素子の第
1面(1面)の光学有効面径φLY1、第2面(R2
面)の光学有効面径φLY2、第1面の加工径φLK
1、第2面の加工径φLK2などと、ゲート2の形状、
すなわち、ゲート2の幅GH(光学素子1の円周方向の
寸法)とゲート2の厚みGT(光学素子の光軸方向の寸
法)とを変化させた光学素子成形型を製作し、その光学
素子成形型で光学素子を成形して、光学特性を評価確認
した。ここで言う光学有効面とは、光学素子に要求され
る光学特性を生み出すために最小限必要とされる光学作
用面のことで、光線の経路になる。
As an example, the shape of each part of the optical element 1 shown in FIG. 1, that is, the outer diameter φG (the outermost diameter of the optical element 1), the center thickness LT (the thickness of the optical element 1 in the optical axis direction), the edge Thickness LK (thickness in the optical axis direction of edge 1a), optically effective surface diameter φLY1 of the first surface (one surface) of the optical element, second surface (R2)
Surface) optical effective surface diameter φLY2, first surface processing diameter φLK
1, the machining diameter φLK2 of the second surface, the shape of the gate 2,
That is, an optical element molding die in which the width GH of the gate 2 (dimension in the circumferential direction of the optical element 1) and the thickness GT (dimension of the optical element in the optical axis direction) of the gate 2 are changed is manufactured, and the optical element molding die is manufactured. The optical element was molded with a molding die, and the optical characteristics were evaluated and confirmed. The term “optically effective surface” as used herein refers to an optical action surface that is minimally required to produce optical characteristics required for an optical element, and serves as a path of light rays.

【0024】射出成形条件は、それぞれの光学素子の形
状、ゲートの形状などが異なることから、その都度、条
件検討を行い、最適な条件、すなわち、もっとも良好な
光学特性が得られる成形条件を抽出していった。
Since the injection molding conditions are different in the shape of each optical element, the shape of the gate, etc., the condition is examined each time, and the optimum condition, that is, the molding condition that gives the best optical characteristics is extracted. It began to.

【0025】より具体的に、光学素子成形型、光学素
子、光学素子成形方法について記述する。
More specifically, an optical element molding die, an optical element, and an optical element molding method will be described.

【0026】実施例において、光学素子1の材料とし
て、ポリオレフィン樹脂(ガラス転移点Tg=150
℃、熱変形温度温度Tt=125℃)を用いた。光学素
子成形型5、6はプリハードン鋼、ステンレス鋼(S5
5C、HPM(例えば、日立金属株式会社の商標)、N
AK(大同特殊鋼株式会社の商標))などを用いて構成
し、光学素子の光学有効面を形成するインサート部材5
a、6aは、超硬合金を材料として製作した。言うまで
もないが、本発明において光学素子成形型5、6は前述
の材料以外でも射出成形に使用可能な材料であれば何ら
問題はない。また、インサート部材5a、6aの材料と
して、光学素子としての表面性を得られる材料であれば
ステンレス鋼(例えばSTAVAX(ウッデホルム社の
商標))などを基材として、その表面に例えば無電解ニ
ッケルメッキを施し加工したものをインサート部材とし
て用いても問題はない。ただし、強度を考えた場合、超
硬合金を基材として用いるのが好ましい。また、離型性
の向上や、型の酸化、腐食防止のために表面に保護膜な
どを施しても問題はない。
In the embodiment, as a material of the optical element 1, a polyolefin resin (glass transition point Tg = 150) is used.
C., heat distortion temperature Tt = 125 ° C.) were used. The optical element molding dies 5 and 6 are pre-hardened steel and stainless steel (S5
5C, HPM (for example, trademark of Hitachi Metals, Ltd.), N
An insert member 5 configured by using AK (trademark of Daido Steel Co., Ltd.) or the like to form an optically effective surface of an optical element.
The materials a and 6a were made of cemented carbide. Needless to say, in the present invention, the optical element molding dies 5 and 6 may be any materials other than the above-mentioned materials as long as they can be used for injection molding. Further, as a material of the insert members 5a and 6a, a material such as stainless steel (for example, STAVAX (trademark of Woodeform Co.)) is used as a base material as long as it is a material capable of obtaining surface properties as an optical element, and the surface thereof is electroless nickel plated There is no problem even if a product obtained by subjecting and processing is used as an insert member. However, in consideration of strength, it is preferable to use cemented carbide as the base material. Further, there is no problem even if a protective film or the like is applied to the surface for improving the mold releasability and for preventing the mold from being oxidized and corroded.

【0027】得ようとする光学素子の主な形状寸法の一
例は、外径φG=φ4.8mm、第1面(R1面)有効
面径φLY1=φ3.6mm、中心厚LT=1.7m
m、コバ厚LK=0.412mmで、両面凸形状を有
し、所望の光学仕様で光学特性が得られるように設計
し、製作した。また、ゲートの形状の一例は、ゲート幅
GH=1.0mm、ゲート厚みGT=0.4mmで、光
学素子の外周部に連接配置されるように成形型を製作、
組立した。
An example of the main shape dimensions of the optical element to be obtained is an outer diameter φG = φ4.8 mm, a first surface (R1 surface) effective surface diameter φLY1 = φ3.6 mm, and a center thickness LT = 1.7 m.
m, edge thickness LK = 0.412 mm, double-sided convex shape, and designed and manufactured so as to obtain optical characteristics with desired optical specifications. An example of the shape of the gate is a gate width GH = 1.0 mm, a gate thickness GT = 0.4 mm, and a molding die is manufactured so as to be connected to the outer peripheral portion of the optical element.
Assembled

【0028】次に前述の光学素子成形型を用いた成形工
程を述べる。成形は図4に示した従来の射出成形機と同
様の構成の射出成形機を用いて行なった。まず、ホッパ
7に成形材料8を投入した。成形材料8はスクリュ11
の回転に伴い、ノズル12の方向へと移動する。成形材
料8は、スクリュ11及び加熱シリンダ10により、所
望の温度に加熱溶融混錬される。ここでは、加熱シリン
ダの設定温度を260℃に設定した。そして、同じく2
60℃に加熱されたノズル12から光学素子成形型5、
6内のスプルー4、ランナ3、及びゲート2を順に通過
し、所望する光学素子形状のキャビティ内に射出し充填
した。その後、射出シリンダにて保圧した。光学素子成
形型5,6は所定の一定温度(ここでは、130℃に設
定した)に保たれており、成形材料は、キャビティ内へ
の充填が始まると同時に、冷却されていく。適正な、射
出条件、充填条件、保圧条件、光学素子成形型の温度の
条件を選択しなければ、所望の光学素子の光学特性は得
られない。光学素子1が取り出し可能な状態に達した
後、光学素子成形型6を開き、ゲートカットを行い、ス
プル4、ランナー3、及びゲート2から切り離し、光学
素子1を取り出した。
Next, a molding process using the above-mentioned optical element molding die will be described. Molding was performed using an injection molding machine having the same configuration as the conventional injection molding machine shown in FIG. First, the molding material 8 was put into the hopper 7. Molding material 8 is screw 11
The rotation of the nozzle moves toward the nozzle 12. The molding material 8 is heated and melted and kneaded to a desired temperature by the screw 11 and the heating cylinder 10. Here, the set temperature of the heating cylinder was set to 260 ° C. And also 2
From the nozzle 12 heated to 60 ° C. to the optical element molding die 5,
After passing through the sprue 4, the runner 3, and the gate 2 in 6 in order, they were injected and filled in the cavity of the desired optical element shape. Then, the pressure was maintained by the injection cylinder. The optical element molding dies 5 and 6 are kept at a predetermined constant temperature (here, set to 130 ° C.), and the molding material is cooled at the same time when the filling into the cavity is started. The desired optical characteristics of the optical element cannot be obtained unless proper injection conditions, filling conditions, pressure holding conditions, and temperature conditions of the optical element molding die are selected. After reaching a state where the optical element 1 can be taken out, the optical element molding die 6 was opened, gate cutting was performed, the optical element 1 was taken out from the sprue 4, the runner 3, and the gate 2, and the optical element 1 was taken out.

【0029】上記の成形条件は一例であり、成形材料、
光学素子の形状、ゲートの形状に応じて、各種成形条件
を最適化する必要があることは言うまでもない。
The above molding conditions are examples, and the molding material,
Needless to say, it is necessary to optimize various molding conditions according to the shape of the optical element and the shape of the gate.

【0030】得られた光学素子の光学特性の評価は、干
渉計を用いて透過波面収差(測定波長632.8nm)
を測定して非点収差を求め、これにより光学素子の有効
面の転写性および軸対称性を評価した。非点収差は小さ
ければ小さいほど望ましいが、ここでは、非点収差が2
0mλ以下のものを良好な光学特性であるとした。それ
を超える非点収差を有した光学素子では、有効面の光学
特性に回転軸対称性が乏しく、光学機器に搭載する際、
非点収差の方向を把握し、方向を決めて光学機器に搭載
しなくては、光学機器として所望の光学特性が得られな
い。
The optical characteristics of the obtained optical element were evaluated by using an interferometer to measure the transmitted wavefront aberration (measurement wavelength: 632.8 nm).
Was measured to determine astigmatism, and thereby the transferability and the axial symmetry of the effective surface of the optical element were evaluated. The smaller the astigmatism, the more preferable it is, but here the astigmatism is 2
Those having a wavelength of 0 mλ or less were considered to have good optical characteristics. An optical element with astigmatism that exceeds that has poor rotational axis symmetry in the optical characteristics of the effective surface, and when mounted on an optical device,
Unless the direction of astigmatism is grasped, the direction is determined and the astigmatism is mounted on the optical device, desired optical characteristics cannot be obtained as the optical device.

【0031】前述の光学素子は、非点収差は8mλであ
り、非常に良好な光学特性を有していた。
The above-mentioned optical element had an astigmatism of 8 mλ and had very good optical characteristics.

【0032】光学素子形状とゲート形状とを種々に変更
して同様に光学素子成形型を製作し、最適化した成形条
件により光学素子を得た。表1,表2に各サンプルの光
学素子形状とゲート形状を、表3に得られた光学素子の
光学特性(非点収差)と良否評価結果を示す。
An optical element molding die was manufactured in the same manner by changing the shape of the optical element and the shape of the gate variously, and an optical element was obtained under optimized molding conditions. Tables 1 and 2 show the optical element shape and the gate shape of each sample, and Table 3 shows the optical characteristics (astigmatism) and the quality evaluation results of the obtained optical element.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】表3において、「非点収差」の欄に「−」
があるのは、成形条件を種々に変更してみても、上記の
光学特性の評価を実施できる程度の光学素子を得ること
ができなかったことを示している。
In Table 3, "-" is entered in the "Astigmatism" column.
That is, even if various molding conditions were changed, it was not possible to obtain an optical element to the extent that the above evaluation of optical characteristics could be performed.

【0037】表1〜表3から分かるように、本発明の目
的とする、回転軸対称性に優れた光学特性を備えた光学
素子を得るためには以下の3つの条件を満足する必要が
ある。
As can be seen from Tables 1 to 3, it is necessary to satisfy the following three conditions in order to obtain the optical element having the optical characteristics excellent in rotational axis symmetry, which is the object of the present invention. .

【0038】第1に、ゲート2を設けた光学素子1の外
径φGと光学素子1の光学有効径φLY(ここで言う光
学有効径φLYは、光学素子の第1面(R1面)光学有
効径φLY1と第2面(R2面)光学有効径φLY2と
のうちの何れか大きい方を意味する)との比φLY/φ
Gが、φLY/φG<0.8を満足するように、光学素
子1の光学有効径φLYと外径φGとを設定することが
必要である。比φLY/φGが上記の範囲を満足しない
とき、如何にゲート2の形状や射出成形条件を変更して
も、ゲート2部分での応力歪みなどの影響が光学素子1
の光学有効面に及び、非点収差が大きな光学素子になっ
てしまう。
First, the outer diameter φG of the optical element 1 provided with the gate 2 and the optical effective diameter φLY of the optical element 1 (the optical effective diameter φLY here is the first surface (R1 surface) optically effective of the optical element). Ratio φLY / φ of the diameter φLY1 and the second surface (R2 surface) which is the larger of the optically effective diameter φLY2)
It is necessary to set the optical effective diameter φLY and the outer diameter φG of the optical element 1 so that G satisfies φLY / φG <0.8. When the ratio φLY / φG does not satisfy the above range, no matter how the shape of the gate 2 or the injection molding condition is changed, the influence of stress distortion in the gate 2 portion may be affected.
To the optically effective surface, resulting in an optical element having a large astigmatism.

【0039】第2に、光学素子1の外径φGとゲート2
の幅GHとの比GH/φGが、0.1<GH/φG<
0.35を満足することが必要である。比GH/φGが
この関係を満たさない場合、如何に射出成形条件を変更
しても、転写性が光軸に対して非対称になってしまう。
言い換えれば、軸非対称な光学素子が必要な場合、ゲー
ト幅GHを前述の関係を満たさない関係にすればよいと
言える。
Second, the outer diameter φG of the optical element 1 and the gate 2
The ratio GH / φG with the width GH is 0.1 <GH / φG <
It is necessary to satisfy 0.35. If the ratio GH / φG does not satisfy this relationship, the transferability will be asymmetric with respect to the optical axis, no matter how the injection molding conditions are changed.
In other words, when an axially asymmetric optical element is required, it can be said that the gate width GH should be set so as not to satisfy the above relationship.

【0040】第3に、光学素子1の偏肉比やコバに対す
るゲート2の厚み形状を適正な寸法にする必要がある。
即ち、光学素子1の中心厚みをLT、光学素子1のコバ
厚みをLK、ゲート2の厚みをGTとし、光学素子1の
中心厚みLTとコバ厚みLKとの比をx=LT/LK、
ゲート2の厚みGTと光学素子1のコバ厚みLKとの比
をy=GT/LKとしたとき、y≧0.0977x+
0.47である関係を有することが必要である。
Thirdly, it is necessary to make the thickness deviation shape of the optical element 1 and the thickness shape of the gate 2 with respect to the edge into appropriate dimensions.
That is, the center thickness of the optical element 1 is LT, the edge thickness of the optical element 1 is LK, the thickness of the gate 2 is GT, and the ratio between the center thickness LT of the optical element 1 and the edge thickness LK is x = LT / LK.
When the ratio between the thickness GT of the gate 2 and the edge thickness LK of the optical element 1 is y = GT / LK, y ≧ 0.0977x +
It is necessary to have a relationship that is 0.47.

【0041】前述した実験結果から明らかなように、光
学素子形状及び光学素子成形型が上記の3つの条件を満
たしたとき、光学素子は良好な非点収差を備える。
As is clear from the above experimental results, when the optical element shape and the optical element molding die satisfy the above three conditions, the optical element has good astigmatism.

【0042】即ち、光学素子及び成形型(ゲート)が上
記の3つの条件を同時に備える場合には良好な光学特性
を有した光学素子を得ることが出来るので、光学素子及
び光学素子成形型を試行錯誤して製作する必要がなくな
り、光学素子成形型及び光学素子をより安価に提供でき
る。
That is, when the optical element and the molding die (gate) simultaneously satisfy the above three conditions, an optical element having good optical characteristics can be obtained. Therefore, the optical element and the optical element molding die are tried. There is no need to erroneously manufacture, and the optical element molding die and the optical element can be provided at a lower cost.

【0043】従って、上記の3つの条件を満たすように
光学素子及び成形型を設計し、実際の射出成形におい
て、ひけ、ジェッティング、ウエルドなどが発生しない
ように射出成形条件をコントロールすることにより、軸
対称性に優れた光学特性を有した光学素子を安定して高
い歩留まりで得ることができる。
Therefore, by designing the optical element and the molding die so as to satisfy the above three conditions, and controlling the injection molding conditions so that sink marks, jetting, weld, etc. do not occur in the actual injection molding, An optical element having optical characteristics with excellent axial symmetry can be stably obtained with a high yield.

【0044】尚、上記の実施例においては、成形材料と
して、ポリオレフィン樹脂を用いたが、これに限らず、
その他の成形材料を用いても同様であることはいうまで
もない。
Although a polyolefin resin is used as the molding material in the above-mentioned embodiments, the molding material is not limited to this.
It goes without saying that the same applies when other molding materials are used.

【0045】また、成形における温度条件、圧力条件
は、成形材料のガラス転移点、荷重たわみ温度等の特性
により異なることは言うまでもない。
Needless to say, the temperature conditions and pressure conditions in molding differ depending on the characteristics such as the glass transition point of the molding material and the deflection temperature under load.

【0046】[0046]

【発明の効果】以上のように、本発明によれば、ひけ、
ジェッティング、ウエルドなどの発生を抑えながら、ゲ
ートが光学有効面に影響を与えることがなく良好な転写
性(軸対称性)を有する光学素子を安定して得ることが
可能となる。
As described above, according to the present invention, sink marks,
It is possible to stably obtain an optical element having good transferability (axial symmetry) without the gate affecting the optically effective surface while suppressing the occurrence of jetting, welding, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態に係る光学素子及びゲー
トの形状を示した概略図であり、図1(A)は上面図、
図1(B)は図1(A)の1B−1B線での矢視断面図
である。
FIG. 1 is a schematic view showing the shapes of an optical element and a gate according to an embodiment of the present invention, FIG. 1 (A) is a top view,
1B is a sectional view taken along the line 1B-1B in FIG.

【図2】 本発明の一実施形態に係る光学素子成形型の
形状を示した概略図であり、図2(A)は概略断面図、
図2(B)はパーティング面からみた可動側成形型の正
面図、図2(C)はパーティング面からみた固定側成形
型の正面図である。
FIG. 2 is a schematic view showing a shape of an optical element molding die according to an embodiment of the present invention, FIG. 2 (A) is a schematic sectional view,
FIG. 2 (B) is a front view of the movable mold as seen from the parting surface, and FIG. 2 (C) is a front view of the fixed mold as seen from the parting surface.

【図3】 本発明及び従来の射出成形方法で得られる成
形品の概略図であり、図3(A)は上面図、図3(B)
は図3(A)の3B−3B線での矢視断面図である。
FIG. 3 is a schematic view of a molded product obtained by the present invention and a conventional injection molding method, FIG. 3 (A) is a top view and FIG. 3 (B).
FIG. 3B is a sectional view taken along the line 3B-3B in FIG.

【図4】 光学素子の成形方法に用いられる射出成形機
の概略断面図である。
FIG. 4 is a schematic cross-sectional view of an injection molding machine used in a method of molding an optical element.

【符号の説明】[Explanation of symbols]

1 光学素子 1a コバ 2 ゲート 3 ランナー 4 スプルー 5 固定側光学素子成形型 5a インサート部材 6 可動側光学素子成形型 6a インサート部材 7 ホッパ 8 成形材料 9 射出シリンダ 10 加熱シリンダ 11 スクリュ 12 ノズル 13 固定ダイプレート 14 移動ダイプレート 15 型締めシリンダ 18 パーティング面 1 Optical element 1a Koba 2 gates 3 runners 4 sprue 5 Fixed side optical element molding die 5a Insert member 6 Movable side optical element molding die 6a Insert member 7 hopper 8 molding materials 9 injection cylinder 10 heating cylinder 11 screws 12 nozzles 13 Fixed die plate 14 Moving die plate 15 Clamping cylinder 18 Parting surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 貴志 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山田 晃久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 桐田 紀雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4F202 AH73 CA11 CB01 CK06 CK43 CK54    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Morimoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Akihisa Yamada             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Norio Kirita             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 4F202 AH73 CA11 CB01 CK06 CK43                       CK54

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 成形材料を加熱混錬溶融し、ゲートを介
してキャビティ内に射出充填して得られた光学素子であ
って、 光学素子の外径をφG、光学素子の光学有効面径をφL
Y、光学素子の中心厚みをLT、光学素子のコバ厚みを
LK、光学素子の外周に接続されるゲートの円周方向の
幅をGH、ゲートの厚みをGT、光学素子の中心厚みL
Tとコバ厚みLKとの比をx(=LT/LK)、ゲート
の厚みGTと光学素子のコバ厚みLKとの比をy(=G
T/LK)としたとき、下記式(1)〜式(3)を満足
することを特徴とする光学素子。 0.8>φLY/φG ・・・(1) 0.1<GH/φG<0.35 ・・・(2) y≧0.0977x+0.47 ・・・(3)
1. An optical element obtained by heat-kneading and melting a molding material, and injection-filling it into a cavity through a gate, wherein an outer diameter of the optical element is φG, and an optically effective surface diameter of the optical element is φL
Y, the center thickness of the optical element is LT, the edge thickness of the optical element is LK, the circumferential width of the gate connected to the outer periphery of the optical element is GH, the thickness of the gate is GT, the center thickness L of the optical element
The ratio between T and the edge thickness LK is x (= LT / LK), and the ratio between the gate thickness GT and the optical element edge thickness LK is y (= G
T / LK), an optical element satisfying the following formulas (1) to (3). 0.8> φLY / φG (1) 0.1 <GH / φG <0.35 (2) y ≧ 0.0977x + 0.47 (3)
【請求項2】 加熱混錬溶融された成形樹脂を射出充填
して光学素子を成形するためのキャビティと、 前記キャビティの一部を構成し、前記光学素子の光学有
効面を形成するためのインサート部材と、 前記キャビティ内に前記成形樹脂を導入するためのゲー
トとを備えた光学素子成形型であって、 成形される前記光学素子の外径をφG、光学素子の光学
有効面径をφLY、光学素子の中心厚みをLT、光学素
子のコバ厚みをLK、光学素子の外周に接続される前記
ゲートの円周方向の幅をGH、ゲートの厚みをGT、光
学素子の中心厚みLTとコバ厚みLKとの比をx(=L
T/LK)、ゲートの厚みGTと光学素子のコバ厚みL
Kとの比をy(=GT/LK)としたとき、下記式
(1)〜式(3)を満足することを特徴とする光学素子
成形型。 0.8>φLY/φG ・・・(1) 0.1<GH/φG<0.35 ・・・(2) y≧0.0977x+0.47 ・・・(3)
2. A cavity for injection-filling a molding resin melted by heating, kneading and melting to mold an optical element, and an insert forming a part of the cavity and forming an optically effective surface of the optical element. An optical element molding die comprising a member and a gate for introducing the molding resin into the cavity, wherein an outer diameter of the optical element to be molded is φG, an optical effective surface diameter of the optical element is φLY, The center thickness of the optical element is LT, the edge thickness of the optical element is LK, the circumferential width of the gate connected to the outer circumference of the optical element is GH, the gate thickness is GT, the center thickness LT of the optical element and the edge thickness. The ratio with LK is x (= L
T / LK), gate thickness GT, and optical element edge thickness L
An optical element molding die characterized by satisfying the following formulas (1) to (3) when the ratio with K is y (= GT / LK). 0.8> φLY / φG (1) 0.1 <GH / φG <0.35 (2) y ≧ 0.0977x + 0.47 (3)
【請求項3】 加熱混錬溶融された成形樹脂を光学素子
成形型のゲートを介してキャビティ内に射出充填して光
学素子を成形する方法であって、 前記光学素子成形型は、前記光学素子の光学有効面を形
成するためのインサート部材を備え、 成形される前記光学素子の外径をφG、光学素子の光学
有効面径をφLY、光学素子の中心厚みをLT、光学素
子のコバ厚みをLK、光学素子の外周に接続される前記
ゲートの円周方向の幅をGH、ゲートの厚みをGT、光
学素子の中心厚みLTとコバ厚みLKとの比をx(=L
T/LK)、ゲートの厚みGTと光学素子のコバ厚みL
Kとの比をy(=GT/LK)としたとき、下記式
(1)〜式(3)を満足することを特徴とする光学素子
の成形方法。 0.8>φLY/φG ・・・(1) 0.1<GH/φG<0.35 ・・・(2) y≧0.0977x+0.47 ・・・(3)
3. A method for molding an optical element by injecting and filling a molding resin melted by heating and kneading into a cavity through a gate of the optical element molding die, wherein the optical element molding die comprises the optical element. Of the optical element to be molded, the outer diameter of the optical element is φG, the optical effective surface diameter of the optical element is φLY, the center thickness of the optical element is LT, and the edge thickness of the optical element is LK, the width in the circumferential direction of the gate connected to the outer periphery of the optical element is GH, the thickness of the gate is GT, and the ratio of the center thickness LT of the optical element to the edge thickness LK is x (= L
T / LK), gate thickness GT, and optical element edge thickness L
A method of molding an optical element, characterized in that the following formulas (1) to (3) are satisfied, where the ratio with K is y (= GT / LK). 0.8> φLY / φG (1) 0.1 <GH / φG <0.35 (2) y ≧ 0.0977x + 0.47 (3)
JP2002048424A 2002-02-25 2002-02-25 Optical element, optical element molding die, and optical element molding method Expired - Lifetime JP4097954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048424A JP4097954B2 (en) 2002-02-25 2002-02-25 Optical element, optical element molding die, and optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048424A JP4097954B2 (en) 2002-02-25 2002-02-25 Optical element, optical element molding die, and optical element molding method

Publications (2)

Publication Number Publication Date
JP2003245946A true JP2003245946A (en) 2003-09-02
JP4097954B2 JP4097954B2 (en) 2008-06-11

Family

ID=28661229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048424A Expired - Lifetime JP4097954B2 (en) 2002-02-25 2002-02-25 Optical element, optical element molding die, and optical element molding method

Country Status (1)

Country Link
JP (1) JP4097954B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046437A1 (en) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. Optical component production system
WO2006046436A1 (en) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. Optical component production system
JP2006150902A (en) * 2004-12-01 2006-06-15 Enplas Corp Optical element, optical element molding die and manufacturing method of optical element
CN100378471C (en) * 2004-01-22 2008-04-02 日本板硝子株式会社 Optical component with holder and manufacturing method thereof
EP1916086A1 (en) * 2006-10-25 2008-04-30 Bayer MaterialScience AG High-pressure injection moulding method for manufacturing optical components
US8142690B2 (en) 2004-08-02 2012-03-27 Konica Minolta Opto, Inc. Optical component molding apparatus and method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378471C (en) * 2004-01-22 2008-04-02 日本板硝子株式会社 Optical component with holder and manufacturing method thereof
US8142690B2 (en) 2004-08-02 2012-03-27 Konica Minolta Opto, Inc. Optical component molding apparatus and method thereof
JPWO2006046436A1 (en) * 2004-10-29 2008-05-22 コニカミノルタオプト株式会社 Optical component manufacturing equipment
JPWO2006046437A1 (en) * 2004-10-29 2008-05-22 コニカミノルタオプト株式会社 Optical component manufacturing equipment
WO2006046437A1 (en) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. Optical component production system
US7427198B2 (en) * 2004-10-29 2008-09-23 Konica Minolta Opto, Inc. Optical component molding apparatus
CN100439074C (en) * 2004-10-29 2008-12-03 柯尼卡美能达精密光学株式会社 Optical component molding apparatus
US7914273B2 (en) * 2004-10-29 2011-03-29 Konica Minolta Opto, Inc. Optical component molding apparatus
JP4730307B2 (en) * 2004-10-29 2011-07-20 コニカミノルタオプト株式会社 Plastic lens manufacturing equipment
JP4797989B2 (en) * 2004-10-29 2011-10-19 コニカミノルタオプト株式会社 Optical component manufacturing equipment
WO2006046436A1 (en) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. Optical component production system
KR101243401B1 (en) * 2004-10-29 2013-03-13 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Optical component production system and method for producing the same
KR101271772B1 (en) * 2004-10-29 2013-06-07 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Optical component production system
JP2006150902A (en) * 2004-12-01 2006-06-15 Enplas Corp Optical element, optical element molding die and manufacturing method of optical element
EP1916086A1 (en) * 2006-10-25 2008-04-30 Bayer MaterialScience AG High-pressure injection moulding method for manufacturing optical components

Also Published As

Publication number Publication date
JP4097954B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4730307B2 (en) Plastic lens manufacturing equipment
TW322445B (en)
JP2006281765A (en) Method and apparatus for improving surface accuracy of optical element
JP2003245946A (en) Optical element, mold for molding optical element and optical element molding method
KR101495623B1 (en) Method of manufacturing a resin molded gear by injection molding
WO2006046436A1 (en) Optical component production system
JP4258353B2 (en) Optical element
JP2010082838A (en) Lens manufacturing method
CN105377525A (en) Injection molding method and injection molding die
JP2008257261A (en) Optical device, optical device molding die, and method for molding optical device
WO2005084910A1 (en) Disc molding die, adjusting member and disc board molding method
JP2005161849A (en) Mold for molding optical element, optical element molding method and optical element
JP4007496B2 (en) Resin molding pin and manufacturing method thereof
KR200371945Y1 (en) Structure for reducing pressure of injecting mold for forming parts of cell phone
JP2004284116A (en) Mold for molding optical element, optical element molding method and optical element
JP2004195756A (en) Mold for optical disk substrate
JPS63296912A (en) Injection molding device
US20220134619A1 (en) Injection molding method and apparatus
JP2002530222A (en) Mold temperature control method for injection molding
JP3444515B2 (en) Optical element molding method
JP2008087407A (en) Injection-molding method
JPH07266391A (en) Manufacture and manufacturing device of plastic lens
JPH0566245B2 (en)
JPH03193322A (en) Mold for plastic lens
JP2002347075A (en) Nozzle for injection molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Ref document number: 4097954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

EXPY Cancellation because of completion of term