WO2007074839A1 - マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法 - Google Patents

マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法 Download PDF

Info

Publication number
WO2007074839A1
WO2007074839A1 PCT/JP2006/325955 JP2006325955W WO2007074839A1 WO 2007074839 A1 WO2007074839 A1 WO 2007074839A1 JP 2006325955 W JP2006325955 W JP 2006325955W WO 2007074839 A1 WO2007074839 A1 WO 2007074839A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
modulation
amplitude
unit
output
Prior art date
Application number
PCT/JP2006/325955
Other languages
English (en)
French (fr)
Inventor
Yoshito Shimizu
Akihiko Matsuoka
Tomoya Urushihara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/159,121 priority Critical patent/US8369801B2/en
Priority to JP2007551993A priority patent/JP4903718B2/ja
Publication of WO2007074839A1 publication Critical patent/WO2007074839A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Definitions

  • EER method envelope Elimination & Restoration
  • a modulation method that separates the transmission signal in the baseband and uses the separated constant amplitude phase signal and amplitude signal to modulate the signal is called the Polar Modulation method (polar modulation method, polar modulation method) ( (For example, see Non-Patent Document 1, page 428, Fig. 7.2).
  • polar modulation method polar modulation method, polar modulation method
  • FIG. 29 is a block diagram showing a conventional polar modulation transmission apparatus to which the predistortion (hereinafter abbreviated as PD) distortion compensation processing technique described in FIG. 10 of Patent Document 1 is applied.
  • PD predistortion
  • the polar modulation transmission apparatus 20 includes a power amplifier 1, a polar coordinate conversion unit 2, a distortion compensation processing circuit 3, an amplitude modulation unit 10, a phase modulation unit 11, and an amplitude phase. And a measurement unit 1 2.
  • the distortion compensation processing circuit 3 includes delay adjustment units 4 and 5, a memory 6, an address generation unit 7, an amplitude correction unit 8, and a phase correction unit 9.
  • the polar coordinate conversion unit 2 configures a wireless communication device transmission unit using the polar coordinate modulation transmission device 20
  • the baseband band orthogonal coordinate signal (IQ signal) input from a signal generation unit (not shown) of the wireless communication device ) Is separated into an amplitude signal r (t) and a constant amplitude phase signal ⁇ (t).
  • r (t) is normalized by a predetermined value.
  • the distortion compensation processing circuit 3 performs predetermined distortion compensation processing on the amplitude signal r (t) and the phase signal ⁇ (t), and outputs the amplitude signal after amplitude correction to the amplitude modulation unit 10. At the same time, the phase signal after phase correction is output to the phase modulation unit 11.
  • the structure of this distortion compensation processing circuit 3 The composition and operation will be described later.
  • the amplitude modulation unit 10 drives the control voltage of the power amplifier 1 based on the amplitude signal output from the distortion compensation processing circuit 3.
  • the phase modulation unit 11 performs phase modulation based on the phase signal output from the distortion compensation processing circuit 3.
  • the power amplifier 1 combines amplitude modulation with the phase modulation signal output from the phase modulation unit 11 based on the output signal from the amplitude modulation unit 10 as a control signal.
  • the amplitude phase measurement unit 12 gives a predetermined input signal to the polar coordinate conversion unit 2, and reduces the control voltage at which the amplitude signal becomes a constant value at a maximum value force at predetermined intervals, thereby allowing the power amplifier 1 to
  • the output signal amplitude characteristic and the passing phase characteristic of the power amplifier 1 are measured for each control voltage value, and the acquired data is output to the memory 6.
  • the delay adjustment units 4 and 5 have a predetermined delay with respect to the amplitude signal and the phase signal output from the polar coordinate conversion unit 2 in order to compensate for the time delay difference between the paths of the amplitude modulation signal and the phase modulation signal.
  • the delay adjusted amplitude signal is output to the address generation unit 7 and the amplitude correction unit 8, and the delay adjusted phase signal is output to the phase correction unit 9.
  • AM-AM characteristic of the power amplifier 1 when a steady-state control voltage is supplied AM
  • the phase correction unit 9 performs correction on the phase signal output from the delay adjustment unit 5 based on the phase correction signal output from the memory 6.
  • the amplitude modulation signal and the phase modulation signal distorted in advance in consideration of the inverse characteristic of the output characteristic with respect to the input control signal of the power amplifier are the actual amplitude and phase distortion generated in the power amplifier.
  • the desired output amplitude and phase are affected, and the linearity to the input control voltage can be improved.
  • Patent Document 1 discloses an efficient storage method of distortion compensation processing data when the modulation speed is different or when the required D range of the amplitude signal is different.
  • the conventional polar coordinate modulation is disclosed.
  • the transmitter can be considered to be combined with a technique for storing distortion compensation processing data for each multimode modulation signal to be supported in a memory and performing distortion compensation processing on the power amplifier.
  • the distortion compensation processing data is stored in the memory for each multimode modulation signal, the memory capacity increases and the manufacturing cost of the wireless communication device increases.
  • the implementation of the SDR communication device is not supported at the time of manufacturing the power device that needs to store the distortion compensation processing data of the power amplifier in the memory for each multimode modulation signal.
  • Preliminarily storing distortion compensation processing data for a modulation signal in a memory is accompanied by an increase in circuit scale, and even if the modulation method is the same, for example, for modulation signals having different modulation speeds, Different distortion compensation data is required.
  • the present invention has been made in view of the above-described conventional circumstances, and is capable of reducing the distortion compensation processing data capacity while maintaining distortion compensation accuracy, and is capable of adaptively acquiring a multimode modulation signal. It is an object of the present invention to provide a multimode polar modulation device and a multimode wireless communication method capable of efficiently storing distortion compensation processing data corresponding to the above in a memory.
  • the multimode-compatible polar modulation transmission apparatus of the present invention includes, firstly, a first control unit that switches a modulation method of a transmission modulation signal, and the first control unit based on transmission data.
  • a signal generation unit that generates a baseband quadrature signal using a modulation method selected from the above, a polar coordinate conversion unit that generates an amplitude signal from the baseband quadrature signal, and an amplitude modulation signal based on the amplitude signal.
  • the multimode-compatible polar modulation transmitter of the present invention is the first or second multimode-compatible polar modulation transmitter, wherein the distortion compensation processing circuit has an input high frequency signal of a predetermined amplitude.
  • a steady characteristic compensation circuit is provided for linearizing the output signal in the steady state of the amplification unit based on the output signal characteristic with respect to the control voltage value in the steady state of the amplification unit to which the signal and the control voltage are input.
  • the distortion compensation processing circuit can be easily configured.
  • the multimode-compatible polar modulation transmitter of the present invention is the third multimode-compatible polar modulation transmitter, wherein the distortion compensation processing circuit is the steady-state characteristic compensation circuit.
  • a first amplitude adjusting unit that adjusts the amplitude of the amplitude signal after the steady state output signal linearization processing is further provided.
  • the multimode-compatible polar modulation transmitter of the present invention is the third multimode-compatible polar modulation transmitter, wherein the distortion compensation processing circuit is the steady-state characteristic compensation circuit.
  • a first phase compensator is further provided for adjusting the amplitude of the address reference amplitude signal when performing the distortion compensation processing of the phase signal.
  • the distortion compensation accuracy can be further improved in addition to the effect of the third multi-mode polar modulation transmitter.
  • the multimode-compatible polar modulation transmitter of the present invention is the third multimode.
  • An integrated circuit of the present invention includes any one of the first to eighth multimode-compatible polar modulation transmitters.
  • the multi-mode polar modulation method includes a step of switching a modulation scheme of a transmission modulation signal, and generates a baseband orthogonal signal by the selected modulation scheme based on transmission data.
  • a distortion compensation processing circuit for performing a predetermined distortion compensation process on at least one of the input signal of the amplitude modulation unit and the input signal of the phase modulation unit And a step of switching between the compensation data used in the transmission and the transmission operation.
  • the amplitude dynamic range force of the modulation signal The amplitude of the modulation signal in the modulation method used during the transmission operation Select a modulation method that is below the dynamic range.
  • the multimode wireless communication method of the present invention performs wireless communication between a base station and a mobile station using the multimode-compatible polar modulation method.
  • a wireless communication device of the present invention includes any one of the first to eighth multimode-compatible pole coordinate modulation transmission devices or integrated circuits.
  • the wireless communication system of the present invention includes any one of the first to eighth multimode-compatible polar modulation transmitters, integrated circuits, or wireless communication devices.
  • the present invention is a distortion compensation processing method in a polar modulation circuit, wherein deterioration factors from ideal operation related to phase modulation and amplitude modulation are determined by AM-AM characteristics and AM-PM characteristics depending on the carrier frequency,
  • This is a distortion compensation processing method that separates and compensates for three independent parameters: coefficient information that depends on the output potential of the power amplifier and coefficient information that depends on the modulation speed.
  • the distortion compensation processing data capacity is reduced while maintaining the distortion compensation accuracy, and distortion compensation processing data corresponding to the adaptively acquired multimode modulation signal is efficiently stored in the memory. be able to.
  • the present invention is a multi-mode wireless communication method in a cognitive wireless communication apparatus capable of supporting each wireless communication system in the first area and the second area, leaving the first area, When entering the second area, a step of acquiring coefficient information corresponding to the dynamic range of the modulation signal, a step of acquiring coefficient information corresponding to the modulation speed, and distortion compensation corresponding to the coefficient information
  • a multi-mode wireless communication method comprising: storing processing data in a memory; and performing communication using a modulation scheme corresponding to the wireless communication system in the second area.
  • the present invention it is possible to reduce the distortion compensation processing data capacity while maintaining the distortion compensation accuracy, and to efficiently obtain the distortion compensation processing data corresponding to the adaptively acquired multimode modulation signal.
  • FIG. 1 is a block diagram showing a schematic configuration of a polar modulation transmission apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of a polar modulation circuit according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of table data stored in the first coefficient selection unit 106 according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a power control coefficient (PCL) stored in the transmission level control unit 103
  • FIG. 8 Shows the D range of instantaneous output power for the 8—PSK modulated signal at the output of power amplifier 1.
  • FIG. 10 A graph showing the step response characteristics of the output amplitude to the control voltage when an input high-frequency signal at a level at which the power amplifier saturates is applied.
  • FIG. 12 is a diagram showing an example of a circuit configuration of the arithmetic processing circuit 107b according to the first embodiment of the present invention.
  • Figure 13 AM-PM characteristics of power amplifier
  • FIG. 14 A diagram showing another example of the circuit configuration of the arithmetic processing circuit 107b according to the first embodiment of the present invention.
  • FIG.15 Diagram showing D range of instantaneous output power for HPSK modulated signal and 8-PSK modulated signal at output of power amplifier 1
  • FIG. 16 is a diagram showing an example of table data stored in the address generation unit 1402 according to the first embodiment of the present invention.
  • FIG. 19 is a flowchart of calibration in the first embodiment of the present invention.
  • ⁇ 20 Table data stored in the second memory area constituting the sixth coefficient selection unit 1703 in the first embodiment of the present invention. Figure showing an example
  • FIG. 21 is a diagram showing an example of table data stored in the address generation unit 1402 according to the first embodiment of the present invention.
  • ⁇ 23 A diagram showing a time change of a modulation signal output from the mobile station wireless communication device 2301 via the antenna in the second embodiment of the present invention.
  • FIG. 25 A diagram showing an example of a distortion compensation processing circuit constituting the polar modulation transmission apparatus according to the third embodiment of the present invention.
  • FIG. 26 is a diagram showing an example of table data stored in the seventh coefficient selection unit
  • FIG. 28 is a diagram showing the relationship between the modulation speed and the seventh coefficient information.
  • FIG. 29 shows a conventional polar modulation transmitter.
  • FIG. 30 is a diagram showing a schematic configuration of a cognitive radio communication system according to a fourth embodiment of the present invention.
  • FIG. 31 is a diagram showing an example of representative parameters in each wireless communication system according to the fourth embodiment of the present invention.
  • the first embodiment of the present invention will be described with respect to a multi-mode polar modulation transmitter capable of reducing the distortion compensation processing data capacity while maintaining the distortion compensation accuracy.
  • a multi-mode polar modulation transmitter capable of reducing the distortion compensation processing data capacity while maintaining the distortion compensation accuracy.
  • FIG. 1 is a block diagram showing a schematic configuration of a polar modulation transmission apparatus according to the first embodiment of the present invention.
  • a polar modulation transmitter 1900 includes a polar modulation circuit 1 901, a signal generation unit 1902, a control unit 1903, and an adaptive operation control unit 1711.
  • the polar modulation circuit 1901 includes a power amplifier 1, a polar coordinate conversion unit 2, a distortion compensation processing circuit 1701, an amplitude modulation unit 10, and a phase modulation unit 11.
  • control signals related to the polar modulation transmission apparatus 1900 shown in FIG. 1 will be described.
  • Transmission level information D191 is a control signal for setting the output level from power amplifier 1.
  • the mode switching signal D192 is used as an operation mode of the polar modulation transmitter 1900, and switches between two operation modes: a distortion compensation coefficient information optimization mode (calibration mode) and a transmission operation mode in the distortion compensation processing circuit 1701.
  • This is a control signal having a first mode switching signal for setting the signal and a second mode switching signal for setting the modulation mode of the signal output from the signal generator 1902.
  • the signal generation unit 1902 is based on a user operation of the radio communication apparatus configured by the polar modulation transmission apparatus 1900 in the modulation mode set by the second mode switching signal output from the control unit 1903.
  • the baseband orthogonal coordinate signal (IQ signal) is generated from the transmitted data, and the IQ signal is output to the polar coordinate converter 2 via the signal input terminal Tl l and the signal input terminal T12. To do.
  • the control unit 1903 outputs the transmission level information D191 to the distortion compensation processing circuit 1701. Specifically, the control unit 1903 outputs the transmission level information D191 to the polar coordinate modulation circuit 1901 via the signal input terminal T191. Received transmission level information D 191 Polar coordinate modulation circuit 1901 outputs transmission level information D191 to distortion compensation processing circuit 1701 via signal input terminals ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5 and ⁇ 6. In addition, the control unit 1903 sends the second mode switching signal to the signal generation unit 1902, the first mode switching signal to the polar modulation circuit 1901 and the first mode switching signal via the signal input terminal T192. The second mode switching signal and the first mode switching signal are output to the adaptive operation control unit 1711.
  • Control unit 1903 outputs a second mode switching signal for selecting a modulation method that is equal to or less than the amplitude D range of the modulation signal in the modulation method used in the transmission operation mode in the calibration mode. Then, in the distortion compensation processing circuit 1701, in the modulation method in which the amplitude D range of the modulation signal is narrow, the distortion compensation circuit 1701 is an example of the compensation data while referring to the control signal D173 from the adaptive operation control unit 1711. Optimize compensation factor information.
  • distortion compensation coefficient information is obtained using a signal having a narrow amplitude D range, and is referred to as compensation data when transmitting a modulation signal having a wider amplitude D range.
  • the modulation transmission apparatus can support multi-mode operation, it is possible to simultaneously solve the conflicting problems of suppressing the increase in distortion compensation data capacity and ensuring the compensation accuracy.
  • the distortion compensation processing circuit 1701 is The power amplifier's dynamic characteristics are improved with a simple configuration by performing predetermined calculation processing based on the AM-AM and AM PM characteristics of the power amplifier obtained by supplying the control voltage of the state. It was possible to compensate for accuracy.
  • AM-AM dynamic characteristic compensation technology and AM-PM dynamic characteristic compensation technology of the power amplifier will be described.
  • FIG. 2 is a block diagram showing a schematic configuration of the polar modulation circuit according to the first embodiment of the present invention.
  • the polar modulation circuit 1901 includes a power amplifier 1, a polar conversion unit 2, A distortion compensation processing circuit 1701, an amplitude modulation unit 10, and a phase modulation unit 11 are provided. Also, the distortion compensation processing circuit 1701 is a transmission having delay adjustment units 4 and 5, address generation units 7a and 7b, amplitude correction unit 8, phase correction unit 9, multiplication circuit 102, and signal input terminal T1.
  • the polar modulation circuit 1901 in the first embodiment of the present invention deletes the amplitude / phase measurement unit 12 in the conventional polar modulation transmission apparatus 20 shown in FIG. 29, and also includes the memory 6 and the address generation unit 7. Instead of this, a memory 104 and address generation units 7a and 7b are provided. In addition, a multiplication circuit 102, a transmission level control unit 103, a first amplitude adjustment unit 105, a first coefficient selection unit 106, a second amplitude adjustment unit 107, and a second coefficient selection unit are newly provided. 10 8, third coefficient selection unit 109, variable attenuation circuit 110, fourth coefficient selection unit 111, fifth coefficient selection unit 112, amplitude determination unit 113, address generation unit 1402, multiplication A circuit 1702 and a sixth coefficient selection unit 1703 are provided.
  • the polar coordinate converter 2 receives the baseband orthogonal coordinate signal (IQ signal) input from the signal generator 1902 via the signal input terminal Tll and the signal input terminal T12 as an amplitude signal!: (T ) And a constant amplitude phase signal ⁇ (t).
  • r (t) is normalized by a predetermined value, for example, 1.
  • the distortion compensation processing circuit 1701 receives the amplitude signal!: (T) and the phase signal ⁇ (t (t), which are input via the signal input terminal T13 and the signal input terminal T14, and generated by the polar coordinate conversion unit 2. ) Is subjected to a predetermined distortion compensation process. Further, the distortion compensation processing circuit 1701 outputs the amplitude signal after amplitude correction to the amplitude modulation unit 10 via the signal output terminal T15, and outputs the phase signal after phase correction via the signal output terminal T16. Output to phase modulator 11 .
  • the configuration and operation of the distortion compensation processing circuit 1701 will be described later.
  • the amplitude modulation section 10 drives the control voltage of the power amplifier 1 based on the amplitude signal output from the distortion compensation processing circuit 1701 via the signal output terminal T15.
  • the phase modulation unit 11 performs phase modulation based on the phase signal output from the distortion compensation processing circuit 1701 via the signal output terminal T16, and outputs the phase modulation signal via the signal input terminal T17. Output to distortion compensation processing circuit 1701.
  • the power amplifier 1 Based on the output signal from the amplitude modulation section 10 as a control signal, the power amplifier 1 has an amplitude corresponding to the phase modulation signal output from the distortion compensation processing circuit 1701 via the signal output terminal T18. Synthesize the modulation.
  • the configuration and operation of the distortion compensation processing circuit 1701 will be described in detail.
  • the operation of the amplitude modulation unit 10 and the phase modulation unit 11 will be described in detail again in order to clarify the signal input / output relationship with the distortion compensation processing circuit 1701.
  • the delay adjustment unit 4 converts the amplitude signal input from the polar coordinate conversion unit 2 via the signal input terminal T13 based on the fifth coefficient information (coeff5) output from the fifth coefficient selection unit 112. On the other hand, a predetermined delay is given, and the amplitude signal after delay adjustment is output to the multiplication circuit 102.
  • the delay adjustment method will be described later.
  • the multiplier circuit 102 multiplies the amplitude signal output from the delay adjustment unit 4 by the power control coefficient (PCL) output from the transmission level control unit 103, and the amplified amplitude signal is multiplied by the power control coefficient.
  • the output is output to the amplitude correction unit 8, the second amplitude adjustment unit 107, and the amplitude determination unit 113.
  • Transmission level control section 103 stores, in a memory, a power control coefficient corresponding to transmission level information D191 of power amplifier 1 input from control section 1903, and transmits the transmission level information input via signal input terminal T1.
  • the power control coefficient is output to the multiplier circuit 102 using D191 as an address signal.
  • the memory 104 stores the AM-AM forward characteristic of the power amplifier 1 and the inverse characteristic of the AM-PM forward characteristic, which are acquired in advance using a network analyzer or the like.
  • the AM-AM forward characteristic and the AM-PM forward characteristic of the power amplifier 1 are as shown in FIGS. 3 and 4, for example.
  • the horizontal axis is the normalized control voltage that is normalized by the maximum value of the control voltage supplied to the power amplifier 1
  • the vertical axis is the output amplitude from the power amplifier 1
  • the solid line in the figure is the normal value.
  • the steady state characteristic of the output amplitude with respect to the control voltage is shown.
  • the horizontal axis represents the normalized control voltage
  • the vertical axis represents the phase difference between the input high-frequency signal and the output high-frequency signal to the power amplifier 1, that is, the passing phase rotation amount of the power amplifier 1.
  • the solid line in the figure shows the steady state characteristic of the passing phase rotation amount with respect to the normal control voltage.
  • the memory 104 outputs an amplitude correction signal that is the reverse characteristic of the power amplifier 1 to the amplitude correction unit 8 according to the first address signal output from the address generation unit 7a, and also generates an address generation unit 7b.
  • a phase correction signal that is the reverse characteristic of the power amplifier 1 is output to the phase correction unit 9.
  • the characteristics shown in Figs. 3 and 4 show the steady characteristics when the output of the power amplifier is stabilized after the control voltage is supplied.
  • the address generation unit 7a obtains AM-AM inverse characteristic data and compensation accuracy for storing the amplitude signal output from the multiplication circuit 107a included in the second amplitude adjustment unit 107 in the memory 104.
  • a first address signal for referring to the AM-AM inverse characteristic data stored in the memory 104 is generated after being converted into a discrete value having a range and a predetermined step width.
  • the address generation unit 7b obtains the amplitude signal output from the arithmetic processing circuit 107b constituting the second amplitude adjustment unit 107 from the AM-PM inverse characteristic data stored in the memory 104 and the compensation accuracy.
  • a second address signal for referring to the AM-PM reverse characteristic data stored in the memory 104 is generated after conversion into a discrete value having a range and a predetermined step width.
  • the amplitude correction unit 8 corrects the amplitude signal output from the multiplication circuit 102 based on the amplitude correction signal output from the memory 104, and the amplitude signal after amplitude correction is adjusted to the first amplitude. Outputs to part 105.
  • the amplitude determination unit 113 samples the amplitude signal output from the multiplication circuit 102 at regular intervals to obtain an instantaneous amplitude value, and uses the instantaneous amplitude value as amplitude data D7 to the address generation unit 1402 Output.
  • the address generator 1402 is based on the amplitude data D7 output from the amplitude determiner 113.
  • the sixth coefficient selection unit 1703 generates a third address signal D141 for referring to the compensation data by a method described later, and selects the sixth coefficient selection via the signal output terminal T141 and the signal input terminal T171.
  • the third address signal D141 is output to the unit 1703.
  • the first coefficient selection unit 106 stores coefficient information corresponding to predetermined data D2 input from the signal input terminal T2 as table data shown in FIG.
  • the first column of the table data shown in FIG. 5 shows the address number of the table data, and the second column shows coefficient information (coeffl) set by a method described later.
  • the data D2 is transmission level information D191.
  • the first coefficient selection unit 106 adopts a configuration in which the table data is updated with the coefficient information output from the multiplication circuit 1702 in the coefficient information calibration mode.
  • the sixth coefficient selection unit 1703 has two memory areas.
  • the first memory area is used in the coefficient information calibration mode, and is input from the signal input terminal T174.
  • the sixth coefficient information (coeff6) is stored in the format corresponding to D174.
  • the second memory area constituting the sixth coefficient selection unit 1703 is used in the transmission operation mode, and the sixth coefficient is in a format corresponding to the data D171 input from the signal input terminal T171. Store information. Therefore, the storage format of the sixth coefficient information is different between the first memory area and the second memory area.
  • the first memory area has the format shown in FIG. 18.
  • the first column of the table data is the address number of the table data, and the second column is the sixth coefficient information in a predetermined range including 1. Show.
  • coefficient information “1” is stored in address number Q, and each coefficient information is, for example, coefficient information corresponding to an address number smaller than Q is larger than “1” and larger than Q.
  • the coefficient information corresponding to the address number is set to monotonously decrease as the address number increases below “1”.
  • the data D174 is a control signal D173 output from the adaptive operation control unit 1711.
  • the second memory area is obtained by replacing the second column of the table data shown in FIG. 5 with coefficient information (coeff6) set by a method described later.
  • the data D171 is data D141 output from the address generation unit 1402. Unless otherwise noted In this case, the sixth coefficient selection unit 1703 outputs “1” as the sixth coefficient information in the transmission operation mode.
  • Multiplier circuit 1702 multiplies the first coefficient information output from first coefficient selection section 106 by the sixth coefficient information output from sixth coefficient selection section 1703, and transmits the transmission operation mode.
  • the product of coefficient information is output to the first amplitude adjustment unit 105, and in the calibration mode of coefficient information, the product of the coefficient information is output to the first coefficient selection unit 106. To do.
  • the first amplitude adjustment unit 105 includes a multiplication circuit 105a.
  • the multiplication circuit 105a multiplies the amplitude signal output from the amplitude correction unit 8 by the product of the coefficient information output from the multiplication circuit 1702, and outputs the amplitude signal after multiplication of the product as a signal output terminal. Output to the amplitude modulation section 10 via T15.
  • the second amplitude adjustment unit 107 includes a multiplication circuit 107a and an arithmetic processing circuit 107b.
  • the multiplication circuit 107a multiplies the amplitude signal output from the multiplication circuit 102 by the second coefficient information (coeff2) output from the second coefficient selection unit 108, and the second coefficient information multiplied
  • the amplitude signal is output to the address generator 7a.
  • the arithmetic processing circuit 107b performs predetermined arithmetic processing on the amplitude signal output from the multiplication circuit 102 based on the third coefficient information (coeff 3) output from the third coefficient selecting unit 109.
  • the amplitude signal after the execution of the calculation process is output to the address generator 7b.
  • the second amplitude adjustment unit 107 outputs different coefficient information to the amplitude signal that is used when the address generation units 7a and 7b generate the first address signal and the second address signal. It is characterized by being multiplyable.
  • the predetermined arithmetic processing performed in the arithmetic processing circuit 107b is, for example, the third coefficient information (coeff) output from the third coefficient selection unit 109 for the amplitude signal output from the multiplication circuit 102. 3) refers to the arithmetic processing to multiply or add.
  • the second coefficient selection unit 108 sets the coefficient information corresponding to the predetermined data D3 input from the signal input terminal T3 in order to set the second coefficient information to be multiplied by the multiplication circuit 107a. Store as data. This table data is obtained by replacing the second column of the table data shown in FIG. 5 with the second coefficient information set by the method described later. Here, the data D3 is transmission level information D191.
  • the third coefficient selection unit 109 sets a table of coefficient information corresponding to predetermined data D4 input from the signal input terminal T4 in order to set third coefficient information to be multiplied by the arithmetic processing circuit 107b. Store as data. This table data is obtained by replacing the second column of the table data shown in FIG. 5 with the third coefficient information set by the method described later.
  • the data D4 is transmission level information D191.
  • Amplitude modulation section 10 drives the control voltage of power amplifier 1 based on the amplitude signal output from multiplication circuit 105a via signal output terminal T15.
  • the delay adjustment unit 5 converts the phase signal input from the polar coordinate conversion unit 2 via the signal input terminal T14 based on the fifth coefficient information (coeff5) output from the fifth coefficient selection unit 112. On the other hand, a predetermined delay is given, and the phase signal after delay adjustment is output to the phase correction unit 9. The delay adjustment method will be described later together with the delay adjustment in the delay adjustment unit 4.
  • the phase correction unit 9 corrects the phase signal output from the delay adjustment unit 5 based on the phase correction signal output from the memory 104, and outputs the post-phase correction signal via the signal output terminal T16.
  • the phase signal is output to the phase modulation unit 11.
  • the phase modulation unit 11 performs phase modulation based on the phase signal after phase compensation output from the phase correction unit 9 through the signal output terminal T16, and the variable attenuation circuit 110 through the signal input terminal T17. Outputs a phase modulation signal.
  • the variable attenuation circuit 110 receives the phase modulation input from the phase modulation unit 11 via the signal input terminal T17 in accordance with the fourth coefficient information (co eff4) output from the fourth coefficient selection unit 111.
  • the amplitude value (attenuation amount) of the signal is adjusted, and the phase-modulated signal after amplitude adjustment is output to the power amplifier 1 via the signal output terminal T18.
  • a variable gain amplifier may be used instead of the variable attenuation circuit.
  • the fourth coefficient selection unit 111 corresponds to predetermined data D5 input from the signal input terminal T5 in order to set fourth coefficient information for determining the attenuation amount in the variable attenuation circuit 110.
  • the obtained coefficient information is stored as table data.
  • This table data is the fourth coefficient information set by the method described later in the second column of the table data shown in FIG. It will be replaced.
  • the data D5 is transmission level information D191.
  • the fifth coefficient selection unit 112 sets the synchronization adjustment amount between the amplitude signal and the phase signal output from the polar coordinate conversion unit 2 performed by the delay adjustment unit 4 and the delay adjustment unit 5.
  • the coefficient information corresponding to the predetermined data D6 input from the signal input terminal T6 is stored as table data. This table data is obtained by replacing the second column of the table data shown in FIG. 5 with the fifth coefficient information (coeff 5) set by the method described later.
  • the data D6 is transmission level information D191.
  • the power control method of the power amplifier 1, the AM-AM dynamic characteristic compensation method of the power amplifier 1, and the AM-PM dynamic characteristic compensation method of the power amplifier 1 And the compensation method for the time delay difference between the paths of the amplitude signal and the phase signal.
  • the compensation method for the time delay difference between the paths of the amplitude signal and the phase signal will be described regarding the use of the fifth coefficient selection unit 112, the delay adjustment unit 4, and the delay adjustment unit 5.
  • FIG. 6 is a diagram showing a specific example of the transmission level information D191 of the power amplifier 1 output from the control unit 1903 of the polar modulation transmission apparatus 1900.
  • the first column of the table data shown in Fig. 6 is the 900 MHz band G described in the GSM standard.
  • FIG. 7 shows the power control coefficient (PCL) stored in the transmission level control unit 103 when the control step width of the transmission power is 2 dB as shown in FIG.
  • the first column of the table data shown in Fig. 7 shows the address number of the table data, and the second column shows the power control coefficient.
  • the power control coefficient corresponding to address number 1 is 1, and the relationship between the power control coefficient corresponding to address number M and address number (M + 1) is expressed by the following equation (1).
  • PCL M + l PCL M x ⁇ 0 20 ⁇ ⁇ ⁇ ⁇ ( "
  • Transmission level control section 103 uses the power control coefficient set in this way as signal input terminal T.
  • FIG. 8 is a diagram showing the D range of the instantaneous output power for the 8-PSK modulated signal at the output section of the power amplifier 1, and the vertical axis shows the output power displayed in dB.
  • Range (A) 701 is the D range of instantaneous output power for the 8-PSK modulation signal in the case of average output power Poutl.
  • Range (B) 702 is the D range of instantaneous output power for the 8-PSK modulation signal when the average output power is Pout2.
  • Range (C) 703 is the D range of instantaneous output power for the 8-PSK modulation signal when the average output power is Pout3.
  • PCLs corresponding to Poutl, Pout2, and Pout3 are PCL (l), PCL (2), and PCL (3), respectively, the relationship is as shown in the following formula (3).
  • the polar modulation transmitter 1900 uses the amplitude signal to represent the amplitude component of the modulation signal and the power control information, but the amplitude signal control step based on the power control information It is much coarser than the resolution of the amplitude value required for the amplitude component.
  • the horizontal axis represents the normalized control voltage normalized by a predetermined value of the control voltage supplied to the power amplifier 1, and the vertical axis represents the output amplitude from the power amplifier 1.
  • a steady characteristic 801 indicated by a dotted line indicates a steady characteristic (AM-AM forward characteristic) of the output amplitude with respect to the normal control voltage, and is the same as the steady characteristic shown in FIG.
  • Characteristic indicated by a solid line (A) 802 is AM-AM using the steady characteristic 801 as an input signal to the amplitude modulation unit 10 when the first coefficient information satisfies the following equation (4)
  • the forward characteristic of the AM-AM characteristic stored in the memory 104 is shown.
  • the characteristic indicated by the solid line (B) 803 is an AM-AM using the steady characteristic 801 as an input signal to the amplitude modulation unit 10 when the first coefficient information satisfies the following equation (5).
  • the forward characteristic of the AM-AM characteristic stored in the memory 104 is shown.
  • the AM-AM dynamic characteristic compensation method using the multiplication circuit 107a and the second coefficient selection unit 108 has a similar relationship, and as in the above description, FIG. This is explained using FIG. Here, the first coefficient information is “1”.
  • the steady characteristic 801 is used as an input signal to the amplitude modulation unit 10.
  • the forward characteristic of the AM-AM characteristic stored in the memory 104 is the characteristic (A) 802.
  • the steady-state characteristic 80 is used as an input signal to the amplitude modulation unit 10.
  • the forward characteristic of the AM-AM characteristic stored in the memory 104 is the characteristic (B) 803.
  • the second characteristic stored in the memory 104 can be changed without changing the second characteristic.
  • the coefficient information By adjusting the coefficient information, the same effect as adjusting the inverse characteristic stored in the memory 104 can be realized.
  • the transmission level information D 191 described with reference to FIG. 6 is cited, but based on the transmission level information D 191, The meaning of selecting the first coefficient information will be described with reference to FIG.
  • FIG. 10 is a diagram showing a step response characteristic of the output signal amplitude with respect to the control voltage in a state where the input high-frequency signal amplitude of a predetermined level is applied to the power amplifier 1.
  • the horizontal axis represents the elapsed time of the power at the time when the control signal is input to the power amplifier 1
  • the vertical axis represents the output signal amplitude from the power amplifier 1.
  • step response characteristics for two different control voltage values are shown as characteristics (A) 901 and characteristics) 90
  • the output amplitude from the power amplifier in the steady state is different. Note that, in the two step response characteristics shown in FIG. 10, a higher steady-state control voltage value is supplied than the direction characteristic (B) 902 of characteristic (A) 901.
  • AM Stored in the memory 104.
  • the amplitude modulation unit 10 or power amplification is applied to the amplitude modulation signal that changes at high speed.
  • the desired compensation effect cannot be obtained due to the output response characteristics of the device 1
  • the inventors of the present application have examined the power amplifier 1 when supplying a constant control voltage to obtain the average output power of the modulation signal.
  • the step response characteristic of the signal is measured in advance for each transmission output power defined in a radio system standard document (eg, GSM standard document), and the amplitude signal is multiplied by a predetermined value according to the step response characteristic. As a result, the compensation accuracy can be improved.
  • the first coefficient selection unit 106 receives the input signal from the amplitude correction unit 8 to the multiplication circuit 105a.
  • the first coefficient information that is less than “1” is output to the first amplitude adjustment unit 105 so that the output signal from the multiplication circuit 105 a to the amplitude modulation unit 10 is attenuated.
  • the first coefficient selection unit 106 applies the input signal to the multiplication circuit 105a. In order to amplify the output signal, the first coefficient information of “1” or more is output to the multiplication circuit 105a.
  • the amplitude signal corrected with the steady characteristic is compressed.
  • the starting characteristic is the inverse characteristic of overshoot
  • the amplitude signal is expanded so that the desired output amplitude can be obtained in consideration of the effect of transient response.
  • This processing is based on the first coefficient information described with reference to FIG. 9, and the process for obtaining the characteristic (A) 802 or characteristic (B) 803 from the steady characteristic 801 is performed at the transmission power level. This is equivalent to performing it accordingly. The same applies to the second coefficient information.
  • the first coefficient information obtained for each transmission level is stored in the first coefficient selection unit 106 in the format shown in FIG.
  • the first coefficient information is for each transmission level.
  • thinned data may be stored so as to reduce the table data. The above is the description regarding the setting of the first and second coefficient information.
  • the control coefficient of the power amplifier 1 is swept with a finer step width than the transmission level specification, and the first coefficient information or the second coefficient information is swept. Coefficient information is acquired and the first coefficient information or the second coefficient information is selected according to the third address signal D141 based on the amplitude value of the amplitude signal output from the address generator 1402 As a result, it was possible to further improve the compensation accuracy and to increase the effect when transmitting a signal with a high modulation speed.
  • the second coefficient information output from the second coefficient selection unit 108 based on the transmission level information D191 is based on the third address signal D141.
  • the first coefficient selection unit 106 and the second coefficient selection unit 108 may store the coefficient information corresponding to the third address signal D141.
  • the first coefficient information or the second coefficient information is output based on the third address signal D141.
  • the horizontal axis represents the normalized control voltage
  • the vertical axis represents the passing phase rotation amount of the power amplifier 1.
  • Steady state characteristic 1001 indicated by a dotted line shows the steady state characteristic (AM-PM forward characteristic) of the passing phase rotation amount with respect to the normal control voltage and is the same as the steady state characteristic shown in FIG. .
  • Characteristic indicated by solid line (A) 1002 is the phase modulation unit 11 when the arithmetic processing circuit 107b is configured by a single multiplication circuit and the third coefficient information satisfies the following equation (8).
  • the characteristic indicated by the solid line (B) 1003 is the phase modulation unit 11 when the arithmetic processing circuit 107b is configured by a single multiplication circuit and the third coefficient information satisfies the following equation (9).
  • the forward characteristic of the AM-PM characteristic stored in the memory 104 is shown.
  • the above relationship is, for example, for compensation in the case where an error occurs between the AM-PM dynamic characteristics of the power amplifier 1 in the amplitude modulation operation state and the AM-PM forward characteristic data when the characteristics of the power amplifier 1 are acquired. Indicates that it can be applied.
  • FIG. 12 shows an example of the circuit configuration of the arithmetic processing circuit 107b.
  • r (t) max is the maximum value of the amplitude signal output from the polar coordinate converter 2, and is set to 1, for example.
  • the horizontal axis represents the normalized control voltage
  • the vertical axis represents the passing phase rotation amount of the power amplifier 1.
  • the steady-state characteristic 1201 indicated by the dotted line shows the steady-state characteristic (AM-PM forward characteristic) of the passing phase rotation amount with respect to the normal control voltage.
  • the steady-state characteristic shown in FIG. 4 and shown in FIG. It is the same as the steady-state characteristic 1001.
  • the characteristic indicated by the solid line (A) 1202 is an AM-PM using the steady characteristic 1201 as an input signal to the phase modulation unit 11 when the third coefficient information satisfies the above equation (8).
  • the forward characteristic of the AM-PM characteristic stored in the memory 104 is shown.
  • the characteristic indicated by the solid line (B) 1203 is an AM-PM using the steady characteristic 1201 as an input signal to the phase modulation unit 11 when the third coefficient information satisfies the above equation (9).
  • the forward characteristic of the AM-PM characteristic stored in the memory 104 is shown.
  • the third coefficient information output from the third coefficient selection unit 109 or the fourth coefficient selection unit 111 based on the transmission level information D191.
  • more accurate compensation can be achieved by multiplying the fourth coefficient information by the coefficient information output based on the third address signal D141.
  • the third coefficient selection unit 109 and the fourth coefficient selection unit 111 are configured to store coefficient information corresponding to the third address signal D141, based on the third address signal D141.
  • the coefficient information or the fourth coefficient information may be output.
  • the arithmetic processing circuit 107b shown in FIG. 12 is configured by the addition circuit 1301 shown in FIG. 14, and the predetermined value is added to the amplitude signal output from the multiplication circuit 102.
  • FIG. The same effect as the arithmetic processing circuit 107b shown can be obtained, and the circuit scale can be further reduced.
  • this addition processing is a signal input to the address generator 7b. The same effect can be realized by performing the processing on the second address signal output from the address generator 7b.
  • the time delay difference between the path of the amplitude signal and the phase signal is adjusted.
  • the fifth coefficient information is transmitted to the delay adjustment unit 4 and the delay adjustment unit 5, and the delay adjustment unit 4 and the delay adjustment unit 5 give the delay amount corresponding to the fifth coefficient information to the amplitude signal and the phase signal. Good low distortion characteristics can be realized.
  • the third address signal D141 is output to the fifth coefficient information output from the fifth coefficient selection unit 112 based on the transmission level information D191. Based on the third address signal D141, the product of the coefficient information for adjusting the time delay difference between the path of the amplitude signal and the phase signal is adopted.
  • the delay adjustment unit 4 and the delay adjustment unit 5 transmit the delay amount according to the fifth coefficient information to the amplitude signal and the phase signal. Low distortion characteristics can be realized.
  • the distortion compensation processing circuit 1701 shown in FIG. 2 performs the AM-AM dynamic characteristic compensation using the AM-AM inverse characteristic with the steady characteristic stored in the memory 104 with respect to the amplitude signal after amplitude correction. Multiplying the coefficient information that expresses the transient response, and store it in the memory 104.
  • Predetermined arithmetic processing is performed for the address signal when referring to the AM-AM reverse characteristic in the steady state characteristic Performing predetermined arithmetic processing on the address signal when referring to the AM-PM reverse characteristic in the steady state characteristic stored in the memory 104, adjusting the input power level to the power amplifier 1, or Depending on the transmission level information D191, it is possible to adjust the delay between the amplitude signal and phase signal paths according to the input control voltage to the power amplifier 1 or in combination with each other. Thus, in the polar coordinate modulation method, it is possible to accurately compensate the dynamic characteristics while suppressing an increase in compensation data. Furthermore, when the compensation according to the transmission level information D191 is performed using the third address signal D141, the dynamic characteristic compensation effect can be improved and a signal with a high modulation speed is transmitted. In addition, the compensation effect according to the third address signal D141 becomes larger.
  • the distortion compensation processing technology OLE INK3 in the OLE INK3 polar modulation circuit of the present invention compensates by degrading the deterioration factor of ideal operating force related to phase modulation and amplitude modulation into three independent parameters. This is a configuration suitable for a multimode operation to be described later.
  • AM-AM characteristics and AM-PM characteristics depending on the carrier frequency are stored in the memory 104 as compensation data for deterioration factors related to phase modulation.
  • coefficient information that depends on the output potential of the power amplifier is used as the first coefficient selection unit 106 and the second coefficient selection.
  • coefficient information that depends on the output potential of the power amplifier is used as the first coefficient selection unit 106 and the second coefficient selection.
  • the unit 108 Stored in the unit 108, the third coefficient selection unit 109, the fourth coefficient selection unit 111, the fifth coefficient selection unit 112, and the sixth coefficient selection unit 1703.
  • coefficient information depending on the modulation speed is used as the first coefficient selection unit 106, the second data as compensation data for the deterioration factor due to the follow-up ability of the power amplifier to the signal change (modulation speed) with respect to amplitude modulation.
  • the coefficient selection unit 108, the third coefficient selection unit 109, the fifth coefficient selection unit 112, and the sixth coefficient selection unit 1703 are stored.
  • the maximum / minimum value ratio (amplitude D range) of the amplitude signal of the modulation signal used in the radio system is about 17 dB in the case of the 8-PSK modulation signal used in the EDGE system.
  • the uplink HPSK modulation signal used in the UMTS system is about 55dB. Therefore, when an HPSK modulated signal is expressed at the output of the power amplifier 1, a wider control range is required than when an 8-PSK modulated signal is expressed.
  • the HPSK modulation signal is 10 times faster than the 8-PSK modulation signal, and when transmitting the HPSK modulation signal, compared to transmitting the 8-PSK modulation signal, The effect of the distortion compensation processing according to the third address signal D141 based on the amplitude value of the amplitude signal is great.
  • the inventor of the present application conflicts with suppression of increase in distortion compensation data capacity and ensuring of compensation accuracy when the polar modulation transmitter 1900 shown in Fig. 1 is enabled to support multi-mode operation.
  • the amplitude D range is relatively narrow!
  • the amplitude D range is wide. Since we have studied to determine the optimal step width of coefficient information by setting coefficient information when transmitting a modulated signal, this will be described with reference to FIG. 1, FIG. 2, and FIG.
  • a modulated signal with a relatively narrow amplitude D range is converted to an 8-PSK modulated signal.
  • a modulation signal with a wide amplitude D range will be described as an HPSK modulation signal.
  • Fig. 15 is a diagram showing the D range of the instantaneous output power for the HPSK modulated signal and 8-PSK modulated signal at the output of the power amplifier 1, and the vertical axis represents the output power expressed in dB. Show.
  • Range (A1) 1501 is the D range of the instantaneous output power for the HPSK modulation signal when the average output power is PoutA (l).
  • Range (B1) 1511 is the D range of the instantaneous output power for the 8-PSK modulation signal when the average output power is PoutB (l).
  • Range (B2) 1512 is the D range of the instantaneous output power for the 8-PSK modulation signal when the average output power is PoutB (2).
  • Range (B3) 1513 is the D range of the instantaneous output power for the 8-PSK modulation signal when the average output power is PoutB (3).
  • Range (B4) 1514 is the D range of the instantaneous output power for the 8-PSK modulation signal when the average output power is PoutB (4).
  • PoutA (l) PoutB (l) ⁇ ⁇ ⁇ ⁇ ⁇ (11)
  • the range (Bl) 1511 for performing power control with a predetermined step width is changed from the range (Bl)
  • Range (A1) 15 based on optimal coefficient information for 8—PSK modulated signals up to 1514
  • the optimal coefficient information for the HPSK modulation signal of 01 can be obtained.
  • the address generation unit 1402 uses the third address signal for the amplitude data D7 output from the amplitude determination unit 113 based on the step width of the amplitude signal for which the predetermined step width force of the power control is also obtained. After generating D141, it is output to the sixth coefficient selection unit 1703 through the signal output terminal T141.
  • FIG. 16 is a diagram showing an example of a method of generating the third address signal D141 for the amplitude data D7 output from the amplitude determination unit 113, and the first column shows the amplitude data divided by a predetermined step width. D7, the second column is the third address output from the address generator 1402 Signal D141 is shown.
  • the power is further reduced than the range (B4) 1514.
  • the optimum coefficient information for the modulation signal is used.
  • coefficient information for the third address signal D141 based on the discrete amplitude data D7 having a predetermined step width is obtained.
  • interpolation processing is performed based on the coefficient information.
  • the compensation accuracy can be further improved, and this method can be adopted in a system in which the distortion compensation processing data capacity is allowed.
  • DAC digital-analog conversion circuit
  • MDAC multiplying DAC
  • the first amplitude adjustment unit 105 is eliminated, and the multiplication circuit 1702 A signal corresponding to the product of the first coefficient information and the sixth coefficient information that is output is input as an MDAC reference signal, and a digital signal that is output from the amplitude correction unit 8 is input to enable the MDAC multiplication function.
  • another DAC may be arranged between the amplitude correction unit 8 and the MDAC.
  • FIG. 17 shows a schematic configuration of the adaptive operation control unit 1711 provided in the polar modulation transmission apparatus 1900 shown in FIG.
  • the adaptive operation control unit 1711 includes a frequency conversion circuit 1712 having a signal input terminal T 172, a detection unit 1713, and a coefficient adjustment unit 1714 having a signal output terminal T173.
  • the frequency conversion circuit 1712 is output from the power amplifier 1 via the signal output terminal T194.
  • the modulated signal D172 in the radio frequency band is received via the signal input terminal T172. Further, the frequency conversion circuit 1712 converts the frequency of the modulation signal D172, and reduces the frequency from the radio frequency band to the frequency band that can be processed by the detection unit 1713.
  • the detection unit 1713 has a signal power (Pow_L, Pow_H, Pow_L, Pow_H) in the low frequency band and the high frequency band that are the same detuned frequency from the center frequency of the modulation signal output from the frequency conversion circuit 1712. ). Further, based on Pow_L and Pow_H, unbalance information ⁇ Pow shown in the following equation (13) is transmitted to the coefficient adjustment unit 1714.
  • po w I pow— L-P ow— HI ⁇ ⁇ ⁇ ⁇ (1 3)
  • the coefficient adjustment unit 1714 accepts an imbalance in the threshold ( ⁇ Pow—Thresh) for the unbalance information ⁇ Pow, that is, the adjacent channel leakage power (ACPR: Adjacent Channel Power Ratio) characteristic at the output of the power amplifier 1.
  • ⁇ Pow—Thresh the adjacent channel leakage power
  • ACPR Adjacent Channel Power Ratio
  • the control signal D173 for switching the coefficient information of the sixth coefficient selection unit 1703 is sent to the signal output terminal.
  • the data is output to the sixth coefficient selection unit 1703 via T173 and the signal input terminal T174.
  • the sixth coefficient selection unit 1703 uses, as an address signal, the third address signal D141 output from the address generation unit 1402 via the signal output terminal T141 and the signal input terminal T171. It is assumed that the sixth coefficient information stored in the second memory area (described later, see FIG. 20) is output. Further, the sixth coefficient selection unit 1703 outputs “1” in the initial state among the output coefficient information (coeff6) stored in the first memory area shown in FIG. 18 in the calibration mode of the coefficient information. is doing. That is, the sixth coefficient selection unit 1703 selects the address number Q in the initial state. Thereafter, the sixth coefficient selection unit 1703 includes a signal output terminal T173, a signal input terminal T193, and a signal input terminal T1.
  • the address number is switched by a predetermined method on the basis of the control signal D173 output from the coefficient adjustment unit 1714 via 74. For example, when the sixth coefficient selection unit 1703 receives a control signal for switching coefficient information as the control signal D173 output from the coefficient adjustment unit 1714, the sixth coefficient selection unit 1703 starts from the currently selected address number and starts the next address. It works to select one of the numbers on a trial and error basis.
  • the ACPR characteristic in a predetermined band is measured for the modulation signal output from the power amplifier 1, and the coefficient information is set so as to reduce the unbalance of the ACPR characteristic. By doing so, it is possible to select the optimum coefficient information. Therefore, the above-described operation is repeated for each transmission level information using a modulation signal having a relatively narrow amplitude D range or for each transmission level at a predetermined interval whose control width is coarser than the transmission level information. The optimum sixth coefficient information for the transmission level of the width can be obtained.
  • FIG. Figure 19 is a calibration flowchart.
  • the amplitude signal r (t) output from the polar coordinate converter 2 is normalized by 1. That is, the maximum value of the amplitude data D7 is 1.
  • the distortion compensation processing circuit 1701 and the adaptive operation control unit 1711 start the calibration operation.
  • step 1 after starting the calibration operation, set the transmission output level to the maximum value P1 specified by the transmission output level.
  • step 2 the coefficient information at the output level is calibrated.
  • the coefficient adjustment unit 1714 compares A Pow—Thresh with A Pow (step 2A). If the condition is satisfied, the first coefficient constituting the sixth coefficient selection unit 1703 is configured.
  • the coefficient information currently selected in the memory area is written in the second memory area constituting the sixth coefficient selection unit 1703 (step 2B). At this time, the writing to the second memory area is performed in association with the third address signal D 141 output from the address generation unit 1402 in the transmission operation mode.
  • step 2C an address value different from the address value of the coefficient information currently selected is selected by the procedure described above (step 2C), and again A Pow — Compare Thresh with A Pow (Step 2A) and repeat the same procedure until the conditions are satisfied.
  • coefficient information is written in the second memory area of the sixth coefficient selection unit 1703 in the format shown in FIG. Further, the address generation unit 1402 writes to the memory so as to generate an address in the format shown in FIG.
  • the sixth coefficient information corresponding to the transmission level information D191 for the wide amplitude D range signal is obtained as the first coefficient information selection unit 106.
  • the sixth coefficient selection unit 1703 uses “1” as the sixth coefficient information regardless of the data D171 input via the signal input terminal T171. It may be output.
  • the coefficient information optimization method has been described using the coefficient information multiplied by the multiplier circuit 105a as an example. However, the input signal to the multiplier circuit 1702 is selected as the first coefficient.
  • the sixth coefficient information is obtained using a signal having a narrow amplitude D range, and is referred to as compensation data when transmitting a modulation signal having a wider amplitude D range. It is possible to simultaneously solve the conflicting problems of suppressing the increase in distortion compensation data capacity and ensuring the compensation accuracy when enabling the transmission device to support multi-mode operation.
  • the polar modulation transmitter 1900 or the polar modulation circuit 1901 described in the first embodiment of the present invention can be configured as an integrated circuit by being formed on a silicon semiconductor substrate, for example. it can. In this case, each functional block can be formed on a separate substrate.
  • the calibration of coefficient information as compensation data described in the first embodiment of the present invention is performed between the mobile station radio communication device and the base station radio communication device.
  • the technique performed via the wireless link will be described.
  • a base station radio communication device includes a detection unit for a modulation signal output from a power amplifier that constitutes a mobile station radio communication device, and based on a measurement result in the detection unit.
  • the mobile station radio communication device includes a coefficient adjustment unit that updates the distortion compensation processing data of the mobile station radio communication device, and the amount of control information related to adaptive operation control is reduced. It is possible to realize adaptive motion control via the.
  • FIG. 22 is a diagram showing a schematic configuration of an adaptive distortion compensation processing system in the second embodiment of the present invention.
  • adaptive distortion compensation processing system 2300 includes mobile station radio communication device 2301 and base station radio communication device 2311, and mobile station radio communication device 2301 and base station radio communication device 2311.
  • the station wireless communication device 2311 transmits and receives data via a wireless link.
  • the mobile station radio communication device 2301 includes a polar coordinate modulation circuit 1901, a signal generation unit 1902, a control unit 1903, a mobile station reception device 2302, and a system switching determination unit 2305.
  • the signal generation unit 1902 Based on the user operation of the mobile station radio communication device 2301, the signal generation unit 1902 also generates a baseband orthogonal coordinate signal (IQ signal) for the transmission data power to be transmitted to the opposite base station radio communication device 2311. Output to the polar coordinate converter 2 via signal input terminals T11 and T12.
  • IQ signal baseband orthogonal coordinate signal
  • the control unit 1903 controls operations of the polar modulation circuit 1901 and the mobile station reception device 2302.
  • Control related to mobile station receiver 2302 by control unit 1903 includes automatic gain control and operation control related to DC offset cancellation.
  • control related to the polar modulation circuit 1901 in the control unit 1903 is the same as the control described in the first embodiment of the present invention, and the description thereof will be omitted.
  • Mobile station reception device 2302 includes frequency conversion circuit 2303 and demodulation section 2304.
  • Frequency conversion circuit 2303 receives the modulation signal transmitted from base station radio communication apparatus 2311 via the antenna, converts the modulation signal in the radio frequency band to a baseband frequency, and demodulates unit 2304. Output for.
  • Demodulation section 2304 reproduces the transmission data generated by base station radio communication apparatus 2311 based on the received signal output from frequency conversion circuit 2303. Also, the unbalanced information ( ⁇ Pow2) of the out-of-band spectrum of the modulation signal output from the mobile station radio communication device 2301 measured by the base station radio communication device 2311, included in the transmission data, is adjusted by coefficient adjustment. Output to the adjustment unit 1714. A method for generating imbalance information ( ⁇ Pow2) in base station radio communication apparatus 1811 will be described later.
  • the coefficient adjustment unit 1714 is a threshold value for A Pow2 (A Pow2—Thresh), that is, the allowable value of the imbalance of the ACPR characteristic at the output unit of the power amplifier 1 constituting the polar modulation circuit 1901, and the unbalance Compare information A Pow2 and unbalance information A Pow2 If it is less than the value, that is, if the following equation (16) is satisfied, a control signal for maintaining the coefficient information of the sixth coefficient selection unit is selected via the signal input terminal T193. Output to the part.
  • a Pow2 A Pow2—Thresh
  • the system switching unit 2305 uses the first mode switching signal output from the control unit 1903 as a trigger, and before the calibration operation in the polar coordinate modulation circuit 1901 is started, the system switching unit 2305 outputs the second from the control unit 1903. Set the mode switching signal D192. Further, during communication in the predetermined mode, transmission level information D191 output from the control unit 1903 is set in order to control the transmission level between adjacent time slots.
  • amplitude D Select the modulation signal with the narrowest range.
  • the output level is gradually reduced when transmitting the modulation signal with the narrowest amplitude D range.
  • FIG. 23 is a diagram showing a time change of the modulation signal output from the mobile station radio communication device 2301 via the antenna as a result of the control performed by the system switching unit 2305.
  • Time slot TS0 is the first time slot after the start of calibration, and time slots TS1, TS (n-1), TSn and time slots are continuous.
  • the time slot TS (n ⁇ 1) is a calibration operation period, and the transmission operation period is after the time slot TSn.
  • mode 1 is a modulation mode with a narrow amplitude D range compared to mode 2.
  • the output levels Pl, P2, (! 11) have the maximum output level PI, and the output levels are lowered sequentially with P2, P (n-1).
  • the system switching unit 2305 performs the above-described operation control, and as described in the second embodiment of the present invention, the polar coordinate modulation circuit 1901 obtains the optimum coefficient information to complete the calibration operation. To do.
  • base station radio communication apparatus 2311 includes base station transmission / reception apparatus 2312, frequency conversion circuit 1712, detection unit 1713, and conversion unit 2315.
  • the base station transmission / reception device 2312 includes a frequency conversion circuit 2313 and a signal processing unit 2314.
  • the frequency conversion circuit 2313 receives the transmission modulation signal from the mobile station radio communication device 2301 via the antenna, converts the radio frequency band modulation signal into a baseband frequency, Output to the signal processor 2314. Further, at the time of transmission operation, the baseband frequency signal output from the signal processing unit 2314 is converted into a radio frequency band, and the radio frequency signal is transmitted to the mobile station radio communication apparatus via the antenna.
  • the signal processing unit 2314 reproduces the transmission data generated by the mobile station wireless communication device 2301 from the baseband frequency signal output from the frequency conversion circuit 2313. Further, at the time of transmission operation, based on the request from the mobile station radio communication device 2301 and the signal output from the conversion unit 2315, a transmission signal to be transmitted to the opposite mobile station radio communication device 2301 is generated and the baseband is generated. The band frequency signal is output to the frequency conversion circuit 2313.
  • the frequency conversion circuit 1712 performs frequency conversion on the radio frequency signal transmitted from the mobile station radio communication device 2301 received via the antenna, and the detection unit 1713 performs processing from the radio frequency band. The frequency is reduced to a possible frequency band.
  • the detection unit 1713 determines the center frequency force of the modulation signal from the modulation signal output from the frequency conversion circuit 1712 located in the previous stage. Measure the signal power (Pow3_L, Pow3_H) in the low frequency band and the high frequency band that have the same detuning frequency. Further, based on Pow3_L and Pow3_H, unbalance information A Pow3 shown in the following equation (18) is output to the conversion unit 2315.
  • the conversion unit 2315 converts the unbalance information A Pow3 output from the detection unit 1713 into discrete values at predetermined intervals, and performs bit allocation processing conforming to the predetermined transmission signal format on the discrete values.
  • ⁇ ⁇ ⁇ The bit information (hereinafter referred to as the CAL bit) is sent to the signal processing unit 2314 as an operation control signal for the adaptive distortion compensation operation of the polar coordinate modulation circuit 1901 constituting the opposite mobile station radio communication device 2301. Output.
  • the specific processing contents in the conversion unit 2315 will be described later.
  • the conversion unit 2315 extracts only the quotient K2 of K1 for which the following equation (19) force is also obtained for the unbalance information A Pow 3 output from the detection unit 1713.
  • the quotient is K2, and the remainder is ⁇ 3.
  • the unbalance information ⁇ Pow2 discretized to N [dB] step width is obtained.
  • the output of the power amplifier 1 in the base station wireless communication device 2311 The spectrum ACPR characteristic acquisition result can be fed back to the polar modulation circuit 1901 constituting the mobile station wireless communication device 2301 via the wireless link.
  • the loss caused by branching the output signal of the power amplifier 1, which occurs in the second embodiment in which the frequency conversion circuit 1712 and the detection unit 1713 are provided in the mobile station wireless communication device, and the ACPR characteristics It is possible to solve new problems such as shortening the call time and data communication time of the mobile station wireless communication device due to the increase in current consumption in the unit that acquires the data.
  • the third embodiment of the present invention realizes predistortion distortion compensation processing of a multimode-compatible wireless transmission device while suppressing an increase in distortion compensation data capacity and an increase in circuit size of the distortion compensation processing circuit. It describes the technology.
  • a multi-mode predistortion distortion compensation technique will be described using the polar coordinate modulation circuit shown in FIG. Note that the same reference numerals are given to the portions overlapping with the polar coordinate modulation circuit shown in FIG.
  • the distortion compensation processing circuit 2501 has a seventh signal input terminal T 251 instead of the sixth coefficient selection unit 1703 and the multiplication circuit 1702 in the polar modulation circuit 1901 shown in FIG. A coefficient selection unit 2502 and a multiplication circuit 2503. Then, with respect to the first coefficient information output from the first coefficient selection unit 106, the multiplier circuit 2503 converts the seventh coefficient information (coeff 7) output from the seventh coefficient selection unit 2502. It is a configuration to multiply.
  • the mode switching signal D192 is input to the signal input terminal T251 from the control unit 1903 shown in FIG.
  • the second mode switching signal for setting the modulation mode of the signal in the mode switching signal D192 is transmitted as a modulation speed data D251 as information for identifying the type of modulation signal currently transmitted! Including.
  • the seventh coefficient selection unit 2502 stores the seventh coefficient information (coeff 7) in the format shown in FIG.
  • the first column of the table data shown in FIG. 26 shows the address number of the table data, and the second column shows the seventh coefficient information in a predetermined range including 1.
  • coefficient information 1 is stored at address number 3, and each coefficient information is smaller than 3, for example.
  • the coefficient information corresponding to the address number is set so that the coefficient information corresponding to the address number larger than “1” and larger than 3 decreases monotonously with the increase of the address number smaller than “1”.
  • the seventh coefficient selection unit 2602 stores table data in which modulation speed data D251 divided into predetermined ranges and address numbers are associated with each other as shown in FIG.
  • the seventh coefficient information is selected with reference to the address number corresponding to the modulation rate data D251.
  • the first column of the table data shown in FIG. 27 shows the range of the modulation speed
  • the second column shows the address number when referring to the data stored in the seventh coefficient selection unit 2502 shown in FIG.
  • the first coefficient selection unit 106 selects the address number M based on the transmission level information D191 input to the signal input terminal T2 as shown in the first embodiment of the present invention! And!
  • the power amplifier In addition to the data D2 input to the signal input terminal T2, and the data D3 to D6 input to the signal input terminal T3 to T6 are based on the same information, the power amplifier
  • the seventh coefficient information (coeff7) which obtains the optimum point of the ACPR characteristic of the modulation signal output from 1, has a smaller value as the modulation speed increases.
  • FIG. 28 is a diagram showing ACPR characteristics for modulated signals having different modulation rates.
  • the horizontal axis represents the seventh coefficient information
  • the vertical axis represents the ACPR value
  • Characteristic (A) 2901 is an ACPR characteristic obtained by sweeping only the seventh coefficient information when an 8-PSK modulation signal for an EDGE system is used.
  • Characteristic 2902 is an A CPR characteristic obtained by sweeping only the seventh coefficient information when, for example, a modulation signal for a WCD MA system is used as a modulation signal faster than an 8-PSK modulation signal. .
  • ACPR characteristics shown in FIG. 28 are obtained by extracting worse characteristics from the ACPR characteristics in the low frequency band and the high frequency band.
  • the modulation of the 8-PSK modulation signal is used.
  • a seventh factor of "1" corresponding to the modulation speed data D7 The table data of Fig. 26 and Fig. 27 are set so that numerical information is output.
  • the method of defining the data stored in the table data is changed according to the assumed multimode signal, required compensation accuracy, etc. Needless to say, it should be.
  • the polar modulation transmission apparatus provides information indicating the modulation speed. Based on this, the seventh coefficient information is switched.
  • a sixth coefficient selection unit 1703 having signal input terminals T171 and T174 shown in FIG. 2, a multiplication circuit 1702, and an adaptive operation control unit 1711 are added to the distortion compensation processing circuit 2501, and multiplication is performed.
  • the sixth coefficient information (coeff6) output from the sixth coefficient selector 1703 is sent to the multiplier circuit 1702.
  • the data D141 output from the address generation unit 1402 through the signal output terminal T141 is input to the sixth coefficient selection unit 1602 through the signal input terminal T171 and the coefficient
  • the data D173 output from the adjustment judgment unit 1714 can be input to the sixth coefficient selection unit 1602 via the signal output terminal T173 and the signal input terminal T174 to realize adaptive distortion compensation processing. It is possible to realize a polar modulation transmitter.
  • the polar modulation transmission apparatus can be configured as an integrated circuit, for example, by being formed on a silicon semiconductor substrate.
  • each functional block can be formed on a separate substrate.
  • the fourth embodiment of the present invention describes a predistortion distortion compensation processing technique that can be applied to a cognitive radio communication device that autonomously selects a frequency and a modulation method used for radio communication according to the surrounding radio wave environment. Is.
  • the distortion compensation processing technique in the polar modulation circuit of the present invention is based on phase modulation and amplitude modulation. This is a feature that separates and compensates for the deterioration factor of the ideal operating force related to the key into three independent parameters, and explains an example in which this distortion compensation processing technology is applied to a cognitive radio communication device. .
  • FIG. 30 is a diagram showing a schematic configuration of a cognitive radio communication system.
  • a first area 3001 and a second area 3002 indicate two geographically different areas, a first radio communication system 3011, a second radio communication system 3012, and a third radio.
  • a communication system 3013 indicates a wireless communication system that provides services in the first area 3001, and a fourth wireless communication system 3014 and a fifth wireless communication system 3015 provide services in the second area 3002.
  • a wireless communication device 3020 is provided, and a wireless communication device 3020 is a cognitive wireless communication device capable of supporting each wireless communication system in the first area 3001 and the second area 3002.
  • FIG. 31 is a diagram showing an example of representative parameters in each wireless communication system shown in FIG.
  • the first radio communication system 3011 has the frequency band fl, the modulation scheme 8-PSK, the modulation speed SP1, and the second radio communication system 3012 has the frequency band f2.
  • Modulation method QPSK, modulation speed SP2 third wireless communication system 3013 is frequency band f3, modulation method HPSK, modulation speed SP3, fourth wireless communication system 3014 is frequency band f3, modulation method 8—PSK, modulation speed SP4, the fifth wireless communication system 3015 has the power to use parameters of frequency band fl, modulation scheme OFDM, modulation speed SP5
  • the present invention is not limited to this example.
  • the wireless communication device 3020 is assumed to be used in the first area 3001 at the time of manufacture. When the user of the wireless communication device 3020 moves in the first area 3001, wireless communication is performed. The device 3020 is used by switching between the first wireless communication system 3011, the second wireless communication system 3012, and the third wireless communication system 3013. This switching shall be implemented based on the electric field strength, effective transmission rate, billing system, etc. Further, it is assumed that the component of the transmission unit of the radio communication device 3020 is the polar modulation circuit 1901 shown in FIG. 2 or a part thereof.
  • the user of the wireless communication device 3020 leaves the first area 3001, and the second area When entering 3002, the wireless communication device 3020 measures the surrounding radio wave environment and detects the presence of the fourth wireless communication system 3014 and the fifth wireless communication system 3015 that are not assumed at the time of manufacture.
  • the radio communication device 3020 uses the first embodiment of the present invention as distortion compensation processing data before starting the transmission operation corresponding to the fourth radio communication system 3014 and the fifth radio communication system 3015.
  • the coefficient information corresponding to the dynamic range of the modulation signal is acquired by the procedure described with reference to FIG. 19, and the coefficient information corresponding to the modulation speed is acquired as described in the third embodiment of the present invention. To do. Note that, as described in the second embodiment of the present invention, obtain coefficient information via a radio link between the mobile station radio communication apparatus and the base station radio communication apparatus!
  • the distortion compensation processing data corresponding to the frequency is stored in the memory 104 shown in FIG. 2 at the time of manufacture for the frequency band assumed to be used.
  • AM-AM characteristics and AM-PM characteristics for each frequency may be acquired before starting the transmission operation in a state where the distortion compensation data corresponding to the modulation speed is a fixed value.
  • the distortion compensation processing technique in the polar modulation circuit of the present invention is based on compensation data that depends on the carrier frequency, compensation data that depends on the output potential of the power amplifier, and compensation that depends on the modulation speed. Since data is stored independently, it is possible to flexibly support different frequencies, modulation methods, and modulation speeds for each wireless communication system, and it is not necessary to prepare a large capacity memory for distortion compensation processing data. However, it can be applied to a wireless communication system which is assumed to be V at the time of manufacturing the wireless communication apparatus.
  • the polar modulation transmitter of the present invention increases the data capacity for distortion compensation processing and compensates for distortion. This has the effect of realizing the low distortion characteristics of the power amplifier during amplitude modulation operation while suppressing the increase in the circuit scale of the compensation processing circuit. Useful for systems and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 本発明は、歪補償精度を維持しながら、歪補償処理データ容量を低減可能であるとともに、適応的に取得するマルチモード変調信号に対応した歪補償処理データを、効率的にメモリに格納可能なマルチモード極座標変調装置、及び、マルチモード無線通信方法を提供することを目的とする。  極座標変調回路1901の歪補償係数のキャリブレーション動作時には、制御部1903は、送信動作時よりも振幅信号のダイナミックレンジの狭い変調信号を選択するとともに、適応動作制御部1711は、所定出力レベルごとに、電力増幅器1出力でのスペクトラムを測定し、また、歪補償処理回路1701は、最適係数情報を求める。一方、送信動作時には、前記手順にて求めた最適係数情報を参照して、振幅信号のダイナミックレンジの広い変調信号の最適係数情報を求める。

Description

明 細 書
マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方 法
技術分野
[0001] 本発明は、複数変調方式に対応して増幅器の出力信号の歪を補償する歪補償処 理回路を含むマルチモード対応極座標変調送信装置、及び、前記歪補償処理回路 の補償データを効率的に取得するためのマルチモード無線通信方法に関する。 背景技術
[0002] 近年の携帯電話サービスでは、音声通話に加えてデータ通信に対する需要が拡 大していることから、通信速度の向上が重要である。例えば、主に、ヨーロッパ、アジ ァ地域にて普及している GSM (Global System for Mobile communications)システム においては、従来、搬送波の位相を送信データに応じてシフトする GMSK変調にて 音声通話が行われてきたが、搬送波の位相及び振幅を送信データに応じてシフトす ることで、 GMSK変調に対して 1シンボル当たりのビット情報を 3倍に高めた 3 π /8r otating8— PSK変調(以下 8— PSK変調と略す)にてデータ通信も行う EDGE (Enh anced Data rates for GSM Evolution)方式が提案されている。また、 UMTS (Univers al Mobile Telecommunications System)、あるいは、 GSMなどの携帯電話システムや 、無線 LAN (Local Area Network)システムといった複数の無線システムに対応する マルチモード端末が登場している。さらに、上述の無線システム以外の無線システム も含め、様々な無線システムに対応する場合に、無線端末の小型化、低コスト化を実 現する技術として、ソフトウェア無線(SDR: Software Defined Radio)技術の研究も行 われている。
[0003] 8 PSK変調のように振幅変動を伴う線形変調方式では、無線通信装置送信部の 電力増幅器に対する線形性の要求が厳しい。また、一般的に、電力増幅器の線形 動作領域での電力効率は飽和動作領域での電力効率に比べて低 、。したがって、 線形変調方式に、従来の直交変調方式を適用すると、電力効率の高効率化が困難 であった。 [0004] そこで、送信信号を定振幅位相信号と振幅信号に分離して、定振幅位相信号をも とに位相変調器にて位相変調をかけ、電力増幅器が飽和動作点となるレベルの定 振幅位相変調信号を入力するとともに、電力増幅器の制御電圧を高速に駆動するこ とで振幅変調を合成する、 EER法(Envelope Elimination & Restoration)と呼ばれ、 線形変調方式にて電力増幅器の高効率ィ匕を実現する方式が知られている(例えば、 非特許文献 1の第 427頁、第 7. 1図を参照)。特に、ベースバンド帯にて送信信号を 分離し、分離した定振幅位相信号と振幅信号を用いて変調を力 4ナる変調方式を Pola r Modulation方式 (ポーラ変調方式、極座標変調方式)と呼ぶ (例えば、非特許文献 1の第 428頁、第 7. 2図を参照)。なお、以下では、従来の直交変調方式と異なる変 調方式について説明してゆくことを明確にするため、極座標変調方式と呼ぶ。
[0005] 極座標変調方式において、電力増幅器出力にて振幅信号を表現するための所要 ダイナミックレンジ (以下、 Dレンジと略す)に対して、電力増幅器の入力制御電圧に 対する出力信号振幅の線形性を確保することは、現状の技術水準では困難であるこ とから、歪補償処理技術を適用することが必要となる。
[0006] 図 29は特許文献 1の第 10図に記載されたプリディストーション (以下、 PDと略す) 歪補償処理技術を適用した従来の極座標変調送信装置を示すブロック図である。
[0007] 図 29に示すように、この極座標変調送信装置 20は、電力増幅器 1と、極座標変換 部 2と、歪補償処理回路 3と、振幅変調部 10と、位相変調部 11と、振幅位相測定部 1 2と、を備える。また、歪補償処理回路 3は、遅延調整部 4、 5と、メモリ 6と、アドレス生 成部 7と、振幅補正部 8と、位相補正部 9と、を備える。
[0008] 次に、図 29に示す従来の極座標変調送信装置 20の動作説明を行う。
[0009] 極座標変換部 2は、極座標変調送信装置 20を用いて無線通信装置送信部を構成 する場合に、無線通信装置の図示しない信号生成部より入力されたベースバンド帯 直交座標信号 (IQ信号)を振幅信号 r(t)と定振幅の位相信号 Θ (t)とに分離する。こ こで、 r (t)は所定値にて正規化する。
[0010] 歪補償処理回路 3は、振幅信号 r (t)及び位相信号 Θ (t)に対して所定の歪補償処 理を行い、振幅補正後の振幅信号を振幅変調部 10に対して出力するとともに、位相 補正後の位相信号を位相変調部 11に対して出力する。この歪補償処理回路 3の構 成、及び、動作は後述する。
[0011] 振幅変調部 10は、歪補償処理回路 3より出力される振幅信号に基づいて、電力増 幅器 1の制御電圧を駆動する。
[0012] 位相変調部 11は、歪補償処理回路 3より出力される位相信号に基づいて、位相変 調を行う。
[0013] 電力増幅器 1は、制御信号としての振幅変調部 10からの出力信号に基づいて、位 相変調部 11より出力される位相変調信号に対して振幅変調を合成する。
[0014] 振幅位相測定部 12は、所定の入力信号を極座標変換部 2に与えるとともに、振幅 信号が一定値となる制御電圧を最大値力 所定間隔にて低減することで、電力増幅 器 1の出力信号振幅を制御する際に、前記制御電圧値ごとに、電力増幅器 1の出力 信号振幅特性及び通過位相特性を測定し、取得データをメモリ 6に対して出力する。
[0015] 次に、歪補償処理回路 3の構成、及び、動作について詳述する。
[0016] 遅延調整部 4、 5は、振幅変調信号と位相変調信号の経路間の時間遅延差を補償 するために、極座標変換部 2より出力される振幅信号及び位相信号に対して所定の 遅延を与え、遅延調整後の振幅信号をアドレス生成部 7、及び、振幅補正部 8に対し て出力するとともに、遅延調整後の位相信号を位相補正部 9に対して出力する。
[0017] メモリ 6は、振幅位相測定部 12より出力される、所定入力高周波信号振幅での電力 増幅器 1の、入力制御信号に対する出力信号振幅特性 (AM— AM mplitude Mod ulation to Amplitude Modulation conversionゝ以下 AM— AM特'性と呼ぶ)、及び通 過位ネ目特 '性 (AM— PM : Amplitude Modulation to Phase Modulation conversion^以 下 AM— PM特性と呼ぶ)の逆特性を格納し、アドレス生成部 7より出力されるァドレ ス信号に応じて電力増幅器 1の逆特性となる振幅補正信号、位相補正信号を出力す る。なお、上記特性は定常状態の制御電圧を供給した際の特性を示す。
[0018] ここで、定常状態の制御電圧を供給した際の電力増幅器 1の AM— AM特性、 AM
PM特性と、各々の逆特性と、振幅変調動作時の電力増幅器の特性を区別するた め、以下では、振幅位相測定部 12などの測定部を用いて取得される電力増幅器 1の 特性を順特性 (AM— AM順特性、 AM— PM順特性)と呼び、メモリ 6などの歪補償 処理用メモリに格納する補償データを逆特性 (AM— AM逆特性、 AM— PM逆特性 )と呼び、振幅変調動作時の電力増幅器 1の特性を動特性 (AM— AM動特性、 AM PM動特性)と呼ぶ。
[0019] アドレス生成部 7は、遅延調整部 4より出力される振幅信号を、メモリ 6に格納する補 償データと補償精度から求まる、所定範囲、かつ、所定ステップ幅を有する離散値に 変換した上で、メモリ 6に格納する補償データを参照するためのアドレス信号を生成 する。
[0020] 振幅補正部 8は、メモリ 6より出力される振幅補正信号をもとに、遅延調整部 4より出 力される振幅信号に対する補正を行う。
[0021] 位相補正部 9は、メモリ 6より出力される位相補正信号をもとに、遅延調整部 5より出 力される位相信号に対する補正を実施する。
[0022] このようにして、電力増幅器の入力制御信号に対する出力特性の逆特性を考慮し て予め歪ませた振幅変調信号及び位相変調信号は、電力増幅器にて発生する実際 の振幅、位相歪の影響を受けて所望の出力振幅、位相となり、入力制御電圧に対す る線形性を向上させることができる。
[0023] 以上で特許文献 1記載の従来の極座標変調送信装置の動作説明を終える。なお、 以下では、特許文献 1記載の極座標変調送信装置 20を従来の極座標変調送信装 置と呼ぶ。
[0024] 続ヽて、従来の極座標変調送信装置を用いて、マルチモード対応無線通信装置 送信部を構成する場合に必要となる技術について説明する。
[0025] 従来の極座標変調送信装置を用いて、マルチモード無線通信装置送信部を実現 するには、電力増幅器の動作を線形化するため、システムごとに異なる変調速度、振 幅信号の所要 Dレンジに対応した歪補償処理が必要である。
[0026] 次に、 SDR通信装置送信部を実現する場合に必要となる技術について説明する。
[0027] SDR通信装置は、デジタル信号処理部の演算処理機能を含めたソフトウェアの書 き換え (リコンフイダ)によって、所望の特性、機能への変更が可能であり、装置の製 造時点では対応していない様々な通信方式、すなわち、マルチモード変調信号に対 応することが可能である。一方、現状の技術水準では、電力増幅器などのアナログ回 路に関して、所望の特性、機能への変更を行うリコンフイダは困難である。よって、例 えば、マルチモード変調信号に対して同一の電力増幅器を用いる場合には、変調信 号に応じて変化する特性の補償技術が必要である。
[0028] 特許文献 1 :特表 2004— 501527号公報
特干文献 1 : Kenington, Peter B、 High— Linearity RF Ampliner Design 、 Artech H ouse Pulishers
発明の開示
発明が解決しょうとする課題
[0029] 従来の極座標変調送信装置を用いて、マルチモード対応無線通信装置送信部を 構成する場合に発生する課題にっ ヽて説明する。
[0030] マルチモード無線通信装置では、対応するシステムごと、あるいは、同一のシステ ム内でも、複数の変調信号を処理するため、マルチモード変調信号に対応すること が必要である。
[0031] 特許文献 1には、変調速度が異なる場合や、振幅信号の所要 Dレンジが異なる場 合の歪補償処理データの効率的な格納方法が開示されて 、な 、が、従来の極座標 変調送信装置にぉ 、て、対応すべきマルチモード変調信号ごとの歪補償処理デー タをメモリに格納しておき、電力増幅器に対する歪補償処理を行う技術と組み合わせ ることが考免られる。
[0032] し力しながら、マルチモード変調信号ごとに歪補償処理データをメモリに格納すると 、メモリ容量が増え、無線通信装置の製造コストが増大するという問題が生じる。
[0033] よって、歪補償処理データ容量を低減しながら、マルチモード変調信号に対応した 歪補償処理を実現することが、第一の課題である。
[0034] また、 SDR通信装置の実現にあたっては、マルチモード変調信号ごとに、電力増 幅器の歪補償処理データをメモリに格納しておく必要がある力 装置の製造時点で は対応していない変調信号に対する歪補償処理データを、事前にメモリに格納して おくことは、回路規模の増大を伴うこと、また、変調方式が同一でも、例えば、変調速 度が異なる変調信号に対しては、異なる歪補償処理データが必要になる。
[0035] ここで、従来の極座標変調送信装置にお!、て、振幅位相測定部を用い、変調信号 ごとの電力増幅器の歪補償処理データを取得することで対応可能であるが、前記手 順で取得した歪補償処理データでは、上述のように、メモリ容量が増え、無線通信装 置の製造コストが増大する。
[0036] よって、適応的に取得する、マルチモード変調信号に対応した歪補償処理データ を、効率的にメモリに格納することが、第二の課題である。
[0037] 本発明は、上記従来の事情に鑑みてなされたものであって、歪補償精度を維持し ながら、歪補償処理データ容量を低減可能であるとともに、適応的に取得するマルチ モード変調信号に対応した歪補償処理データを、効率的にメモリに格納可能なマル チモード極座標変調装置、及び、マルチモード無線通信方法を提供することを目的 とする。
課題を解決するための手段
[0038] 本発明のマルチモード対応極座標変調送信装置は、第 1に、送信変調信号の変調 方式の切り替えを行う第一の制御部と、送信データをもとに、前記第一の制御部によ り選択された変調方式にてベースバンド直交信号を生成する信号生成部と、前記べ ースバンド直交信号から、振幅信号を生成する極座標変換部と、前記振幅信号をも とに、振幅変調信号を生成する振幅変調部と、前記ベースバンド直交信号の少なくと も位相成分を含む信号をもとに、無線周波数帯の位相変調信号を生成する位相変 調部と、前記位相変調信号を入力高周波信号として入力し、前記振幅変調信号を制 御信号として入力し、無線周波数帯の送信データを生成する増幅部と、前記振幅変 調部の入力信号及び前記位相変調部の入力信号のうち少なくとも一方に対して所 定の歪補償処理を行う歪補償処理回路と、前記歪補償処理回路において用いられ る補償データの校正動作と、送信動作との切り替えを行う第二の制御部とを備え、前 記第一の制御部は、前記校正動作時には、前記送信動作時に用いられる変調方式 における変調信号の振幅ダイナミックレンジ以下となる変調方式を選択する。
[0039] この構成により、マルチモード変調信号に対応した歪補償処理用の補償データを、 効率的に取得することができる。
[0040] 本発明のマルチモード対応極座標変調送信装置は、第 2に、上記第 1のマルチモ ード対応極座標変調送信装置であって、前記第一の制御部は、前記校正動作時に は、さらに、所定制御幅にて、出力レベルを単調減少させる。 [0041] この構成により、上記第 1のマルチモード対応極座標変調送信装置での効果にカロ え、簡易に歪補償処理用の補償データを取得することができる。
[0042] 本発明のマルチモード対応極座標変調送信装置は、第 3に、上記第 1または第 2の マルチモード対応極座標変調送信装置であって、前記歪補償処理回路は、所定振 幅の入力高周波信号及び制御電圧が入力された増幅部の定常状態における制御 電圧値に対する出力信号特性をもとに、前記増幅部の定常状態での出力信号を線 形化する定常特性補償回路を備える。
[0043] この構成により、上記第 1、あるいは、第 2のマルチモード対応極座標変調送信装 置での効果に加え、歪補償処理回路を簡易に構成することができる。
[0044] 本発明のマルチモード対応極座標変調送信装置は、第 4に、上記第 3のマルチモ ード対応極座標変調送信装置であって、前記歪補償処理回路は、前記定常特性補 償回路にて前記定常状態出力信号線形化処理実施後の、振幅信号の振幅を調整 する第一の振幅調整部をさらに備える。
[0045] この構成により、上記第 3のマルチモード対応極座標変調送信装置での効果にカロ え、歪補償精度をさらに向上することができる。
[0046] 本発明のマルチモード対応極座標変調送信装置は、第 5に、上記第 3のマルチモ ード対応極座標変調送信装置であって、前記歪補償処理回路は、前記定常特性補 償回路にて前記振幅信号の歪補償処理を行う場合のアドレス参照用振幅信号の振 幅を調整する第二の振幅調整部をさらに備える。
[0047] この構成により、上記第 3のマルチモード対応極座標変調送信装置での効果にカロ え、歪補償精度をさらに向上することができる。
[0048] 本発明のマルチモード対応極座標変調送信装置は、第 6に、上記第 3のマルチモ ード対応極座標変調送信装置であって、前記歪補償処理回路は、前記定常特性補 償回路にて前記位相信号の歪補償処理を行う場合のアドレス参照用振幅信号の振 幅を調整する第一の位相補償部をさらに備える。
[0049] この構成により、上記第 3のマルチモード対応極座標変調送信装置での効果にカロ え、歪補償精度をさらに向上することができる。
[0050] 本発明のマルチモード対応極座標変調送信装置は、第 7に、上記第 3のマルチモ ード対応極座標変調送信装置であって、前記歪補償処理回路は、前記位相信号又 は前記位相変調信号の振幅を調整する第二の位相補償部をさらに備える。
[0051] この構成により、上記第 3のマルチモード対応極座標変調送信装置での効果にカロ え、歪補償精度をさらに向上することができる。
[0052] 本発明のマルチモード対応極座標変調送信装置は、第 8に、上記第 3のマルチモ ード対応極座標変調送信装置であって、前記歪補償処理回路は、前記振幅信号あ るいは前記位相信号に所定の遅延量を与え、振幅信号と位相信号との間の同期を 確保する遅延調整部をさらに備える。
[0053] この構成により、上記第 3のマルチモード対応極座標変調送信装置での効果にカロ え、歪補償精度をさらに向上することができる。
[0054] 本発明の集積回路は、上記第 1から第 8のいずれかのマルチモード対応極座標変 調送信装置より構成される。
[0055] この構成により、上記第 1から第 8のいずれかのマルチモード対応極座標変調送信 装置での効果に加え、回路規模を低減することができる。
[0056] 本発明のマルチモード対応極座標変調方法は、送信変調信号の変調方式の切り 替えを行うステップと、送信データをもとに、前記選択された変調方式にてベースバ ンド直交信号を生成するステップと、前記ベースバンド直交信号から、振幅信号を生 成するステップと、前記振幅信号をもとに、振幅変調信号を生成するステップと、前記 ベースバンド直交信号の少なくとも位相成分を含む信号をもとに、無線周波数帯の 位相変調信号を生成するステップと、前記位相変調信号を入力高周波信号として入 力し、前記振幅変調信号を制御信号として入力し、無線周波数帯の送信データを生 成するステップと、前記振幅変調部の入力信号及び前記位相変調部の入力信号の うち少なくとも一方に対して所定の歪補償処理を行う歪補償処理回路において用い られる補償データの校正動作と、送信動作との切り替えを行うステップとを有し、前記 校正動作時には、変調信号の振幅ダイナミックレンジ力 前記送信動作時に用いら れる変調方式における変調信号の振幅ダイナミックレンジ以下となる変調方式を選 択する。
[0057] この構成により、マルチモード変調信号に対応した歪補償処理用の補償データを、 効率的に取得することができる。
[0058] 本発明のマルチモード無線通信方法は、上記マルチモード対応極座標変調方法 を用いて、基地局と移動局との間の無線通信を行う。
[0059] この構成により、無線リンクを経由して、マルチモード変調信号に対応した歪補償 処理用の補償データを、効率的に取得することができる。
[0060] 本発明の無線通信装置は、上記第 1から第 8のいずれかのマルチモード対応極座 標変調送信装置又は集積回路を備える。
[0061] この構成により、マルチモード動作に対応した極座標変調方式の無線通信装置を
、簡易に実現することができる。
[0062] 本発明の無線通信システムは、記第 1から第 8のいずれかのマルチモード対応極 座標変調送信装置、集積回路又は無線通信装置を備える。
[0063] この構成により、マルチモード動作に対応した極座標変調方式の無線通信システ ムを、簡易に実現することができる。
[0064] 本発明は、極座標変調回路における歪補償処理方法であって、位相変調と振幅変 調に関わる理想動作からの劣化要因を、キャリア周波数に依存する AM— AM特性 および AM— PM特性、電力増幅器の出力電位に依存する係数情報、および変調 速度に依存する係数情報の独立な 3つのパラメータに分離して補償する歪補償処理 方法である。
[0065] この構成により、歪補償精度を維持しながら歪補償処理データの容量を低減すると ともに、適応的に取得するマルチモード変調信号に対応した歪補償処理データを効 率的にメモリに格納することができる。
[0066] 本発明は、第一のエリアおよび第二のエリアの各無線通信システムに対応可能なコ グ-ティブ無線通信装置におけるマルチモード無線通信方法であって、前記第一の エリアを離れ、前記第二のエリアに入った場合に、変調信号のダイナミックレンジに対 応する係数情報を取得するステップと、変調速度に対応する係数情報を取得するス テツプと、前記係数情報に対応する歪補償処理用データをメモリに格納するステップ と、前記第二のエリアの無線通信システムに対応する変調方式で通信を行うステップ とを有するマルチモード無線通信方法である。 [0067] この構成により、複数の無線通信システムごとに異なる周波数、変調方式および変 調速度に柔軟に対応することができ、歪補償処理データ用に大容量のメモリを用意 しておかなくて、無線通信装置の製造時点では想定されて 、な 、無線通信システム に対して適応的に対応することができる。
発明の効果
[0068] 本発明によれば、歪補償精度を維持しながら、歪補償処理データ容量を低減可能 であるとともに、適応的に取得するマルチモード変調信号に対応した歪補償処理デ ータを、効率的にメモリに格納可能なマルチモード対応極座標変調送信装置、及び 、マルチモード無線通信方法を提供することができる。
図面の簡単な説明
[0069] [図 1]本発明の第 1の実施形態における極座標変調送信装置の概略構成を示すプロ ック図
[図 2]本発明の第 1の実施形態における極座標変調回路の概略構成を示すブロック 図
[図 3]電力増幅器の AM— AM特性
[図 4]電力増幅器の AM— PM特性
[図 5]本発明の第 1の実施形態における第一の係数選択部 106に格納するテーブル データの一例を示す図
[図 6]送信電力規定と送信レベル情報との関係を示す図
[図 7]送信レベル制御部 103に格納する電力制御係数 (PCL)の一例を示す図
[図 8]電力増幅器 1の出力部における、 8— PSK変調信号に対する瞬時出力電力の Dレンジを示 1 "図
[図 9]電力増幅器の AM— PM特性
[図 10]電力増幅器が飽和動作するレベルの入力高周波信号を与えた状態にて、出 力振幅の制御電圧に対するステップ応答特性を示す図
[図 11]電力増幅器の AM— PM特性
[図 12]本発明の第 1の実施形態における演算処理回路 107bの回路構成の一例を 示す図 [図 13]電力増幅器の AM— PM特性
圆 14]本発明の第 1の実施形態における演算処理回路 107bの回路構成の他の例 を示す図
[図 15]電力増幅器 1の出力部における、 HPSK変調信号と、 8— PSK変調信号に対 する瞬時出力電力の Dレンジを示す図
[図 16]本発明の第 1の実施形態におけるアドレス生成部 1402に格納するテーブル データの一例を示す図
圆 17]本発明の第 1の実施形態における適応動作制御部を示す図
圆 18]本発明の第 1の実施形態における第六の係数選択部 1703を構成する第一の メモリ領域に格納するテーブルデータの一例を示す図
[図 19]本発明の第 1の実施形態におけるキャリブレーションのフローチャート図 圆 20]本発明の第 1の実施形態における第六の係数選択部 1703を構成する第二の メモリ領域に格納するテーブルデータの一例を示す図
[図 21]本発明の第 1の実施形態におけるアドレス生成部 1402に格納するテーブル データの一例を示す図
圆 22]本発明の第 2の実施形態における適応歪補償処理システムの概略構成を示 す図
圆 23]本発明の第 2の実施形態における移動局無線通信装置 2301よりアンテナを 介して出力される変調信号の時間変化を示す図
圆 24]本発明の第 2の実施形態における CALビットの一例を示す図
圆 25]本発明の第 3の実施形態における極座標変調送信装置を構成する歪補償処 理回路の一例を示す図
[図 26]第七の係数選択部に格納するテーブルデータの一例を示す図
圆 27]変調速度と変調速度情報 D251との関係を示す図
[図 28]変調速度と第七の係数情報との関係を示す図
[図 29]従来の極座標変調送信装置を示す図
[図 30]本発明の第 4の実施形態におけるコグ-ティブ無線通信システムの概略構成 を示す図 [図 31]本発明の第 4の実施形態における各無線通信システムにおける代表パラメ一 タの一例を示す図
符号の説明
1 電力増幅器
2 極座標変換部
3、 1701、 2501 歪補償処理回路
4、 5 遅延調整部
6、 104 メモリ
7、 7a、 7b、 1402 アドレス生成部
8 振幅補正部
9 位相補正部
10 振幅変調部
11 位相変調部
12 振幅位相測定部
20、 1900 極座標変調送信装置
102、 105a, 107a, 1702、 2503 乗算回路
103 送信レベル制御部
105 第一の振幅調整部
106 第一の係数選択部
107 第二の振幅調整部
107b 演算処理回路
108 第二の係数選択部
109 第三の係数選択部
110 可変減衰回路
111 第四の係数選択部
112 第五の係数選択部
113 振幅判定部
1301 加算回路 1703 第六の係数選択部
1711 適応動作制御部
1712、 , 2303、 2313 周波数変換回路
1713 検波部
1714 係数調整部
1901 極座標変調回路
1902 信号生成部
1903 制御部
2300 適応歪補償処理システム
2301 移動局無線通信装置
2302 移動/ ¾受 Ί目装
2304 復調部
2305 システム切り替え部
2311 基地局無線通信装置
2312 基地局送受信装置
2314 信号処理部
2315 変換部
2502 第七の係数選択部
3001 第一のエリア
3002 第二のエリア
3011 第一の無線通信システム
3012 第二の無線通信システム
3013 第三の無線通信システム
3014 第四の無線通信システム
3015 第五の無線通信システム
3020 無線通信装置
発明を実施するための最良の形態
以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する (第 1の実施形態)
本発明の第 1の実施形態は、歪補償精度を維持しながら、歪補償処理データ容量 を低減可能なマルチモード対応極座標変調送信装置に関して説明するものである。 まず始めに、第 1の実施形態に係る極座標変調送信装置の概要について説明する。
[0072] 図 1は、本発明の第 1の実施形態に係る極座標変調送信装置の概略構成を示すブ ロック図である。図 1に示すように、極座標変調送信装置 1900は、極座標変調回路 1 901と、信号生成部 1902と、制御部 1903と、適応動作制御部 1711とを備える。ま た、極座標変調回路 1901は、電力増幅器 1と、極座標変換部 2と、歪補償処理回路 1701と、振幅変調部 10と、位相変調部 11と、を備える。
[0073] まず、図 1に示す極座標変調送信装置 1900に関する制御信号について説明する
[0074] 送信レベル情報 D191は、電力増幅器 1からの出力レベルを設定する制御信号で ある。
[0075] モード切り替え信号 D192は、極座標変調送信装置 1900の動作モードとして、歪 補償処理回路 1701における歪補償用係数情報の最適化モード (キャリブレーション モード)と送信動作モードという 2つの動作切り替えを実行するための第一のモード切 り替え信号と、信号生成部 1902より出力する信号の変調モードを設定する第二のモ ード切り替え信号とを有する制御信号である。
[0076] (1)極座標変調送信装置の基本構成
次に、図 1に示す極座標変調送信装置 1900の構成について説明する。
[0077] 信号生成部 1902は、制御部 1903より出力される前記第二のモード切り替え信号 により設定される変調モードにて、極座標変調送信装置 1900より構成される無線通 信装置のユーザー操作に基づ!、た送信データから、ベースバンド帯直交座標信号( IQ信号)を生成し、信号入力端子 Tl l、及び、信号入力端子 T12を介して、極座標 変換部 2に対して、 IQ信号を出力する。
[0078] 制御部 1903は、送信レベル情報 D191を歪補償処理回路 1701に対して出力す る。具体的には、制御部 1903は、送信レベル情報 D191を、信号入力端子 T191を 介して極座標変調回路 1901に対して出力する。送信レベル情報 D 191を受信した 極座標変調回路 1901は、信号入力端子 Τ1、 Τ2、 Τ3、 Τ4, Τ5及び Τ6を介して、 送信レベル情報 D191を、歪補償処理回路 1701に出力する。また、制御部 1903は 、信号生成部 1902に対して第二のモード切り替え信号を、また、信号入力端子 T19 2を介して、極座標変調回路 1901に対して第一のモード切り替え信号、及び、第二 のモード切り替え信号を、さらに、適応動作制御部 1711に対して第一のモード切り 替え信号を、それぞれ出力する。
[0079] 制御部 1903は、キャリブレーションモード時に、送信動作モード時に用いられる変 調方式における変調信号の振幅 Dレンジ以下となる変調方式を選択する第二のモー ド切り替え信号を出力する。そして、歪補償処理回路 1701では、変調信号の振幅 D レンジが狭い変調方式において、適応動作制御部 1711からの制御信号 D173を参 照しながら、歪補償処理回路 1701における補償データの一例である歪補償用係数 情報を最適化する。
[0080] このように、振幅 Dレンジの狭い信号を用いて歪補償用係数情報を求めておき、よ り広 ヽ振幅 Dレンジを有する変調信号送信時の補償データとして参照することで、極 座標変調送信装置のマルチモード動作対応を可能とする場合の、歪補償処理デー タ容量の増大抑制と、補償精度の確保という相反する課題を同時に解決することが 可能となる。
[0081] (2)極座標変調回路の基本構成
本願発明者のこれまでの検討によれば、電力増幅器の動特性 (AM— AM動特性、 AM— PM動特性)を事前に取得することは容易ではないが、歪補償処理回路 1701 は、定常状態の制御電圧を供給して取得した電力増幅器の AM— AM順特性、 AM PM順特性をもとに、所定の演算処理を行うことで、簡易な構成ながら、電力増幅 器の動特性を高精度に補償できることが分力 た。
[0082] そこでまず、電力増幅器の AM— AM動特性補償技術、 AM— PM動特性補償技 術について説明する。
[0083] 図 2は、本発明の第 1の実施形態に係る極座標変調回路の概略構成を示すブロッ ク図である。
[0084] 図 2に示すように、極座標変調回路 1901は、電力増幅器 1と、極座標変換部 2と、 歪補償処理回路 1701と、振幅変調部 10と、位相変調部 11とを備える。また、歪補 償処理回路 1701は、遅延調整部 4、 5と、アドレス生成部 7a、 7bと、振幅補正部 8と 、位相補正部 9と、乗算回路 102と、信号入力端子 T1を有する送信レベル制御部 10 3と、メモリ 104と、乗算回路 105aより構成される第一の振幅調整部 105と、信号入 力端子 T2を有する第一の係数選択部 106と、乗算回路 107a及び演算処理回路 10 7bより構成される第二の振幅調整部 107と、信号入力端子 T3を有する第二の係数 選択部 108と、信号入力端子 T4を有する第三の係数選択部 109と、可変減衰回路 110と、信号入力端子 T5を有する第四の係数選択部 111と、信号入力端子 T6を有 する第五の係数選択部 112と、信号出力端子 T7を有する振幅判定部 113と、ァドレ ス生成部 1402と、乗算回路 1702と、信号入力端子 T171と T174とを有する第六の 係数選択部 1703とを備える。
[0085] すなわち、本発明の第 1の実施形態における極座標変調回路 1901は、図 29に示 す従来の極座標変調送信装置 20における振幅位相測定部 12を削除するとともに、 メモリ 6及びアドレス生成部 7の代わりに、メモリ 104及びアドレス生成部 7a、 7bを備 える。また、新規に、乗算回路 102と、送信レベル制御部 103と、第一の振幅調整部 105と、第一の係数選択部 106と、第二の振幅調整部 107と、第二の係数選択部 10 8と、第三の係数選択部 109と、可変減衰回路 110と、第四の係数選択部 111と、第 五の係数選択部 112と、振幅判定部 113と、アドレス生成部 1402と、乗算回路 170 2と、第六の係数選択部 1703と、を備えるものである。
[0086] 極座標変換部 2は、信号入力端子 Tl l、及び、信号入力端子 T12を介して、信号 生成部 1902より入力されたベースバンド帯直交座標信号 (IQ信号)を振幅信号!: (t) と定振幅の位相信号 Θ (t)とに分離する。ここで、 r (t)は所定値、例えば、 1で正規化 する。
[0087] 歪補償処理回路 1701は、信号入力端子 T13、及び、信号入力端子 T14を介して 入力される、極座標変換部 2にて生成された振幅信号!: (t)及び位相信号 Θ (t)に対 して所定の歪補償処理を行う。また、歪補償処理回路 1701は、振幅補正後の振幅 信号を、信号出力端子 T15を介して振幅変調部 10に対して出力するとともに、位相 補正後の位相信号を、信号出力端子 T16を介して位相変調部 11に対して出力する 。この歪補償処理回路 1701の構成、及び、動作は後述する。
[0088] 振幅変調部 10は、信号出力端子 T15を介して歪補償処理回路 1701より出力され る振幅信号に基づいて、電力増幅器 1の制御電圧を駆動する。
[0089] 位相変調部 11は、信号出力端子 T16を介して歪補償処理回路 1701より出力され る位相信号に基づいて、位相変調を行うとともに、信号入力端子 T17を介して、位相 変調信号を、歪補償処理回路 1701に対して出力する。
[0090] 電力増幅器 1は、制御信号としての振幅変調部 10からの出力信号に基づいて、信 号出力端子 T18を介して、歪補償処理回路 1701より出力される位相変調信号に対 して振幅変調を合成する。
[0091] 次に、歪補償処理回路 1701の構成、及び、動作について詳述する。なお、振幅変 調部 10及び位相変調部 11につ 、て、歪補償処理回路 1701との間の信号の入出 力関係を明確化するために、再度、動作について詳述する。
[0092] まず、振幅信号の信号経路に関わる構成について説明する。
[0093] 遅延調整部 4は、第五の係数選択部 112より出力される第五の係数情報 (coeff5) に基づいて、信号入力端子 T13を介して極座標変換部 2より入力される振幅信号に 対して、所定の遅延を与え、遅延調整後の振幅信号を乗算回路 102に対して出力 する。なお、遅延調整の方法については後述する。
[0094] 乗算回路 102は、遅延調整部 4より出力される振幅信号に対して、送信レベル制御 部 103より出力される電力制御係数 (PCL)を乗算し、電力制御係数乗算後の振幅 信号を、振幅補正部 8と、第二の振幅調整部 107と、振幅判定部 113と、に対して出 力する。
[0095] 送信レベル制御部 103は、制御部 1903より入力される電力増幅器 1の送信レベル 情報 D191に対応する電力制御係数をメモリに格納し、信号入力端子 T1を介して入 力する送信レベル情報 D191をアドレス信号として、前記電力制御係数を乗算回路 1 02に対して出力する。
[0096] メモリ 104は、ネットワークアナライザ等を用いて事前に取得する、電力増幅器 1の AM— AM順特性、及び、 AM— PM順特性の逆特性を格納する。ここで、電力増幅 器 1の AM— AM順特性と AM— PM順特性は、例えば、図 3、図 4に示すものである 。図 3において、横軸は電力増幅器 1に供給する制御電圧の最大値にて正規ィ匕した 正規化制御電圧を、縦軸は電力増幅器 1からの出力振幅を、図中の実線は正規ィ匕 制御電圧に対する出力振幅の定常特性を示す。
[0097] 次に、図 4において、横軸は正規化制御電圧を、縦軸は電力増幅器 1への入力高 周波信号と出力高周波信号との位相差、すなわち、電力増幅器 1の通過位相回転 量を、図中の実線は正規ィ匕制御電圧に対する通過位相回転量の定常特性を示す。 また、メモリ 104は、アドレス生成部 7aより出力される第一のアドレス信号に応じて電 力増幅器 1の逆特性となる振幅補正信号を振幅補正部 8に対して出力するとともに、 アドレス生成部 7bより出力される第二のアドレス信号に応じて電力増幅器 1の逆特性 となる位相補正信号を位相補正部 9に対して出力する。なお、図 3、図 4の特性は、 制御電圧供給後、電力増幅器の出力が安定化した時点の定常特性を示す。
[0098] アドレス生成部 7aは、第二の振幅調整部 107を構成する乗算回路 107aより出力さ れる振幅信号を、メモリ 104に格納する AM— AM逆特性データと補償精度力も求ま る、所定範囲、かつ、所定ステップ幅を有する離散値に変換した上で、メモリ 104に 格納する AM— AM逆特性データを参照するための第一のアドレス信号を生成する
[0099] アドレス生成部 7bは、第二の振幅調整部 107を構成する演算処理回路 107bより 出力される振幅信号を、メモリ 104に格納する AM— PM逆特性データと補償精度か ら求まる、所定範囲、かつ、所定ステップ幅を有する離散値に変換した上で、メモリ 1 04に格納する AM— PM逆特性データを参照するための第二のアドレス信号を生成 する。
[0100] 振幅補正部 8は、メモリ 104より出力される振幅補正信号をもとに、乗算回路 102よ り出力される振幅信号に対する補正を行い、振幅補正後の振幅信号を第一の振幅 調整部 105に対して出力する。
[0101] 振幅判定部 113は、乗算回路 102より出力される振幅信号を、一定間隔にてサン プリングして瞬時振幅値を求め、前記瞬時振幅値を振幅データ D7として、アドレス生 成部 1402に対して出力する。
[0102] アドレス生成部 1402は、振幅判定部 113より出力される振幅データ D7をもとに、 第六の係数選択部 1703において補償データを参照するための第三のアドレス信号 D141を後述する方法にて生成し、信号出力端子 T141と信号入力端子 T171とを 介して、前記第六の係数選択部 1703に対して、第三のアドレス信号 D141を出力す る。
[0103] 第一の係数選択部 106は、信号入力端子 T2より入力される所定のデータ D2に対 応した係数情報を図 5に示すテーブルデータとして格納しておく。図 5に示すテープ ルデータの 1列目は、テーブルデータのアドレス番号を、 2列目は、後述する方法に て設定する係数情報 (coeffl)を示す。ここで、データ D2は、送信レベル情報 D191 である。また、第一の係数選択部 106は、係数情報のキャリブレーションモード時に は、乗算回路 1702より出力される係数情報によって、テーブルデータを更新する構 成を採る。
[0104] 第六の係数選択部 1703は、 2つのメモリ領域を有し、第一のメモリ領域は、係数情 報のキャリブレーションモード時に使用するものであり、信号入力端子 T174より入力 されるデータ D174に対応する形式にて第六の係数情報 (coeff6)を格納する。また 、第六の係数選択部 1703を構成する第二のメモリ領域は、送信動作モード時に使 用するものであり、信号入力端子 T171より入力されるデータ D171に対応する形式 にて第六の係数情報を格納する。よって、第一のメモリ領域と第二のメモリ領域とは、 それぞれ、第六の係数情報の格納形式が異なる。
[0105] 前記第一のメモリ領域は、図 18に示す形式であり、テーブルデータの一列目はテ 一ブルデータのアドレス番号を、二列目は 1を含む所定範囲の第六の係数情報を示 す。なお、この例では、アドレス番号 Qに係数情報" 1"を格納しているとともに、各係 数情報は、例えば、 Qより小さいアドレス番号に対応した係数情報は" 1"より大きぐ Qより大きいアドレス番号に対応した係数情報は" 1"より小さぐアドレス番号の増加 に伴い単調減少するように設定されている。ここで、データ D174は、適応動作制御 部 1711より出力される制御信号 D173である。
[0106] また、前記第二のメモリ領域は、図 5に示すテーブルデータの 2列目を、後述する方 法にて設定する係数情報(coeff6)に置き換えたものとなる。ここで、データ D171は 、アドレス生成部 1402より出力されるデータ D141である。なお、特に記載のない場 合、第六の係数選択部 1703は、送信動作モード時には、第六の係数情報として" 1" を出力する。
[0107] 乗算回路 1702は、第一の係数選択部 106より出力される第一の係数情報と、第六 の係数選択部 1703より出力される第六の係数情報とを乗算し、送信動作モード時に は、係数情報の積を第一の振幅調整部 105に対して出力し、また、係数情報のキヤリ ブレーシヨンモード時には、前記係数情報の積を第一の係数選択部 106に対して出 力する。
[0108] 第一の振幅調整部 105は、乗算回路 105aより構成される。乗算回路 105aは、振 幅補正部 8より出力される振幅信号に対して、乗算回路 1702より出力される係数情 報の積を乗算して、前記積を乗算後の振幅信号を、信号出力端子 T15を介して、振 幅変調部 10に対して出力する。
[0109] 第二の振幅調整部 107は、乗算回路 107a及び演算処理回路 107bより構成される 。乗算回路 107aは、乗算回路 102より出力される振幅信号に対して、第二の係数選 択部 108より出力される第二の係数情報 (coeff2)を乗算し、第二の係数情報乗算 後の振幅信号をアドレス生成部 7aに対して出力する。また、演算処理回路 107bは、 乗算回路 102より出力される振幅信号に対して、第三の係数選択部 109より出力さ れる第三の係数情報 (coeff 3)をもとに所定の演算処理を実施し、演算処理実施後 の振幅信号をアドレス生成部 7bに対して出力する。ここで、第二の振幅調整部 107 は、アドレス生成部 7aと 7bが、第一のアドレス信号と第二のアドレス信号を生成する 際のもとになる振幅信号に対して、異なる係数情報を乗算可能であることを特徴とす る。なお、演算処理回路 107bにて行う所定の演算処理とは、例えば、乗算回路 102 より出力される振幅信号に対して、第三の係数選択部 109より出力される第三の係 数情報 (coeff 3)を、乗算あるいは加算する演算処理を指す。
[0110] 第二の係数選択部 108は、乗算回路 107aにて乗算する第二の係数情報を設定す るために、信号入力端子 T3より入力される所定のデータ D3に対応した係数情報を テーブルデータとして格納しておく。このテーブルデータは、図 5に示すテーブルデ ータの 2列目を、後述する方法にて設定する第二の係数情報に置き換えたものとなる 。ここで、データ D3は、送信レベル情報 D191である。 [0111] 第三の係数選択部 109は、演算処理回路 107bにて乗算する第三の係数情報を 設定するために、信号入力端子 T4より入力される所定のデータ D4に対応した係数 情報をテーブルデータとして格納しておく。このテーブルデータは、図 5に示すテー ブルデータの 2列目を、後述する方法にて設定する第三の係数情報に置き換えたも のとなる。ここで、データ D4は、送信レベル情報 D191である。
[0112] 振幅変調部 10は、信号出力端子 T15を介して乗算回路 105aより出力される振幅 信号に基づいて電力増幅器 1の制御電圧を駆動する。
[0113] 次に、位相信号の信号経路に関わる構成について説明する。
[0114] 遅延調整部 5は、第五の係数選択部 112より出力される第五の係数情報 (coeff5) に基づいて、信号入力端子 T14を介して極座標変換部 2より入力される位相信号に 対して、所定の遅延を与え、遅延調整後の位相信号を位相補正部 9に対して出力す る。なお、遅延調整の方法については、遅延調整部 4での遅延調整とあわせて後述 する。
[0115] 位相補正部 9は、メモリ 104より出力される位相補正信号をもとに、遅延調整部 5より 出力される位相信号に対する補正を行い、信号出力端子 T16を介して、位相補正後 の位相信号を位相変調部 11に対して出力する。
[0116] 位相変調部 11は、信号出力端子 T16を介して位相補正部 9より出力される位相補 正後の位相信号に基づいて位相変調を行い、信号入力端子 T17を介して可変減衰 回路 110に対して位相変調信号を出力する。
[0117] 可変減衰回路 110は、第四の係数選択部 111より出力される第四の係数情報 (co eff4)に応じて、信号入力端子 T17を介して位相変調部 11より入力される位相変調 信号の振幅値 (減衰量)を調整し、信号出力端子 T18を介して、振幅調整後の位相 変調信号を電力増幅器 1に対して出力する。なお、可変減衰回路の代わりに可変利 得増幅器を用いてもよい。
[0118] 第四の係数選択部 111は、可変減衰回路 110での減衰量を決定するための第四 の係数情報を設定するために、信号入力端子 T5より入力される所定のデータ D5に 対応した係数情報をテーブルデータとして格納しておく。このテーブルデータは、図 5に示すテーブルデータの 2列目を、後述する方法にて設定する第四の係数情報に 置き換えたものとなる。ここで、データ D5は、送信レベル情報 D191である。
[0119] 続いて、振幅信号と位相信号の信号経路間の遅延調整に関わる構成について説 明する。
[0120] 第五の係数選択部 112は、遅延調整部 4と遅延調整部 5とが行う、極座標変換部 2 より出力される振幅信号と位相信号との間の同期調整量を設定するために、信号入 力端子 T6より入力される所定のデータ D6に対応した係数情報をテーブルデータと して格納しておく。このテーブルデータは、図 5に示すテーブルデータの 2列目を、後 述する方法にて設定する第五の係数情報 (coeff 5)に置き換えたものとなる。ここで、 データ D6は、送信レベル情報 D191である。
[0121] (3)歪補償処理回路の動作 (送信動作モード時)
次に、送信動作モード時の歪補償処理回路 1701の動作について、電力増幅器 1の 電力制御方法と、電力増幅器 1の AM— AM動特性補償方法と、電力増幅器 1の A M— PM動特性補償方法と、振幅信号と位相信号の経路間時間遅延差の補償方法 と、の 4つに分けて説明する。
[0122] 電力増幅器 1の電力制御方法については、乗算回路 102と送信レベル制御部 103 とを用いることに関して説明する。
[0123] 次に、電力増幅器 1の AM— AM動特性補償方法については、乗算回路 105aと 第一の係数選択部 106とを用いること、また、乗算回路 107aと第二の係数選択部 10 8とを用いること、の 2点に関して説明する。
[0124] また、電力増幅器 1の AM— PM動特性補償方法については、演算処理回路 107 bと第三の係数選択部 109とを用いること、また、可変減衰回路 110を用いること、の 2点に関して説明する。
[0125] さらに、振幅信号と位相信号の経路間時間遅延差の補償方法については、第五の 係数選択部 112と、遅延調整部 4と、遅延調整部 5と、を用いることに関して説明する
[0126] (3- 1) 電力制御方法
まず、乗算回路 102と、送信レベル制御部 103と、を用いた電力制御方法について、 図 2、図 6、図 7、及び、図 8を用いて説明する。 [0127] 図 6は、極座標変調送信装置 1900の制御部 1903より出力される電力増幅器 1の 送信レベル情報 D191の具体例を示す図である。
[0128] 図 6に示すテーブルデータの 1列目は、 GSM規格書に記載された、 900MHz帯 G
SMバンドにぉ 、て 8— PSK変調にて送信して!/、る無線通信装置送信部に対するァ ップリンクの送信電力規定の電力値 [dBm]を、 2列目は送信レベル情報 D191を示 す。
[0129] 図 6に示すような、送信電力の制御ステップ幅が 2dBである場合に、送信レベル制 御部 103に格納する電力制御係数 (PCL)を図 7に示す。図 7に示すテーブルデー タの 1列目は、テーブルデータのアドレス番号を、 2列目は、電力制御係数を示す。
[0130] アドレス番号 1に対応する電力制御係数を 1とし、アドレス番号 M、及び、アドレス番 号 (M+ 1)に対応する電力制御係数間の関係は、下記の式(1)にて表される。
[0131] 2_
PCLM+l = PCLM x \0 20 · · · · ( "
[0132] 送信レベル制御部 103では、このように設定した電力制御係数を、信号入力端子 T
1を介して入力する送信レベル情報 191に応じて出力し、振幅信号に対して乗算す ることで、振幅信号に対して、電力制御情報を重畳する。
[0133] 図 8は、電力増幅器 1の出力部における、 8— PSK変調信号に対する瞬時出力電 力の Dレンジを示す図であり、縦軸は、 dB単位表示した出力電力を示す。
[0134] レンジ (A) 701は、平均出力電力力Poutlの場合の 8— PSK変調信号に対する瞬 時出力電力の Dレンジである。
[0135] レンジ(B) 702は、平均出力電力が Pout2の場合の 8— PSK変調信号に対する瞬 時出力電力の Dレンジである。
[0136] レンジ(C) 703は、平均出力電力が Pout3の場合の 8— PSK変調信号に対する瞬 時出力電力の Dレンジである。
[0137] ここで、 Poutlと、 Pout2と、 Pout3との関係は、下記の式(2)にて表される。また、
Poutl、 Pout2、 Pout3に対応する PCLをそれぞれ、 PCL (l)、 PCL (2)、 PCL (3) とすると、下記の式(3)に示す相互関係になる。
[0138] Poutl > Pout2 > Pout3 · · · · (2) PCL (l) >PCL (2) >PCL (3) · · · · (3)
[0139] すなわち、振幅信号に対して電力制御情報を重畳すると、 dB単位表示した出力電 力軸に対して、振幅信号の Dレンジは同一ながら、出力電力軸に対して平行シフトさ せた時間波形が、電力増幅器 1からの出力信号として得られる。
[0140] なお、これまで説明したように、極座標変調送信装置 1900では、振幅信号を用い て、変調信号の振幅成分と電力制御情報を表現するが、電力制御情報による振幅 信号の制御ステップは、振幅成分に要求される振幅値の解像度と比べ、はるかに粗 いものである。
[0141] (3— 2) AM— AM動特性補償方法
次に、乗算回路 105aと、第一の係数選択部 106と、を用いた AM— AM動特性補 償方法について、図 2、及び、図 9を用いて説明する。ここで、第二の係数情報は" 1" とする。
[0142] 図 9において、横軸は電力増幅器 1に供給する制御電圧の所定値にて正規化した 正規化制御電圧を、縦軸は電力増幅器 1からの出力振幅を示す。
[0143] 点線にて示す定常特性 801は、正規ィ匕制御電圧に対する出力振幅の定常特性( AM— AM順特性)を示し、図 3にて示した定常特性と同一のものである。
[0144] 実線にて示す特性 (A) 802は、第一の係数情報が下記の式 (4)を満たす場合に、 振幅変調部 10への入力信号として、定常特性 801を用いた AM— AM特性補償後 の振幅信号と同等の振幅信号を得るために、メモリ 104に格納する AM— AM特性 の順特性を示す。
[0145] 実線にて示す特性 (B) 803は、第一の係数情報が下記の式 (5)を満たす場合に、 振幅変調部 10への入力信号として、定常特性 801を用いた AM— AM特性補償後 の振幅信号と同等の振幅信号を得るために、メモリ 104に格納する AM— AM特性 の順特性を示す。
[0146] coeffl > l · · · · (4)
coeffK l · · · · (5)
[0147] 上記関係は、例えば、振幅変調動作状態にある電力増幅器 1の AM— AM動特性 と、電力増幅器 1の特性取得時の AM— AM順特性データとが、誤差を生じる場合 の補償に適用できることを示す。
[0148] よって、メモリ 104に格納する逆特性は変更しなくても、第一の係数情報を調整する ことで、メモリ 104に格納する逆特性を調整したのと同様な効果を実現できる。
[0149] また、乗算回路 107aと、第二の係数選択部 108と、を用いた AM— AM動特性補 償方法についても、同様な関係があり、上記説明と同様に、図 2、及び、図 9を用いて 説明する。ここで、第一の係数情報は" 1"とする。
[0150] 乗算回路 107aでの第二の係数情報の乗算処理において、第二の係数情報が下 記の式 (6)を満たす場合に、振幅変調部 10への入力信号として、定常特性 801を用 いた AM—AM特性補償後の振幅信号と同等の振幅信号を得るために、メモリ 104 に格納する AM— AM特性の順特性が特性 (A) 802である。
[0151] また、乗算回路 107aでの第二の係数情報の乗算処理において、第二の係数情報 が下記の式 (7)を満たす場合に、振幅変調部 10への入力信号として、定常特性 80 1を用いた AM— AM特性補償後の振幅信号と同等の振幅信号を得るために、メモリ 104に格納する AM— AM特性の順特性が特性 (B) 803である。
[0152] よって、乗算回路 105aと第一の係数選択部 106とを用いた AM— AM動特性補償 方法での説明と同様に、メモリ 104に格納する逆特性は変更しなくても、第二の係数 情報を調整することで、メモリ 104に格納する逆特性を調整したのと同様な効果を実 現できる。
[0153] coeff2> l · · · · (6)
coeff2< l · · · · (7)
[0154] ここで、第一の係数選択部 106に入力するデータ D2として、図 6を用いて説明した 送信レベル情報 D 191を挙げて 、るが、送信レベル情報 D 191にもとづ 、て第一の 係数情報を選択する意味について図 10を用いて説明する。
[0155] 図 10は、電力増幅器 1に所定レベルの入力高周波信号振幅を与えた状態にて、 制御電圧に対する出力信号振幅のステップ応答特性を示す図である。図 10におい て、横軸は電力増幅器 1に制御信号を入力した時点力もの経過時間を、縦軸は電力 増幅器 1からの出力信号振幅を示す。図 10の例では、異なる 2つの制御電圧値 (定 常制御電圧値)に対するステップ応答特性として、特性 (A) 901、及び、特性 ) 90 2を示しており、定常特性での電力増幅器からの出力振幅が異なる。なお、図 10に 示す 2つのステップ応答特性において、特性 (A) 901の方力 特性 (B) 902よりも、 高 ヽ定常制御電圧値を供給して ヽる。
[0156] メモリ 104に格納して ヽる AM— AM逆特性データを参照して歪補償を実施した場 合、高速に変化する振幅変調信号に対しては、振幅変調部 10、あるいは、電力増幅 器 1の出力応答特性に起因して、所望の補償効果を得ることができないが、本願発 明者の検討の結果、変調信号の平均出力電力を得る一定値の制御電圧供給時の 電力増幅器 1のステップ応答特性を、無線システムの規格書 (例えば、 GSM規格書 など)に定められた送信出力電力ごとに予め測定しておき、前記ステップ応答特性に 応じて、振幅信号に所定値を乗算することで補償精度を向上できることが分力つた。
[0157] 例えば、図 10中の特性 (A) 901のように過渡応答特性がオーバーシュート状態の 場合には、第一の係数選択部 106は、振幅補正部 8から乗算回路 105aへの入力信 号に対して、乗算回路 105aから振幅変調部 10への出力信号を減衰させるように、 " 1"未満となる第一の係数情報を、第一の振幅調整部 105に対して出力する。逆に、 図 10中の特性 (B) 902のように過渡応答期間中に所定値を超えることなく収束する 場合には、第一の係数選択部 106は、乗算回路 105aへの入力信号に対して出力 信号を増幅するように、 "1"以上となる第一の係数情報を、乗算回路 105aに対して 出力する。
[0158] すなわち、送信変調信号における平均出力電力を得る一定値の制御電圧を供給 し、電力増幅器 1の起動特性がオーバーシュートの場合には、定常特性にて補正を 実施した振幅信号を圧縮し、起動特性がオーバーシュートの逆特性の場合には、前 記振幅信号を伸張することで、過渡応答の影響を考慮して所望の出力振幅が得られ るようにする。本処理内容は、図 9を用いて説明したような、第一の係数情報を用いて 、定常特性 801から特性 (A) 802、あるいは、特性 (B) 803を求める処理を、送信電 カレベルに応じて行うことに相当するものである。なお、第二の係数情報に関しても 同様である。
[0159] 以上のように、送信レベルごとに求めた第一の係数情報を、図 5に示す形式にて、 第一の係数選択部 106に格納しておく。なお、第一の係数情報は送信レベルごとに 異なる値を取る場合を記載したが、電力増幅器 1の特性から、近接する電力値に対し て同一値をとる場合には、テーブルデータを削減するように、間引いたデータを格納 してもよい。以上が、第一、及び、第二の係数情報の設定に関する説明である。
[0160] ここで、本発明に至る過程での検討により、送信レベル規定よりも細力 、ステップ幅 にて、電力増幅器 1の制御電圧を掃引して第一の係数情報、あるいは、第二の係数 情報を取得しておき、アドレス生成部 1402より出力される振幅信号の振幅値に基づ く第三のアドレス信号 D141に応じて、第一の係数情報、あるいは、第二の係数情報 を選択することで、補償精度をさらに向上可能であることと、変調速度の速い信号を 送信する場合に前記効果がより大きくなることが分力つた。よって、本明細書では、送 信レベル情報 D191に基づいて第一の係数選択部 106より出力される第一の係数 情報に対して、第三のアドレス信号 D141に基づいて第六の係数選択部 1703より出 力される第六の係数情報を乗算する構成とした。
[0161] なお、図 2には記載していないが、送信レベル情報 D191に基づいて第二の係数 選択部 108より出力される第二の係数情報に対して、第三のアドレス信号 D141に基 づいて出力される係数情報を乗算する構成としてもよいし、第一の係数選択部 106、 第二の係数選択部 108を、第三のアドレス信号 D141に対応して係数情報を格納す る形式として、第三のアドレス信号 D 141に基づいて、第一の係数情報、あるいは、 第二の係数情報を出力する構成としてもょ ヽ。
[0162] (3— 3) AM— PM動特性補償方法
次に、演算処理回路 107bと、第三の係数選択部 109と、を用いた AM— PM動特 性補償方法について、図 2、図 11、図 12、及び、図 13を用いて説明する。
[0163] 図 11において、横軸は正規化制御電圧を、縦軸は電力増幅器 1の通過位相回転 量を示す。
[0164] 点線にて示す定常特性 1001は、正規ィ匕制御電圧に対する通過位相回転量の定 常特性 (AM— PM順特性)を示し、図 4にて示した定常特性と同一のものである。
[0165] 実線にて示す特性 (A) 1002は、演算処理回路 107bが単一の乗算回路にて構成 され、第三の係数情報が下記の式 (8)を満たす場合に、位相変調部 11への入力信 号として、定常特性 1001を用いた AM— PM特性補償後の位相信号と同等の位相 信号を得るために、メモリ 104に格納する AM— PM特性の順特性を示す。
[0166] 実線にて示す特性 (B) 1003は、演算処理回路 107bが単一の乗算回路にて構成 され、第三の係数情報が下記の式 (9)を満たす場合に、位相変調部 11への入力信 号として、定常特性 1001を用いた AM— PM特性補償後の位相信号と同等の位相 信号を得るために、メモリ 104に格納する AM— PM特性の順特性を示す。
[0167] coeff3 > l · · · · (8)
coeff3< l · · · · (9)
[0168] 上記関係は、例えば、振幅変調動作状態にある電力増幅器 1の AM— PM動特性 と、電力増幅器 1の特性取得時の AM— PM順特性データとが、誤差を生じる場合の 補償に適用できることを示す。
[0169] よって、メモリ 104に格納する逆特性は変更しなくても、第三の係数情報を調整する ことで、メモリ 104に格納する逆特性を調整したのと同様な効果を実現できる。
[0170] ここで、図 12に示す演算回路を用いて、第三の係数情報を調整することでも、メモ リ 104に格納する逆特性を調整したのと同様な効果を実現できる。
[0171] 図 12は、演算処理回路 107bの回路構成の一例を示すものである。
[0172] 本構成を採ることにより、乗算回路 102より出力される振幅信号を rl lOl (t)、演算 処理回路 107bより出力される振幅信号を rl 102 (t)とした場合に、 rl 101 (t)と rl 10
2 (t)とは、下記の式(10)に示す関係となる。
[0173] rll02(t) = rll01(t) X coeff3+r(t)max X (l— coeffi3)… ·(10)
[0174] ここで、 r (t) maxは、極座標変換部 2より出力される振幅信号の最大値であり、例え ば 1に設定されるものである。
[0175] 次に、上記の式 (8)あるいは式(9)に示す第三の係数情報を、上記の式(10)に適 用することで実現する AM— PM動特性補償方法について図 13を用いて説明する。
[0176] 図 13において、横軸は正規化制御電圧を、縦軸は電力増幅器 1の通過位相回転 量を示す。
[0177] 点線にて示す定常特性 1201は、正規ィ匕制御電圧に対する通過位相回転量の定 常特性 (AM— PM順特性)を示し、図 4にて示した定常特性、図 11にて示した定常 特性 1001と同一のものである。 [0178] 実線にて示す特性 (A) 1202は、第三の係数情報が上記の式 (8)を満たす場合に 、位相変調部 11への入力信号として、定常特性 1201を用いた AM— PM特性補償 後の位相信号と同等の位相信号を得るために、メモリ 104に格納する AM— PM特 性の順特性を示す。
[0179] 実線にて示す特性 (B) 1203は、第三の係数情報が上記の式 (9)を満たす場合に 、位相変調部 11への入力信号として、定常特性 1201を用いた AM— PM特性補償 後の位相信号と同等の位相信号を得るために、メモリ 104に格納する AM— PM特 性の順特性を示す。
[0180] 続いて、可変減衰回路 110を用いた AM— PM動特性補償方法について、図 2、 及び、図 13を用いて説明する。
[0181] 電力増幅器 1が飽和動作状態にあるように、可変減衰回路 110から出力する位相 変調信号の電力レベルを十分高く設定している場合、可変減衰回路 110での減衰 量を微調整することで、定常動作状態にある電力増幅器 1の AM— PM順特性を、定 常特性 1201から、特性 (A) 1202、あるいは、特性 (B) 1203へと変化させることがで き、演算処理回路 107bと第三の係数選択部 109とを用いた AM— PM動特性補償 方法と同様に、メモリ 104に格納する逆特性は変更しなくても、第四の係数情報を調 整することで、メモリ 104に格納する逆特性を調整するのと同様な効果を実現できる。
[0182] ここで、図 2には記載していないが、送信レベル情報 D191に基づいて第三の係数 選択部 109、あるいは、第四の係数選択部 111より出力される、第三の係数情報、あ るいは、第四の係数情報に対して、第三のアドレス信号 D 141に基づいて出力される 係数情報を乗算する構成とした方が、より高精度な補償を実現可能である。なお、第 三の係数選択部 109、第四の係数選択部 111を、第三のアドレス信号 D141に対応 して係数情報を格納する形式として、第三のアドレス信号 D141に基づいて、第三の 係数情報、あるいは、第四の係数情報を出力する構成としてもよい。
[0183] なお、図 12に示す演算処理回路 107bを、図 14に示す加算回路 1301にて構成し 、乗算回路 102より出力される振幅信号に対して所定値を加算することでも、図 12に 示す演算処理回路 107bと同様な効果を得ることができるとともに、回路規模をさらに 低減することが可能である。なお、本加算処理は、アドレス生成部 7bに入力される信 号に対してではなぐアドレス生成部 7bより出力される第二のアドレス信号に対して 行うことでも同様な効果を実現できる。
[0184] (3— 4)振幅信号と位相信号の経路間時間遅延差の補償方法
最後に、第五の係数選択部 112と、遅延調整部 4と、遅延調整部 5と、を用いた、振 幅信号と位相信号の経路間時間遅延差の補償方法について説明する。
[0185] 通常、遅延調整部 4と遅延調整部 5とを用いて振幅信号と位相信号との間の同期 調整を行う場合、回路設計時に設定される固有の遅延差が振幅信号と位相信号との 間に生じるように調整を行うが、本願発明者の検討から、電力増幅器 1を構成するトラ ンジスタの振幅変調信号経路と位相変調信号経路に関係する寄生容量に起因して 、電力増幅器 1に対して入力する制御電圧に応じて、振幅変調信号と位相変調信号 との時間遅延差が前記固有の遅延差力 変化することが分かった。
[0186] よって、送信レベル情報 D191に基づいて第五の係数選択部 112より出力される第 五の係数情報に基づ 、て、振幅信号と位相信号の経路間の時間遅延差を調整する 第五の係数情報を遅延調整部 4及び遅延調整部 5に送信するとともに、遅延調整部 4及び遅延調整部 5が第五の係数情報に応じた遅延量を振幅信号と位相信号とに 与えることで、良好な低歪特性を実現可能である。
[0187] また、図 2には記載していないが、送信レベル情報 D191に基づいて第五の係数選 択部 112より出力される第五の係数情報に対して、第三のアドレス信号 D141に基づ いて出力される係数情報を乗算する構成を採り、第三のアドレス信号 D141に基づ V、て、振幅信号と位相信号との経路間の時間遅延差を調整する前記係数情報の積 を、遅延調整部 4及び遅延調整部 5に送信するとともに、遅延調整部 4及び遅延調整 部 5が第五の係数情報に応じた遅延量を振幅信号と位相信号とに与えることで、さら に良好な低歪特性を実現可能である。
[0188] (3— 5)歪補償処理回路の動作のまとめ
以上のように、図 2に示す歪補償処理回路 1701は、メモリ 104に格納する定常特性 での AM— AM逆特性を用いた AM— AM動特性補償に関して、振幅補正後の振 幅信号に対して過渡応答を表現する係数情報を乗算すること、メモリ 104に格納する 定常特性での AM— AM逆特性参照時のアドレス信号に対して所定の演算処理を 行うこと、メモリ 104に格納する定常特性での AM— PM逆特性参照時のアドレス信 号に対して所定の演算処理を行うこと、電力増幅器 1への入力電力レベルを調整す ること、あるいは、電力増幅器 1への入力制御電圧に応じて振幅信号と位相信号の 経路間の遅延調整を行うこと、のいずれか、もしくは、各々を組み合わせて実施する ことを、送信レベル情報 D191に応じて実施することで、極座標変調方式において、 補償データの増大を抑制しながら、動特性を正確に補償することが可能となる。さら に、送信レベル情報 D191に応じた前記補償に対して、第三のアドレス信号 D141を 用いた補償を行うことで、動特性補償効果を向上できるとともに、変調速度の速い信 号を送信する場合に、第三のアドレス信号 D141に応じた補償効果がより大きくなる。
[0189] すなわち、本発明の OLE丄 INK3極座標変調回路における歪補償処理技術 OLE丄 I NK3は、位相変調と振幅変調に関わる理想動作力もの劣化要因を独立な 3つのパラ メータに分離して補償することを特徴とするものであり、後述するマルチモード動作に 対して好適な構成である。
[0190] 具体的には、図 2において、まず、位相変調に関わる劣化要因に対する補償デー タとして、キャリア周波数に依存する AM— AM特性、 AM— PM特性をメモリ 104に 格納する。
[0191] 次に、振幅変調に関して電力増幅器の出力電位に依存する劣化要因に対する補 償データとして、電力増幅器の出力電位に依存する係数情報を、第一の係数選択 部 106、第二の係数選択部 108、第三の係数選択部 109、第四の係数選択部 111、 第五の係数選択部 112、第六の係数選択部 1703に格納する。
[0192] さらに、振幅変調に関して信号変化 (変調速度)への電力増幅器の追従性に起因 する劣化要因に対する補償データとして、変調速度に依存する係数情報を第一の係 数選択部 106、第二の係数選択部 108、第三の係数選択部 109、第五の係数選択 部 112、第六の係数選択部 1703に格納する。
[0193] なお、前記メモリ 104、第一の係数選択部 106、第二の係数選択部 108、第三の係 数選択部 109、第四の係数選択部 111、第五の係数選択部 112、第六の係数選択 部 1703に格納した補償データによる補償効果は、それぞれ単独にて効果を有する ものである。 [0194] (4)極座標変調送信装置のマルチモード動作対応
次に、図 2に示す極座標変調回路 1901のマルチモード動作時の歪補償処理動作 について説明する。
[0195] 無線システムに用いられる変調信号の振幅信号の最大値 最小値比(振幅 Dレン ジ)に関して、 EDGEシステムに用いられる 8— PSK変調信号の場合は約 17dBであ るのに対して、 UMTSシステムに用いられるアップリンクの HPSK変調信号の場合は 約 55dBである。よって、電力増幅器 1の出力にて、 HPSK変調信号を表現する場合 には、 8— PSK変調信号を表現する場合よりも、より広範囲な制御レンジが要求され る。
[0196] また、変調速度に関して、 HPSK変調信号は、 8— PSK変調信号の 10倍以上高 速であり、 HPSK変調信号を送信する場合には、 8— PSK変調信号を送信する場合 に比べ、振幅信号の振幅値に基づく第三のアドレス信号 D141に応じた歪補償処理 の効果が大きい。
[0197] したがって、極座標変調送信装置 1900にお 、て、 HPSK変調信号を送信する場 合に、 UMTS規格書「Universal Mobile Telecommunications System (UMT ¾); User Equipment (UE) radio transmission and reception (FDD) (3GP P TS 25. 101 version 6. 6. 0 Release 6)」に記載の移動局送信装置に対する 出力信号の隣接チャネル漏洩電力規定を満足するためには、振幅信号の振幅値に 基づく第三のアドレス信号 D141に応じた歪補償処理を実行することが有効である。 一方、 HPSK変調信号を表現するために要求される制御レンジが広ぐ歪補償処理 データ容量の増大と 、つた新たな課題が生じる。
[0198] そこで、本願発明者は、図 1に示す極座標変調送信装置 1900のマルチモード動 作対応を可能とする場合の、歪補償処理データ容量の増大抑制と、補償精度の確 保という相反する課題を同時に解決する手段について、具体的には、振幅 Dレンジ の比較的狭!、変調信号送信時の、送信レベル情報ごとに設定する係数情報の最適 値をもとに、振幅 Dレンジが広 、変調信号を送信する際の係数情報を設定することで 、係数情報の最適ステップ幅を求める検討を行ったので、図 1、図 2、及び、図 15を 用いて説明する。ここで、振幅 Dレンジの比較的狭い変調信号を 8— PSK変調信号 として、また、振幅 Dレンジが広い変調信号を HPSK変調信号として説明する。
[0199] 図 15は、電力増幅器 1の出力部における、 HPSK変調信号と、 8— PSK変調信号 に対する瞬時出力電力の Dレンジを示す図であり、縦軸は、 dB単位表示した出力電 力を示す。
[0200] レンジ(A1) 1501は、平均出力電力が PoutA(l)の場合の HPSK変調信号に対 する瞬時出力電力の Dレンジである。
[0201] レンジ(B1) 1511は、平均出力電力が PoutB (l)の場合の 8— PSK変調信号に対 する瞬時出力電力の Dレンジである。
[0202] レンジ(B2) 1512は、平均出力電力が PoutB (2)の場合の 8— PSK変調信号に対 する瞬時出力電力の Dレンジである。
[0203] レンジ(B3) 1513は、平均出力電力が PoutB (3)の場合の 8— PSK変調信号に対 する瞬時出力電力の Dレンジである。
[0204] レンジ(B4) 1514は、平均出力電力が PoutB (4)の場合の 8— PSK変調信号に対 する瞬時出力電力の Dレンジである。
[0205] なお、 PoutA (l)と、 PoutB (l)と、 PoutB (2)と、 PoutB (3)と、 PoutB (4)との関 係は、下記の式(11)及び式(12)にて表される。
[0206] PoutA(l) =PoutB (l) · · · · (11)
PoutB (n) > PoutB (n + 1 ) · · · · (12)
[0207] ここで、所定のステップ幅にて電力制御を実施するレンジ(Bl) 1511からレンジ(B
4) 1514までの 8— PSK変調信号に対する最適な係数情報をもとに、レンジ (A1) 15
01となる HPSK変調信号に対する最適な係数情報を求めることができる。
[0208] よって、アドレス生成部 1402は、前記電力制御の所定ステップ幅力も求まる振幅信 号のステップ幅を基に、振幅判定部 113より出力される振幅データ D7に対して、第 三のアドレス信号 D141を生成した上で、信号出力端子 T141を介して、前記第六の 係数選択部 1703に対して出力する。
[0209] 図 16は、振幅判定部 113より出力される振幅データ D7に対する、第三のアドレス 信号 D141の生成方法の一例を示す図であり、一列目は、所定ステップ幅にて区切 つた振幅データ D7を、二列目は、アドレス生成部 1402より出力する第三のアドレス 信号 D 141を示す。
[0210] なお、レンジ (A1) 1501となる HPSK変調信号から、更に電力を低減する HPSK 変調信号に対する最適係数情報を得るためには、レンジ (B4) 1514よりも更に電力 を低減する 8— PSK変調信号に対する最適係数情報を用いる。
[0211] これまでの説明では、所定ステップ幅となる離散値化された振幅データ D7に基づく 第三のアドレス信号 D141に対する係数情報を求めたが、前記係数情報をもとに補 間処理を行うことで、補償精度を更に向上することも可能であり、歪補償処理データ 容量が許容されるシステムにおいては、本方法を採ることもできる。
[0212] ここで、極座標変調回路 1901を用いて無線通信装置送信部を構成する場合には 、図 2における第一の振幅調整部 105と振幅変調部 10との段間、位相補正部 9と位 相変調部 11との段間に、図示しないデジタル アナログ変換回路(以下、 DACと略 す)を配置するの一般的だが、次の構成を採ることも可能である。
[0213] すなわち、デジタル入力信号に対してアナログ基準信号の乗算処理を行うマルチ プライング DAC (以下、 MDACと略す)を用いることで、第一の振幅調整部 105を削 除し、乗算回路 1702より出力される第一の係数情報と第六の係数情報の積に相当 する信号を MDACの基準信号として入力するとともに、振幅補正部 8より出力される デジタル信号を入力して、 MDACの乗算機能を利用する構成である。この場合、振 幅補正部 8と MDACとの段間に別の DACを配置してもよい。
[0214] 次に、極座標変調送信装置 1900の歪補償処理回路 1701における係数情報の最 適化方法、具体的には、第六の係数選択部の第一のメモリ領域を用いた係数情報 の設定方法に関して説明する。ここで、第六の係数情報のキャリブレーションモード 時においては、第一の係数選択部 106より出力する第一の係数情報を" 1"に設定し ておく。
[0215] 図 1に示す極座標変調送信装置 1900に設けられた適応動作制御部 1711の概略 構成を図 17に示す。図 17に示すように、適応動作制御部 1711は、信号入力端子 T 172を有する周波数変換回路 1712と、検波部 1713と、信号出力端子 T173を有す る係数調整部 1714と、を備える。
[0216] 周波数変換回路 1712は、信号出力端子 T194を介して電力増幅器 1より出力され る無線周波数帯の変調信号 D172を、信号入力端子 T172を介して受信する。また、 周波数変換回路 1712は、変調信号 D172に対して周波数の変換を行い、無線周波 数帯から、検波部 1713にて処理可能な周波数帯まで周波数の低減を行う。
[0217] 検波部 1713は、周波数変換回路 1712より出力される変調信号の中心周波数から 所定の同一離調周波数となる低域周波数帯、及び、高域周波数帯での信号電力 (P ow_L、 Pow_H)を測定する。また、 Pow_L、 Pow_Hをもとに、下記の式(13) に示すアンバランス情報 Δ Powを係数調整部 1714に対して送信する。
[0218] p o w = I p o w— L - P o w— H I · · · · ( 1 3 )
[0219] 係数調整部 1714は、アンバランス情報 Δ Powに対する閾値(Δ Pow— Thresh)、 すなわち、電力増幅器 1出力での隣接チャネル漏洩電力(ACPR: Adjacent Chan nel Power Ratio)特性のアンバランスの許容値と、前記 Δ Powとを比較し、アンバ ランス情報 Δ Powが閾値未満である場合、すなわち、下記の式(14)を満足する場 合には、第六の係数選択部 1703の係数情報を維持する制御信号 D173を、信号出 力端子 T173と、信号入力端子 T171とを介して、第六の係数選択部 1703に対して 出力する。一方、アンバランス情報 Δ Powが閾値以上である場合、すなわち、下記の 式(15)を満足する場合には、第六の係数選択部 1703の係数情報を切り替える制 御信号 D173を、信号出力端子 T173と、信号入力端子 T174とを介して、第六の係 数選択部 1703に対して出力する。
[0220] Δ Powく Δ Pow— Thresh · · · · (14)
Δ Pow≥ Δ Pow一 Thresh (15)
[0221] 第六の係数選択部 1703は、送信動作モード時には、信号出力端子 T141と信号 入力端子 T171とを介して、アドレス生成部 1402より出力される第三のアドレス信号 D141をアドレス信号として、第二のメモリ領域に格納した第六の係数情報 (後述、図 20参照)を出力するものとする。また、第六の係数選択部 1703は、係数情報のキヤリ ブレーシヨンモード時において、図 18に示す第一のメモリ領域に格納した出力係数 情報 (coeff6)のうち、初期状態では" 1"を出力している。すなわち、第六の係数選 択部 1703は、初期状態では、アドレス番号 Qを選択している。その後、第六の係数 選択部 1703は、信号出力端子 T173と、信号入力端子 T193と、信号入力端子 T1 74とを介して、係数調整部 1714より出力される制御信号 D173に基づいて、ァドレ ス番号を所定の方法にて切り替える。例えば、第六の係数選択部 1703は、係数調 整部 1714より出力される制御信号 D173として、係数情報を切り替える制御信号を 受信した場合には、現在選択しているアドレス番号から、前後のアドレス番号のいず れかを試行錯誤的に選択するように動作する。
[0222] 本発明に至る過程での検討より、電力増幅器 1より出力される変調信号に対して、 所定帯域における ACPR特性を測定し、 ACPR特性のアンバランスを低減するよう に前記係数情報を設定することで、最適な係数情報を選択できることが分力つて 、る 。よって、前述の動作を、振幅 Dレンジの比較的狭い変調信号を用いて、送信レベル 情報ごとに、あるいは、送信レベル情報よりも制御幅の粗い所定間隔の送信レベル ごとに繰り返すことで、所定制御幅の送信レベルに対する最適な第六の係数情報を 求めることができる。
[0223] 続いて、所定間隔の送信出力レベルに対する第六の係数情報のキヤリブレーショ ン手順について、図 19を用いて説明する。図 19は、キャリブレーションのフローチヤ ート図である。ここでは、説明を簡素化するため、極座標変換部 2より出力される振幅 信号 r (t)は 1で正規ィ匕されているものとする。すなわち、振幅データ D7の最大値は 1 である。
[0224] 制御部 1903より出力される第一のモード切り替え信号をトリガーとして、歪補償処 理回路 1701と適応動作制御部 1711は、キャリブレーション動作を開始する。
[0225] ステップ 1として、キャリブレーション動作開始後、送信出力レベル規定の最大値 P1 に送信出力レベルを設定する。
[0226] 続いて、ステップ 2として、前記出力レベルにおける係数情報のキャリブレーションを 行う。ステップ 2において、係数調整部 1714にて、 A Pow— Threshと A Powとの比 較 (ステップ 2A)を行い、条件を満足する場合には、第六の係数選択部 1703を構成 する第一のメモリ領域にて現在選択している係数情報を、第六の係数選択部 1703 を構成する第二のメモリ領域に書き込む (ステップ 2B)。この時、前記第二のメモリ領 域への書き込みは、送信動作モード時のアドレス生成部 1402より出力される第三の アドレス信号 D 141と対応づけて行われる。 [0227] 例えば、送信出力レベル Pkを得るために、送信レベル制御部 103より出力される 電力制御係数 (PCL)を PCLkBとする場合、すなわち、送信出力レベル P1を得るた めの PCLを PCL1Bとする場合、振幅データ D7の最大値を 1に設定しているため、ァ ドレス生成部 1402においては、 PCL1B * (r (t)最大値)、すなわち、 PCL1B以上と なる振幅データ D7に対して、第三のアドレス信号 D141として" 1"を出力するように 設定しておく。また、第六の係数選択部 1703の第二のメモリ領域においては、ァドレ ス生成部 1402よりアドレス" 1"を入力した場合に、 PCL1Bに対する第六の係数情報 の最適値を格納する。
[0228] 一方、前記比較結果が条件を満足しない場合には、既に説明した手順にて、現在 選択している係数情報のアドレス値と異なるアドレス値を選択し (ステップ 2C)、再度 、 A Pow— Threshと A Powとの比較 (ステップ 2A)を行い、条件を満足するまで、同 様の手順を繰り返す。
[0229] 次に、係数情報の第二のメモリ領域への書き込みが完了(ステップ 2B)した場合に は、送信出力レベル P1よりも第一の所定量を低減する送信出力レベル P2に送信出 カレベルを設定する (ステップ 3)。続いて、ステップ 1の後に実行するステップ 2と同 様の手順で、係数情報のキャリブレーションを実施する。係数情報の第二のメモリ領 域への書き込みが完了した後、送信出力レベル P2よりも第一の所定量を低減する送 信出力レベル P3に送信出力レベルを設定し、以後、同様の作業を繰り返す。 P1から 第二の所定量を低減した送信出力レベルまで上記動作を繰り返し、係数情報の第二 のメモリ領域への書き込みが完了した時点で、キャリブレーションは完了する。
[0230] 上記キャリブレーション動作の結果、第六の係数選択部 1703の第二のメモリ領域 には、図 20に示す形式にて係数情報が書き込まれる。また、アドレス生成部 1402で は、図 21に示す形式にてアドレス生成を行うように、メモリへの書き込みが行われる。
[0231] 続いて、上記キャリブレーション動作終了後、送信モードに切り替わる前に、広い振 幅 Dレンジ信号用の送信レベル情報 D191に対応する第六の係数情報を、第一の 係数情報選択部 106に書き込む。ここで、歪補償精度の要求されない無線システム において、第六の係数選択部 1703は、信号入力端子 T171を介して入力されるデ ータ D171に関わらず、第六の係数情報として" 1"を出力してもよい。 [0232] なお、これまでの説明では、乗算回路 105aにて乗算する係数情報を例として、係 数情報の最適化方法について説明してきたが、乗算回路 1702への入力信号を第 一の係数選択部 106より出力される信号から、第二、第三、第四、第五の係数選択 部 108、 109、 111、あるいは、 112より出力される信号に置き換えることで、第二、第 三、第四、第五の係数情報に対して同様な効果を実現可能である。
[0233] 以上のように振幅 Dレンジの狭い信号を用いて第六の係数情報を求めておき、より 広 ヽ振幅 Dレンジを有する変調信号送信時の補償データとして参照することで、極 座標変調送信装置のマルチモード動作対応を可能とする場合の、歪補償処理デー タ容量の増大抑制と、補償精度の確保という相反する課題を同時に解決することが 可能となる。
[0234] なお、本発明の第 1の実施形態に記載の極座標変調送信装置 1900、あるいは、 極座標変調回路 1901は、例えば、シリコン半導体基板上に形成することで、集積回 路として構成することができる。この場合、機能ブロックごとに別基板上に形成するこ とも可能である。
[0235] (第 2の実施形態)
本発明の第 2の実施形態は、本発明の第 1の実施形態にて説明した補償データと しての係数情報のキャリブレーションを、移動局無線通信装置と基地局無線通信装 置との間の無線リンクを経由して行う技術について説明するものである。
[0236] 本キャリブレーション技術は、移動局無線通信装置を構成する電力増幅器より出力 される変調信号の検波部を基地局無線通信装置に備え、また、前記検波部での測 定結果をもとに、移動局無線通信装置の歪補償処理データを更新する係数調整部 を移動局無線通信装置に備えるとともに、適応動作制御に関わる制御情報量を低減 したことを特徴とするものであり、無線リンクを経由した適応動作制御を実現できるも のである。
[0237] 図 22は、本発明の第 2の実施形態における適応歪補償処理システムの概略構成 を示す図である。
[0238] 図 22に示すように、適応歪補償処理システム 2300は、移動局無線通信装置 2301 と基地局無線通信装置 2311とを備えるとともに、移動局無線通信装置 2301と基地 局無線通信装置 2311とは無線リンクを経由して、データの送受信を行っている。移 動局無線通信装置 2301は、極座標変調回路 1901と、信号生成部 1902と、制御部 1903と、移動局受信装置 2302と、システム切り替え判断部 2305と、を備える。
[0239] (1) 移動局無線通信装置の動作
まず、移動局無線通信装置 2301の動作について説明する。
信号生成部 1902は、移動局無線通信装置 2301のユーザー操作に基づいて、対向 する基地局無線通信装置 2311へと送信する送信データ力もベースバンド帯直交座 標信号 (IQ信号)を生成して、信号入力端子 T11及び T12を介し、極座標変換部 2 に対して出力する。
[0240] 制御部 1903は、極座標変調回路 1901、及び、移動局受信装置 2302の動作制 御を行う。
[0241] 制御部 1903での移動局受信装置 2302に関する制御としては、自動利得制御、 D Cオフセットキャンセルに関する動作制御などがある。
[0242] また、制御部 1903での極座標変調回路 1901に関する制御としては、本発明の第 1の実施形態にて説明した制御と同様であり、再度の説明は省略する。
[0243] 移動局受信装置 2302は、周波数変換回路 2303と復調部 2304とを備える。
[0244] 周波数変換回路 2303は、アンテナを介して、基地局無線通信装置 2311より送信 された変調信号を受信し、無線周波数帯の変調信号をベースバンド帯周波数に変 換して、復調部 2304に対して出力する。
[0245] 復調部 2304は、周波数変換回路 2303より出力される受信信号を基に、基地局無 線通信装置 2311にて生成した送信データを再生する。また、前記送信データに含 まれる、基地局無線通信装置 2311にて測定された、移動局無線通信装置 2301より 出力される変調信号の帯域外スペクトラムのアンバランス情報( Δ Pow2)を、係数調 整部 1714に対して出力する。なお、基地局無線通信装置 1811でのアンバランス情 報( Δ Pow2)の生成方法につ 、ては後述する。
[0246] 係数調整部 1714は、 A Pow2に対する閾値( A Pow2— Thresh)、すなわち、極 座標変調回路 1901を構成する電力増幅器 1の出力部での ACPR特性のアンバラン スの許容値と、アンバランス情報 A Pow2とを比較し、アンバランス情報 A Pow2が閾 値未満である場合、すなわち、下記の式(16)を満足する場合には、第六の係数選 択部の係数情報を維持する制御信号を、信号入力端子 T193を介して第六の係数 選択部に対して出力する。一方、アンバランス情報 A Pow2が閾値以上である場合、 すなわち、下記の式(17)を満足する場合には、第六の係数選択部の係数情報を切 り替える制御信号を、信号入力端子 T193を介して第六の係数選択部に対して出力 する。
[0247] Δ Pow2< Δ Pow2— Thresh · · · · (16)
Δ Pow2≥ Δ Pow2一 Thresh (17)
[0248] ここで、アンバランス情報 Δ Pow2が閾値以上である場合に、第六の係数選択部の 係数情報を切り替える方法の一例としては、本発明の第 1の実施形態に示したように 試行錯誤的に切り替える方法があるが、再度の説明は省略する。
[0249] システム切り替え部 2305は、制御部 1903より出力される第一のモード切り替え信 号をトリガーとして、極座標変調回路 1901におけるキャリブレーション動作を開始す る前に、制御部 1903より出力する第二のモード切り替え信号 D192を設定する。また 、所定モードでの通信中に、隣接するタイムスロット間にて、送信レベルを制御するた めに、制御部 1903より出力する送信レベル情報 D191を設定する。
[0250] 具体的には、図 23に示すように、キャリブレーション動作の開始後、移動局無線通 信装置 2301、及び、基地局無線通信装置 2311が対応する変調信号のうち、まず、 振幅 Dレンジの一番狭い変調信号を選択する。続いて、順次、振幅 Dレンジの広い 変調信号を選択してゆく。また、振幅 Dレンジの一番狭い変調信号送信時に、出カレ ベルを順次、低減してゆく。
[0251] 図 23は、システム切り替え部 2305が行う制御の結果として、移動局無線通信装置 2301よりアンテナを介して出力される変調信号の時間変化を示す図である。
[0252] タイムスロット TS0は、キャリブレーション開始後の最初のタイムスロットであり、タイム スロット TS1、 TS (n- 1)、 TSnとタイムスロットが連続している。また、タイムスロット T S(n—1)までは、キャリブレーション動作期間であり、タイムスロット TSn以降で送信 動作期間となる。
[0253] キャリブレーション動作期間には、送信動作期間に用いられる変調モードに比べ、 振幅 Dレンジの狭い変調信号を用いるため、図 23の例では、モード 1は、モード 2に 比べ、振幅 Dレンジが狭い変調モードである。
[0254] また、出力レベル Pl、 P2、 (!1 1)は、出力レベル PIが最大出力レベルあり、 P2 、 P (n— 1)と順次、出力レベルを低下させる。
[0255] システム切り替え部 2305が上述の動作制御を行うとともに、本発明の第二の実施 形態にて説明したように、極座標変調回路 1901にて最適係数情報を求めることで、 キャリブレーション動作が完了する。
[0256] (2) 基地局無線通信装置の動作
次に、基地局無線通信装置 2311の動作について説明する。
[0257] 図 22に示すように、基地局無線通信装置 2311は、基地局送受信装置 2312と、周 波数変換回路 1712と、検波部 1713と、変換部 2315と、を備える。また、基地局送 受信装置 2312は、周波数変換回路 2313と、信号処理部 2314と、を備える。
[0258] 周波数変換回路 2313は、受信動作時には、アンテナを介して移動局無線通信装 置 2301からの送信変調信号を受信して、無線周波数帯の変調信号をベースバンド 帯周波数に変換して、信号処理部 2314に対して出力する。また、送信動作時には、 信号処理部 2314より出力されるベースバンド帯周波数信号を無線周波数帯へと変 換し、無線周波数信号をアンテナを介して移動局無線通信装置に対して送信する。
[0259] 信号処理部 2314は、受信動作時には、周波数変換回路 2313より出力されるべ一 スバンド帯周波数信号から、移動局無線通信装置 2301にて生成した送信データを 再生する。また、送信動作時には、移動局無線通信装置 2301からの要求及び変換 部 2315より出力される信号に基づいて、対向する移動局無線通信装置 2301へと送 信する送信信号を生成して、ベースバンド帯周波数信号を周波数変換回路 2313に 対して出力する。
[0260] 周波数変換回路 1712は、アンテナを介して受信した移動局無線通信装置 2301よ り送信された無線周波数信号に対して周波数の変換を行い、無線周波数帯から、検 波部 1713にて処理可能な周波数帯まで周波数の低減を行う。
[0261] 検波部 1713は、図 17にて示す検波部 1713の動作と同様に、前段に位置する周 波数変換回路 1712より出力される変調信号から、変調信号の中心周波数力 所定 の同一離調周波数となる低域周波数帯、及び、高域周波数帯での信号電力 (Pow3 _L、 Pow3_H)を測定する。また、 Pow3_L、 Pow3_Hをもとに、下記の式(18) に示すアンバランス情報 A Pow3を変換部 2315に対して出力する。
[0262] Δ Pow3 = Pow3_L - Pow3_H · · · · (18)
[0263] 変換部 2315は、検波部 1713より出力されるアンバランス情報 A Pow3を所定間隔 にて離散値化するとともに、前記離散値に対して所定の送信信号フォーマットに適合 したビット割り当て処理を行 ヽ、対向する移動局無線通信装置 2301を構成する極座 標変調回路 1901の適応的な歪補償動作の動作制御信号として前記ビット情報 (以 下 CALビットと呼ぶ)を信号処理部 2314に対して出力する。なお、変換部 2315で の具体的な処理内容については後述する。
[0264] 次に、変換部 2315での具体的な処理内容のうち、離散値化されたアンバランス情 報の生成方法にっ 、て説明する。離散化のステップ幅を N [dB]とした場合の例で説 明する。
[0265] まず、変換部 2315において、検波部 1713より出力されるアンバランス情報 A Pow 3に対して、下記の式(19)力も求まる K1の商 K2のみ抽出する。ここで、商を K2、余 りを Κ3とする。次に、下記の式(20)を計算することで、 N[dB]ステップ幅に離散化さ れたアンバランス情報 Δ Pow2が求まる。
[0266] Kl = A Pow3/N=K2+K3 · · · · (19)
A Pow2= (K2— 1) * N · · · · (20)
[0267] 次に、アンバランス情報 Δ Pow2に対する所定の送信信号フォーマットに適合した ビット割り当て処理につ!ヽて説明する。
[0268] 図 24は、 N = 3、すなわち、 3 [dB]ステップ幅にて離散化したアンバランス情報 Δ Ρ ow2から CALビットを生成する一例を示す。
[0269] この例では、アンバランス情報 Δ Pow2の絶対値情報に対して 2ビットを割り当て、 アンバランス情報 A Pow2の符号情報に対して 1ビットを割り当てている。すなわち 3 ビットでアンバランス情報を表現している。なお、割り当て可能なビット数は、想定する 無線システムごとに異なる。
[0270] 以上のように構成することで、基地局無線通信装置 2311での電力増幅器 1の出力 スペクトラムの ACPR特性取得結果を、無線リンクを介して、移動局無線通信装置 23 01を構成する極座標変調回路 1901に対してフィードバックすることが可能となる。こ れによって、移動局無線通信装置内に周波数変換回路 1712と検波部 1713とを設 けている第 2の実施形態において生じる、電力増幅器 1の出力信号を分岐することに よる損失と、 ACPR特性を取得する部での消費電流増加に起因する、移動局無線通 信装置の通話時間、データ通信時間の短縮と 、つた新たな課題を解決することがで きる。
[0271] (第 3の実施形態)
本発明の第 3の実施形態は、歪補償処理用データ容量の増大、及び、歪補償処理 回路の回路規模の増大を抑制しながら、マルチモード対応無線送信装置のプリディ ストーシヨン歪補償処理を実現する技術について説明するものである。
[0272] 図 25に示す極座標変調回路を用いて、マルチモード対応プリディストーション歪補 償処理技術について説明する。なお、図 2に示す極座標変調回路と重複する部分に ついては、同一の符号を付す。
[0273] 図 25に示すように、歪補償処理回路 2501は、図 2に示す極座標変調回路 1901 における第六の係数選択部 1703及び乗算回路 1702の代わりに、信号入力端子 T 251を有する第七の係数選択部 2502と、乗算回路 2503と、を備える。そして、第一 の係数選択部 106より出力される第一の係数情報に対して、第七の係数選択部 250 2より出力される第七の係数情報 (coeff 7)を、乗算回路 2503にて乗算する構成で ある。
[0274] 信号入力端子 T251には、図 1に示す制御部 1903から、モード切り替え信号 D19 2が入力される。そして、本実施形態において、モード切り替え信号 D192における 信号の変調モードを設定する第二のモード切り替え信号は、現在送信して!/、る変調 信号の種類を識別する情報としての変調速度データ D251を含む。
[0275] 第七の係数選択部 2502は、図 26に示す形式にて、第七の係数情報 (coeff 7)を 格納しておく。図 26に示すテーブルデータの一列目はテーブルデータのアドレス番 号を、二列目は 1を含む所定範囲の第七の係数情報を示す。なお、この例では、アド レス番号 3に係数情報 1を格納しているとともに、各係数情報は、例えば、 3より小さい アドレス番号に対応した係数情報は" 1"より大きぐ 3より大きいアドレス番号に対応し た係数情報は" 1"より小さぐアドレス番号の増加に伴い単調減少するように設定さ れている。
[0276] また、第七の係数選択部 2602は、図 27に示すような、所定範囲ごとに区切った変 調速度データ D251とアドレス番号とを対応付けたテーブルデータを格納おく。そし て、変調速度データ D251を、信号入力端子 T251を介して受信すると、変調速度デ ータ D251に対応したアドレス番号を参照して、第七の係数情報を選択する。ここで、 図 27に示すテーブルデータの一列目は変調速度の範囲を、二列目は図 26に示す 第七の係数選択部 2502の格納データを参照する際のアドレス番号を示す。また、第 一の係数選択部 106は、信号入力端子 T2へ入力される、本発明の第 1の実施形態 にて示したように送信レベル情報 D191に基づ!/、てアドレス番号 Mを選択して!/、るも のとする。
[0277] 本発明に至る過程での検討から、信号入力端子 T2へ入力するデータ D2のほか、 信号入力端子 T3から T6へ入力するデータ D3から D6が同一情報に基づいている 場合に、電力増幅器 1から出力される変調信号の ACPR特性の最適点を得る第七の 係数情報 (coeff7)は、変調速度が増加すると、より小さな値となることが分力つた。
[0278] 図 28は、異なる変調速度を有する変調信号に対する ACPR特性を示す図である。
図 28において、横軸は第七の係数情報を、縦軸は ACPR値を示す。
[0279] 特性 (A) 2901は、 EDGEシステム用 8— PSK変調信号を用いる場合に、第七の 係数情報のみ掃引して取得した ACPR特性である。
[0280] 特性 ) 2902は、 8— PSK変調信号よりも高速な変調信号として、例えば、 WCD MAシステム用変調信号を用いる場合に、第七の係数情報のみ掃引して取得した A CPR特性である。
[0281] なお、図 28に示す ACPR特性は、低域周波数帯、高域周波数帯の ACPR特性の うち、より悪い特性を抽出したものである。
[0282] ここで、本発明の第 3の実施形態では、 EDGEシステム用 8— PSK変調信号を用 V、る場合の第七の係数情報を基準として考えるために、 8— PSK変調信号の変調速 度 (約 270k)にて送信する場合に、変調速度データ D7に対応して" 1"なる第七の係 数情報を出力するように、図 26及び図 27のテーブルデータを設定している力 テー ブルデータへの格納データの定義方法は、想定するマルチモード信号や、要求され る補償精度等によって、変更すべきものであることは言うまでもない。
[0283] 以上説明してきたように、変調速度によって、第七の係数情報の最適値が異なるた め、本発明の第 3の実施形態に係る極座標変調送信装置では、変調速度を表す情 報をもとに、第七の係数情報を切り替える構成とした。
[0284] 以上のように構成することで、メモリ 102に格納する電力増幅器 1の歪補償処理用 データを変調信号ごとに用意することと等価な効果を実現し、歪補償処理用データ 容量の増大、及び、歪補償処理回路の回路規模の増大を抑制しながら、マルチモー ド対応無線送信装置のプリディストーション歪補償処理を実現できる。
[0285] なお、歪補償処理回路 2501に、図 2に示す信号入力端子 T171及び T174を有す る第六の係数選択部 1703と、乗算回路 1702と、適応動作制御部 1711を追加し、 乗算回路 2503より出力される第一の係数情報と第七の係数情報との積に対して、 第六の係数選択部 1703より出力される第六の係数情報 (coeff6)を、乗算回路 170 2にて乗算する構成にて、信号出力端子 T141を介してアドレス生成部 1402より出 力されるデータ D141を、信号入力端子 T171を介して、第六の係数選択部 1602に 対して入力するとともに、係数調整判断部 1714より出力されるデータ D173を、信号 出力端子 T173と信号入力端子 T174とを介して、第六の係数選択部 1602に対して 入力することで、適応的な歪補償処理を実現可能な極座標変調送信装置を実現す ることがでさる。
[0286] また、本発明の第 3の実施形態に係る極座標変調送信装置は、例えば、シリコン半 導体基板上に形成することで、集積回路として構成することができる。この場合、機能 ブロックごとに別基板上に形成することも可能である。
[0287] (第 4の実施形態)
本発明の第 4の実施形態は、周辺の電波環境に応じて無線通信に利用する周波 数、変調方式を自立的に選択するコグニティブ無線通信装置に適用可能なプリディ ストーシヨン歪補償処理技術について説明するものである。
[0288] ここで、本発明の極座標変調回路における歪補償処理技術は、位相変調と振幅変 調に関わる理想動作力 の劣化要因を独立な 3つのパラメータに分離して補償する ことを特徴とするものであり、この歪補償処理技術をコグ-ティブ無線通信装置に適 用する例について説明する。
[0289] 図 30は、コグ-ティブ無線通信システムの概略構成を示す図である。
[0290] 図 30において、第一のエリア 3001、第二のエリア 3002は、地理的に異なる 2つの 領域を示し、第一の無線通信システム 3011、第二の無線通信システム 3012、第三 の無線通信システム 3013は、第一のエリア 3001にてサービスを提供している無線 通信システムを示し、第四の無線通信システム 3014、第五の無線通信システム 301 5は第二のエリア 3002にてサービスを提供している無線通信システムを示し、無線 通信装置 3020は第一のエリア 3001、第二のエリア 3002の各無線通信システムに 対応可能なコグ-ティブ無線通信装置を示す。
[0291] 図 31は、図 30に示す各無線通信システムにおける代表パラメータの一例を示す図 である。
[0292] 本発明の第四の実施形態における説明では、第一の無線通信システム 3011は周 波数帯 fl、変調方式 8— PSK、変調速度 SP1、第二の無線通信システム 3012は周 波数帯 f2、変調方式 QPSK、変調速度 SP2、第三の無線通信システム 3013は周波 数帯 f3、変調方式 HPSK、変調速度 SP3、第四の無線通信システム 3014は周波数 帯 f3、変調方式 8— PSK、変調速度 SP4、第五の無線通信システム 3015は周波数 帯 fl、変調方式 OFDM、変調速度 SP5なるパラメータとする力 本発明はこの例に 限定されるものではない。
[0293] 無線通信装置 3020は、製造時点では、第一のエリア 3001での使用を想定されて いるものとし、無線通信装置 3020のユーザーが第一のエリア 3001内にて移動する 場合、無線通信装置 3020は、第一の無線通信システム 3011、第二の無線通信シ ステム 3012、第三の無線通信システム 3013間で切り替えて使用される。本切り替え は、電界強度、実効伝送速度、課金体系等に基づき実施されるものとする。また、無 線通信装置 3020の送信部の構成要素は、図 2に示す極座標変調回路 1901、ある いは、その一部であるとする。
[0294] ここで、無線通信装置 3020のユーザーが第一のエリア 3001を離れ、第二のエリア 3002に入った場合、無線通信装置 3020は、周辺の電波環境を測定し、製造時点 では想定されていない第四の無線通信システム 3014、第五の無線通信システム 30 15の存在を検知する。
[0295] 無線通信装置 3020は、第四の無線通信システム 3014、第五の無線通信システム 3015に対応した送信動作を開始する前に、歪補償処理用データとして、本発明の 第一の実施形態の図 19を用いて説明した手順にて、変調信号のダイナミックレンジ に対応する係数情報を取得するとともに、本発明の第三の実施形態にて説明したよ うに変調速度に対応する係数情報を取得する。なお、本発明の第二の実施形態にて 説明したように移動局無線通信装置と基地局無線通信装置との間の無線リンクを経 由して係数情報を取得してよ!、。
[0296] ここで、周波数に対応する歪補償処理用データは、使用が想定される周波数帯に 関しては、製造時点で図 2に示すメモリ 104に格納しておくが、変調信号のダイナミツ クレンジ、あるいは、変調速度に対応する歪補償処理用データを固定値とした状態 で、送信動作開始前に、周波数ごとの AM— AM特性、 AM— PM特性を取得しても よい。
[0297] 以上のように、本発明の極座標変調回路における歪補償処理技術は、キャリア周 波数に依存する補償データと、電力増幅器の出力電位に依存する補償データと、変 調速度に依存する補償データとを独立に格納するため、無線通信システムごとに異 なる周波数と、変調方式と、変調速度とに柔軟に対応でき、歪補償処理データ用に 大容量のメモリを用意してお力なくても、無線通信装置の製造時点では想定されて Vヽな 、無線通信システムに対しても対応することができる。
[0298] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2005年 12月 27日出願の日本特許出願 (特願 2005— 375485)に基づくも のであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0299] 本発明の極座標変調送信装置は、歪補償処理用データ容量の増大、及び、歪補 償処理回路の回路規模の増大を抑制しながら、振幅変調動作時の電力増幅器の低 歪特性を実現することを可能とする効果を有し、マルチモード対応極座標変調送信 装置や、適応歪補償処理システム等に有用である。

Claims

請求の範囲
[1] 送信変調信号の変調方式の切り替えを行う第一の制御部と、
送信データをもとに、前記第一の制御部により選択された変調方式にてベースバン ド直交信号を生成する信号生成部と、
前記ベースバンド直交信号から、振幅信号を生成する極座標変換部と、 前記振幅信号をもとに、振幅変調信号を生成する振幅変調部と、
前記ベースバンド直交信号の少なくとも位相成分を含む信号をもとに、無線周波数 帯の位相変調信号を生成する位相変調部と、
前記位相変調信号を入力高周波信号として入力し、前記振幅変調信号を制御信 号として入力し、無線周波数帯の送信データを生成する増幅部と、
前記振幅変調部の入力信号及び前記位相変調部の入力信号のうち少なくとも一 方に対して所定の歪補償処理を行う歪補償処理回路と、
前記歪補償処理回路において用いられる補償データの校正動作と、送信動作との 切り替えを行う第二の制御部と
を備え、
前記第一の制御部は、前記校正動作時には、前記送信動作時に用いられる変調 方式における変調信号の振幅ダイナミックレンジ以下となる変調方式を選択するマル チモード対応極座標変調送信装置。
[2] 請求項 1記載のマルチモード対応極座標変調送信装置であって、
前記第一の制御部は、前記校正動作時には、さらに、所定制御幅にて、出カレべ ルを単調減少させるマルチモード対応極座標変調送信装置。
[3] 請求項 1または 2記載のマルチモード対応極座標変調送信装置であって、
前記歪補償処理回路は、所定振幅の入力高周波信号及び制御電圧が入力された 増幅部の定常状態における制御電圧値に対する出力信号特性をもとに、前記増幅 部の定常状態での出力信号を線形ィ匕する定常特性補償回路を備えるマルチモード 対応極座標変調送信装置。
[4] 請求項 3記載のマルチモード対応極座標変調送信装置であって、
前記歪補償処理回路は、前記定常特性補償回路にて前記定常状態出力信号線 形化処理実施後の、振幅信号の振幅を調整する第一の振幅調整部をさらに備える マルチモード対応極座標変調送信装置。
[5] 請求項 3記載のマルチモード対応極座標変調送信装置であって、
前記歪補償処理回路は、前記定常特性補償回路にて前記振幅信号の歪補償処 理を行う場合のアドレス参照用振幅信号の振幅を調整する第二の振幅調整部をさら に備えるマルチモード対応極座標変調送信装置。
[6] 請求項 3記載のマルチモード対応極座標変調送信装置であって、
前記歪補償処理回路は、前記定常特性補償回路にて前記位相信号の歪補償処 理を行う場合のアドレス参照用振幅信号の振幅を調整する第一の位相補償部をさら に備えるマルチモード対応極座標変調送信装置。
[7] 請求項 3記載のマルチモード対応極座標変調送信装置であって、
前記歪補償処理回路は、前記位相信号又は前記位相変調信号の振幅を調整する 第二の位相補償部をさらに備えるマルチモード対応極座標変調送信装置。
[8] 請求項 3記載のマルチモード対応極座標変調送信装置であって、
前記歪補償処理回路は、前記振幅信号あるいは前記位相信号に所定の遅延量を 与え、振幅信号と位相信号との間の同期を確保する遅延調整手段をさらに備えるマ ルチモード対応極座標変調送信装置。
[9] 請求項 1から 8の 、ずれか一項記載のマルチモード対応極座標変調送信装置を実 装した集積回路。
[10] 送信変調信号の変調方式の切り替えを行うステップと、
送信データをもとに、前記選択された変調方式にてベースバンド直交信号を生成す るステップと、
前記ベースバンド直交信号から、振幅信号を生成するステップと、
前記振幅信号をもとに、振幅変調信号を生成するステップと、
前記ベースバンド直交信号の少なくとも位相成分を含む信号をもとに、無線周波数 帯の位相変調信号を生成するステップと、
前記位相変調信号を入力高周波信号として入力し、前記振幅変調信号を制御信 号として入力し、無線周波数帯の送信データを生成するステップと、 前記振幅変調部の入力信号及び前記位相変調部の入力信号のうち少なくとも一 方に対して所定の歪補償処理を行う歪補償処理回路において用いられる補償デー タの校正動作と、送信動作との切り替えを行うステップと
を有し、
前記校正動作時には、変調信号の振幅ダイナミックレンジが、前記送信動作時に 用いられる変調方式における変調信号の振幅ダイナミックレンジ以下となる変調方式 を選択するマルチモード対応極座標変調送信方法。
[11] 請求項 10記載のマルチモード対応極座標変調方法を用いて、基地局と移動局と の間の無線通信を行うマルチモード無線通信方法。
[12] 請求項 1から 8の 、ずれか一項記載のマルチモード対応極座標変調送信装置又は 請求項 9記載の集積回路を備える無線通信装置。
[13] 請求項 1から 8のいずれか一項記載のマルチモード対応極座標変調送信装置、請 求項 9記載の集積回路、又は、請求項 12記載の無線通信装置を備える無線通信シ ステム。
[14] 極座標変調回路における歪補償処理方法であって、
位相変調と振幅変調に関わる理想動作からの劣化要因を、キャリア周波数に依存す る AM— AM特性および AM— PM特性、電力増幅器の出力電位に依存する係数 情報、および変調速度に依存する係数情報の独立な 3つのパラメータに分離して補 償する歪補償処理方法。
[15] 第一のエリアおよび第二のエリアの各無線通信システムに対応可能なコグ-ティブ 無線通信装置におけるマルチモード無線通信方法であって、
前記第一のエリアを離れ、前記第二のエリアに入った場合に、変調信号のダイナミ ックレンジに対応する係数情報を取得するステップと、
変調速度に対応する係数情報を取得するステップと、
前記係数情報に対応する歪補償処理用データをメモリに格納するステップと、 前記第二のエリアの無線通信システムに対応する変調方式で通信を行うステップと を有するマルチモード無線通信方法。
PCT/JP2006/325955 2005-12-27 2006-12-26 マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法 WO2007074839A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/159,121 US8369801B2 (en) 2005-12-27 2006-12-26 Multimode-compatible polar modulation transmission device and multimode radio communication method
JP2007551993A JP4903718B2 (ja) 2005-12-27 2006-12-26 マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-375485 2005-12-27
JP2005375485 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007074839A1 true WO2007074839A1 (ja) 2007-07-05

Family

ID=38218060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325955 WO2007074839A1 (ja) 2005-12-27 2006-12-26 マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法

Country Status (3)

Country Link
US (1) US8369801B2 (ja)
JP (1) JP4903718B2 (ja)
WO (1) WO2007074839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539863A (ja) * 2007-09-19 2010-12-16 クゥアルコム・インコーポレイテッド 無線通信のためのマルチモード及びマルチ帯域送信器。

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080207258A1 (en) * 2007-02-26 2008-08-28 Broadcom Corporation, A California Corporation Multimode transmitter with digital up conversion and methods for use therewith
US8126409B2 (en) * 2008-11-17 2012-02-28 Panasonic Corporation Adaptive delay alignment in polar transmitters
US8565344B2 (en) * 2009-07-02 2013-10-22 Panasonic Corporation Transmission circuit and communication device
JPWO2011007496A1 (ja) * 2009-07-14 2012-12-20 パナソニック株式会社 送信回路
WO2011013420A1 (ja) * 2009-07-31 2011-02-03 日本電気株式会社 電力増幅装置、電力増幅方法および記憶媒体
JP5573627B2 (ja) * 2010-11-22 2014-08-20 富士通株式会社 光デジタルコヒーレント受信器
DE102011081689B4 (de) * 2011-08-26 2020-07-02 Intel Deutschland Gmbh Signalverarbeitungsvorrichtung und verfahren zur bereitstellung eines ersten analogsignals und eines zweiten analogsignals
US8913626B2 (en) 2012-05-15 2014-12-16 Entropic Communications, Inc. Signal processing of multiple streams
US10324169B2 (en) * 2015-04-06 2019-06-18 The United States Of America As Represented By The Secretary Of The Navy. Digital compensation for amplifier-induced instability
CN107018113B (zh) * 2016-01-27 2020-01-31 华为技术有限公司 发射机、接收机和信号处理的方法
JP2022112245A (ja) * 2021-01-21 2022-08-02 住友電気工業株式会社 コントローラ、歪補償装置、通信機、及び歪補償のために入力信号を調整する方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318999A (ja) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd 変調回路、復調回路及び無線装置
JP2004501527A (ja) * 2000-02-02 2004-01-15 トロピアン・インク 高効率電力変調器
JP2005150814A (ja) * 2003-11-11 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償方法および装置
JP2005278162A (ja) * 2004-02-25 2005-10-06 Matsushita Electric Ind Co Ltd 複数の変調方式を利用する通信装置及びその通信装置を構成する送信装置
JP2005286995A (ja) * 2004-03-01 2005-10-13 Matsushita Electric Ind Co Ltd 送信装置及び無線通信装置
WO2005104352A1 (ja) * 2004-04-27 2005-11-03 Matsushita Electric Industrial Co., Ltd. 増幅器、情報通信機器、及び増幅方法
WO2006001433A1 (ja) * 2004-06-29 2006-01-05 Matsushita Electric Industrial Co., Ltd. 歪補償回路
JP2006253749A (ja) * 2005-03-08 2006-09-21 Matsushita Electric Ind Co Ltd 歪み補償装置及びその方法
JP2006333450A (ja) * 2005-04-28 2006-12-07 Matsushita Electric Ind Co Ltd 極座標変調回路、極座標変調方法、集積回路および無線送信装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697436B1 (en) * 1999-07-13 2004-02-24 Pmc-Sierra, Inc. Transmission antenna array system with predistortion
US7158494B2 (en) * 2001-10-22 2007-01-02 Matsushita Electric Industrial Co., Ltd. Multi-mode communications transmitter
GB2389251B (en) * 2002-05-31 2005-09-07 Hitachi Ltd A communication semiconductor integrated circuit, a wireless communication apparatus, and a loop gain calibration method
DE60309989T2 (de) * 2002-09-05 2007-10-18 Hitachi, Ltd. Gerät zur drahtlosen Kommunikation
US7072626B2 (en) * 2003-04-30 2006-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Polar modulation transmitter
US7043213B2 (en) * 2003-06-24 2006-05-09 Northrop Grumman Corporation Multi-mode amplifier system
US6998914B2 (en) * 2003-11-21 2006-02-14 Northrop Grumman Corporation Multiple polar amplifier architecture
JP4323968B2 (ja) * 2004-01-14 2009-09-02 株式会社日立コミュニケーションテクノロジー 無線通信装置のタイミング調整方法
US7418047B2 (en) * 2004-02-25 2008-08-26 Matsushita Electric Industrial Co., Ltd. Communication apparatus using a plurality of modulation schemes and transmission apparatus composing such communication apparatus
US7532679B2 (en) * 2004-08-12 2009-05-12 Texas Instruments Incorporated Hybrid polar/cartesian digital modulator
US7529523B1 (en) * 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
US7327803B2 (en) * 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7394862B2 (en) * 2004-12-21 2008-07-01 Broadcom Corporation Multi-mode wireless polar transmitter architecture
US7539462B2 (en) * 2005-08-09 2009-05-26 Freescale Semiconductor, Inc. Configurable multi-mode modulation system and transmitter
US7474708B1 (en) * 2005-08-30 2009-01-06 Rf Micro Devices, Inc. Multimode transmitter architecture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501527A (ja) * 2000-02-02 2004-01-15 トロピアン・インク 高効率電力変調器
JP2003318999A (ja) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd 変調回路、復調回路及び無線装置
JP2005150814A (ja) * 2003-11-11 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償方法および装置
JP2005278162A (ja) * 2004-02-25 2005-10-06 Matsushita Electric Ind Co Ltd 複数の変調方式を利用する通信装置及びその通信装置を構成する送信装置
JP2005286995A (ja) * 2004-03-01 2005-10-13 Matsushita Electric Ind Co Ltd 送信装置及び無線通信装置
WO2005104352A1 (ja) * 2004-04-27 2005-11-03 Matsushita Electric Industrial Co., Ltd. 増幅器、情報通信機器、及び増幅方法
WO2006001433A1 (ja) * 2004-06-29 2006-01-05 Matsushita Electric Industrial Co., Ltd. 歪補償回路
JP2006253749A (ja) * 2005-03-08 2006-09-21 Matsushita Electric Ind Co Ltd 歪み補償装置及びその方法
JP2006333450A (ja) * 2005-04-28 2006-12-07 Matsushita Electric Ind Co Ltd 極座標変調回路、極座標変調方法、集積回路および無線送信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539863A (ja) * 2007-09-19 2010-12-16 クゥアルコム・インコーポレイテッド 無線通信のためのマルチモード及びマルチ帯域送信器。

Also Published As

Publication number Publication date
JPWO2007074839A1 (ja) 2009-06-04
US20100291885A1 (en) 2010-11-18
JP4903718B2 (ja) 2012-03-28
US8369801B2 (en) 2013-02-05

Similar Documents

Publication Publication Date Title
JP4951238B2 (ja) 極座標変調送信装置及び適応歪補償処理システム並びに極座標変調送信方法及び適応歪補償処理方法
JP4903718B2 (ja) マルチモード対応極座標変調送信装置、及び、マルチモード無線通信方法
JP4767583B2 (ja) 歪補償回路
US7715808B2 (en) Polar modulating circuit, polar coordinate modulating method, integrated circuit and radio transmission device
US8055217B2 (en) Adaptive complex gain predistorter for a transmitter
JP4327848B2 (ja) 送信機により生成された無線通信信号などの振幅および位相特性の調整
TW201633697A (zh) 校正在波封為基追蹤系統中之不便功率放大器負載特性的方法與裝置
US8417199B2 (en) Method and apparatus for improving efficiency in a power supply modulated system
WO2006118147A1 (ja) 極座標変調回路、極座標変調方法、集積回路および無線送信装置
EP1356599B1 (en) Amplifier phase change compensation
WO2006082894A1 (ja) 送信装置及び無線通信装置
EP1833214B1 (en) A method and system for out of band predistortion linearization
US6904267B2 (en) Amplifying device
JP2003078360A (ja) 歪み補償装置
US9813028B2 (en) Wireless device
US9991994B1 (en) Method and terminal device for reducing image distortion
US6959174B2 (en) Amplifying device
JP2001326541A (ja) 振幅位相変化装置
US7760043B2 (en) Polar modulation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12159121

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007551993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843339

Country of ref document: EP

Kind code of ref document: A1