JP4903718B2 - マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法 - Google Patents

マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法 Download PDF

Info

Publication number
JP4903718B2
JP4903718B2 JP2007551993A JP2007551993A JP4903718B2 JP 4903718 B2 JP4903718 B2 JP 4903718B2 JP 2007551993 A JP2007551993 A JP 2007551993A JP 2007551993 A JP2007551993 A JP 2007551993A JP 4903718 B2 JP4903718 B2 JP 4903718B2
Authority
JP
Japan
Prior art keywords
signal
modulation
amplitude
unit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007551993A
Other languages
English (en)
Other versions
JPWO2007074839A1 (ja
Inventor
克人 清水
昭彦 松岡
伴哉 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007551993A priority Critical patent/JP4903718B2/ja
Publication of JPWO2007074839A1 publication Critical patent/JPWO2007074839A1/ja
Application granted granted Critical
Publication of JP4903718B2 publication Critical patent/JP4903718B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は、複数変調方式に対応して増幅器の出力信号の歪を補償する歪補償処理回路を含むマルチモード対応極座標変調送信装置、及び、前記歪補償処理回路の補償データを効率的に取得するためのマルチモード無線通信方法に関する。
近年の携帯電話サービスでは、音声通話に加えてデータ通信に対する需要が拡大していることから、通信速度の向上が重要である。例えば、主に、ヨーロッパ、アジア地域にて普及しているGSM(Global System for Mobile communications)システムにおいては、従来、搬送波の位相を送信データに応じてシフトするGMSK変調にて音声通話が行われてきたが、搬送波の位相及び振幅を送信データに応じてシフトすることで、GMSK変調に対して1シンボル当たりのビット情報を3倍に高めた3π/8rotating8−PSK変調(以下8−PSK変調と略す)にてデータ通信も行うEDGE(Enhanced Data rates for GSM Evolution)方式が提案されている。また、UMTS(Universal Mobile Telecommunications System)、あるいは、GSMなどの携帯電話システムや、無線LAN(Local Area Network)システムといった複数の無線システムに対応するマルチモード端末が登場している。さらに、上述の無線システム以外の無線システムも含め、様々な無線システムに対応する場合に、無線端末の小型化、低コスト化を実現する技術として、ソフトウェア無線(SDR:Software Defined Radio)技術の研究も行われている。
8−PSK変調のように振幅変動を伴う線形変調方式では、無線通信装置送信部の電力増幅器に対する線形性の要求が厳しい。また、一般的に、電力増幅器の線形動作領域での電力効率は飽和動作領域での電力効率に比べて低い。したがって、線形変調方式に、従来の直交変調方式を適用すると、電力効率の高効率化が困難であった。
そこで、送信信号を定振幅位相信号と振幅信号に分離して、定振幅位相信号をもとに位相変調器にて位相変調をかけ、電力増幅器が飽和動作点となるレベルの定振幅位相変調信号を入力するとともに、電力増幅器の制御電圧を高速に駆動することで振幅変調を合成する、EER法(Envelope Elimination & Restoration)と呼ばれ、線形変調方式にて電力増幅器の高効率化を実現する方式が知られている(例えば、非特許文献1の第427頁、第7.1図を参照)。特に、ベースバンド帯にて送信信号を分離し、分離した定振幅位相信号と振幅信号を用いて変調をかける変調方式をPolar Modulation方式(ポーラ変調方式、極座標変調方式)と呼ぶ(例えば、非特許文献1の第428頁、第7.2図を参照)。なお、以下では、従来の直交変調方式と異なる変調方式について説明してゆくことを明確にするため、極座標変調方式と呼ぶ。
極座標変調方式において、電力増幅器出力にて振幅信号を表現するための所要ダイナミックレンジ(以下、Dレンジと略す)に対して、電力増幅器の入力制御電圧に対する出力信号振幅の線形性を確保することは、現状の技術水準では困難であることから、歪補償処理技術を適用することが必要となる。
図29は特許文献1の第10図に記載されたプリディストーション(以下、PDと略す)歪補償処理技術を適用した従来の極座標変調送信装置を示すブロック図である。
図29に示すように、この極座標変調送信装置20は、電力増幅器1と、極座標変換部2と、歪補償処理回路3と、振幅変調部10と、位相変調部11と、振幅位相測定部12と、を備える。また、歪補償処理回路3は、遅延調整部4、5と、メモリ6と、アドレス生成部7と、振幅補正部8と、位相補正部9と、を備える。
次に、図29に示す従来の極座標変調送信装置20の動作説明を行う。
極座標変換部2は、極座標変調送信装置20を用いて無線通信装置送信部を構成する場合に、無線通信装置の図示しない信号生成部より入力されたベースバンド帯直交座標信号(IQ信号)を振幅信号r(t)と定振幅の位相信号θ(t)とに分離する。ここで、r(t)は所定値にて正規化する。
歪補償処理回路3は、振幅信号r(t)及び位相信号θ(t)に対して所定の歪補償処理を行い、振幅補正後の振幅信号を振幅変調部10に対して出力するとともに、位相補正後の位相信号を位相変調部11に対して出力する。この歪補償処理回路3の構成、及び、動作は後述する。
振幅変調部10は、歪補償処理回路3より出力される振幅信号に基づいて、電力増幅器1の制御電圧を駆動する。
位相変調部11は、歪補償処理回路3より出力される位相信号に基づいて、位相変調を行う。
電力増幅器1は、制御信号としての振幅変調部10からの出力信号に基づいて、位相変調部11より出力される位相変調信号に対して振幅変調を合成する。
振幅位相測定部12は、所定の入力信号を極座標変換部2に与えるとともに、振幅信号が一定値となる制御電圧を最大値から所定間隔にて低減することで、電力増幅器1の出力信号振幅を制御する際に、前記制御電圧値ごとに、電力増幅器1の出力信号振幅特性及び通過位相特性を測定し、取得データをメモリ6に対して出力する。
次に、歪補償処理回路3の構成、及び、動作について詳述する。
遅延調整部4、5は、振幅変調信号と位相変調信号の経路間の時間遅延差を補償するために、極座標変換部2より出力される振幅信号及び位相信号に対して所定の遅延を与え、遅延調整後の振幅信号をアドレス生成部7、及び、振幅補正部8に対して出力するとともに、遅延調整後の位相信号を位相補正部9に対して出力する。
メモリ6は、振幅位相測定部12より出力される、所定入力高周波信号振幅での電力増幅器1の、入力制御信号に対する出力信号振幅特性(AM−AM:Amplitude Modulation to Amplitude Modulation conversion、以下AM−AM特性と呼ぶ)、及び通過位相特性(AM−PM:Amplitude Modulation to Phase Modulation conversion、以下AM−PM特性と呼ぶ)の逆特性を格納し、アドレス生成部7より出力されるアドレス信号に応じて電力増幅器1の逆特性となる振幅補正信号、位相補正信号を出力する。なお、上記特性は定常状態の制御電圧を供給した際の特性を示す。
ここで、定常状態の制御電圧を供給した際の電力増幅器1のAM−AM特性、AM−PM特性と、各々の逆特性と、振幅変調動作時の電力増幅器の特性を区別するため、以下では、振幅位相測定部12などの測定部を用いて取得される電力増幅器1の特性を順特性(AM−AM順特性、AM−PM順特性)と呼び、メモリ6などの歪補償処理用メモリに格納する補償データを逆特性(AM−AM逆特性、AM−PM逆特性)と呼び、振幅変調動作時の電力増幅器1の特性を動特性(AM−AM動特性、AM−PM動特性)と呼ぶ。
アドレス生成部7は、遅延調整部4より出力される振幅信号を、メモリ6に格納する補償データと補償精度から求まる、所定範囲、かつ、所定ステップ幅を有する離散値に変換した上で、メモリ6に格納する補償データを参照するためのアドレス信号を生成する。
振幅補正部8は、メモリ6より出力される振幅補正信号をもとに、遅延調整部4より出力される振幅信号に対する補正を行う。
位相補正部9は、メモリ6より出力される位相補正信号をもとに、遅延調整部5より出力される位相信号に対する補正を実施する。
このようにして、電力増幅器の入力制御信号に対する出力特性の逆特性を考慮して予め歪ませた振幅変調信号及び位相変調信号は、電力増幅器にて発生する実際の振幅、位相歪の影響を受けて所望の出力振幅、位相となり、入力制御電圧に対する線形性を向上させることができる。
以上で特許文献1記載の従来の極座標変調送信装置の動作説明を終える。なお、以下では、特許文献1記載の極座標変調送信装置20を従来の極座標変調送信装置と呼ぶ。
続いて、従来の極座標変調送信装置を用いて、マルチモード対応無線通信装置送信部を構成する場合に必要となる技術について説明する。
従来の極座標変調送信装置を用いて、マルチモード無線通信装置送信部を実現するには、電力増幅器の動作を線形化するため、システムごとに異なる変調速度、振幅信号の所要Dレンジに対応した歪補償処理が必要である。
次に、SDR通信装置送信部を実現する場合に必要となる技術について説明する。
SDR通信装置は、デジタル信号処理部の演算処理機能を含めたソフトウェアの書き換え(リコンフィグ)によって、所望の特性、機能への変更が可能であり、装置の製造時点では対応していない様々な通信方式、すなわち、マルチモード変調信号に対応することが可能である。一方、現状の技術水準では、電力増幅器などのアナログ回路に関して、所望の特性、機能への変更を行うリコンフィグは困難である。よって、例えば、マルチモード変調信号に対して同一の電力増幅器を用いる場合には、変調信号に応じて変化する特性の補償技術が必要である。
特表2004−501527号公報 Kenington, Peter B、"High-Linearity RF Amplifier Design"、Artech House Pulishers
従来の極座標変調送信装置を用いて、マルチモード対応無線通信装置送信部を構成する場合に発生する課題について説明する。
マルチモード無線通信装置では、対応するシステムごと、あるいは、同一のシステム内でも、複数の変調信号を処理するため、マルチモード変調信号に対応することが必要である。
特許文献1には、変調速度が異なる場合や、振幅信号の所要Dレンジが異なる場合の歪補償処理データの効率的な格納方法が開示されていないが、従来の極座標変調送信装置において、対応すべきマルチモード変調信号ごとの歪補償処理データをメモリに格納しておき、電力増幅器に対する歪補償処理を行う技術と組み合わせることが考えられる。
しかしながら、マルチモード変調信号ごとに歪補償処理データをメモリに格納すると、メモリ容量が増え、無線通信装置の製造コストが増大するという問題が生じる。
よって、歪補償処理データ容量を低減しながら、マルチモード変調信号に対応した歪補償処理を実現することが、第一の課題である。
また、SDR通信装置の実現にあたっては、マルチモード変調信号ごとに、電力増幅器の歪補償処理データをメモリに格納しておく必要があるが、装置の製造時点では対応していない変調信号に対する歪補償処理データを、事前にメモリに格納しておくことは、回路規模の増大を伴うこと、また、変調方式が同一でも、例えば、変調速度が異なる変調信号に対しては、異なる歪補償処理データが必要になる。
ここで、従来の極座標変調送信装置において、振幅位相測定部を用い、変調信号ごとの電力増幅器の歪補償処理データを取得することで対応可能であるが、前記手順で取得した歪補償処理データでは、上述のように、メモリ容量が増え、無線通信装置の製造コストが増大する。
よって、適応的に取得する、マルチモード変調信号に対応した歪補償処理データを、効率的にメモリに格納することが、第二の課題である。
本発明は、上記従来の事情に鑑みてなされたものであって、歪補償精度を維持しながら、歪補償処理データ容量を低減可能であるとともに、適応的に取得するマルチモード変調信号に対応した歪補償処理データを、効率的にメモリに格納可能なマルチモード極座標変調装置、及び、マルチモード無線通信方法を提供することを目的とする。
本発明のマルチモード対応極座標変調送信装置は、第1に、送信変調信号の変調方式の切り替えを行う第一の制御部と、送信データをもとに、前記第一の制御部により選択された変調方式にてベースバンド直交信号を生成する信号生成部と、前記ベースバンド直交信号から、振幅信号を生成する極座標変換部と、前記振幅信号をもとに、振幅変調信号を生成する振幅変調部と、前記ベースバンド直交信号の少なくとも位相成分を含む信号をもとに、無線周波数帯の位相変調信号を生成する位相変調部と、前記位相変調信号を入力高周波信号として入力し、前記振幅変調信号を制御信号として入力し、無線周波数帯の送信データを生成する増幅部と、前記振幅変調部の入力信号及び前記位相変調部の入力信号のうち少なくとも一方に対して所定の歪補償処理を行う歪補償処理回路と、前記歪補償処理回路において用いられる補償データの校正動作と、送信動作との切り替えを行う第二の制御部とを備え、前記第一の制御部は、前記校正動作時には、前記送信動作時に用いられる変調方式における変調信号の振幅ダイナミックレンジ以下となる変調方式を選択する。
この構成により、マルチモード変調信号に対応した歪補償処理用の補償データを、効率的に取得することができる。
本発明のマルチモード対応極座標変調送信装置は、第2に、上記第1のマルチモード対応極座標変調送信装置であって、前記第一の制御部は、前記校正動作時には、さらに、所定制御幅にて、出力レベルを単調減少させる。
この構成により、上記第1のマルチモード対応極座標変調送信装置での効果に加え、簡易に歪補償処理用の補償データを取得することができる。
本発明のマルチモード対応極座標変調送信装置は、第3に、上記第1または第2のマルチモード対応極座標変調送信装置であって、前記歪補償処理回路は、所定振幅の入力高周波信号及び制御電圧が入力された増幅部の定常状態における制御電圧値に対する出力信号特性をもとに、前記増幅部の定常状態での出力信号を線形化する定常特性補償回路を備える。
この構成により、上記第1、あるいは、第2のマルチモード対応極座標変調送信装置での効果に加え、歪補償処理回路を簡易に構成することができる。
本発明のマルチモード対応極座標変調送信装置は、第4に、上記第3のマルチモード対応極座標変調送信装置であって、前記歪補償処理回路は、前記定常特性補償回路にて前記定常状態出力信号線形化処理実施後の、振幅信号の振幅を調整する第一の振幅調整部をさらに備える。
この構成により、上記第3のマルチモード対応極座標変調送信装置での効果に加え、歪補償精度をさらに向上することができる。
本発明のマルチモード対応極座標変調送信装置は、第5に、上記第3のマルチモード対応極座標変調送信装置であって、前記歪補償処理回路は、前記定常特性補償回路にて前記振幅信号の歪補償処理を行う場合のアドレス参照用振幅信号の振幅を調整する第二の振幅調整部をさらに備える。
この構成により、上記第3のマルチモード対応極座標変調送信装置での効果に加え、歪補償精度をさらに向上することができる。
本発明のマルチモード対応極座標変調送信装置は、第6に、上記第3のマルチモード対応極座標変調送信装置であって、前記歪補償処理回路は、前記定常特性補償回路にて前記位相信号の歪補償処理を行う場合のアドレス参照用振幅信号の振幅を調整する第一の位相補償部をさらに備える。
この構成により、上記第3のマルチモード対応極座標変調送信装置での効果に加え、歪補償精度をさらに向上することができる。
本発明のマルチモード対応極座標変調送信装置は、第7に、上記第3のマルチモード対応極座標変調送信装置であって、前記歪補償処理回路は、前記位相信号又は前記位相変調信号の振幅を調整する第二の位相補償部をさらに備える。
この構成により、上記第3のマルチモード対応極座標変調送信装置での効果に加え、歪補償精度をさらに向上することができる。
本発明のマルチモード対応極座標変調送信装置は、第8に、上記第3のマルチモード対応極座標変調送信装置であって、前記歪補償処理回路は、前記振幅信号あるいは前記位相信号に所定の遅延量を与え、振幅信号と位相信号との間の同期を確保する遅延調整部をさらに備える。
この構成により、上記第3のマルチモード対応極座標変調送信装置での効果に加え、歪補償精度をさらに向上することができる。
本発明の集積回路は、上記第1から第8のいずれかのマルチモード対応極座標変調送信装置より構成される。
この構成により、上記第1から第8のいずれかのマルチモード対応極座標変調送信装置での効果に加え、回路規模を低減することができる。
本発明のマルチモード対応極座標変調方法は、送信変調信号の変調方式の切り替えを行うステップと、送信データをもとに、前記選択された変調方式にてベースバンド直交信号を生成するステップと、前記ベースバンド直交信号から、振幅信号を生成するステップと、前記振幅信号をもとに、振幅変調信号を生成するステップと、前記ベースバンド直交信号の少なくとも位相成分を含む信号をもとに、無線周波数帯の位相変調信号を生成するステップと、前記位相変調信号を入力高周波信号として入力し、前記振幅変調信号を制御信号として入力し、無線周波数帯の送信データを生成するステップと、前記振幅変調部の入力信号及び前記位相変調部の入力信号のうち少なくとも一方に対して所定の歪補償処理を行う歪補償処理回路において用いられる補償データの校正動作と、送信動作との切り替えを行うステップとを有し、前記校正動作時には、変調信号の振幅ダイナミックレンジが、前記送信動作時に用いられる変調方式における変調信号の振幅ダイナミックレンジ以下となる変調方式を選択する。
この構成により、マルチモード変調信号に対応した歪補償処理用の補償データを、効率的に取得することができる。
本発明のマルチモード無線通信方法は、上記マルチモード対応極座標変調方法を用いて、基地局と移動局との間の無線通信を行う。
この構成により、無線リンクを経由して、マルチモード変調信号に対応した歪補償処理用の補償データを、効率的に取得することができる。
本発明の無線通信装置は、上記第1から第8のいずれかのマルチモード対応極座標変調送信装置又は集積回路を備える。
この構成により、マルチモード動作に対応した極座標変調方式の無線通信装置を、簡易に実現することができる。
本発明の無線通信システムは、記第1から第8のいずれかのマルチモード対応極座標変調送信装置、集積回路又は無線通信装置を備える。
この構成により、マルチモード動作に対応した極座標変調方式の無線通信システムを、簡易に実現することができる。
本発明は、極座標変調回路における歪補償処理方法であって、位相変調と振幅変調に関わる理想動作からの劣化要因を、キャリア周波数に依存するAM−AM特性およびAM−PM特性、電力増幅器の出力電位に依存する係数情報、および変調速度に依存する係数情報の独立な3つのパラメータに分離して補償する歪補償処理方法である。
この構成により、歪補償精度を維持しながら歪補償処理データの容量を低減するとともに、適応的に取得するマルチモード変調信号に対応した歪補償処理データを効率的にメモリに格納することができる。
本発明は、第一のエリアおよび第二のエリアの各無線通信システムに対応可能なコグニティブ無線通信装置におけるマルチモード無線通信方法であって、前記第一のエリアを離れ、前記第二のエリアに入った場合に、変調信号のダイナミックレンジに対応する係数情報を取得するステップと、変調速度に対応する係数情報を取得するステップと、前記係数情報に対応する歪補償処理用データをメモリに格納するステップと、前記第二のエリアの無線通信システムに対応する変調方式で通信を行うステップとを有するマルチモード無線通信方法である。
この構成により、複数の無線通信システムごとに異なる周波数、変調方式および変調速度に柔軟に対応することができ、歪補償処理データ用に大容量のメモリを用意しておかなくて、無線通信装置の製造時点では想定されていない無線通信システムに対して適応的に対応することができる。
本発明によれば、歪補償精度を維持しながら、歪補償処理データ容量を低減可能であるとともに、適応的に取得するマルチモード変調信号に対応した歪補償処理データを、効率的にメモリに格納可能なマルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法を提供することができる。
以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
(第1の実施形態)
本発明の第1の実施形態は、歪補償精度を維持しながら、歪補償処理データ容量を低減可能なマルチモード対応極座標変調送信装置に関して説明するものである。まず始めに、第1の実施形態に係る極座標変調送信装置の概要について説明する。
図1は、本発明の第1の実施形態に係る極座標変調送信装置の概略構成を示すブロック図である。図1に示すように、極座標変調送信装置1900は、極座標変調回路1901と、信号生成部1902と、制御部1903と、適応動作制御部1711とを備える。また、極座標変調回路1901は、電力増幅器1と、極座標変換部2と、歪補償処理回路1701と、振幅変調部10と、位相変調部11と、を備える。
まず、図1に示す極座標変調送信装置1900に関する制御信号について説明する。
送信レベル情報D191は、電力増幅器1からの出力レベルを設定する制御信号である。
モード切り替え信号D192は、極座標変調送信装置1900の動作モードとして、歪補償処理回路1701における歪補償用係数情報の最適化モード(キャリブレーションモード)と送信動作モードという2つの動作切り替えを実行するための第一のモード切り替え信号と、信号生成部1902より出力する信号の変調モードを設定する第二のモード切り替え信号とを有する制御信号である。
(1)極座標変調送信装置の基本構成
次に、図1に示す極座標変調送信装置1900の構成について説明する。
信号生成部1902は、制御部1903より出力される前記第二のモード切り替え信号により設定される変調モードにて、極座標変調送信装置1900より構成される無線通信装置のユーザー操作に基づいた送信データから、ベースバンド帯直交座標信号(IQ信号)を生成し、信号入力端子T11、及び、信号入力端子T12を介して、極座標変換部2に対して、IQ信号を出力する。
制御部1903は、送信レベル情報D191を歪補償処理回路1701に対して出力する。具体的には、制御部1903は、送信レベル情報D191を、信号入力端子T191を介して極座標変調回路1901に対して出力する。送信レベル情報D191を受信した極座標変調回路1901は、信号入力端子T1、T2、T3、T4,T5及びT6を介して、送信レベル情報D191を、歪補償処理回路1701に出力する。また、制御部1903は、信号生成部1902に対して第二のモード切り替え信号を、また、信号入力端子T192を介して、極座標変調回路1901に対して第一のモード切り替え信号、及び、第二のモード切り替え信号を、さらに、適応動作制御部1711に対して第一のモード切り替え信号を、それぞれ出力する。
制御部1903は、キャリブレーションモード時に、送信動作モード時に用いられる変調方式における変調信号の振幅Dレンジ以下となる変調方式を選択する第二のモード切り替え信号を出力する。そして、歪補償処理回路1701では、変調信号の振幅Dレンジが狭い変調方式において、適応動作制御部1711からの制御信号D173を参照しながら、歪補償処理回路1701における補償データの一例である歪補償用係数情報を最適化する。
このように、振幅Dレンジの狭い信号を用いて歪補償用係数情報を求めておき、より広い振幅Dレンジを有する変調信号送信時の補償データとして参照することで、極座標変調送信装置のマルチモード動作対応を可能とする場合の、歪補償処理データ容量の増大抑制と、補償精度の確保という相反する課題を同時に解決することが可能となる。
(2)極座標変調回路の基本構成
本願発明者のこれまでの検討によれば、電力増幅器の動特性(AM−AM動特性、AM−PM動特性)を事前に取得することは容易ではないが、歪補償処理回路1701は、定常状態の制御電圧を供給して取得した電力増幅器のAM−AM順特性、AM−PM順特性をもとに、所定の演算処理を行うことで、簡易な構成ながら、電力増幅器の動特性を高精度に補償できることが分かった。
そこでまず、電力増幅器のAM−AM動特性補償技術、AM−PM動特性補償技術について説明する。
図2は、本発明の第1の実施形態に係る極座標変調回路の概略構成を示すブロック図である。
図2に示すように、極座標変調回路1901は、電力増幅器1と、極座標変換部2と、歪補償処理回路1701と、振幅変調部10と、位相変調部11とを備える。また、歪補償処理回路1701は、遅延調整部4、5と、アドレス生成部7a、7bと、振幅補正部8と、位相補正部9と、乗算回路102と、信号入力端子T1を有する送信レベル制御部103と、メモリ104と、乗算回路105aより構成される第一の振幅調整部105と、信号入力端子T2を有する第一の係数選択部106と、乗算回路107a及び演算処理回路107bより構成される第二の振幅調整部107と、信号入力端子T3を有する第二の係数選択部108と、信号入力端子T4を有する第三の係数選択部109と、可変減衰回路110と、信号入力端子T5を有する第四の係数選択部111と、信号入力端子T6を有する第五の係数選択部112と、信号出力端子T7を有する振幅判定部113と、アドレス生成部1402と、乗算回路1702と、信号入力端子T171とT174とを有する第六の係数選択部1703とを備える。
すなわち、本発明の第1の実施形態における極座標変調回路1901は、図29に示す従来の極座標変調送信装置20における振幅位相測定部12を削除するとともに、メモリ6及びアドレス生成部7の代わりに、メモリ104及びアドレス生成部7a、7bを備える。また、新規に、乗算回路102と、送信レベル制御部103と、第一の振幅調整部105と、第一の係数選択部106と、第二の振幅調整部107と、第二の係数選択部108と、第三の係数選択部109と、可変減衰回路110と、第四の係数選択部111と、第五の係数選択部112と、振幅判定部113と、アドレス生成部1402と、乗算回路1702と、第六の係数選択部1703と、を備えるものである。
極座標変換部2は、信号入力端子T11、及び、信号入力端子T12を介して、信号生成部1902より入力されたベースバンド帯直交座標信号(IQ信号)を振幅信号r(t)と定振幅の位相信号θ(t)とに分離する。ここで、r(t)は所定値、例えば、1で正規化する。
歪補償処理回路1701は、信号入力端子T13、及び、信号入力端子T14を介して入力される、極座標変換部2にて生成された振幅信号r(t)及び位相信号θ(t)に対して所定の歪補償処理を行う。また、歪補償処理回路1701は、振幅補正後の振幅信号を、信号出力端子T15を介して振幅変調部10に対して出力するとともに、位相補正後の位相信号を、信号出力端子T16を介して位相変調部11に対して出力する。この歪補償処理回路1701の構成、及び、動作は後述する。
振幅変調部10は、信号出力端子T15を介して歪補償処理回路1701より出力される振幅信号に基づいて、電力増幅器1の制御電圧を駆動する。
位相変調部11は、信号出力端子T16を介して歪補償処理回路1701より出力される位相信号に基づいて、位相変調を行うとともに、信号入力端子T17を介して、位相変調信号を、歪補償処理回路1701に対して出力する。
電力増幅器1は、制御信号としての振幅変調部10からの出力信号に基づいて、信号出力端子T18を介して、歪補償処理回路1701より出力される位相変調信号に対して振幅変調を合成する。
次に、歪補償処理回路1701の構成、及び、動作について詳述する。なお、振幅変調部10及び位相変調部11について、歪補償処理回路1701との間の信号の入出力関係を明確化するために、再度、動作について詳述する。
まず、振幅信号の信号経路に関わる構成について説明する。
遅延調整部4は、第五の係数選択部112より出力される第五の係数情報(coeff5)に基づいて、信号入力端子T13を介して極座標変換部2より入力される振幅信号に対して、所定の遅延を与え、遅延調整後の振幅信号を乗算回路102に対して出力する。なお、遅延調整の方法については後述する。
乗算回路102は、遅延調整部4より出力される振幅信号に対して、送信レベル制御部103より出力される電力制御係数(PCL)を乗算し、電力制御係数乗算後の振幅信号を、振幅補正部8と、第二の振幅調整部107と、振幅判定部113と、に対して出力する。
送信レベル制御部103は、制御部1903より入力される電力増幅器1の送信レベル情報D191に対応する電力制御係数をメモリに格納し、信号入力端子T1を介して入力する送信レベル情報D191をアドレス信号として、前記電力制御係数を乗算回路102に対して出力する。
メモリ104は、ネットワークアナライザ等を用いて事前に取得する、電力増幅器1のAM−AM順特性、及び、AM−PM順特性の逆特性を格納する。ここで、電力増幅器1のAM−AM順特性とAM−PM順特性は、例えば、図3、図4に示すものである。図3において、横軸は電力増幅器1に供給する制御電圧の最大値にて正規化した正規化制御電圧を、縦軸は電力増幅器1からの出力振幅を、図中の実線は正規化制御電圧に対する出力振幅の定常特性を示す。
次に、図4において、横軸は正規化制御電圧を、縦軸は電力増幅器1への入力高周波信号と出力高周波信号との位相差、すなわち、電力増幅器1の通過位相回転量を、図中の実線は正規化制御電圧に対する通過位相回転量の定常特性を示す。また、メモリ104は、アドレス生成部7aより出力される第一のアドレス信号に応じて電力増幅器1の逆特性となる振幅補正信号を振幅補正部8に対して出力するとともに、アドレス生成部7bより出力される第二のアドレス信号に応じて電力増幅器1の逆特性となる位相補正信号を位相補正部9に対して出力する。なお、図3、図4の特性は、制御電圧供給後、電力増幅器の出力が安定化した時点の定常特性を示す。
アドレス生成部7aは、第二の振幅調整部107を構成する乗算回路107aより出力される振幅信号を、メモリ104に格納するAM−AM逆特性データと補償精度から求まる、所定範囲、かつ、所定ステップ幅を有する離散値に変換した上で、メモリ104に格納するAM−AM逆特性データを参照するための第一のアドレス信号を生成する。
アドレス生成部7bは、第二の振幅調整部107を構成する演算処理回路107bより出力される振幅信号を、メモリ104に格納するAM−PM逆特性データと補償精度から求まる、所定範囲、かつ、所定ステップ幅を有する離散値に変換した上で、メモリ104に格納するAM−PM逆特性データを参照するための第二のアドレス信号を生成する。
振幅補正部8は、メモリ104より出力される振幅補正信号をもとに、乗算回路102より出力される振幅信号に対する補正を行い、振幅補正後の振幅信号を第一の振幅調整部105に対して出力する。
振幅判定部113は、乗算回路102より出力される振幅信号を、一定間隔にてサンプリングして瞬時振幅値を求め、前記瞬時振幅値を振幅データD7として、アドレス生成部1402に対して出力する。
アドレス生成部1402は、振幅判定部113より出力される振幅データD7をもとに、第六の係数選択部1703において補償データを参照するための第三のアドレス信号D141を後述する方法にて生成し、信号出力端子T141と信号入力端子T171とを介して、前記第六の係数選択部1703に対して、第三のアドレス信号D141を出力する。
第一の係数選択部106は、信号入力端子T2より入力される所定のデータD2に対応した係数情報を図5に示すテーブルデータとして格納しておく。図5に示すテーブルデータの1列目は、テーブルデータのアドレス番号を、2列目は、後述する方法にて設定する係数情報(coeff1)を示す。ここで、データD2は、送信レベル情報D191である。また、第一の係数選択部106は、係数情報のキャリブレーションモード時には、乗算回路1702より出力される係数情報によって、テーブルデータを更新する構成を採る。
第六の係数選択部1703は、2つのメモリ領域を有し、第一のメモリ領域は、係数情報のキャリブレーションモード時に使用するものであり、信号入力端子T174より入力されるデータD174に対応する形式にて第六の係数情報(coeff6)を格納する。また、第六の係数選択部1703を構成する第二のメモリ領域は、送信動作モード時に使用するものであり、信号入力端子T171より入力されるデータD171に対応する形式にて第六の係数情報を格納する。よって、第一のメモリ領域と第二のメモリ領域とは、それぞれ、第六の係数情報の格納形式が異なる。
前記第一のメモリ領域は、図18に示す形式であり、テーブルデータの一列目はテーブルデータのアドレス番号を、二列目は1を含む所定範囲の第六の係数情報を示す。なお、この例では、アドレス番号Qに係数情報“1”を格納しているとともに、各係数情報は、例えば、Qより小さいアドレス番号に対応した係数情報は“1”より大きく、Qより大きいアドレス番号に対応した係数情報は“1”より小さく、アドレス番号の増加に伴い単調減少するように設定されている。ここで、データD174は、適応動作制御部1711より出力される制御信号D173である。
また、前記第二のメモリ領域は、図5に示すテーブルデータの2列目を、後述する方法にて設定する係数情報(coeff6)に置き換えたものとなる。ここで、データD171は、アドレス生成部1402より出力されるデータD141である。なお、特に記載のない場合、第六の係数選択部1703は、送信動作モード時には、第六の係数情報として“1”を出力する。
乗算回路1702は、第一の係数選択部106より出力される第一の係数情報と、第六の係数選択部1703より出力される第六の係数情報とを乗算し、送信動作モード時には、係数情報の積を第一の振幅調整部105に対して出力し、また、係数情報のキャリブレーションモード時には、前記係数情報の積を第一の係数選択部106に対して出力する。
第一の振幅調整部105は、乗算回路105aより構成される。乗算回路105aは、振幅補正部8より出力される振幅信号に対して、乗算回路1702より出力される係数情報の積を乗算して、前記積を乗算後の振幅信号を、信号出力端子T15を介して、振幅変調部10に対して出力する。
第二の振幅調整部107は、乗算回路107a及び演算処理回路107bより構成される。乗算回路107aは、乗算回路102より出力される振幅信号に対して、第二の係数選択部108より出力される第二の係数情報(coeff2)を乗算し、第二の係数情報乗算後の振幅信号をアドレス生成部7aに対して出力する。また、演算処理回路107bは、乗算回路102より出力される振幅信号に対して、第三の係数選択部109より出力される第三の係数情報(coeff3)をもとに所定の演算処理を実施し、演算処理実施後の振幅信号をアドレス生成部7bに対して出力する。ここで、第二の振幅調整部107は、アドレス生成部7aと7bが、第一のアドレス信号と第二のアドレス信号を生成する際のもとになる振幅信号に対して、異なる係数情報を乗算可能であることを特徴とする。なお、演算処理回路107bにて行う所定の演算処理とは、例えば、乗算回路102より出力される振幅信号に対して、第三の係数選択部109より出力される第三の係数情報(coeff3)を、乗算あるいは加算する演算処理を指す。
第二の係数選択部108は、乗算回路107aにて乗算する第二の係数情報を設定するために、信号入力端子T3より入力される所定のデータD3に対応した係数情報をテーブルデータとして格納しておく。このテーブルデータは、図5に示すテーブルデータの2列目を、後述する方法にて設定する第二の係数情報に置き換えたものとなる。ここで、データD3は、送信レベル情報D191である。
第三の係数選択部109は、演算処理回路107bにて乗算する第三の係数情報を設定するために、信号入力端子T4より入力される所定のデータD4に対応した係数情報をテーブルデータとして格納しておく。このテーブルデータは、図5に示すテーブルデータの2列目を、後述する方法にて設定する第三の係数情報に置き換えたものとなる。ここで、データD4は、送信レベル情報D191である。
振幅変調部10は、信号出力端子T15を介して乗算回路105aより出力される振幅信号に基づいて電力増幅器1の制御電圧を駆動する。
次に、位相信号の信号経路に関わる構成について説明する。
遅延調整部5は、第五の係数選択部112より出力される第五の係数情報(coeff5)に基づいて、信号入力端子T14を介して極座標変換部2より入力される位相信号に対して、所定の遅延を与え、遅延調整後の位相信号を位相補正部9に対して出力する。なお、遅延調整の方法については、遅延調整部4での遅延調整とあわせて後述する。
位相補正部9は、メモリ104より出力される位相補正信号をもとに、遅延調整部5より出力される位相信号に対する補正を行い、信号出力端子T16を介して、位相補正後の位相信号を位相変調部11に対して出力する。
位相変調部11は、信号出力端子T16を介して位相補正部9より出力される位相補正後の位相信号に基づいて位相変調を行い、信号入力端子T17を介して可変減衰回路110に対して位相変調信号を出力する。
可変減衰回路110は、第四の係数選択部111より出力される第四の係数情報(coeff4)に応じて、信号入力端子T17を介して位相変調部11より入力される位相変調信号の振幅値(減衰量)を調整し、信号出力端子T18を介して、振幅調整後の位相変調信号を電力増幅器1に対して出力する。なお、可変減衰回路の代わりに可変利得増幅器を用いてもよい。
第四の係数選択部111は、可変減衰回路110での減衰量を決定するための第四の係数情報を設定するために、信号入力端子T5より入力される所定のデータD5に対応した係数情報をテーブルデータとして格納しておく。このテーブルデータは、図5に示すテーブルデータの2列目を、後述する方法にて設定する第四の係数情報に置き換えたものとなる。ここで、データD5は、送信レベル情報D191である。
続いて、振幅信号と位相信号の信号経路間の遅延調整に関わる構成について説明する。
第五の係数選択部112は、遅延調整部4と遅延調整部5とが行う、極座標変換部2より出力される振幅信号と位相信号との間の同期調整量を設定するために、信号入力端子T6より入力される所定のデータD6に対応した係数情報をテーブルデータとして格納しておく。このテーブルデータは、図5に示すテーブルデータの2列目を、後述する方法にて設定する第五の係数情報(coeff5)に置き換えたものとなる。ここで、データD6は、送信レベル情報D191である。
(3)歪補償処理回路の動作(送信動作モード時)
次に、送信動作モード時の歪補償処理回路1701の動作について、電力増幅器1の電力制御方法と、電力増幅器1のAM−AM動特性補償方法と、電力増幅器1のAM−PM動特性補償方法と、振幅信号と位相信号の経路間時間遅延差の補償方法と、の4つに分けて説明する。
電力増幅器1の電力制御方法については、乗算回路102と送信レベル制御部103とを用いることに関して説明する。
次に、電力増幅器1のAM−AM動特性補償方法については、乗算回路105aと第一の係数選択部106とを用いること、また、乗算回路107aと第二の係数選択部108とを用いること、の2点に関して説明する。
また、電力増幅器1のAM−PM動特性補償方法については、演算処理回路107bと第三の係数選択部109とを用いること、また、可変減衰回路110を用いること、の2点に関して説明する。
さらに、振幅信号と位相信号の経路間時間遅延差の補償方法については、第五の係数選択部112と、遅延調整部4と、遅延調整部5と、を用いることに関して説明する。
(3−1) 電力制御方法
まず、乗算回路102と、送信レベル制御部103と、を用いた電力制御方法について、図2、図6、図7、及び、図8を用いて説明する。
図6は、極座標変調送信装置1900の制御部1903より出力される電力増幅器1の送信レベル情報D191の具体例を示す図である。
図6に示すテーブルデータの1列目は、GSM規格書に記載された、900MHz帯GSMバンドにおいて8−PSK変調にて送信している無線通信装置送信部に対するアップリンクの送信電力規定の電力値[dBm]を、2列目は送信レベル情報D191を示す。
図6に示すような、送信電力の制御ステップ幅が2dBである場合に、送信レベル制御部103に格納する電力制御係数(PCL)を図7に示す。図7に示すテーブルデータの1列目は、テーブルデータのアドレス番号を、2列目は、電力制御係数を示す。
アドレス番号1に対応する電力制御係数を1とし、アドレス番号M、及び、アドレス番号(M+1)に対応する電力制御係数間の関係は、下記の式(1)にて表される。
Figure 0004903718
送信レベル制御部103では、このように設定した電力制御係数を、信号入力端子T1を介して入力する送信レベル情報191に応じて出力し、振幅信号に対して乗算することで、振幅信号に対して、電力制御情報を重畳する。
図8は、電力増幅器1の出力部における、8−PSK変調信号に対する瞬時出力電力のDレンジを示す図であり、縦軸は、dB単位表示した出力電力を示す。
レンジ(A)701は、平均出力電力がPout1の場合の8−PSK変調信号に対する瞬時出力電力のDレンジである。
レンジ(B)702は、平均出力電力がPout2の場合の8−PSK変調信号に対する瞬時出力電力のDレンジである。
レンジ(C)703は、平均出力電力がPout3の場合の8−PSK変調信号に対する瞬時出力電力のDレンジである。
ここで、Pout1と、Pout2と、Pout3との関係は、下記の式(2)にて表される。また、Pout1、Pout2、Pout3に対応するPCLをそれぞれ、PCL(1)、PCL(2)、PCL(3)とすると、下記の式(3)に示す相互関係になる。
Pout1>Pout2>Pout3 ・・・・(2)
PCL(1)>PCL(2)>PCL(3) ・・・・(3)
すなわち、振幅信号に対して電力制御情報を重畳すると、dB単位表示した出力電力軸に対して、振幅信号のDレンジは同一ながら、出力電力軸に対して平行シフトさせた時間波形が、電力増幅器1からの出力信号として得られる。
なお、これまで説明したように、極座標変調送信装置1900では、振幅信号を用いて、変調信号の振幅成分と電力制御情報を表現するが、電力制御情報による振幅信号の制御ステップは、振幅成分に要求される振幅値の解像度と比べ、はるかに粗いものである。
(3−2)AM−AM動特性補償方法
次に、乗算回路105aと、第一の係数選択部106と、を用いたAM−AM動特性補償方法について、図2、及び、図9を用いて説明する。ここで、第二の係数情報は“1”とする。
図9において、横軸は電力増幅器1に供給する制御電圧の所定値にて正規化した正規化制御電圧を、縦軸は電力増幅器1からの出力振幅を示す。
点線にて示す定常特性801は、正規化制御電圧に対する出力振幅の定常特性(AM−AM順特性)を示し、図3にて示した定常特性と同一のものである。
実線にて示す特性(A)802は、第一の係数情報が下記の式(4)を満たす場合に、振幅変調部10への入力信号として、定常特性801を用いたAM−AM特性補償後の振幅信号と同等の振幅信号を得るために、メモリ104に格納するAM−AM特性の順特性を示す。
実線にて示す特性(B)803は、第一の係数情報が下記の式(5)を満たす場合に、振幅変調部10への入力信号として、定常特性801を用いたAM−AM特性補償後の振幅信号と同等の振幅信号を得るために、メモリ104に格納するAM−AM特性の順特性を示す。
coeff1>1 ・・・・(4)
coeff1<1 ・・・・(5)
上記関係は、例えば、振幅変調動作状態にある電力増幅器1のAM−AM動特性と、電力増幅器1の特性取得時のAM−AM順特性データとが、誤差を生じる場合の補償に適用できることを示す。
よって、メモリ104に格納する逆特性は変更しなくても、第一の係数情報を調整することで、メモリ104に格納する逆特性を調整したのと同様な効果を実現できる。
また、乗算回路107aと、第二の係数選択部108と、を用いたAM−AM動特性補償方法についても、同様な関係があり、上記説明と同様に、図2、及び、図9を用いて説明する。ここで、第一の係数情報は“1”とする。
乗算回路107aでの第二の係数情報の乗算処理において、第二の係数情報が下記の式(6)を満たす場合に、振幅変調部10への入力信号として、定常特性801を用いたAM−AM特性補償後の振幅信号と同等の振幅信号を得るために、メモリ104に格納するAM−AM特性の順特性が特性(A)802である。
また、乗算回路107aでの第二の係数情報の乗算処理において、第二の係数情報が下記の式(7)を満たす場合に、振幅変調部10への入力信号として、定常特性801を用いたAM−AM特性補償後の振幅信号と同等の振幅信号を得るために、メモリ104に格納するAM−AM特性の順特性が特性(B)803である。
よって、乗算回路105aと第一の係数選択部106とを用いたAM−AM動特性補償方法での説明と同様に、メモリ104に格納する逆特性は変更しなくても、第二の係数情報を調整することで、メモリ104に格納する逆特性を調整したのと同様な効果を実現できる。
coeff2>1 ・・・・(6)
coeff2<1 ・・・・(7)
ここで、第一の係数選択部106に入力するデータD2として、図6を用いて説明した送信レベル情報D191を挙げているが、送信レベル情報D191にもとづいて第一の係数情報を選択する意味について図10を用いて説明する。
図10は、電力増幅器1に所定レベルの入力高周波信号振幅を与えた状態にて、制御電圧に対する出力信号振幅のステップ応答特性を示す図である。図10において、横軸は電力増幅器1に制御信号を入力した時点からの経過時間を、縦軸は電力増幅器1からの出力信号振幅を示す。図10の例では、異なる2つの制御電圧値(定常制御電圧値)に対するステップ応答特性として、特性(A)901、及び、特性(B)902を示しており、定常特性での電力増幅器からの出力振幅が異なる。なお、図10に示す2つのステップ応答特性において、特性(A)901の方が、特性(B)902よりも、高い定常制御電圧値を供給している。
メモリ104に格納しているAM−AM逆特性データを参照して歪補償を実施した場合、高速に変化する振幅変調信号に対しては、振幅変調部10、あるいは、電力増幅器1の出力応答特性に起因して、所望の補償効果を得ることができないが、本願発明者の検討の結果、変調信号の平均出力電力を得る一定値の制御電圧供給時の電力増幅器1のステップ応答特性を、無線システムの規格書(例えば、GSM規格書など)に定められた送信出力電力ごとに予め測定しておき、前記ステップ応答特性に応じて、振幅信号に所定値を乗算することで補償精度を向上できることが分かった。
例えば、図10中の特性(A)901のように過渡応答特性がオーバーシュート状態の場合には、第一の係数選択部106は、振幅補正部8から乗算回路105aへの入力信号に対して、乗算回路105aから振幅変調部10への出力信号を減衰させるように、“1”未満となる第一の係数情報を、第一の振幅調整部105に対して出力する。逆に、図10中の特性(B)902のように過渡応答期間中に所定値を超えることなく収束する場合には、第一の係数選択部106は、乗算回路105aへの入力信号に対して出力信号を増幅するように、“1”以上となる第一の係数情報を、乗算回路105aに対して出力する。
すなわち、送信変調信号における平均出力電力を得る一定値の制御電圧を供給し、電力増幅器1の起動特性がオーバーシュートの場合には、定常特性にて補正を実施した振幅信号を圧縮し、起動特性がオーバーシュートの逆特性の場合には、前記振幅信号を伸張することで、過渡応答の影響を考慮して所望の出力振幅が得られるようにする。本処理内容は、図9を用いて説明したような、第一の係数情報を用いて、定常特性801から特性(A)802、あるいは、特性(B)803を求める処理を、送信電力レベルに応じて行うことに相当するものである。なお、第二の係数情報に関しても同様である。
以上のように、送信レベルごとに求めた第一の係数情報を、図5に示す形式にて、第一の係数選択部106に格納しておく。なお、第一の係数情報は送信レベルごとに異なる値を取る場合を記載したが、電力増幅器1の特性から、近接する電力値に対して同一値をとる場合には、テーブルデータを削減するように、間引いたデータを格納してもよい。以上が、第一、及び、第二の係数情報の設定に関する説明である。
ここで、本発明に至る過程での検討により、送信レベル規定よりも細かいステップ幅にて、電力増幅器1の制御電圧を掃引して第一の係数情報、あるいは、第二の係数情報を取得しておき、アドレス生成部1402より出力される振幅信号の振幅値に基づく第三のアドレス信号D141に応じて、第一の係数情報、あるいは、第二の係数情報を選択することで、補償精度をさらに向上可能であることと、変調速度の速い信号を送信する場合に前記効果がより大きくなることが分かった。よって、本明細書では、送信レベル情報D191に基づいて第一の係数選択部106より出力される第一の係数情報に対して、第三のアドレス信号D141に基づいて第六の係数選択部1703より出力される第六の係数情報を乗算する構成とした。
なお、図2には記載していないが、送信レベル情報D191に基づいて第二の係数選択部108より出力される第二の係数情報に対して、第三のアドレス信号D141に基づいて出力される係数情報を乗算する構成としてもよいし、第一の係数選択部106、第二の係数選択部108を、第三のアドレス信号D141に対応して係数情報を格納する形式として、第三のアドレス信号D141に基づいて、第一の係数情報、あるいは、第二の係数情報を出力する構成としてもよい。
(3−3)AM−PM動特性補償方法
次に、演算処理回路107bと、第三の係数選択部109と、を用いたAM−PM動特性補償方法について、図2、図11、図12、及び、図13を用いて説明する。
図11において、横軸は正規化制御電圧を、縦軸は電力増幅器1の通過位相回転量を示す。
点線にて示す定常特性1001は、正規化制御電圧に対する通過位相回転量の定常特性(AM−PM順特性)を示し、図4にて示した定常特性と同一のものである。
実線にて示す特性(A)1002は、演算処理回路107bが単一の乗算回路にて構成され、第三の係数情報が下記の式(8)を満たす場合に、位相変調部11への入力信号として、定常特性1001を用いたAM−PM特性補償後の位相信号と同等の位相信号を得るために、メモリ104に格納するAM−PM特性の順特性を示す。
実線にて示す特性(B)1003は、演算処理回路107bが単一の乗算回路にて構成され、第三の係数情報が下記の式(9)を満たす場合に、位相変調部11への入力信号として、定常特性1001を用いたAM−PM特性補償後の位相信号と同等の位相信号を得るために、メモリ104に格納するAM−PM特性の順特性を示す。
coeff3>1 ・・・・(8)
coeff3<1 ・・・・(9)
上記関係は、例えば、振幅変調動作状態にある電力増幅器1のAM−PM動特性と、電力増幅器1の特性取得時のAM−PM順特性データとが、誤差を生じる場合の補償に適用できることを示す。
よって、メモリ104に格納する逆特性は変更しなくても、第三の係数情報を調整することで、メモリ104に格納する逆特性を調整したのと同様な効果を実現できる。
ここで、図12に示す演算回路を用いて、第三の係数情報を調整することでも、メモリ104に格納する逆特性を調整したのと同様な効果を実現できる。
図12は、演算処理回路107bの回路構成の一例を示すものである。
本構成を採ることにより、乗算回路102より出力される振幅信号をr1101(t)、演算処理回路107bより出力される振幅信号をr1102(t)とした場合に、r1101(t)とr1102(t)とは、下記の式(10)に示す関係となる。
r1102(t) = r1101(t)×coeff3+r(t)max×(1−coeff3)・・・・(10)
ここで、r(t)maxは、極座標変換部2より出力される振幅信号の最大値であり、例えば1に設定されるものである。
次に、上記の式(8)あるいは式(9)に示す第三の係数情報を、上記の式(10)に適用することで実現するAM−PM動特性補償方法について図13を用いて説明する。
図13において、横軸は正規化制御電圧を、縦軸は電力増幅器1の通過位相回転量を示す。
点線にて示す定常特性1201は、正規化制御電圧に対する通過位相回転量の定常特性(AM−PM順特性)を示し、図4にて示した定常特性、図11にて示した定常特性1001と同一のものである。
実線にて示す特性(A)1202は、第三の係数情報が上記の式(8)を満たす場合に、位相変調部11への入力信号として、定常特性1201を用いたAM−PM特性補償後の位相信号と同等の位相信号を得るために、メモリ104に格納するAM−PM特性の順特性を示す。
実線にて示す特性(B)1203は、第三の係数情報が上記の式(9)を満たす場合に、位相変調部11への入力信号として、定常特性1201を用いたAM−PM特性補償後の位相信号と同等の位相信号を得るために、メモリ104に格納するAM−PM特性の順特性を示す。
続いて、可変減衰回路110を用いたAM−PM動特性補償方法について、図2、及び、図13を用いて説明する。
電力増幅器1が飽和動作状態にあるように、可変減衰回路110から出力する位相変調信号の電力レベルを十分高く設定している場合、可変減衰回路110での減衰量を微調整することで、定常動作状態にある電力増幅器1のAM−PM順特性を、定常特性1201から、特性(A)1202、あるいは、特性(B)1203へと変化させることができ、演算処理回路107bと第三の係数選択部109とを用いたAM−PM動特性補償方法と同様に、メモリ104に格納する逆特性は変更しなくても、第四の係数情報を調整することで、メモリ104に格納する逆特性を調整するのと同様な効果を実現できる。
ここで、図2には記載していないが、送信レベル情報D191に基づいて第三の係数選択部109、あるいは、第四の係数選択部111より出力される、第三の係数情報、あるいは、第四の係数情報に対して、第三のアドレス信号D141に基づいて出力される係数情報を乗算する構成とした方が、より高精度な補償を実現可能である。なお、第三の係数選択部109、第四の係数選択部111を、第三のアドレス信号D141に対応して係数情報を格納する形式として、第三のアドレス信号D141に基づいて、第三の係数情報、あるいは、第四の係数情報を出力する構成としてもよい。
なお、図12に示す演算処理回路107bを、図14に示す加算回路1301にて構成し、乗算回路102より出力される振幅信号に対して所定値を加算することでも、図12に示す演算処理回路107bと同様な効果を得ることができるとともに、回路規模をさらに低減することが可能である。なお、本加算処理は、アドレス生成部7bに入力される信号に対してではなく、アドレス生成部7bより出力される第二のアドレス信号に対して行うことでも同様な効果を実現できる。
(3−4)振幅信号と位相信号の経路間時間遅延差の補償方法
最後に、第五の係数選択部112と、遅延調整部4と、遅延調整部5と、を用いた、振幅信号と位相信号の経路間時間遅延差の補償方法について説明する。
通常、遅延調整部4と遅延調整部5とを用いて振幅信号と位相信号との間の同期調整を行う場合、回路設計時に設定される固有の遅延差が振幅信号と位相信号との間に生じるように調整を行うが、本願発明者の検討から、電力増幅器1を構成するトランジスタの振幅変調信号経路と位相変調信号経路に関係する寄生容量に起因して、電力増幅器1に対して入力する制御電圧に応じて、振幅変調信号と位相変調信号との時間遅延差が前記固有の遅延差から変化することが分かった。
よって、送信レベル情報D191に基づいて第五の係数選択部112より出力される第五の係数情報に基づいて、振幅信号と位相信号の経路間の時間遅延差を調整する第五の係数情報を遅延調整部4及び遅延調整部5に送信するとともに、遅延調整部4及び遅延調整部5が第五の係数情報に応じた遅延量を振幅信号と位相信号とに与えることで、良好な低歪特性を実現可能である。
また、図2には記載していないが、送信レベル情報D191に基づいて第五の係数選択部112より出力される第五の係数情報に対して、第三のアドレス信号D141に基づいて出力される係数情報を乗算する構成を採り、第三のアドレス信号D141に基づいて、振幅信号と位相信号との経路間の時間遅延差を調整する前記係数情報の積を、遅延調整部4及び遅延調整部5に送信するとともに、遅延調整部4及び遅延調整部5が第五の係数情報に応じた遅延量を振幅信号と位相信号とに与えることで、さらに良好な低歪特性を実現可能である。
(3−5)歪補償処理回路の動作のまとめ
以上のように、図2に示す歪補償処理回路1701は、メモリ104に格納する定常特性でのAM−AM逆特性を用いたAM−AM動特性補償に関して、振幅補正後の振幅信号に対して過渡応答を表現する係数情報を乗算すること、メモリ104に格納する定常特性でのAM−AM逆特性参照時のアドレス信号に対して所定の演算処理を行うこと、メモリ104に格納する定常特性でのAM−PM逆特性参照時のアドレス信号に対して所定の演算処理を行うこと、電力増幅器1への入力電力レベルを調整すること、あるいは、電力増幅器1への入力制御電圧に応じて振幅信号と位相信号の経路間の遅延調整を行うこと、のいずれか、もしくは、各々を組み合わせて実施することを、送信レベル情報D191に応じて実施することで、極座標変調方式において、補償データの増大を抑制しながら、動特性を正確に補償することが可能となる。さらに、送信レベル情報D191に応じた前記補償に対して、第三のアドレス信号D141を用いた補償を行うことで、動特性補償効果を向上できるとともに、変調速度の速い信号を送信する場合に、第三のアドレス信号D141に応じた補償効果がより大きくなる。
すなわち、本発明の極座標変調回路における歪補償処理技術は、位相変調と振幅変調に関わる理想動作からの劣化要因を独立な3つのパラメータに分離して補償することを特徴とするものであり、後述するマルチモード動作に対して好適な構成である。
具体的には、図2において、まず、位相変調に関わる劣化要因に対する補償データとして、キャリア周波数に依存するAM−AM特性、AM−PM特性をメモリ104に格納する。
次に、振幅変調に関して電力増幅器の出力電位に依存する劣化要因に対する補償データとして、電力増幅器の出力電位に依存する係数情報を、第一の係数選択部106、第二の係数選択部108、第三の係数選択部109、第四の係数選択部111、第五の係数選択部112、第六の係数選択部1703に格納する。
さらに、振幅変調に関して信号変化(変調速度)への電力増幅器の追従性に起因する劣化要因に対する補償データとして、変調速度に依存する係数情報を第一の係数選択部106、第二の係数選択部108、第三の係数選択部109、第五の係数選択部112、第六の係数選択部1703に格納する。
なお、前記メモリ104、第一の係数選択部106、第二の係数選択部108、第三の係数選択部109、第四の係数選択部111、第五の係数選択部112、第六の係数選択部1703に格納した補償データによる補償効果は、それぞれ単独にて効果を有するものである。
(4)極座標変調送信装置のマルチモード動作対応
次に、図2に示す極座標変調回路1901のマルチモード動作時の歪補償処理動作について説明する。
無線システムに用いられる変調信号の振幅信号の最大値−最小値比(振幅Dレンジ)に関して、EDGEシステムに用いられる8−PSK変調信号の場合は約17dBであるのに対して、UMTSシステムに用いられるアップリンクのHPSK変調信号の場合は約55dBである。よって、電力増幅器1の出力にて、HPSK変調信号を表現する場合には、8−PSK変調信号を表現する場合よりも、より広範囲な制御レンジが要求される。
また、変調速度に関して、HPSK変調信号は、8−PSK変調信号の10倍以上高速であり、HPSK変調信号を送信する場合には、8−PSK変調信号を送信する場合に比べ、振幅信号の振幅値に基づく第三のアドレス信号D141に応じた歪補償処理の効果が大きい。
したがって、極座標変調送信装置1900において、HPSK変調信号を送信する場合に、UMTS規格書「Universal Mobile Telecommunications System (UMTS); UserEquipment (UE)radio transmission and reception (FDD) (3GPP TS 25.101 version 6.6.0 Release 6)」に記載の移動局送信装置に対する出力信号の隣接チャネル漏洩電力規定を満足するためには、振幅信号の振幅値に基づく第三のアドレス信号D141に応じた歪補償処理を実行することが有効である。一方、HPSK変調信号を表現するために要求される制御レンジが広く、歪補償処理データ容量の増大といった新たな課題が生じる。
そこで、本願発明者は、図1に示す極座標変調送信装置1900のマルチモード動作対応を可能とする場合の、歪補償処理データ容量の増大抑制と、補償精度の確保という相反する課題を同時に解決する手段について、具体的には、振幅Dレンジの比較的狭い変調信号送信時の、送信レベル情報ごとに設定する係数情報の最適値をもとに、振幅Dレンジが広い変調信号を送信する際の係数情報を設定することで、係数情報の最適ステップ幅を求める検討を行ったので、図1、図2、及び、図15を用いて説明する。ここで、振幅Dレンジの比較的狭い変調信号を8−PSK変調信号として、また、振幅Dレンジが広い変調信号をHPSK変調信号として説明する。
図15は、電力増幅器1の出力部における、HPSK変調信号と、8−PSK変調信号に対する瞬時出力電力のDレンジを示す図であり、縦軸は、dB単位表示した出力電力を示す。
レンジ(A1)1501は、平均出力電力がPoutA(1)の場合のHPSK変調信号に対する瞬時出力電力のDレンジである。
レンジ(B1)1511は、平均出力電力がPoutB(1)の場合の8−PSK変調信号に対する瞬時出力電力のDレンジである。
レンジ(B2)1512は、平均出力電力がPoutB(2)の場合の8−PSK変調信号に対する瞬時出力電力のDレンジである。
レンジ(B3)1513は、平均出力電力がPoutB(3)の場合の8−PSK変調信号に対する瞬時出力電力のDレンジである。
レンジ(B4)1514は、平均出力電力がPoutB(4)の場合の8−PSK変調信号に対する瞬時出力電力のDレンジである。
なお、PoutA(1)と、PoutB(1)と、PoutB(2)と、PoutB(3)と、PoutB(4)との関係は、下記の式(11)及び式(12)にて表される。
PoutA(1)=PoutB(1) ・・・・(11)
PoutB(n)>PoutB(n+1) ・・・・(12)
ここで、所定のステップ幅にて電力制御を実施するレンジ(B1)1511からレンジ(B4)1514までの8−PSK変調信号に対する最適な係数情報をもとに、レンジ(A1)1501となるHPSK変調信号に対する最適な係数情報を求めることができる。
よって、アドレス生成部1402は、前記電力制御の所定ステップ幅から求まる振幅信号のステップ幅を基に、振幅判定部113より出力される振幅データD7に対して、第三のアドレス信号D141を生成した上で、信号出力端子T141を介して、前記第六の係数選択部1703に対して出力する。
図16は、振幅判定部113より出力される振幅データD7に対する、第三のアドレス信号D141の生成方法の一例を示す図であり、一列目は、所定ステップ幅にて区切った振幅データD7を、二列目は、アドレス生成部1402より出力する第三のアドレス信号D141を示す。
なお、レンジ(A1)1501となるHPSK変調信号から、更に電力を低減するHPSK変調信号に対する最適係数情報を得るためには、レンジ(B4)1514よりも更に電力を低減する8−PSK変調信号に対する最適係数情報を用いる。
これまでの説明では、所定ステップ幅となる離散値化された振幅データD7に基づく第三のアドレス信号D141に対する係数情報を求めたが、前記係数情報をもとに補間処理を行うことで、補償精度を更に向上することも可能であり、歪補償処理データ容量が許容されるシステムにおいては、本方法を採ることもできる。
ここで、極座標変調回路1901を用いて無線通信装置送信部を構成する場合には、図2における第一の振幅調整部105と振幅変調部10との段間、位相補正部9と位相変調部11との段間に、図示しないデジタル−アナログ変換回路(以下、DACと略す)を配置するの一般的だが、次の構成を採ることも可能である。
すなわち、デジタル入力信号に対してアナログ基準信号の乗算処理を行うマルチプライングDAC(以下、MDACと略す)を用いることで、第一の振幅調整部105を削除し、乗算回路1702より出力される第一の係数情報と第六の係数情報の積に相当する信号をMDACの基準信号として入力するとともに、振幅補正部8より出力されるデジタル信号を入力して、MDACの乗算機能を利用する構成である。この場合、振幅補正部8とMDACとの段間に別のDACを配置してもよい。
次に、極座標変調送信装置1900の歪補償処理回路1701における係数情報の最適化方法、具体的には、第六の係数選択部の第一のメモリ領域を用いた係数情報の設定方法に関して説明する。ここで、第六の係数情報のキャリブレーションモード時においては、第一の係数選択部106より出力する第一の係数情報を“1”に設定しておく。
図1に示す極座標変調送信装置1900に設けられた適応動作制御部1711の概略構成を図17に示す。図17に示すように、適応動作制御部1711は、信号入力端子T172を有する周波数変換回路1712と、検波部1713と、信号出力端子T173を有する係数調整部1714と、を備える。
周波数変換回路1712は、信号出力端子T194を介して電力増幅器1より出力される無線周波数帯の変調信号D172を、信号入力端子T172を介して受信する。また、周波数変換回路1712は、変調信号D172に対して周波数の変換を行い、無線周波数帯から、検波部1713にて処理可能な周波数帯まで周波数の低減を行う。
検波部1713は、周波数変換回路1712より出力される変調信号の中心周波数から所定の同一離調周波数となる低域周波数帯、及び、高域周波数帯での信号電力(Pow_L、Pow_H)を測定する。また、Pow_L、Pow_Hをもとに、下記の式(13)に示すアンバランス情報ΔPowを係数調整部1714に対して送信する。
Figure 0004903718
係数調整部1714は、アンバランス情報ΔPowに対する閾値(ΔPow_Thresh)、すなわち、電力増幅器1出力での隣接チャネル漏洩電力(ACPR:Adjacent Channel Power Ratio)特性のアンバランスの許容値と、前記ΔPowとを比較し、アンバランス情報ΔPowが閾値未満である場合、すなわち、下記の式(14)を満足する場合には、第六の係数選択部1703の係数情報を維持する制御信号D173を、信号出力端子T173と、信号入力端子T171とを介して、第六の係数選択部1703に対して出力する。一方、アンバランス情報ΔPowが閾値以上である場合、すなわち、下記の式(15)を満足する場合には、第六の係数選択部1703の係数情報を切り替える制御信号D173を、信号出力端子T173と、信号入力端子T174とを介して、第六の係数選択部1703に対して出力する。
ΔPow<ΔPow_Thresh ・・・・(14)
ΔPow≧ΔPow_Thresh ・・・・(15)
第六の係数選択部1703は、送信動作モード時には、信号出力端子T141と信号入力端子T171とを介して、アドレス生成部1402より出力される第三のアドレス信号D141をアドレス信号として、第二のメモリ領域に格納した第六の係数情報(後述、図20参照)を出力するものとする。また、第六の係数選択部1703は、係数情報のキャリブレーションモード時において、図18に示す第一のメモリ領域に格納した出力係数情報(coeff6)のうち、初期状態では“1”を出力している。すなわち、第六の係数選択部1703は、初期状態では、アドレス番号Qを選択している。その後、第六の係数選択部1703は、信号出力端子T173と、信号入力端子T193と、信号入力端子T174とを介して、係数調整部1714より出力される制御信号D173に基づいて、アドレス番号を所定の方法にて切り替える。例えば、第六の係数選択部1703は、係数調整部1714より出力される制御信号D173として、係数情報を切り替える制御信号を受信した場合には、現在選択しているアドレス番号から、前後のアドレス番号のいずれかを試行錯誤的に選択するように動作する。
本発明に至る過程での検討より、電力増幅器1より出力される変調信号に対して、所定帯域におけるACPR特性を測定し、ACPR特性のアンバランスを低減するように前記係数情報を設定することで、最適な係数情報を選択できることが分かっている。よって、前述の動作を、振幅Dレンジの比較的狭い変調信号を用いて、送信レベル情報ごとに、あるいは、送信レベル情報よりも制御幅の粗い所定間隔の送信レベルごとに繰り返すことで、所定制御幅の送信レベルに対する最適な第六の係数情報を求めることができる。
続いて、所定間隔の送信出力レベルに対する第六の係数情報のキャリブレーション手順について、図19を用いて説明する。図19は、キャリブレーションのフローチャート図である。ここでは、説明を簡素化するため、極座標変換部2より出力される振幅信号r(t)は1で正規化されているものとする。すなわち、振幅データD7の最大値は1である。
制御部1903より出力される第一のモード切り替え信号をトリガーとして、歪補償処理回路1701と適応動作制御部1711は、キャリブレーション動作を開始する。
ステップ1として、キャリブレーション動作開始後、送信出力レベル規定の最大値P1に送信出力レベルを設定する。
続いて、ステップ2として、前記出力レベルにおける係数情報のキャリブレーションを行う。ステップ2において、係数調整部1714にて、ΔPow_ThreshとΔPowとの比較(ステップ2A)を行い、条件を満足する場合には、第六の係数選択部1703を構成する第一のメモリ領域にて現在選択している係数情報を、第六の係数選択部1703を構成する第二のメモリ領域に書き込む(ステップ2B)。この時、前記第二のメモリ領域への書き込みは、送信動作モード時のアドレス生成部1402より出力される第三のアドレス信号D141と対応づけて行われる。
例えば、送信出力レベルPkを得るために、送信レベル制御部103より出力される電力制御係数(PCL)をPCLkBとする場合、すなわち、送信出力レベルP1を得るためのPCLをPCL1Bとする場合、振幅データD7の最大値を1に設定しているため、アドレス生成部1402においては、PCL1B*(r(t)最大値)、すなわち、PCL1B以上となる振幅データD7に対して、第三のアドレス信号D141として“1”を出力するように設定しておく。また、第六の係数選択部1703の第二のメモリ領域においては、アドレス生成部1402よりアドレス“1”を入力した場合に、PCL1Bに対する第六の係数情報の最適値を格納する。
一方、前記比較結果が条件を満足しない場合には、既に説明した手順にて、現在選択している係数情報のアドレス値と異なるアドレス値を選択し(ステップ2C)、再度、ΔPow_ThreshとΔPowとの比較(ステップ2A)を行い、条件を満足するまで、同様の手順を繰り返す。
次に、係数情報の第二のメモリ領域への書き込みが完了(ステップ2B)した場合には、送信出力レベルP1よりも第一の所定量を低減する送信出力レベルP2に送信出力レベルを設定する(ステップ3)。続いて、ステップ1の後に実行するステップ2と同様の手順で、係数情報のキャリブレーションを実施する。係数情報の第二のメモリ領域への書き込みが完了した後、送信出力レベルP2よりも第一の所定量を低減する送信出力レベルP3に送信出力レベルを設定し、以後、同様の作業を繰り返す。P1から第二の所定量を低減した送信出力レベルまで上記動作を繰り返し、係数情報の第二のメモリ領域への書き込みが完了した時点で、キャリブレーションは完了する。
上記キャリブレーション動作の結果、第六の係数選択部1703の第二のメモリ領域には、図20に示す形式にて係数情報が書き込まれる。また、アドレス生成部1402では、図21に示す形式にてアドレス生成を行うように、メモリへの書き込みが行われる。
続いて、上記キャリブレーション動作終了後、送信モードに切り替わる前に、広い振幅Dレンジ信号用の送信レベル情報D191に対応する第六の係数情報を、第一の係数情報選択部106に書き込む。ここで、歪補償精度の要求されない無線システムにおいて、第六の係数選択部1703は、信号入力端子T171を介して入力されるデータD171に関わらず、第六の係数情報として“1”を出力してもよい。
なお、これまでの説明では、乗算回路105aにて乗算する係数情報を例として、係数情報の最適化方法について説明してきたが、乗算回路1702への入力信号を第一の係数選択部106より出力される信号から、第二、第三、第四、第五の係数選択部108、109、111、あるいは、112より出力される信号に置き換えることで、第二、第三、第四、第五の係数情報に対して同様な効果を実現可能である。
以上のように振幅Dレンジの狭い信号を用いて第六の係数情報を求めておき、より広い振幅Dレンジを有する変調信号送信時の補償データとして参照することで、極座標変調送信装置のマルチモード動作対応を可能とする場合の、歪補償処理データ容量の増大抑制と、補償精度の確保という相反する課題を同時に解決することが可能となる。
なお、本発明の第1の実施形態に記載の極座標変調送信装置1900、あるいは、極座標変調回路1901は、例えば、シリコン半導体基板上に形成することで、集積回路として構成することができる。この場合、機能ブロックごとに別基板上に形成することも可能である。
(第2の実施形態)
本発明の第2の実施形態は、本発明の第1の実施形態にて説明した補償データとしての係数情報のキャリブレーションを、移動局無線通信装置と基地局無線通信装置との間の無線リンクを経由して行う技術について説明するものである。
本キャリブレーション技術は、移動局無線通信装置を構成する電力増幅器より出力される変調信号の検波部を基地局無線通信装置に備え、また、前記検波部での測定結果をもとに、移動局無線通信装置の歪補償処理データを更新する係数調整部を移動局無線通信装置に備えるとともに、適応動作制御に関わる制御情報量を低減したことを特徴とするものであり、無線リンクを経由した適応動作制御を実現できるものである。
図22は、本発明の第2の実施形態における適応歪補償処理システムの概略構成を示す図である。
図22に示すように、適応歪補償処理システム2300は、移動局無線通信装置2301と基地局無線通信装置2311とを備えるとともに、移動局無線通信装置2301と基地局無線通信装置2311とは無線リンクを経由して、データの送受信を行っている。移動局無線通信装置2301は、極座標変調回路1901と、信号生成部1902と、制御部1903と、移動局受信装置2302と、システム切り替え判断部2305と、を備える。
(1) 移動局無線通信装置の動作
まず、移動局無線通信装置2301の動作について説明する。
信号生成部1902は、移動局無線通信装置2301のユーザー操作に基づいて、対向する基地局無線通信装置2311へと送信する送信データからベースバンド帯直交座標信号(IQ信号)を生成して、信号入力端子T11及びT12を介し、極座標変換部2に対して出力する。
制御部1903は、極座標変調回路1901、及び、移動局受信装置2302の動作制御を行う。
制御部1903での移動局受信装置2302に関する制御としては、自動利得制御、DCオフセットキャンセルに関する動作制御などがある。
また、制御部1903での極座標変調回路1901に関する制御としては、本発明の第1の実施形態にて説明した制御と同様であり、再度の説明は省略する。
移動局受信装置2302は、周波数変換回路2303と復調部2304とを備える。
周波数変換回路2303は、アンテナを介して、基地局無線通信装置2311より送信された変調信号を受信し、無線周波数帯の変調信号をベースバンド帯周波数に変換して、復調部2304に対して出力する。
復調部2304は、周波数変換回路2303より出力される受信信号を基に、基地局無線通信装置2311にて生成した送信データを再生する。また、前記送信データに含まれる、基地局無線通信装置2311にて測定された、移動局無線通信装置2301より出力される変調信号の帯域外スペクトラムのアンバランス情報(ΔPow2)を、係数調整部1714に対して出力する。なお、基地局無線通信装置1811でのアンバランス情報(ΔPow2)の生成方法については後述する。
係数調整部1714は、ΔPow2に対する閾値(ΔPow2_Thresh)、すなわち、極座標変調回路1901を構成する電力増幅器1の出力部でのACPR特性のアンバランスの許容値と、アンバランス情報ΔPow2とを比較し、アンバランス情報ΔPow2が閾値未満である場合、すなわち、下記の式(16)を満足する場合には、第六の係数選択部の係数情報を維持する制御信号を、信号入力端子T193を介して第六の係数選択部に対して出力する。一方、アンバランス情報ΔPow2が閾値以上である場合、すなわち、下記の式(17)を満足する場合には、第六の係数選択部の係数情報を切り替える制御信号を、信号入力端子T193を介して第六の係数選択部に対して出力する。
ΔPow2<ΔPow2_Thresh ・・・・(16)
ΔPow2≧ΔPow2_Thresh ・・・・(17)
ここで、アンバランス情報ΔPow2が閾値以上である場合に、第六の係数選択部の係数情報を切り替える方法の一例としては、本発明の第1の実施形態に示したように試行錯誤的に切り替える方法があるが、再度の説明は省略する。
システム切り替え部2305は、制御部1903より出力される第一のモード切り替え信号をトリガーとして、極座標変調回路1901におけるキャリブレーション動作を開始する前に、制御部1903より出力する第二のモード切り替え信号D192を設定する。また、所定モードでの通信中に、隣接するタイムスロット間にて、送信レベルを制御するために、制御部1903より出力する送信レベル情報D191を設定する。
具体的には、図23に示すように、キャリブレーション動作の開始後、移動局無線通信装置2301、及び、基地局無線通信装置2311が対応する変調信号のうち、まず、振幅Dレンジの一番狭い変調信号を選択する。続いて、順次、振幅Dレンジの広い変調信号を選択してゆく。また、振幅Dレンジの一番狭い変調信号送信時に、出力レベルを順次、低減してゆく。
図23は、システム切り替え部2305が行う制御の結果として、移動局無線通信装置2301よりアンテナを介して出力される変調信号の時間変化を示す図である。
タイムスロットTS0は、キャリブレーション開始後の最初のタイムスロットであり、タイムスロットTS1、TS(n−1)、TSnとタイムスロットが連続している。また、タイムスロットTS(n−1)までは、キャリブレーション動作期間であり、タイムスロットTSn以降で送信動作期間となる。
キャリブレーション動作期間には、送信動作期間に用いられる変調モードに比べ、振幅Dレンジの狭い変調信号を用いるため、図23の例では、モード1は、モード2に比べ、振幅Dレンジが狭い変調モードである。
また、出力レベルP1、P2、P(n−1)は、出力レベルP1が最大出力レベルあり、P2、P(n−1)と順次、出力レベルを低下させる。
システム切り替え部2305が上述の動作制御を行うとともに、本発明の第二の実施形態にて説明したように、極座標変調回路1901にて最適係数情報を求めることで、キャリブレーション動作が完了する。
(2) 基地局無線通信装置の動作
次に、基地局無線通信装置2311の動作について説明する。
図22に示すように、基地局無線通信装置2311は、基地局送受信装置2312と、周波数変換回路1712と、検波部1713と、変換部2315と、を備える。また、基地局送受信装置2312は、周波数変換回路2313と、信号処理部2314と、を備える。
周波数変換回路2313は、受信動作時には、アンテナを介して移動局無線通信装置2301からの送信変調信号を受信して、無線周波数帯の変調信号をベースバンド帯周波数に変換して、信号処理部2314に対して出力する。また、送信動作時には、信号処理部2314より出力されるベースバンド帯周波数信号を無線周波数帯へと変換し、無線周波数信号をアンテナを介して移動局無線通信装置に対して送信する。
信号処理部2314は、受信動作時には、周波数変換回路2313より出力されるベースバンド帯周波数信号から、移動局無線通信装置2301にて生成した送信データを再生する。また、送信動作時には、移動局無線通信装置2301からの要求及び変換部2315より出力される信号に基づいて、対向する移動局無線通信装置2301へと送信する送信信号を生成して、ベースバンド帯周波数信号を周波数変換回路2313に対して出力する。
周波数変換回路1712は、アンテナを介して受信した移動局無線通信装置2301より送信された無線周波数信号に対して周波数の変換を行い、無線周波数帯から、検波部1713にて処理可能な周波数帯まで周波数の低減を行う。
検波部1713は、図17にて示す検波部1713の動作と同様に、前段に位置する周波数変換回路1712より出力される変調信号から、変調信号の中心周波数から所定の同一離調周波数となる低域周波数帯、及び、高域周波数帯での信号電力(Pow3_L、Pow3_H)を測定する。また、Pow3_L、Pow3_Hをもとに、下記の式(18)に示すアンバランス情報ΔPow3を変換部2315に対して出力する。
ΔPow3=Pow3_L−Pow3_H ・・・・(18)
変換部2315は、検波部1713より出力されるアンバランス情報ΔPow3を所定間隔にて離散値化するとともに、前記離散値に対して所定の送信信号フォーマットに適合したビット割り当て処理を行い、対向する移動局無線通信装置2301を構成する極座標変調回路1901の適応的な歪補償動作の動作制御信号として前記ビット情報(以下CALビットと呼ぶ)を信号処理部2314に対して出力する。なお、変換部2315での具体的な処理内容については後述する。
次に、変換部2315での具体的な処理内容のうち、離散値化されたアンバランス情報の生成方法について説明する。離散化のステップ幅をN[dB]とした場合の例で説明する。
まず、変換部2315において、検波部1713より出力されるアンバランス情報ΔPow3に対して、下記の式(19)から求まるK1の商K2のみ抽出する。ここで、商をK2、余りをK3とする。次に、下記の式(20)を計算することで、N[dB]ステップ幅に離散化されたアンバランス情報ΔPow2が求まる。
K1=ΔPow3/N=K2+K3 ・・・・(19)
ΔPow2=(K2−1)*N ・・・・(20)
次に、アンバランス情報ΔPow2に対する所定の送信信号フォーマットに適合したビット割り当て処理について説明する。
図24は、N=3、すなわち、3[dB]ステップ幅にて離散化したアンバランス情報ΔPow2からCALビットを生成する一例を示す。
この例では、アンバランス情報ΔPow2の絶対値情報に対して2ビットを割り当て、アンバランス情報ΔPow2の符号情報に対して1ビットを割り当てている。すなわち3ビットでアンバランス情報を表現している。なお、割り当て可能なビット数は、想定する無線システムごとに異なる。
以上のように構成することで、基地局無線通信装置2311での電力増幅器1の出力スペクトラムのACPR特性取得結果を、無線リンクを介して、移動局無線通信装置2301を構成する極座標変調回路1901に対してフィードバックすることが可能となる。これによって、移動局無線通信装置内に周波数変換回路1712と検波部1713とを設けている第2の実施形態において生じる、電力増幅器1の出力信号を分岐することによる損失と、ACPR特性を取得する部での消費電流増加に起因する、移動局無線通信装置の通話時間、データ通信時間の短縮といった新たな課題を解決することができる。
(第3の実施形態)
本発明の第3の実施形態は、歪補償処理用データ容量の増大、及び、歪補償処理回路の回路規模の増大を抑制しながら、マルチモード対応無線送信装置のプリディストーション歪補償処理を実現する技術について説明するものである。
図25に示す極座標変調回路を用いて、マルチモード対応プリディストーション歪補償処理技術について説明する。なお、図2に示す極座標変調回路と重複する部分については、同一の符号を付す。
図25に示すように、歪補償処理回路2501は、図2に示す極座標変調回路1901における第六の係数選択部1703及び乗算回路1702の代わりに、信号入力端子T251を有する第七の係数選択部2502と、乗算回路2503と、を備える。そして、第一の係数選択部106より出力される第一の係数情報に対して、第七の係数選択部2502より出力される第七の係数情報(coeff7)を、乗算回路2503にて乗算する構成である。
信号入力端子T251には、図1に示す制御部1903から、モード切り替え信号D192が入力される。そして、本実施形態において、モード切り替え信号D192における信号の変調モードを設定する第二のモード切り替え信号は、現在送信している変調信号の種類を識別する情報としての変調速度データD251を含む。
第七の係数選択部2502は、図26に示す形式にて、第七の係数情報(coeff7)を格納しておく。図26に示すテーブルデータの一列目はテーブルデータのアドレス番号を、二列目は1を含む所定範囲の第七の係数情報を示す。なお、この例では、アドレス番号3に係数情報1を格納しているとともに、各係数情報は、例えば、3より小さいアドレス番号に対応した係数情報は“1”より大きく、3より大きいアドレス番号に対応した係数情報は“1”より小さく、アドレス番号の増加に伴い単調減少するように設定されている。
また、第七の係数選択部2602は、図27に示すような、所定範囲ごとに区切った変調速度データD251とアドレス番号とを対応付けたテーブルデータを格納おく。そして、変調速度データD251を、信号入力端子T251を介して受信すると、変調速度データD251に対応したアドレス番号を参照して、第七の係数情報を選択する。ここで、図27に示すテーブルデータの一列目は変調速度の範囲を、二列目は図26に示す第七の係数選択部2502の格納データを参照する際のアドレス番号を示す。また、第一の係数選択部106は、信号入力端子T2へ入力される、本発明の第1の実施形態にて示したように送信レベル情報D191に基づいてアドレス番号Mを選択しているものとする。
本発明に至る過程での検討から、信号入力端子T2へ入力するデータD2のほか、信号入力端子T3からT6へ入力するデータD3からD6が同一情報に基づいている場合に、電力増幅器1から出力される変調信号のACPR特性の最適点を得る第七の係数情報(coeff7)は、変調速度が増加すると、より小さな値となることが分かった。
図28は、異なる変調速度を有する変調信号に対するACPR特性を示す図である。図28において、横軸は第七の係数情報を、縦軸はACPR値を示す。
特性(A)2901は、EDGEシステム用8−PSK変調信号を用いる場合に、第七の係数情報のみ掃引して取得したACPR特性である。
特性(B)2902は、8−PSK変調信号よりも高速な変調信号として、例えば、WCDMAシステム用変調信号を用いる場合に、第七の係数情報のみ掃引して取得したACPR特性である。
なお、図28に示すACPR特性は、低域周波数帯、高域周波数帯のACPR特性のうち、より悪い特性を抽出したものである。
ここで、本発明の第3の実施形態では、EDGEシステム用8−PSK変調信号を用いる場合の第七の係数情報を基準として考えるために、8−PSK変調信号の変調速度(約270k)にて送信する場合に、変調速度データD7に対応して“1”なる第七の係数情報を出力するように、図26及び図27のテーブルデータを設定しているが、テーブルデータへの格納データの定義方法は、想定するマルチモード信号や、要求される補償精度等によって、変更すべきものであることは言うまでもない。
以上説明してきたように、変調速度によって、第七の係数情報の最適値が異なるため、本発明の第3の実施形態に係る極座標変調送信装置では、変調速度を表す情報をもとに、第七の係数情報を切り替える構成とした。
以上のように構成することで、メモリ102に格納する電力増幅器1の歪補償処理用データを変調信号ごとに用意することと等価な効果を実現し、歪補償処理用データ容量の増大、及び、歪補償処理回路の回路規模の増大を抑制しながら、マルチモード対応無線送信装置のプリディストーション歪補償処理を実現できる。
なお、歪補償処理回路2501に、図2に示す信号入力端子T171及びT174を有する第六の係数選択部1703と、乗算回路1702と、適応動作制御部1711を追加し、乗算回路2503より出力される第一の係数情報と第七の係数情報との積に対して、第六の係数選択部1703より出力される第六の係数情報(coeff6)を、乗算回路1702にて乗算する構成にて、信号出力端子T141を介してアドレス生成部1402より出力されるデータD141を、信号入力端子T171を介して、第六の係数選択部1602に対して入力するとともに、係数調整判断部1714より出力されるデータD173を、信号出力端子T173と信号入力端子T174とを介して、第六の係数選択部1602に対して入力することで、適応的な歪補償処理を実現可能な極座標変調送信装置を実現することができる。
また、本発明の第3の実施形態に係る極座標変調送信装置は、例えば、シリコン半導体基板上に形成することで、集積回路として構成することができる。この場合、機能ブロックごとに別基板上に形成することも可能である。
(第4の実施形態)
本発明の第4の実施形態は、周辺の電波環境に応じて無線通信に利用する周波数、変調方式を自立的に選択するコグニティブ無線通信装置に適用可能なプリディストーション歪補償処理技術について説明するものである。
ここで、本発明の極座標変調回路における歪補償処理技術は、位相変調と振幅変調に関わる理想動作からの劣化要因を独立な3つのパラメータに分離して補償することを特徴とするものであり、この歪補償処理技術をコグニティブ無線通信装置に適用する例について説明する。
図30は、コグニティブ無線通信システムの概略構成を示す図である。
図30において、第一のエリア3001、第二のエリア3002は、地理的に異なる2つの領域を示し、第一の無線通信システム3011、第二の無線通信システム3012、第三の無線通信システム3013は、第一のエリア3001にてサービスを提供している無線通信システムを示し、第四の無線通信システム3014、第五の無線通信システム3015は第二のエリア3002にてサービスを提供している無線通信システムを示し、無線通信装置3020は第一のエリア3001、第二のエリア3002の各無線通信システムに対応可能なコグニティブ無線通信装置を示す。
図31は、図30に示す各無線通信システムにおける代表パラメータの一例を示す図である。
本発明の第四の実施形態における説明では、第一の無線通信システム3011は周波数帯f1、変調方式8−PSK、変調速度SP1、第二の無線通信システム3012は周波数帯f2、変調方式QPSK、変調速度SP2、第三の無線通信システム3013は周波数帯f3、変調方式HPSK、変調速度SP3、第四の無線通信システム3014は周波数帯f3、変調方式8−PSK、変調速度SP4、第五の無線通信システム3015は周波数帯f1、変調方式OFDM、変調速度SP5なるパラメータとするが、本発明はこの例に限定されるものではない。
無線通信装置3020は、製造時点では、第一のエリア3001での使用を想定されているものとし、無線通信装置3020のユーザーが第一のエリア3001内にて移動する場合、無線通信装置3020は、第一の無線通信システム3011、第二の無線通信システム3012、第三の無線通信システム3013間で切り替えて使用される。本切り替えは、電界強度、実効伝送速度、課金体系等に基づき実施されるものとする。また、無線通信装置3020の送信部の構成要素は、図2に示す極座標変調回路1901、あるいは、その一部であるとする。
ここで、無線通信装置3020のユーザーが第一のエリア3001を離れ、第二のエリア3002に入った場合、無線通信装置3020は、周辺の電波環境を測定し、製造時点では想定されていない第四の無線通信システム3014、第五の無線通信システム3015の存在を検知する。
無線通信装置3020は、第四の無線通信システム3014、第五の無線通信システム3015に対応した送信動作を開始する前に、歪補償処理用データとして、本発明の第一の実施形態の図19を用いて説明した手順にて、変調信号のダイナミックレンジに対応する係数情報を取得するとともに、本発明の第三の実施形態にて説明したように変調速度に対応する係数情報を取得する。なお、本発明の第二の実施形態にて説明したように移動局無線通信装置と基地局無線通信装置との間の無線リンクを経由して係数情報を取得してよい。
ここで、周波数に対応する歪補償処理用データは、使用が想定される周波数帯に関しては、製造時点で図2に示すメモリ104に格納しておくが、変調信号のダイナミックレンジ、あるいは、変調速度に対応する歪補償処理用データを固定値とした状態で、送信動作開始前に、周波数ごとのAM−AM特性、AM−PM特性を取得してもよい。
以上のように、本発明の極座標変調回路における歪補償処理技術は、キャリア周波数に依存する補償データと、電力増幅器の出力電位に依存する補償データと、変調速度に依存する補償データとを独立に格納するため、無線通信システムごとに異なる周波数と、変調方式と、変調速度とに柔軟に対応でき、歪補償処理データ用に大容量のメモリを用意しておかなくても、無線通信装置の製造時点では想定されていない無線通信システムに対しても対応することができる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2005年12月27日出願の日本特許出願(特願2005−375485)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の極座標変調送信装置は、歪補償処理用データ容量の増大、及び、歪補償処理回路の回路規模の増大を抑制しながら、振幅変調動作時の電力増幅器の低歪特性を実現することを可能とする効果を有し、マルチモード対応極座標変調送信装置や、適応歪補償処理システム等に有用である。
本発明の第1の実施形態における極座標変調送信装置の概略構成を示すブロック図 本発明の第1の実施形態における極座標変調回路の概略構成を示すブロック図 電力増幅器のAM−AM特性 電力増幅器のAM−PM特性 本発明の第1の実施形態における第一の係数選択部106に格納するテーブルデータの一例を示す図 送信電力規定と送信レベル情報との関係を示す図 送信レベル制御部103に格納する電力制御係数(PCL)の一例を示す図 電力増幅器1の出力部における、8−PSK変調信号に対する瞬時出力電力のDレンジを示す図 電力増幅器のAM−AM特性 電力増幅器が飽和動作するレベルの入力高周波信号を与えた状態にて、出力振幅の制御電圧に対するステップ応答特性を示す図 電力増幅器のAM−PM特性 本発明の第1の実施形態における演算処理回路107bの回路構成の一例を示す図 電力増幅器のAM−PM特性 本発明の第1の実施形態における演算処理回路107bの回路構成の他の例を示す図 電力増幅器1の出力部における、HPSK変調信号と、8−PSK変調信号に対する瞬時出力電力のDレンジを示す図 本発明の第1の実施形態におけるアドレス生成部1402に格納するテーブルデータの一例を示す図 本発明の第1の実施形態における適応動作制御部を示す図 本発明の第1の実施形態における第六の係数選択部1703を構成する第一のメモリ領域に格納するテーブルデータの一例を示す図 本発明の第1の実施形態におけるキャリブレーションのフローチャート図 本発明の第1の実施形態における第六の係数選択部1703を構成する第二のメモリ領域に格納するテーブルデータの一例を示す図 本発明の第1の実施形態におけるアドレス生成部1402に格納するテーブルデータの一例を示す図 本発明の第2の実施形態における適応歪補償処理システムの概略構成を示す図 本発明の第2の実施形態における移動局無線通信装置2301よりアンテナを介して出力される変調信号の時間変化を示す図 本発明の第2の実施形態におけるCALビットの一例を示す図 本発明の第3の実施形態における極座標変調送信装置を構成する歪補償処理回路の一例を示す図 第七の係数選択部に格納するテーブルデータの一例を示す図 変調速度と変調速度情報D251との関係を示す図 変調速度と第七の係数情報との関係を示す図 従来の極座標変調送信装置を示す図 本発明の第4の実施形態におけるコグニティブ無線通信システムの概略構成を示す図 本発明の第4の実施形態における各無線通信システムにおける代表パラメータの一例を示す図
符号の説明
1 電力増幅器
2 極座標変換部
3、1701、2501 歪補償処理回路
4、5 遅延調整部
6、104 メモリ
7、7a、7b、1402 アドレス生成部
8 振幅補正部
9 位相補正部
10 振幅変調部
11 位相変調部
12 振幅位相測定部
20、1900 極座標変調送信装置
102、105a、107a、1702、2503 乗算回路
103 送信レベル制御部
105 第一の振幅調整部
106 第一の係数選択部
107 第二の振幅調整部
107b 演算処理回路
108 第二の係数選択部
109 第三の係数選択部
110 可変減衰回路
111 第四の係数選択部
112 第五の係数選択部
113 振幅判定部
1301 加算回路
1703 第六の係数選択部
1711 適応動作制御部
1712、2303、2313 周波数変換回路
1713 検波部
1714 係数調整部
1901 極座標変調回路
1902 信号生成部
1903 制御部
2300 適応歪補償処理システム
2301 移動局無線通信装置
2302 移動局受信装置
2304 復調部
2305 システム切り替え部
2311 基地局無線通信装置
2312 基地局送受信装置
2314 信号処理部
2315 変換部
2502 第七の係数選択部
3001 第一のエリア
3002 第二のエリア
3011 第一の無線通信システム
3012 第二の無線通信システム
3013 第三の無線通信システム
3014 第四の無線通信システム
3015 第五の無線通信システム
3020 無線通信装置

Claims (15)

  1. 送信変調信号の変調方式の切り替えを行う第一の制御部と、
    送信データをもとに、前記第一の制御部により選択された変調方式にてベースバンド直交信号を生成する信号生成部と、
    前記ベースバンド直交信号から、振幅信号を生成する極座標変換部と、
    前記振幅信号をもとに、振幅変調信号を生成する振幅変調部と、
    前記ベースバンド直交信号の少なくとも位相成分を含む信号をもとに、無線周波数帯の位相変調信号を生成する位相変調部と、
    前記位相変調信号を入力高周波信号として入力し、前記振幅変調信号を制御信号として入力し、無線周波数帯の送信データを生成する増幅部と、
    前記振幅変調部の入力信号及び前記位相変調部の入力信号のうち少なくとも一方に対して所定の歪補償処理を行う歪補償処理回路と、
    前記歪補償処理回路において用いられる補償データの校正動作と、送信動作との切り替えを行う第二の制御部と
    を備え、
    前記第一の制御部は、前記校正動作時には、前記送信動作時に用いられる変調方式における変調信号の振幅ダイナミックレンジ以下となる変調方式を選択するマルチモード対応極座標変調送信装置。
  2. 請求項1記載のマルチモード対応極座標変調送信装置であって、
    前記第一の制御部は、前記校正動作時には、さらに、所定制御幅にて、出力レベルを単調減少させるマルチモード対応極座標変調送信装置。
  3. 請求項1または2記載のマルチモード対応極座標変調送信装置であって、
    前記歪補償処理回路は、所定振幅の入力高周波信号及び制御電圧が入力された増幅部の定常状態における制御電圧値に対する出力信号特性をもとに、前記増幅部の定常状態での出力信号を線形化する定常特性補償回路を備えるマルチモード対応極座標変調送信装置。
  4. 請求項3記載のマルチモード対応極座標変調送信装置であって、
    前記歪補償処理回路は、前記定常特性補償回路にて前記定常状態出力信号線形化処理実施後の、振幅信号の振幅を調整する第一の振幅調整部をさらに備えるマルチモード対応極座標変調送信装置。
  5. 請求項3記載のマルチモード対応極座標変調送信装置であって、
    前記歪補償処理回路は、前記定常特性補償回路にて前記振幅信号の歪補償処理を行う場合のアドレス参照用振幅信号の振幅を調整する第二の振幅調整部をさらに備えるマルチモード対応極座標変調送信装置。
  6. 請求項3記載のマルチモード対応極座標変調送信装置であって、
    前記歪補償処理回路は、前記定常特性補償回路にて前記位相信号の歪補償処理を行う場合のアドレス参照用振幅信号の振幅を調整する第一の位相補償部をさらに備えるマルチモード対応極座標変調送信装置。
  7. 請求項3記載のマルチモード対応極座標変調送信装置であって、
    前記歪補償処理回路は、前記位相信号又は前記位相変調信号の振幅を調整する第二の位相補償部をさらに備えるマルチモード対応極座標変調送信装置。
  8. 請求項3記載のマルチモード対応極座標変調送信装置であって、
    前記歪補償処理回路は、前記振幅信号あるいは前記位相信号に所定の遅延量を与え、振幅信号と位相信号との間の同期を確保する遅延調整手段をさらに備えるマルチモード対応極座標変調送信装置。
  9. 請求項1から8のいずれか一項記載のマルチモード対応極座標変調送信装置を実装した集積回路。
  10. 送信変調信号の変調方式の切り替えを行うステップと、
    送信データをもとに、前記選択された変調方式にてベースバンド直交信号を生成するステップと、
    前記ベースバンド直交信号から、振幅信号を生成するステップと、
    前記振幅信号をもとに、振幅変調信号を生成するステップと、
    前記ベースバンド直交信号の少なくとも位相成分を含む信号をもとに、無線周波数帯の位相変調信号を生成するステップと、
    前記位相変調信号を入力高周波信号として入力し、前記振幅変調信号を制御信号として入力し、無線周波数帯の送信データを生成するステップと、
    前記振幅変調部の入力信号及び前記位相変調部の入力信号のうち少なくとも一方に対して所定の歪補償処理を行う歪補償処理回路において用いられる補償データの校正動作と、送信動作との切り替えを行うステップと
    を有し、
    前記校正動作時には、変調信号の振幅ダイナミックレンジが、前記送信動作時に用いられる変調方式における変調信号の振幅ダイナミックレンジ以下となる変調方式を選択するマルチモード対応極座標変調送信方法。
  11. 請求項10記載のマルチモード対応極座標変調方法を用いて、基地局と移動局との間の無線通信を行うマルチモード無線通信方法。
  12. 請求項1から8のいずれか一項記載のマルチモード対応極座標変調送信装置又は請求項9記載の集積回路を備える無線通信装置。
  13. 請求項1から8のいずれか一項記載のマルチモード対応極座標変調送信装置、請求項9記載の集積回路、又は、請求項12記載の無線通信装置を備える無線通信システム。
  14. 極座標変調回路における歪補償処理方法であって、
    位相変調と振幅変調に関わる理想動作からの劣化要因を、キャリア周波数に依存するAM−AM特性およびAM−PM特性、電力増幅器の出力電位に依存する係数情報、および変調速度に依存する係数情報の独立な3つのパラメータに分離して補償する歪補償処理方法。
  15. 第一のエリアおよび第二のエリアの各無線通信システムに対応可能なコグニティブ無線通信装置におけるマルチモード無線通信方法であって、
    前記第一のエリアを離れ、前記第二のエリアに入った場合に、変調信号のダイナミックレンジに対応する係数情報を取得するステップと、
    変調速度に対応する係数情報を取得するステップと、
    前記係数情報に対応する歪補償処理用データをメモリに格納するステップと、
    前記第二のエリアの無線通信システムに対応する変調方式で通信を行うステップとを有するマルチモード無線通信方法。
JP2007551993A 2005-12-27 2006-12-26 マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法 Expired - Fee Related JP4903718B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007551993A JP4903718B2 (ja) 2005-12-27 2006-12-26 マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005375485 2005-12-27
JP2005375485 2005-12-27
JP2007551993A JP4903718B2 (ja) 2005-12-27 2006-12-26 マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法
PCT/JP2006/325955 WO2007074839A1 (ja) 2005-12-27 2006-12-26 マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法

Publications (2)

Publication Number Publication Date
JPWO2007074839A1 JPWO2007074839A1 (ja) 2009-06-04
JP4903718B2 true JP4903718B2 (ja) 2012-03-28

Family

ID=38218060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007551993A Expired - Fee Related JP4903718B2 (ja) 2005-12-27 2006-12-26 マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法

Country Status (3)

Country Link
US (1) US8369801B2 (ja)
JP (1) JP4903718B2 (ja)
WO (1) WO2007074839A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080207258A1 (en) * 2007-02-26 2008-08-28 Broadcom Corporation, A California Corporation Multimode transmitter with digital up conversion and methods for use therewith
US8059748B2 (en) * 2007-09-19 2011-11-15 Qualcomm, Incorporated Multi-mode and multi-band transmitters for wireless communication
US8126409B2 (en) * 2008-11-17 2012-02-28 Panasonic Corporation Adaptive delay alignment in polar transmitters
US8565344B2 (en) * 2009-07-02 2013-10-22 Panasonic Corporation Transmission circuit and communication device
US8532591B2 (en) * 2009-07-14 2013-09-10 Panasonic Corporation Transmission circuit
JP5533870B2 (ja) * 2009-07-31 2014-06-25 日本電気株式会社 電力増幅装置および方法
JP5573627B2 (ja) * 2010-11-22 2014-08-20 富士通株式会社 光デジタルコヒーレント受信器
DE102011081689B4 (de) * 2011-08-26 2020-07-02 Intel Deutschland Gmbh Signalverarbeitungsvorrichtung und verfahren zur bereitstellung eines ersten analogsignals und eines zweiten analogsignals
US8913626B2 (en) * 2012-05-15 2014-12-16 Entropic Communications, Inc. Signal processing of multiple streams
US10324169B2 (en) * 2015-04-06 2019-06-18 The United States Of America As Represented By The Secretary Of The Navy. Digital compensation for amplifier-induced instability
CN107018113B (zh) * 2016-01-27 2020-01-31 华为技术有限公司 发射机、接收机和信号处理的方法
JP2022112245A (ja) * 2021-01-21 2022-08-02 住友電気工業株式会社 コントローラ、歪補償装置、通信機、及び歪補償のために入力信号を調整する方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318999A (ja) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd 変調回路、復調回路及び無線装置
JP2004501527A (ja) * 2000-02-02 2004-01-15 トロピアン・インク 高効率電力変調器
JP2005150814A (ja) * 2003-11-11 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償方法および装置
JP2005278162A (ja) * 2004-02-25 2005-10-06 Matsushita Electric Ind Co Ltd 複数の変調方式を利用する通信装置及びその通信装置を構成する送信装置
JP2005286995A (ja) * 2004-03-01 2005-10-13 Matsushita Electric Ind Co Ltd 送信装置及び無線通信装置
WO2005104352A1 (ja) * 2004-04-27 2005-11-03 Matsushita Electric Industrial Co., Ltd. 増幅器、情報通信機器、及び増幅方法
WO2006001433A1 (ja) * 2004-06-29 2006-01-05 Matsushita Electric Industrial Co., Ltd. 歪補償回路
JP2006253749A (ja) * 2005-03-08 2006-09-21 Matsushita Electric Ind Co Ltd 歪み補償装置及びその方法
JP2006333450A (ja) * 2005-04-28 2006-12-07 Matsushita Electric Ind Co Ltd 極座標変調回路、極座標変調方法、集積回路および無線送信装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697436B1 (en) * 1999-07-13 2004-02-24 Pmc-Sierra, Inc. Transmission antenna array system with predistortion
US7158494B2 (en) * 2001-10-22 2007-01-02 Matsushita Electric Industrial Co., Ltd. Multi-mode communications transmitter
GB2412512B (en) * 2002-05-31 2005-11-16 Renesas Tech Corp A communication semiconductor integrated circuit, a wireless communication apparatus, and a loop gain calibration method
EP1396932B1 (en) * 2002-09-05 2006-11-29 Hitachi, Ltd. Wireless communication apparatus
US7072626B2 (en) * 2003-04-30 2006-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Polar modulation transmitter
US7043213B2 (en) * 2003-06-24 2006-05-09 Northrop Grumman Corporation Multi-mode amplifier system
US6998914B2 (en) * 2003-11-21 2006-02-14 Northrop Grumman Corporation Multiple polar amplifier architecture
JP4323968B2 (ja) * 2004-01-14 2009-09-02 株式会社日立コミュニケーションテクノロジー 無線通信装置のタイミング調整方法
US7418047B2 (en) * 2004-02-25 2008-08-26 Matsushita Electric Industrial Co., Ltd. Communication apparatus using a plurality of modulation schemes and transmission apparatus composing such communication apparatus
US7532679B2 (en) * 2004-08-12 2009-05-12 Texas Instruments Incorporated Hybrid polar/cartesian digital modulator
US7529523B1 (en) * 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
US7327803B2 (en) * 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7394862B2 (en) * 2004-12-21 2008-07-01 Broadcom Corporation Multi-mode wireless polar transmitter architecture
US7539462B2 (en) * 2005-08-09 2009-05-26 Freescale Semiconductor, Inc. Configurable multi-mode modulation system and transmitter
US7474708B1 (en) * 2005-08-30 2009-01-06 Rf Micro Devices, Inc. Multimode transmitter architecture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501527A (ja) * 2000-02-02 2004-01-15 トロピアン・インク 高効率電力変調器
JP2003318999A (ja) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd 変調回路、復調回路及び無線装置
JP2005150814A (ja) * 2003-11-11 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償方法および装置
JP2005278162A (ja) * 2004-02-25 2005-10-06 Matsushita Electric Ind Co Ltd 複数の変調方式を利用する通信装置及びその通信装置を構成する送信装置
JP2005286995A (ja) * 2004-03-01 2005-10-13 Matsushita Electric Ind Co Ltd 送信装置及び無線通信装置
WO2005104352A1 (ja) * 2004-04-27 2005-11-03 Matsushita Electric Industrial Co., Ltd. 増幅器、情報通信機器、及び増幅方法
WO2006001433A1 (ja) * 2004-06-29 2006-01-05 Matsushita Electric Industrial Co., Ltd. 歪補償回路
JP2006253749A (ja) * 2005-03-08 2006-09-21 Matsushita Electric Ind Co Ltd 歪み補償装置及びその方法
JP2006333450A (ja) * 2005-04-28 2006-12-07 Matsushita Electric Ind Co Ltd 極座標変調回路、極座標変調方法、集積回路および無線送信装置

Also Published As

Publication number Publication date
JPWO2007074839A1 (ja) 2009-06-04
US8369801B2 (en) 2013-02-05
WO2007074839A1 (ja) 2007-07-05
US20100291885A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP4903718B2 (ja) マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法
JP4951238B2 (ja) 極座標変調送信装置及び適応歪補償処理システム並びに極座標変調送信方法及び適応歪補償処理方法
JP4767583B2 (ja) 歪補償回路
US7715808B2 (en) Polar modulating circuit, polar coordinate modulating method, integrated circuit and radio transmission device
US7684514B2 (en) Transmitter apparatus and wireless communication apparatus
EP3941011B1 (en) Processing transmission signals in radio transmitter
JP4802190B2 (ja) ポーラ変調送信回路及び通信機器
JP4845574B2 (ja) 極座標変調回路、集積回路および無線装置
WO2006118147A1 (ja) 極座標変調回路、極座標変調方法、集積回路および無線送信装置
EP1356599B1 (en) Amplifier phase change compensation
US7848717B2 (en) Method and system for out of band predistortion linearization
CN105634415A (zh) 数字预失真系统和用于放大信号的方法
EP1612933A1 (en) Distortion compensation device
JP2007129727A (ja) 高周波増幅器のバイアス最適化装置及び方法
JP5146456B2 (ja) 送受信増幅器および遅延偏差補償方法
JP2001053627A (ja) 非線形歪補償装置
JP4903789B2 (ja) 送信装置及び変調方式切替方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Ref document number: 4903718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees