JP4751818B2 - Mold for forming and manufacturing method thereof - Google Patents
Mold for forming and manufacturing method thereof Download PDFInfo
- Publication number
- JP4751818B2 JP4751818B2 JP2006328475A JP2006328475A JP4751818B2 JP 4751818 B2 JP4751818 B2 JP 4751818B2 JP 2006328475 A JP2006328475 A JP 2006328475A JP 2006328475 A JP2006328475 A JP 2006328475A JP 4751818 B2 JP4751818 B2 JP 4751818B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molding
- mold base
- linear expansion
- base part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Description
本発明は、光学素子を成形するための異種材料でハイブリッド構成された成形用型及びその製造方法に関する。 The present invention relates to a molding die having a hybrid structure of different materials for molding an optical element and a method for manufacturing the same.
近年、高品質な画質が要求される情報機器の発展に伴い、非球面等の複雑な形状を有する光学素子のニーズが高まり、このような高精度な光学素子を大量に生産するために成形手段が採用されるようになった。 In recent years, with the development of information equipment that requires high quality image quality, the need for optical elements having complicated shapes such as aspherical surfaces has increased, and molding means for mass production of such high-precision optical elements Came to be adopted.
この成形手段に用いられる成形型として、例えば特許文献1には、ハイブリッド成形型に関する技術が開示されている。このハイブリッド成形型は、図7に示すように、超硬合金(型基材)101の成形面側にガラス(型成形部)102が融着されている。このように、成形型の材質として、光学素子と同質のガラス(型成形部)102を用いれば、両者の線膨張率等が近似しているため高精度な光学素子を得ることができるというものである。
一般に、型基材(超硬合金)と型成形部(ガラス)との接合部に、両者の線膨張率の差によって発生するせん断応力は、外径が大きくなればなるほど大きくなる。一方、発生するせん断応力を型成形部(ガラス)の厚みで応力緩和できる大きさには限界がある。このため、製造可能な型成形部の形状及び大きさが、型基材及び型成形部の材料により限定される。 In general, the shear stress generated by the difference in linear expansion coefficient between the mold base (superhard alloy) and the mold forming part (glass) increases as the outer diameter increases. On the other hand, there is a limit to the size with which the generated shear stress can be relieved by the thickness of the molded part (glass). For this reason, the shape and size of the mold part that can be manufactured are limited by the material of the mold base and the mold part.
このため、特許文献1では、図7に示すように、型成形部(ガラス)102の周辺部分103を薄くしているが、これは、同図のように型成形部(ガラス)102が凸形状の場合は可能である。しかし、図8に示すように、型成形部104が凹形状の場合は、周辺部分105が厚くなるため適用は難しい。 For this reason, in Patent Document 1, as shown in FIG. 7, the peripheral portion 103 of the mold forming portion (glass) 102 is thinned. This is because the mold forming portion (glass) 102 is convex as shown in FIG. In the case of shape, it is possible. However, as shown in FIG. 8, when the mold part 104 is concave, application is difficult because the peripheral part 105 becomes thick.
本発明は斯かる課題を解決するためになされたもので、線膨張率の異なる異種材料を熱間で接合する場合の接合面に発生する応力を低減し得る成形用型及びその製造方法を提供することを目的とする。 The present invention has been made to solve such a problem, and provides a molding die capable of reducing stress generated on a joint surface when different materials having different linear expansion coefficients are joined together hot, and a method for manufacturing the same. The purpose is to do.
前記目的を達成するため、請求項1に係る発明は、
成形面を有する型成形部と、該型成形部とは異なる材質からなる型基材部と、を一体的に接合した成形用型の製造方法において、
前記型成形部の線膨張率αgと前記型基材部の線膨張率αkとがαg<αkの関係を有し、
前記型成形部と前記型基材部との接合部外周に、線膨張率αcがαc<αkの関係を有する規制部材を嵌挿し、
前記型基材部と前記型成形部、及び前記規制部材を加熱し、前記型成形部が軟化した状態で該型成形部と前記型基材部とを押圧して接合することを特徴とする。
In order to achieve the object, the invention according to claim 1
In a method for manufacturing a molding die, in which a molding part having a molding surface and a mold base part made of a material different from the molding part are integrally joined,
The linear expansion coefficient αg of the mold forming part and the linear expansion coefficient αk of the mold base part have a relationship of αg <αk,
A regulating member having a relationship of linear expansion coefficient αc αc <αk is inserted into the outer periphery of the joint portion between the mold forming part and the mold base part,
The mold base part, the mold molding part, and the regulating member are heated, and the mold molding part and the mold base part are pressed and joined in a state where the mold molding part is softened. .
請求項2に係る発明は、請求項1に記載の成形用型の製造方法において、
前記型成形部と前記型基材部との間に、これら型成形部及び型基材部よりも軟化温度が低い接合部材を挟持し、前記型基材部と前記型成形部を押圧して接合することを特徴とする。
The invention according to claim 2 is the method of manufacturing a molding die according to claim 1,
A bonding member having a softening temperature lower than that of the mold molding part and the mold base part is sandwiched between the mold molding part and the mold base part, and the mold base part and the mold molding part are pressed. It is characterized by joining.
請求項3に係る発明は、請求項1又は2に記載の成形用型の製造方法において、
前記型成形部はガラスからなり、前記型基材部は金属からなることを特徴とする。
請求項4に係る発明は、請求項2に記載の成形用型の製造方法において、
前記型成形部及び前記接合部材はガラスからなり、前記型基材部は金属からなることを特徴とする。
The invention according to claim 3 is the method for producing a molding die according to claim 1 or 2,
The mold forming part is made of glass, and the mold base part is made of metal.
The invention according to claim 4 is the method for producing a molding die according to claim 2,
The mold forming part and the joining member are made of glass, and the mold base part is made of metal.
請求項5に係る発明は、請求項1〜4のいずれかに記載の成形用型の製造方法において、
前記型成形部を、光学転写面を有するマスタ型で前記型基材部に向けて押圧することを特徴とする。
The invention according to claim 5 is the method for producing a molding die according to any one of claims 1 to 4,
The mold molding part is pressed toward the mold base part with a master mold having an optical transfer surface.
請求項6に係る発明は、
光学素子を成形する成形用型において、
成形面を有する型成形部と、
該型成形部よりも大きな線膨張率を有し該型成形部と接合される型基材部と、
該型基材部の外周に接合状態で配置され該型基材部よりも小さな線膨張率を有する規制部材と、を備え、
前記規制部材は、前記型基材部と前記型成形部との接合部の外周を覆っている。
The invention according to claim 6
In a mold for molding an optical element,
A mold part having a molding surface;
A mold base part having a linear expansion coefficient larger than that of the mold part and bonded to the mold part;
A regulating member arranged in a bonded state on the outer periphery of the mold base part and having a smaller linear expansion coefficient than the mold base part , and
The restriction member covers an outer periphery of a joint portion between the mold base portion and the mold forming portion .
本発明によれば、線膨張率の異なる異種材料を熱間で接合する場合の接合面に発生する応力を低減することができる。 ADVANTAGE OF THE INVENTION According to this invention, the stress which generate | occur | produces in the joining surface at the time of joining the dissimilar material from which a linear expansion coefficient differs between heat | fever can be reduced.
以下、図面に基づき本発明の実施の形態を説明する。
(第1の実施の形態)
図1は、第1の実施形態における成形用型の製造装置の断面正面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional front view of a molding die manufacturing apparatus according to the first embodiment.
この製造装置10は、枠体を構成する上ベース12、下ベース14、及び支柱16を有し、下ベース14上には台座18が配置されている。この台座18には、型基材部20が規制部材24に隙間のないように嵌挿された状態で載置されている。型基材部20の上端面には、型成形部としてのガラスプリフォーム26が載置されている。また、下ベース14と上ベース12との間の空間で、台座18の外側方には加熱ヒ一夕28が設けられている。 The manufacturing apparatus 10 includes an upper base 12, a lower base 14, and a support column 16 that constitute a frame, and a pedestal 18 is disposed on the lower base 14. On this pedestal 18, the mold base portion 20 is placed in a state where it is fitted and inserted into the regulating member 24 so that there is no gap. A glass preform 26 as a mold forming part is placed on the upper end surface of the mold base part 20. Further, in the space between the lower base 14 and the upper base 12, a heating lever 28 is provided on the outer side of the base 18.
また、上ベース12にはプレス軸30が挿通可能な穴32が形成されており、プレス軸30の先端にはプレス型34が取付けられている。更に、上ベース12には、プレス軸ガイド36が取付けられ、プレス軸30は、このプレス軸ガイド36を介して上下に摺動自在に取付けられている。これにより、プレス軸30の先端に取り付けたプレス型34は、図示しないアクチュエータによりガラスプリフォーム26を押圧可能となっている。 Further, a hole 32 through which the press shaft 30 can be inserted is formed in the upper base 12, and a press die 34 is attached to the tip of the press shaft 30. Further, a press shaft guide 36 is attached to the upper base 12, and the press shaft 30 is slidably attached up and down via the press shaft guide 36. Thereby, the press die 34 attached to the tip of the press shaft 30 can press the glass preform 26 by an actuator (not shown).
本実施形態では、ガラスプリフォーム26は、S−BSL7(OHARA、線膨張率86×10―7、ガラス屈伏点625℃)を用い、型基材部20はSUS420J2(線膨張率120×10―7)を用い、規制部材24はアンビロイ1150(線膨張率52×10―7)を使用している。 In this embodiment, the glass preform 26, S-BSL7 (OHARA, linear expansion coefficient 86 × 10- 7, glass deformation point 625 ° C.) using a the mold base portion 20 SUS420J2 (linear expansion coefficient 120 × 10- using 7), the regulating member 24 is used Anbiroi 1150 (linear expansion coefficient 52 × 10- 7).
すなわち、ガラスプリフォーム26の線膨張率αgと型基材部20の線膨張率αkとは、αg<αkの関係を有している。また、ガラスプリフォーム26と型基材部20との接合部外周に、線膨張率αcの規制部材24を嵌挿している。そして、この規制部材24の線膨張率αcと型基材部20の線膨張率αkとは、αc<αkの関係を有している。 That is, the linear expansion coefficient αg of the glass preform 26 and the linear expansion coefficient αk of the mold base portion 20 have a relationship of αg <αk. In addition, a regulating member 24 having a linear expansion coefficient αc is inserted into the outer periphery of the joint portion between the glass preform 26 and the mold base portion 20. The linear expansion coefficient αc of the regulating member 24 and the linear expansion coefficient αk of the mold base portion 20 have a relationship of αc <αk.
次に、成形用型の製造方法について説明する。
まず、加熱工程では、加熱ヒ一夕28により型基材部20と規制部材24、及びガラスプリフォーム26を620℃に加熱する。このとき、型基材部20と規制部材24は共に膨張するが、それぞれの線膨張率の差によりしまりばめ状態(圧接状態)となる。これは、規制部材24よりも型基材部20の方が大きく膨張するためである。
Next, a method for manufacturing a molding die will be described.
First, in the heating step, the mold base 20, the regulating member 24, and the glass preform 26 are heated to 620 ° C. by the heating beam 28. At this time, both the mold base part 20 and the regulating member 24 expand, but due to the difference in the respective linear expansion coefficients, they are in an interference fit state (pressure contact state). This is because the mold base portion 20 expands more than the regulating member 24.
次に、成形工程では、温度を620℃に維持したままでガラスプリフォーム26をプレスする。すると、型基材部20とガラスプリフォーム26との接合部38に接合層(図示せず)が形成される。その後、冷却工程では、冷却に伴い型基材部20と規制部材24、及びガラスプリフォーム26は収縮する。この際、冷却初期には、型基材部20は規制部材24とのしまりばめ状態が緩和され、次に収縮が始まるまでの間は、外径寸法の変化は線膨張率による収縮量よりも小さい。 Next, in the forming step, the glass preform 26 is pressed while maintaining the temperature at 620 ° C. Then, a bonding layer (not shown) is formed at the bonding portion 38 between the mold base portion 20 and the glass preform 26. Thereafter, in the cooling step, the mold base part 20, the regulating member 24, and the glass preform 26 contract with cooling. At this time, in the initial stage of cooling, the mold base portion 20 is relaxed from the tight-fitting state with the regulating member 24, and until the next contraction starts, the change in the outer diameter dimension is less than the contraction amount due to the linear expansion coefficient. Is also small.
すなわち、本実施形態では、型基材部20の外周部に該型基材部20よりも線膨張率の小さい規制部材24を配置し、この状態で全体を加熱したときに型基材部20の熱膨張を抑制する。この時点で、型基材部20とガラスプリフォーム26とを接合することにより、冷却時の型基材部20の径の収縮量は外周部を規制していない場合の収縮量よりも小さくなる。このため、型基材部20とガラスプリフォーム26との収縮量の差は小さくなり、接合面に発生するせん断応力も小さくなる。よって、接合面に割れが発生するのが防止される。 That is, in this embodiment, when the regulating member 24 having a linear expansion coefficient smaller than that of the mold base part 20 is arranged on the outer peripheral part of the mold base part 20, and the whole is heated in this state, the mold base part 20 Suppresses the thermal expansion. At this point, by joining the mold base part 20 and the glass preform 26, the shrinkage amount of the diameter of the mold base part 20 during cooling is smaller than the shrinkage amount when the outer peripheral part is not regulated. . For this reason, the difference in shrinkage between the mold base portion 20 and the glass preform 26 is reduced, and the shear stress generated on the joint surface is also reduced. Therefore, it is prevented that a crack occurs on the joint surface.
そして、冷却後半になって、型基材部20は線膨張率による収縮量に移行していく。これにより、型基材部20とガラスプリフォーム26との間に発生する応力発生を抑えながら接合することが可能となる。最後に、ガラスプリフォーム26の成形面を所望の形状に二次加工する。 Then, in the latter half of the cooling, the mold base part 20 shifts to a contraction amount due to the linear expansion coefficient. Thereby, it becomes possible to join while suppressing the generation | occurrence | production of the stress which generate | occur | produces between the type | mold base material part 20 and the glass preform 26. FIG. Finally, the molding surface of the glass preform 26 is secondarily processed into a desired shape.
本実施形態によれば、接合温度(620℃)から冷却した場合に、この冷却による型基材部20の外形の収縮量は、規制部材24を使用しない場合に比較して小さくなる。このため、型基材部20よりも線膨張率の小さいガラスプリフォーム26の材質の収縮量に近づけることが可能となる。 According to the present embodiment, when cooling is performed from the bonding temperature (620 ° C.), the amount of contraction of the outer shape of the mold base portion 20 due to this cooling is smaller than when the restriction member 24 is not used. For this reason, it becomes possible to approach the shrinkage amount of the material of the glass preform 26 having a smaller linear expansion coefficient than the mold base portion 20.
これにより、ガラスプリフォーム26に割れを発生させることなく、ガラスプリフォーム26を型基材部20に接合することができる。ひいては、ガラスプリフォーム26及び型基材部20の外形を大きくすることができる。また、接合する材料として多種類の材料を採用することができる。
(第2の実施の形態)
図2は、第2の実施の形態における成形用型の製造装置の断面正面図である。なお、第1の実施の形態と同一又は相当する部材には同一の符号を付してその説明を省略する。
Thereby, the glass preform 26 can be joined to the mold base part 20 without causing the glass preform 26 to crack. As a result, the external shape of the glass preform 26 and the mold base part 20 can be enlarged. In addition, many kinds of materials can be adopted as materials to be joined.
(Second Embodiment)
FIG. 2 is a cross-sectional front view of the molding die manufacturing apparatus in the second embodiment. In addition, the same code | symbol is attached | subjected to the same or equivalent member as 1st Embodiment, and the description is abbreviate | omitted.
この製造装置10では、台座18上に載置されたガラスプリフォーム26と型基材部20との接合部に、接合部材40が介装されている。
この接合部材40としては、リン酸系ガラスK−PSK100(住田光学ガラス、ガラス屈伏点415℃)を使用し、ガラスプリフォーム26にはS−BAL42(OHARA、線膨張率76×10―7、ガラス転移点550℃、ガラス屈伏点588℃)を使用した。そして、この接合部材40は、ガラスプリフォーム26及び型基材部20よりも軟化温度が低いものが用いられている。
In this manufacturing apparatus 10, a joining member 40 is interposed at a joining portion between the glass preform 26 placed on the pedestal 18 and the mold base portion 20.
As the bonding member 40, phosphate glass K-PSK100 (Sumita Optical Glass, glass deformation point 415 ° C.) using a, S-BAL42 the glass preform 26 (by OHARA, linear expansion coefficient 76 × 10- 7, Glass transition point 550 ° C., glass yield point 588 ° C.). And as this joining member 40, the thing whose softening temperature is lower than the glass preform 26 and the mold base part 20 is used.
その他の構成は、第1の実施の形態と同様である。
すなわち、ガラスプリフォーム26の線膨張率αgと型基材部20の線膨張率αkとは、αg<αkの関係を有している。また、ガラスプリフォーム26と型基材部20との接合部外周に、線膨張率αcの規制部材24を嵌挿している。この規制部材24の線膨張率αcと型基材部20の線膨張率αkとは、αc<αkの関係を有している。
Other configurations are the same as those of the first embodiment.
That is, the linear expansion coefficient αg of the glass preform 26 and the linear expansion coefficient αk of the mold base portion 20 have a relationship of αg <αk. In addition, a regulating member 24 having a linear expansion coefficient αc is inserted into the outer periphery of the joint portion between the glass preform 26 and the mold base portion 20. The linear expansion coefficient αc of the regulating member 24 and the linear expansion coefficient αk of the mold base portion 20 have a relationship of αc <αk.
このように配置した型基材部20と規制部材24、及びガラスプリフォーム26を560℃に加熱し、プレス型34で押圧する。このとき、型基材部20と規制部材24は、熱間で線膨張率の差によりしまりばめの状態となる。この状態で、ガラスプリフォーム26を一定の圧力で加圧保持することにより、ガラスプリフォーム26と型基材部20間には、接合部材40が軟化、活性化し、強い接合層が形成されて接合される。 The mold base 20, the regulating member 24, and the glass preform 26 arranged in this way are heated to 560 ° C. and pressed by the press die 34. At this time, the mold base part 20 and the regulating member 24 are in a tight fit state due to the difference in coefficient of linear expansion between heat. In this state, by pressing and holding the glass preform 26 at a constant pressure, the bonding member 40 is softened and activated between the glass preform 26 and the mold base portion 20, and a strong bonding layer is formed. Be joined.
更に、冷却段階において、型基材部20と規制部材24との線膨張率を比較すると、型基材部20の収縮量の方が大きいが、型基材部20と規制部材24との間のしまりばめ状態が緩和され、次に収縮が始まるため、線膨張による収縮量に比較して収縮量は小さくなる。これにより、ガラスプリフォーム26と型基材部20との間に発生する応力発生を抑えながら、両者を接合することができる。 Further, in the cooling stage, when the linear expansion coefficient between the mold base part 20 and the regulating member 24 is compared, the shrinkage amount of the mold base part 20 is larger, but between the mold base part 20 and the regulating member 24. Since the tight fit state is relaxed and then contraction starts, the contraction amount becomes smaller than the contraction amount due to linear expansion. Thereby, both can be joined, suppressing generation | occurrence | production of the stress which generate | occur | produces between the glass preform 26 and the type | mold base material part 20. FIG.
本実施形態によれば、第1の実施の形態と比較して、ガラスプリフォーム26と型基材部20とを、より強固に接合することができる。
(第3の実施の形態)
図3は、第3の実施の形態における成形用型の製造装置の断面正面図である。なお、第1の実施の形態と同一又は相当する部材には同一の符号を付してその説明を省略する。
According to this embodiment, compared with 1st Embodiment, the glass preform 26 and the mold base part 20 can be joined more firmly.
(Third embodiment)
FIG. 3 is a cross-sectional front view of a molding die manufacturing apparatus according to the third embodiment. In addition, the same code | symbol is attached | subjected to the same or equivalent member as 1st Embodiment, and the description is abbreviate | omitted.
この製造装置10では、プレス型34のかわりに、凹状の成形面を転写可能な光学転写面42aを有するマスタ型42を取付けている。また、この実施形態では、規制部材24の外径とマスタ型42の外径を略等しくし、これら規制部材24とマスタ型42の外周側に、これらを嵌挿するスリーブ44が配置されている。 In this manufacturing apparatus 10, instead of the press die 34, a master die 42 having an optical transfer surface 42a capable of transferring a concave molding surface is attached. Further, in this embodiment, the outer diameter of the regulating member 24 and the outer diameter of the master die 42 are made substantially equal, and a sleeve 44 for inserting these into the outer circumferential side of the regulating member 24 and the master die 42 is arranged. .
また、ガラスプリフォーム26の線膨張率αgと型基材部20の線膨張率αkとは、αg<αkの関係を有している。更に、ガラスプリフォーム26と型基材部20との接合部外周に、線膨張率αcの規制部材24を嵌挿している。そして、この規制部材24の線膨張率αcと型基材部20の線膨張率αkとは、αc<αkの関係を有している。 Further, the linear expansion coefficient αg of the glass preform 26 and the linear expansion coefficient αk of the mold base portion 20 have a relationship of αg <αk. Further, a regulating member 24 having a linear expansion coefficient αc is inserted into the outer periphery of the joint portion between the glass preform 26 and the mold base portion 20. The linear expansion coefficient αc of the regulating member 24 and the linear expansion coefficient αk of the mold base portion 20 have a relationship of αc <αk.
その他の構成は、第1の実施の形態と同様である。
すなわち、成形工程で、温度を620℃に維持したままガラスプリフォーム26をマスタ型42でプレスすると、型基材部20とガラスプリフォーム26との接合部38に接合層(図示せず)が形成される。また、冷却工程の初期には、型基材部20は規制部材24とのしまりばめ状態が緩和される。そこで、この時点で型基材部20とガラスプリフォーム26とを接合する。
Other configurations are the same as those of the first embodiment.
That is, when the glass preform 26 is pressed by the master mold 42 while maintaining the temperature at 620 ° C. in the molding process, a bonding layer (not shown) is formed at the bonding portion 38 between the mold base 20 and the glass preform 26. It is formed. Further, in the initial stage of the cooling process, the mold base portion 20 is relaxed from the tight fit state with the regulating member 24. Therefore, at this time, the mold base portion 20 and the glass preform 26 are joined.
本実施形態によれば、ガラスプリフォーム26の成形面を二次加工することなく、必要な凸状の成形面26aを、成形と同時に得ることができる。
(変形例)
図4は、第3の実施の形態の変形例を示す図である。
According to the present embodiment, the necessary convex molding surface 26a can be obtained simultaneously with the molding without subjecting the molding surface of the glass preform 26 to secondary processing.
(Modification)
FIG. 4 is a diagram illustrating a modification of the third embodiment.
この製造装置10では、凸状の成形面を転写可能な光学転写面42bを有するマスタ型42を取付けている。また、ガラスプリフォーム26と型基材部20との接合部に、接合部材40が介装されている。この接合部材40は、ガラスプリフォーム26及び型基材部20よりも軟化温度が低い、例えばガラスが用いられている。なお、支柱16は図示を省略している。 In the manufacturing apparatus 10, a master die 42 having an optical transfer surface 42b capable of transferring a convex molding surface is attached. Further, a joining member 40 is interposed at a joint portion between the glass preform 26 and the mold base portion 20. The joining member 40 is made of, for example, glass having a softening temperature lower than that of the glass preform 26 and the mold base 20. In addition, the support | pillar 16 is abbreviate | omitting illustration.
その他の構成は、第3の実施の形態と同様である。
すなわち、ガラスプリフォーム26の線膨張率αgと型基材部20の線膨張率αkとは、αg<αkの関係を有している。また、ガラスプリフォーム26と型基材部20との接合部外周に、線膨張率αcの規制部材24を嵌挿している。そして、この規制部材24の線膨張率αcと型基材部20の線膨張率αkとは、αc<αkの関係を有している。
Other configurations are the same as those of the third embodiment.
That is, the linear expansion coefficient αg of the glass preform 26 and the linear expansion coefficient αk of the mold base portion 20 have a relationship of αg <αk. In addition, a regulating member 24 having a linear expansion coefficient αc is inserted into the outer periphery of the joint portion between the glass preform 26 and the mold base portion 20. The linear expansion coefficient αc of the regulating member 24 and the linear expansion coefficient αk of the mold base portion 20 have a relationship of αc <αk.
この変形例によれば、ガラスプリフォーム26に凹状の成形面を形成することができ、その場合も、ガラスプリフォーム26が型基材部20に保護されて型使用時にガラスのエッジが欠けるのを防止することができる。また、二次加工を行うことなく、必要な凹状の成形面26bを、成形と同時に得ることができる。
(成形用型について)
図5は、第3の実施の形態により得られた成形用型46の構成を示す図である。なお、第3の実施の形態と同一又は相当する部材には同一の符号を付して説明する。
According to this modification, a concave molding surface can be formed on the glass preform 26. In this case, the glass preform 26 is protected by the mold base 20 and the edge of the glass is lost when the mold is used. Can be prevented. Further, the necessary concave molding surface 26b can be obtained simultaneously with molding without performing secondary processing.
(About molds for molding)
FIG. 5 is a diagram showing a configuration of a molding die 46 obtained by the third embodiment. In addition, the same code | symbol is attached | subjected and demonstrated to the member which is the same as that of 3rd Embodiment, or corresponds.
同図において、この成形用型46は、円柱形の型成形部26と、この型成形部26に接合される円柱形状の型基材部20と、この型基材部20の外周に配置される円筒形状の規制部材24と、を有している。 In this figure, the molding die 46 is arranged on a cylindrical mold molding part 26, a cylindrical mold base part 20 joined to the mold molding part 26, and an outer periphery of the mold base part 20. A cylindrical regulating member 24.
型成形部26は、光学素子を成形する成形面26aを有し、型基材部20は型成形部26よりも大きな線膨張率を有している。また、規制部材24は、型基材部20よりも小さな線膨張率を有している。この規制部材24は、型基材部20と型成形部26との接合部38の外周を覆っている。 The mold molding part 26 has a molding surface 26 a for molding an optical element, and the mold base part 20 has a larger linear expansion coefficient than the mold molding part 26. Further, the regulating member 24 has a smaller linear expansion coefficient than that of the mold base part 20. The regulating member 24 covers the outer periphery of the joint portion 38 between the mold base portion 20 and the mold forming portion 26.
この規制部材24により、型成形部26は保護され、型使用時に型成形部26のエッジが欠けることがない。
図6は、この成形用型46を射出成形用の金型装置50に用いた実施の形態を示す図である。
The molding member 26 is protected by the restricting member 24, and the edge of the mold molding portion 26 is not lost when the mold is used.
FIG. 6 is a view showing an embodiment in which this molding die 46 is used in a mold apparatus 50 for injection molding.
すなわち、この金型装置50は、中央にスプルー56とランナ58、及びゲート60が形成された固定側型板62と、パーティングラインPLを介して対向配置された可動側型板66とを有している。固定側型板62には、固定側の鏡面駒64が嵌挿されている。また、可動側型板66には、前述した鏡面駒64と同心状に可動側の鏡面駒としての成形用型46が摺動自在に嵌挿されている。 That is, the mold apparatus 50 has a fixed-side mold plate 62 having a sprue 56, a runner 58, and a gate 60 formed in the center, and a movable-side mold plate 66 arranged to face each other via a parting line PL. is doing. A fixed-side mirror surface piece 64 is fitted into the fixed-side template 62. Further, a molding die 46 as a movable side mirror surface piece is slidably fitted into the movable side mold plate 66 concentrically with the mirror surface piece 64 described above.
そして、固定側の鏡面駒64の光学転写面と可動側の鏡面駒としての成形用型46の成形面26aで囲まれた空間にキャビティ70が形成されている。
本実施形態の成形用型46を用いることにより、製品としての光学素子と同じ材料からなる型で成形することができ、熱膨張等も近似するため、高精度な光学素子を得ることができる。
A cavity 70 is formed in a space surrounded by the optical transfer surface of the fixed-side mirror surface piece 64 and the molding surface 26a of the molding die 46 as a movable-side mirror surface piece.
By using the molding die 46 of the present embodiment, it is possible to mold with a mold made of the same material as the optical element as a product and approximate thermal expansion and the like, so that a highly accurate optical element can be obtained.
10 製造装置
12 上ベース
14 下ベース
16 支柱
18 台座
20 型基材部
24 規制部材
26 型成形部(ガラスプリフォーム)
26a 成形面
26b 成形面
28 加熱ヒータ
30 プレス軸
32 穴
34 プレス型
36 プレス軸ガイド
38 接合部
40 接合部材
42 マスタ型
42a 光学転写面
42b 光学転写面
44 スリーブ
46 成形用型
50 金型装置
56 スプルー
58 ランナ
60 ゲート
62 固定側型板
64 鏡面駒
66 可動側型板
68 鏡面駒
70 キャビティ
αg 型成形部(ガラスプリフォーム)の線膨張率
αk 型基材部の線膨張率
αc 規制部材の線膨張率
DESCRIPTION OF SYMBOLS 10 Manufacturing apparatus 12 Upper base 14 Lower base 16 Support | pillar 18 Base 20 Mold base part 24 Control member 26 Mold forming part (glass preform)
26a molding surface 26b molding surface 28 heater 30 press shaft 32 hole 34 press die 36 press shaft guide 38 joint 40 joint member 42 master die 42a optical transfer surface 42b optical transfer surface 44 sleeve 46 molding die 50 mold device 56 sprue 58 Runner 60 Gate 62 Fixed side mold plate 64 Mirror surface piece 66 Movable side plate 68 Mirror surface piece 70 Cavity αg Linear expansion coefficient of mold forming part (glass preform) αk Linear expansion coefficient of mold base part αc Linear expansion of regulating member rate
Claims (6)
前記型成形部の線膨張率αgと前記型基材部の線膨張率αkとがαg<αkの関係を有し、
前記型成形部と前記型基材部との接合部外周に、線膨張率αcがαc<αkの関係を有する規制部材を嵌挿し、
前記型基材部と前記型成形部、及び前記規制部材を加熱し、前記型成形部が軟化した状態で該型成形部と前記型基材部とを押圧して接合する
ことを特徴とする成形用型の製造方法。 In a method for manufacturing a molding die, in which a molding part having a molding surface and a mold base part made of a material different from the molding part are integrally joined,
The linear expansion coefficient αg of the mold forming part and the linear expansion coefficient αk of the mold base part have a relationship of αg <αk,
A regulating member having a relationship of linear expansion coefficient αc αc <αk is inserted into the outer periphery of the joint portion between the mold forming part and the mold base part,
The mold base part, the mold molding part, and the regulating member are heated, and the mold molding part and the mold base part are pressed and joined in a state where the mold molding part is softened. A method for manufacturing a mold for molding.
ことを特徴とする請求項1に記載の成形用型の製造方法。 A bonding member having a softening temperature lower than that of the mold molding part and the mold base part is sandwiched between the mold molding part and the mold base part, and the mold base part and the mold molding part are pressed. The method for manufacturing a mold according to claim 1, wherein bonding is performed.
ことを特徴とする請求項1又は2に記載の成形用型の製造方法。 The method for manufacturing a mold according to claim 1 or 2, wherein the mold forming part is made of glass, and the mold base part is made of metal.
ことを特徴とする請求項2に記載の成形用型の製造方法。 The method for manufacturing a molding die according to claim 2, wherein the mold forming part and the joining member are made of glass, and the mold base part is made of metal.
ことを特徴とする請求項1〜4のいずれかに記載の成形用型の製造方法。 The method for manufacturing a molding die according to any one of claims 1 to 4, wherein the mold molding portion is pressed toward the mold base portion with a master die having an optical transfer surface.
成形面を有する型成形部と、
該型成形部よりも大きな線膨張率を有し該型成形部と接合される型基材部と、
該型基材部の外周に接合状態で配置され該型基材部よりも小さな線膨張率を有する規制部材と、を備え、
前記規制部材は、前記型基材部と前記型成形部との接合部の外周を覆っている、成形用型。 In a mold for molding an optical element,
A mold part having a molding surface;
A mold base part having a linear expansion coefficient larger than that of the mold part and bonded to the mold part;
A regulating member arranged in a bonded state on the outer periphery of the mold base part and having a smaller linear expansion coefficient than the mold base part , and
The regulation member is a molding die that covers an outer periphery of a joint portion between the mold base portion and the mold molding portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006328475A JP4751818B2 (en) | 2006-12-05 | 2006-12-05 | Mold for forming and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006328475A JP4751818B2 (en) | 2006-12-05 | 2006-12-05 | Mold for forming and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008137874A JP2008137874A (en) | 2008-06-19 |
JP4751818B2 true JP4751818B2 (en) | 2011-08-17 |
Family
ID=39599741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006328475A Active JP4751818B2 (en) | 2006-12-05 | 2006-12-05 | Mold for forming and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4751818B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02102136A (en) * | 1988-10-12 | 1990-04-13 | Olympus Optical Co Ltd | Mold for molding optical element and production thereof |
JPH06340435A (en) * | 1993-05-28 | 1994-12-13 | Canon Inc | Forming die for glass gob |
JP2005162547A (en) * | 2003-12-03 | 2005-06-23 | Matsushita Electric Ind Co Ltd | Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element |
JP4365727B2 (en) * | 2004-05-19 | 2009-11-18 | オリンパス株式会社 | Mold for molding and manufacturing method thereof |
-
2006
- 2006-12-05 JP JP2006328475A patent/JP4751818B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008137874A (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4972760B2 (en) | Optical element manufacturing method | |
JP4064976B2 (en) | Optical lens molding equipment | |
US8652365B2 (en) | Mold set and manufacturing method for manufacturing optical element | |
JP2001180946A (en) | Method for forming optical glass element and forming apparatus for optical glass with method | |
CN100398473C (en) | Model forming device and method for optical glass lens | |
JP4751818B2 (en) | Mold for forming and manufacturing method thereof | |
JP5638990B2 (en) | Manufacturing method of glass optical element | |
JP2000095532A (en) | Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element | |
JP2009045816A (en) | Method and apparatus for manufacture of plastic molding | |
JP2009113423A (en) | Mold for injection molding | |
JP2007125780A (en) | Mold, method for producing mold, and method for molding thermoplastic material | |
JP3134581B2 (en) | Mold for optical element molding | |
JP5269477B2 (en) | Optical element manufacturing method, optical element manufacturing apparatus, and optical element | |
JP2006273655A (en) | Method for designing molding face shape in mold | |
JP2009126005A (en) | Mold for molding | |
JP4477518B2 (en) | Method and apparatus for manufacturing optical element | |
JP2010143129A (en) | Method for molding resin lens | |
JP4948378B2 (en) | Optical element manufacturing method and optical element manufacturing apparatus | |
JPH05319839A (en) | Die for forming optical element | |
JP2005162547A (en) | Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element | |
JP2007145690A (en) | Method for manufacturing composite optical device | |
JPH0757697B2 (en) | Glass lens molding method | |
JP4472568B2 (en) | Mold, mold manufacturing method and optical element molding method | |
JP3217153B2 (en) | Optical material molding die, optical material molding method using the same, and optical material obtained thereby | |
JP2005187216A (en) | Optical element molding die and production method of optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110523 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4751818 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |