JP4892118B1 - Light receiving module for light emitting element and inspection device for light emitting element - Google Patents
Light receiving module for light emitting element and inspection device for light emitting element Download PDFInfo
- Publication number
- JP4892118B1 JP4892118B1 JP2011542399A JP2011542399A JP4892118B1 JP 4892118 B1 JP4892118 B1 JP 4892118B1 JP 2011542399 A JP2011542399 A JP 2011542399A JP 2011542399 A JP2011542399 A JP 2011542399A JP 4892118 B1 JP4892118 B1 JP 4892118B1
- Authority
- JP
- Japan
- Prior art keywords
- light
- emitting element
- led
- optical fiber
- receiving module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 6
- 239000013307 optical fiber Substances 0.000 claims description 101
- 239000000523 sample Substances 0.000 claims description 63
- 238000005259 measurement Methods 0.000 claims description 11
- 238000005498 polishing Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 235000012489 doughnuts Nutrition 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0203—Containers; Encapsulations, e.g. encapsulation of photodiodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0218—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/505—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by lighting fixtures other than screens, monitors, displays or CRTs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J2001/4247—Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
発光素子が発光する光量を精度よく算出することが可能な発光素子用受光モジュール及び発光素子用検査装置を提供することである。
本発明の発光素子用受光モジュール1は、LED101に対向して配置され、LED101が発光する光を受光しその光量を測定するフォトディテクタ105と、LED101の発光する光を波長測定のための波長測定部121へ導く導光部104と、を有し、導光部104は、LED101がフォトディテクタ105と対向する面が形成する平面と、フォトディテクタ105のLED101と対向する面が形成する平面とが形成する空間内に延在するように配置され、導光部104の延在方向は、LED101からの光軸と一致しないように形成される。
【選択図】図4It is an object to provide a light-receiving element light-receiving module and a light-emitting element inspection device capable of accurately calculating the amount of light emitted from the light-emitting element.
The light receiving module 1 for a light emitting element of the present invention is disposed to face an LED 101, receives a light emitted from the LED 101 and measures the amount of light, and a wavelength measuring unit for measuring the light emitted from the LED 101. The light guide 104 is a space formed by a plane formed by the surface of the LED 101 facing the photodetector 105 and a plane formed by the surface of the photodetector 105 facing the LED 101. The light guide unit 104 is formed so that the extending direction of the light guide unit 104 does not coincide with the optical axis from the LED 101.
[Selection] Figure 4
Description
本発明は、チップなどの発光素子からの光を受光して、光量測定、波長測定等をおこなう発光素子用受光モジュール及び発光素子用検査装置に関する。 The present invention relates to a light-receiving element light-receiving module and a light-emitting element inspection apparatus that receive light from a light-emitting element such as a chip and perform light amount measurement, wavelength measurement, and the like.
特許文献1には、上面発光LED及び下面発光LEDの検査も可能とする技術が開示されている。具体的には、プローブ針の上部ばかりではなくステージ下側にも、光量検出器、波長測定用ファイバを設けている技術が開示されている。
特許文献2には、光電変換装置の受光面の中央に光ファイバ入力部を垂直に設け、発光光量と発光スペクトルを同時に測定する受光光量と発光スペクトルを同時に測定する技術が開示されている。
しかしながら、特許文献1に記載の方法においては、LEDの発光角度範囲のうち±10°程度の範囲でしか光量測定ができず、LEDが発光する光量を精度良く算出することが困難である。
また、特許文献2に記載の方法では、発行角度を広角範囲で可能であるが、特殊な光電変換装置が必要となってしまう。However, in the method described in
Moreover, in the method described in
本発明は、上記課題に鑑みてなされたものであり、その目的の一例は、発光素子が発光する光量を精度よく算出することが可能な発光素子用受光モジュール及び発光素子用検査装置を提供することである。 The present invention has been made in view of the above problems, and an example of the object thereof is to provide a light receiving module for a light emitting element and a light emitting element inspection apparatus capable of accurately calculating the amount of light emitted by the light emitting element. That is.
本発明の発光素子発光素子用受光モジュールは、発光素子に対向して配置され、前記発光素子が発光する光を受光しその光量を測定する受光部と、前記発光素子の発光する光を波長測定のための波長測定部へ導く導光部と、を有し、前記導光部は、前記発光素子の前記受光部と対向する面が形成する平面と、前記受光部の前記発光素子と対向する面が形成する平面とが形成する空間内に延在するようにかつ、前記導光部の延在方向が、前記発光素子からの光軸と一致しないように配置され、更に、前記導光部には、前記導光部の導光方向に対して所定角度傾斜する傾斜面が形成され、前記傾斜面は、前記受光部の前記発光素子と対向する面に対向するように配置されるとともに前記発光素子の光を前記導光部に取り込むための入射面である。 The light receiving module for light emitting element of the present invention is disposed opposite to the light emitting element, receives a light emitted from the light emitting element and measures the amount of light, and measures the wavelength of the light emitted from the light emitting element. anda guide portion for guiding to the wavelength measuring unit for the light guiding portion includes a flat surface which the light receiving portion and the opposing surfaces of the light emitting element is formed, facing the light emitting element of the light receiving portion and to extend into the space to form a plane surface is formed, the extending direction of the light guide section is arranged so as not to coincide with the optical axis from the light emitting element, further, the light guide portion Is formed with an inclined surface that is inclined at a predetermined angle with respect to a light guide direction of the light guide unit, and the inclined surface is disposed to face a surface of the light receiving unit that faces the light emitting element, and It is an incident surface for taking in the light of a light emitting element in the said light guide part.
以下、本発明の第1の実施形態を、図1を用いて詳細に説明する。図1は、本発明の第1の実施形態におけるLED101の発光状況の説明図である。
Hereinafter, the first embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 is an explanatory diagram of a light emission state of the
図1(a)に記載されているように、LED101は発光面101aから光を発光する。
ここで、LED101は発光素子の一例であり、他の発光する素子であっても同様である。
なお、θは、発光面101aの法線方向からの角度である。
LED101は、それぞれの角度θに対して光を放射している。
図1(b)及び図1(c)は、角度θにおけるLED101の光量分布図である。
図1(b)は、θが0°の場合に光量が最も強いLED101(cos型)の例であり、図1(c)は、θが30°近傍の場合に光量が最も強いLED101(ドーナツ型)の例である。
多数のLED101を製造する場合には、ある程度製造誤差が存在してしまう。
仮に、LED101のウエハに、図1(b)のような特性を持ったLED101を製造しようとしても、図1(c)のようにθが0°ではない位置においてピークができてしまうLED101が製造されてしまう。
しかし、発光素子用受光モジュール1は、図1(b)のような特性(cos型の特性)を有するLED101から、図1(b)のような特性(ドーナツ型の特性)を有するLED101まで測定しなければならない。
実際の一例として、製造したLED101のウエハから複数のLED101を抜き取り、それぞれの光量分布の測定をした結果、LED101の光の強度のピークの位置(角度)はそれぞれのLED101によって異なっていたものの、ピークの位置がθ=30°までのものにほぼ収まっていた。
このことは、製造されるほぼ全てのLED101の光量の強度のピークの位置(角度)は、θ=0°からθ=30°までの範囲に収まることを意味する。
つまり、ピークの位置がθ=0°で±90°の(立体的な)光量分布の断面がcos型の特性を有するLED101と、ピークの位置が最もずれたθ=30°でピークを有するドーナツ型の特性を有するLED101は、同一のLED101のウエハに製造される可能性のあるLED101の両極端の製品であると仮定できることになる。
そうすると、θ=30°でピークとなるLED101とθ=0°でピークとなるLED101の両極端のLED101を、一定の誤差の範囲で精度よく測定できれば、この一定の誤差よりもより少ない誤差で、この両極端の範囲内のLED101(θが0°〜30°いない位置にピークを有するLED101)を測定できることになる。
このことは製造されうるLED101のほぼ全てを、その誤差が一定の範囲で精度よく測定できることになる。
これによって、本実施形態の課題である、LED101を精度よく測定することが可能となる。
cos型の特性を有するLED101から、ドーナツ型の特性を有するLED101まで測定するための具体的な方法は、後述する図2についての説明部分にて説明する。As described in FIG. 1A, the
Here, the
Note that θ is an angle from the normal direction of the
The
FIGS. 1B and 1C are light amount distribution diagrams of the
FIG. 1B shows an example of the LED 101 (cos type) having the strongest light quantity when θ is 0 °, and FIG. 1C shows the
When a large number of
Even if an
However, the light receiving
As an actual example, a plurality of
This means that the peak position (angle) of the intensity of the light intensity of almost all
That is, the
Then, if the extreme
This means that almost all of the
This makes it possible to accurately measure the
A specific method for measuring from the
図2は、cos型のLED101及びドーナツ型のLED101の光量比率及び強度差比率の説明図である。
FIG. 2 is an explanatory diagram of the light amount ratio and the intensity difference ratio of the cos-
ここで、光量比率は、θ=0°から図示した角度θまでの範囲について受光した場合の光量を示している。
したがって、θ=90°となった場合の全面発光分に対する光量比率の値は100%となる。
また、cos型のLED101の方がドーナツ型のLED101よりも高い値を示している。なぜなら、cos型のLED101は、θ=0°が最も強度が高く(以下、必要に応じてピーク強度ともいう)θが大きくなるに従って、強度が低くなることから、θ=0°時点でのピーク強度を持たないcos型の強度よりも低い窪みを有するLED101よりも早く光量比率の値が大きくなるからである。
強度差比率は以下の式で計算される。
強度差比率=(cos型の光量比率−ドーナツ型の光量比率)/(cos型の光量比率+ドーナツ型の光量比率/2)×100
この強度差比率は、図2のように、θ=0°近傍で最大になっており、その後、徐々に減少している。
そして、この強度差比率が10%以下になるのは、θ=約60°以上の場合である。
つまり、θ=約60°以上となるように光を受光すれば、たとえ、そのLED101がドーナツ型でピークの位置が最も角度を有するθ=30°でピークを持つLED101であろうと、cos型でピークが全くずれていないθ=0°でピークを持つLED101であろうと、10%以下の範囲の誤差で光の強度の測定が可能ということになる。
これによって、cos型でピークがθ=30°以下の位置にあるLED101(=製造されるほぼすべてのLED101)を、10%以下の精度で測定可能となる。
なお、強度差比率はできるだけ小さいほうがよく、測定するθの値を60°より大きく設定して、強度差比率を10%よりもさらに小さくした方がより好適である。
もっとも、測定するθの値を90°にすることは、LED101が放射した光を全て受光するということであり現実的ではない。Here, the light amount ratio indicates the light amount when light is received in the range from θ = 0 ° to the illustrated angle θ.
Therefore, the value of the light amount ratio with respect to the entire light emission when θ = 90 ° is 100%.
Further, the
The intensity difference ratio is calculated by the following formula.
Intensity difference ratio = (cos type light quantity ratio−doughnut type light quantity ratio) / (cos type light quantity ratio + doughnut type light quantity ratio / 2) × 100
As shown in FIG. 2, the intensity difference ratio becomes maximum near θ = 0 °, and then gradually decreases.
The intensity difference ratio becomes 10% or less when θ = about 60 ° or more.
That is, if light is received so that θ = about 60 ° or more, even if the
As a result, it is possible to measure the LED 101 (= almost all manufactured LEDs 101) having a cos type peak at θ = 30 ° or less with an accuracy of 10% or less.
The intensity difference ratio is preferably as small as possible, and it is more preferable to set the value of θ to be measured to be larger than 60 ° and further reduce the intensity difference ratio to less than 10%.
However, setting the value of θ to 90 ° means that all the light emitted by the
では、どのようにすれば、θが約60°となる範囲(もしくはそれ以上)まで測定することが可能となるのか以下に説明する。
具体的には、LED101から放射された光を受光するフォトディテクタ105(Photo Detector)を、LED101にできるだけ近接させることである。
また、他の方法は、フォトディテクタ105を大面積化させることである。
しかし、フォトディテクタ105を大面積化するために、例えば、100mmを超えるような太陽電池パネルを使用する例も存在するが、このような方法では、LED101の光量を調査するためのフォトディテクタ105必要とする性能(例えば、応答速度等)を満たすことができていない。
なお、現実には、フォトディテクタ105にはその表面に保護のための保護ガラスが配置されており、この保護ガラスによってフォトディテクタ105に入射した光はある程度反射されてしまう。
しかし、この場合であってもθ=70°程度の範囲まで、フォトディテクタ105が受光することができれば、強度差比率を10%以下に保つことが可能である。Now, how the measurement can be performed up to a range where θ is about 60 ° (or more) will be described below.
Specifically, a photodetector 105 (Photo Detector) that receives light emitted from the
Another method is to increase the area of the
However, in order to increase the area of the
Actually, a protective glass for protection is arranged on the surface of the
However, even in this case, if the
図3は、第1の実施形態の発光素子用受光モジュール1の説明図である。
FIG. 3 is an explanatory diagram of the light-receiving element-use
図3のように、発光素子用受光モジュール1は、本実施形態では、ワーク102(試料設置台)、光ファイバ103、フォトディテクタ105、ホルダ107、信号線111、信号処理基板113、通信線115、スペーサ117、波長測定部121(図4も参照のこと)を有している。
もっとも、この全てが発光素子用受光モジュール1の必須の構成ではなく、少なくとも、光ファイバ103、フォトディテクタ105、ホルダ107、信号線111を有していれば足りる。
なお、発光素子用検査装置3(図5も参照のこと)は、発光素子用受光モジュール1に加え、LED101の電気特性を検査するためのプローブ針109、電気特性計測部119及びテスタ151を有している。
LED101は水平に設置されているワーク102上に配置されている。
このワーク102と対向する位置に、ホルダ107が、空間を隔てて配置されている。
ホルダ107の内部には、フォトディテクタ105が配置されている。
LED101、ワーク102及びフォトディテクタ105は互いに平行となるように配置されている。
プローブ針109は、光量の測定及び電気特性測定時にはLED101に接触して、電圧をLED101に印加する。
ワーク102及びLED101が固定されている状態でプローブ針109が移動して、プローブ針109とLED101とが接触してもよい。逆に、プローブ針109が固定されている状態でワーク102及びLED101が移動して、プローブ針109とLED101とが接触してもよい。
プローブ針109は、電気特性計測部119と接続されている。As shown in FIG. 3, the light-receiving element-use
However, all of these are not indispensable components of the
The light-emitting element inspection device 3 (see also FIG. 5) includes a
LED101 is arrange | positioned on the workpiece | work 102 installed horizontally.
A
A
The
The
The
The
ホルダ107は、遮蔽部107a及び円筒形状の側面部107bを有している。
側面部107bの内部の中空空間に、フォトディテクタ105が配置されている。
遮蔽部107aの中心部には、円錐台形の中空部を形成する円形開口部107cが形成されている。この円形開口部107cがあることによって、LED101から放射された光をフォトディテクタ105が受光可能となっている。
側面部107bの中心軸、遮蔽部107aの中心軸、円形開口部107cの中心軸、フォトディテクタ105の中心軸、LED101の発光面101aの法線は同一である(以下、この同一の軸を「共通軸」という。)。
円錐台形の中空部を形成する円形開口部107cは、開口面107dから形成される。
この開口面107dは、LED101が配置される側に向かって直径が大になるように形成されている。
このように、円形開口部107cが円形となっている理由を説明する。
通常の場合、LED101(LED101の発光面101a)は四角の形状を有している。また、LED101の光量を測定する場合には、LED101はワークの水平面内である程度回転した状態で測定される場合が考えられる。
この場合に、円形開口部107cが円形ではなく、LED101と同じ四角形状であると、LED101が回転した状態では、LED101の四隅部分の光が、開口部を通過できないおそれがある。
そして、円形開口部107cを通過できない光があると、その分、光量が減少してしまい測定誤差が生じてしまう。
その点、開口部が円形であれば、LED101がある程度回転しても、発光面101aの法線と円形開口部107cの中心軸とを合致させだけで、円形開口部107cからその光が入射される。
つまり、円形開口部107cの形状が円形であることによって、精度良くLED101の光量を測定することが可能となる。
また、この開口面107dのフォトディテクタ105側の外周端部である開口面端部107e、フォトディテクタ105のLED101と対抗する側の面の外周端部であるフォトディテクタ端部105a及びLED101は一直線上に形成される。
一定の角度であるθの直線上に(図1も参照のこと)、開口面端部107e及びフォトディテクタ端部105aが形成される。ここで、θの角度は前述のように約60°又はそれ以上の角度を有している。
このように構成することによって、フォトディテクタ105は、LED101の光をθ=60°以上の範囲について受光することが可能となる。
また、開口面端部107e、フォトディテクタ端部105a及びLED101は一直線上に形成することによって、開口面端部107eを通過した光は全て、フォトディテクタ105に受光させることができる。これは最大限の光量を受光することで、受光角度は最大になり、さらに測定の安定性の向上にもつながる。The
The
A
The central axis of the
A
The
The reason why the
In a normal case, the LED 101 (the
In this case, if the
If there is light that cannot pass through the
On the other hand, if the opening is circular, even if the
That is, since the
Further, the opening
An opening
By configuring in this way, the
In addition, the opening
フォトディテクタ105の側面部107bの外周面107fの外部には、電気特性計測部119が形成されている。
この電気特性計測部119は、プローブ針109を保持する機能、電気特性を計測する機能を有している。
また、プローブ針109が移動してLED101と接触する場合には、電気特性計測部119はプローブ針109を移動する機能及び位置決めする機能をも有している。An electrical
The electrical
Further, when the
フォトディテクタ105は、LED101からの光を受光してその光量に比例した電気信号をアナログ値として出力する。
この光量を表すアナログ値は、信号線111を介して信号処理基板113に出力される。
信号処理基板113は、このアナログ値を所定の増幅度で増幅した後、アナログ値からデジタル値にA/D変換する。
そして、デジタル値に変換された光量情報は、通信線を介してテスタ151に出力される(図5も参照のこと)。
信号処理基板113はスペーサ117を介してホルダ107と物理的に接続している。The
The analog value representing the light amount is output to the
The
Then, the light amount information converted into the digital value is output to the
The
図4は、光ファイバ103の位置を説明する説明図である。
FIG. 4 is an explanatory diagram for explaining the position of the
光ファイバ103は、導光部104を構成する。つまり、光ファイバ103はワーク102上に配置されたLED101から放射された光を取り入れ波長測定部121に導光する機能を有している。
光ファイバ103は、光ファイバ103の長手方向の端面である傾斜面103a及び側周面である側面103bの二つの面を有している。なお、傾斜面103aは、光ファイバ103の長手方向に対して傾斜していないものも含む。
光ファイバ103は、共通軸に対して垂直に形成される。もっとも、ある程度の角度を有していても良い。
光ファイバ103は、ホルダ107の遮蔽部107a内部を貫通している。より具体的には、遮蔽部107aの断面(共通軸と平行な軸を含み紙面との垂直な面)に対する法線方向に向かって伸びている。なお、光ファイバ103が延びる方向は法線方向とはある程度角度を有していても良い。
また、光ファイバ103の傾斜面103aは、円形開口部107c内部に位置する。つまり、光ファイバ103は、円形開口部107cの開口面107dを突き抜けている。
さらに、光ファイバ103は、フォトディテクタ105のLED101と対向する面が形成する第1の平面124と、LED101のフォトディテクタ105と対向する面が形成する第2の平面125とによって形成される空間127に延在している。
換言すれば、光ファイバ103によって導光される光は、この空間127の内部を、共通軸と直交(又は略直交)する方向へ導光される。The
The
The
The
The
Further, the
In other words, the light guided by the
波長を測定する為の光ファイバ103(導光部104)が第1の平面124と第2の平面125とによって形成される空間127に延在していることによって、フォトディテクタ105とLED101を接近させ、θ=60°以上とすることが可能となる。
つまり、波長を測定する為の光ファイバ103(導光部104)が第1の平面124と第2の平面125とによって形成される空間127に延在していることによって、光ファイバ103(導光部104)が障害となってフォトディテクタ105とLED101を接近させることができないということを防ぐことができる。
その結果、特性の異なる複数のLED101のほぼ全てについて、精度よく測定することが可能となる。The optical fiber 103 (light guide unit 104) for measuring the wavelength extends in the
That is, the optical fiber 103 (light guide unit 104) for measuring the wavelength extends into the
As a result, it is possible to accurately measure almost all of the plurality of
また、導光部104を構成する光ファイバ103の延在方向は、LED101の光軸と一致しないように構成されている。
つまり、光ファイバ103で導光する方向と、光ファイバ103の傾斜面103aに入射する光の方向は一致していない。換言すると、図4のように、光は光ファイバ103に入射すると入射する前の方向に対して屈折して進む。
このように構成したことによって、フォトディテクタ105とLED101を近接させることが可能となる。
その理由を説明する。
光ファイバ103で導光する方向と、光ファイバ103に入射する前の光の方向を一致させてしまうと、光ファイバ103がLED101の法線方向と角度が小さい状態となってしまう。
例えば、図3で、θ=60°の方向にそのまま導光する光ファイバ103であると、フォトディテクタ105の内部を貫通させなければならない。
これを避けるためには、フォトディテクタ105をLED101から遠ざけなければならなくなる。そうすると、θ=60°までの範囲の光をフォトディテクタ105は受光できなくなってしまい。
θ=60°までの範囲の光を受光するという本実施形態の目的を達成できなくなってしまう。
なお、フォトディテクタ105を貫通させて光ファイバ103を配置すれば、光ファイバ103に入射する前の光の方向を一致させ、且つ、フォトディテクタ105をLED101に近接させることが可能となるが、このように構成すると、貫通孔を有するフォトディテクタ105を特別に作成する必要が生じ、構造の複雑化、コストの増加等の原因となってしまうという問題点を有する。Further, the extending direction of the
That is, the direction of light guided by the
With this configuration, the
The reason will be explained.
If the direction guided by the
For example, in FIG. 3, in the case of the
In order to avoid this, the
The object of the present embodiment for receiving light in the range up to θ = 60 ° cannot be achieved.
If the
図5は、発光素子用検査装置3の概要の説明図である。
FIG. 5 is an explanatory diagram of an outline of the light-emitting
発光素子用検査装置3は、発光素子用受光モジュール1、電気特性計測部119及びテスタ151を有している。
発光素子用受光モジュール1は、ワーク102(試料設置台)、光ファイバ103、フォトディテクタ105、ホルダ107、信号線111、信号処理基板113、通信線115、スペーサ117、波長測定部121を有している
電気特性計測部119は、HVユニット153、ESDユニット155、切替えユニット157及び位置決めユニット159を有している。The light-emitting
The
フォトディテクタ105はLED101から放射された光を受光して、その光量に比例する電気信号をアナログ信号として、信号処理基板113に出力する。
信号処理基板113は、このアナログ信号を増幅し、デジタル信号に変換する。この信号処理基板113でデジタル信号に変換された光量情報は通信線115を介してテスタ151に出力される。The
The
導光部104としての光ファイバ103は、LED101によって放射された光を波長測定部121に導光する。
そして、波長測定部121は、LED101から放射された光の波長を測定し、この波長情報をデジタル値としてテスタ151に出力する。The
Then, the
プローブ針109は、LED101の表面に物理的に接触してLED101を発光させるための電圧を印加する機能を有している。
また、プローブ針109は位置決めユニット159によって位置決め固定されている。
この位置決めユニット159は、ワーク102が移動する形式のものであれば、プローブ針109の先端位置を一定の位置に保持する機能を有する。逆に、この位置決めユニット159は、プローブ針109が移動する形式のものであれば、プローブ針109の先端位置をLED101が載置されるワーク102上の所定の位置に移動させ、その後その位置に保持する機能を有する。The
The
If the
HVユニット153は、定格電圧を印加して、定格電圧に対するLED101での各種特性を検出する役割を有している。
通常、このHVユニット153からの電圧の印加状態で、LED101が発光する光をフォトディテクタ105及び波長測定部121が測定を行う。
HVユニット153が検出した各種特性情報はテスタ151に出力される。The
Normally, the
Various characteristic information detected by the
ESDユニット155は、LED101に一瞬の間大きな電圧をかけて静電気放電させ静電気破壊されないか等の検査を行うユニットである。
ESDユニット153が検出した静電破壊情報はテスタ151に出力される。The
The electrostatic breakdown information detected by the
切替えユニット157は、HVユニット153とESDユニット155との切替えを行う。
つまり、この切替えユニット157によって、プローブ針109を介してLED101に印加される電圧が変更される。そして、この変更によって、LED101の検査項目が、定格電圧での各種特性を検出、又は、静電破壊の有無を検出にそれぞれ変更される。The
That is, the voltage applied to the
テスタ151は、信号処理基板113が検出した光量情報、波長測定部121が検出した波長情報、HVユニット153が検出した各種電気特性情報、ESDユニット153が検出した静電破壊情報の入力を受ける。
そして、テスタ151は、この入力からLED101の特性を分析・分別を行う。
例えば、テスタ151は、一定の性能を有しないLED101は破棄するべき旨の分別を行う。さらに、光の光量、波長毎に分別を行う。
なお、物理的な分別は、発光素子用検査装置3による検査の後の工程で行われる。The
Then, the
For example, the
The physical separation is performed in a step after the inspection by the light emitting
図6は、プローブ針109の説明図である。
FIG. 6 is an explanatory diagram of the
プローブ針109は、LED101に単に当接するだけでは足らず、ある程度の圧力を持って当接(圧着)する必要がある。そのためには、プローブ針109が伸びる方向は、LED101の法線方向との角度が少ない状態で有ることが好ましい。
しかし、そのようにプローブ針109が伸びる方向がLED101の法線方向との角度が少ない状態とすると、プローブ針109が障害となって、フォトディテクタ105とLED101を接近させることができない事態が生じてしまう。
そこで、第1の実施形態では、図6(図3)のようにできるだけプローブ針109を水平又は略水平にすることによってフォトディテクタ105とLED101を接近させることを可能としている。
その上で、プローブ針109とLED101との接触圧を高めて圧着できるように、プローブ針109のプローブ針先端部109dを屈曲させ、LED101の法線方向との角度が少ない状態としている。
これによって、プローブ針109の先端部をLED101に圧着させつつ、フォトディテクタ105とLED101を接近させることができる。
また、換言すると、プローブ針109は、フォトディテクタ105のLED101と対向する面が形成する第1の平面124と、LED101のフォトディテクタ105と対向する面が形成する第2の平面125とによって形成される空間127に延在しているということもできる。The
However, if the direction in which the
Therefore, in the first embodiment, the
In addition, the
Thus, the
In other words, the
図6(a)のように、プローブ針109は、プローブ針第1部分109a、プローブ針第2部分109bを有する。図6(b)は、図6(a)のb部分の拡大図である。
図6(b)のように、プローブ針109は、プローブ針第2部分109bの先端部分には、プローブ針第3部分109c及びプローブ針先端部109dを有している。
図6(b)のように、プローブ針109は、プローブ針第3部分109cから屈曲してプローブ針先端部109dが延在している。このプローブ針先端部109dがLED101と圧着する。
プローブ針第3部分109cは、円錐台形状を有している。
プローブ針第2部分109bは、プローブ針第1部分109aからみて、フォトディテクタ105側に屈折して延在している。
また、プローブ針第1部分109a、プローブ針第2部分109b及びプローブ針第3部分109cは、水平に対して10°未満の角度に保持されている。
このように構成したことから、LED101をフォトディテクタ105に近接させることが可能となる。As shown in FIG. 6A, the
As shown in FIG. 6B, the
As shown in FIG. 6B, the
The probe needle
The probe needle
The probe needle
Since it comprised in this way, it becomes possible to make LED101 adjoin to the
図7は、プローブ針109及び位置決めユニット159の具体的な形態の説明図である。
FIG. 7 is an explanatory diagram of specific forms of the
図7(a)のように、プローブ針109はニードル保持機構159aによって形成されていても良い。
この場合には、ニードル保持機構159aはホルダ107の外周面107fの外側部分に配置される。その理由は、ニードル保持機構159aは共通軸方向の厚さが大きく、ニードル保持機構159aを共通軸の内部方向位置(遮蔽部107aの存在する位置)に設けると、LED101をフォトディテクタ105に近接させることが困難になるからである。
換言すると、このような構成としたことによって、LED101をフォトディテクタ105に近接させることが可能となる。As shown in FIG. 7A, the
In this case, the
In other words, with such a configuration, the
図7(b)のように、プローブ針109はプローブカード159bによって形成されていても良い。
この場合には、プローブカード159bはホルダ107の遮蔽部107aの存在する位置のLED101が存在する側の空間に配置される。
その理由は、プローブカード159bは共通軸方向の厚さが小さく、遮蔽部107aの存在する位置のLED101が存在する側の空間に配置することが可能となるからである。
このように構成すると、プローブ針109の長さが短くてすみ、より安定してプローブ針109を保持することが可能となる。
また、このような構成としたことによって、LED101をフォトディテクタ105に近接させることが可能となる。
なお、プローブカード159bはプローブカードスペーサ161によって位置決めされている。As shown in FIG. 7B, the
In this case, the
The reason is that the
If comprised in this way, the length of the probe needle | hook 109 will be short, and it will become possible to hold | maintain the probe needle | hook 109 more stably.
Further, with such a configuration, the
The
図8は、光ファイバ103の傾斜面103aの角度についての説明図である。
FIG. 8 is an explanatory diagram regarding the angle of the
図8は、以下の場合についての例である。
図8のように、光ファイバ103がLED101及びフォトディテクタ105に平行に構成されている場合。
そして、傾斜面103aが光ファイバ103の導光方向(光ファイバ103が延在している方向)に対してθ2だけ傾いており、傾斜面103aがLED101とは反対方向(フォトディテクタ105を向いた方向)を向いている場合。
傾斜面103aの位置がLED101の発光面101aの法線に対してθ3の角度を有している位置に配置されている場合。
このような場合には、傾斜面103aに入射する光の入射角は90°−θ3+θ2となる。また、傾斜面103aに入射した後の光の方向が屈折角となる。
この場合に、屈折角がθ2と一致すると、傾斜面103aに入射した光は屈折した後、導光方向に進むことになる。
そのためには以下の式を満足する必要がある。
sin(90°−θ3+θ2)=nsinθ2
ここで、nは光ファイバの空気に対する屈折率である。
この式を満たすように傾斜面103aの角度であるθ2及びLED101の発光面101aの法線に対する傾斜面103aの角度であるθ3を選択すれば、光ファイバ103に導光される光は光ファイバ103の延在方向に真っ直ぐ伝播する事ができる。
そして、光ファイバ103に導光される光りが真っ直ぐに伝播される事によって、確実に光を波長測定部121に導光することができる。FIG. 8 is an example for the following case.
When the
The
When the position of the
In such a case, the incident angle of the light incident on the
In this case, when the refraction angle coincides with θ2, the light incident on the
For that purpose, it is necessary to satisfy the following formula.
sin (90 ° −θ3 + θ2) = nsinθ2
Here, n is the refractive index of the optical fiber with respect to air.
If θ2 which is the angle of the
The light guided to the
なお、図8のように、光ファイバ103は先端に傾斜面103aが形成され、円筒形状の外周面に側面103bが形成されている。
そして、光ファイバ103の内部は中心に位置するコア103dとこのコアを取り囲むクラッド103cで形成されている。
コア103d内を光は全反射しながら伝播する。As shown in FIG. 8, the
The inside of the
Light propagates in the
図9は、光ファイバ103自体が傾いている場合の傾斜面103aの角度についての説明図である。
FIG. 9 is an explanatory diagram of the angle of the
図9は、基本的に図8の場合と同様であるが、光ファイバ103が水平に対してθ4だけ傾いている場合である。
この場合に、傾斜面103aに入射した光が光ファイバ103の延在方向(導光方向)に進むためには、以下の式を満足する必要がある。
sin(90°−θ3+θ2−θ4)=nsinθ2
この式を満たすように傾斜面103aの角度であるθ2、LED101の法線に対する傾斜面103aの角度であるθ3及び光ファイバ103が水平に対して傾いている角度であるθ4を選択すれば、光ファイバ103を導光される光は光ファイバ103の延在方向に真っ直ぐ伝播する事ができる。
そして、光ファイバ103に導光される光りが真っ直ぐに導光される事によって、確実に入射光を波長測定部121に導光することができる。FIG. 9 is basically the same as the case of FIG. 8 except that the
In this case, in order for the light incident on the
sin (90 ° −θ3 + θ2−θ4) = nsinθ2
If θ2 that is the angle of the
Then, since the light guided to the
傾斜面103aは、APC(Angle Physical contact)研磨を行うと好適である。
ここで、APC研磨とは、斜め凸球面状研磨面を施した研磨方法である。このAPC研磨によって、反射減衰を抑えることが可能となる。The
Here, APC polishing is a polishing method in which an oblique convex spherical polishing surface is applied. By this APC polishing, reflection attenuation can be suppressed.
図10は、光ファイバ103の傾斜面103aの傾斜方向の説明図である。
FIG. 10 is an explanatory diagram of the inclined direction of the
図10のように、光ファイバ103の傾斜面103aは様々な角度を有していて良い。
具体的には、図10(a)のように傾斜面103aがLED101と対向していてもよく、図10(b)のように傾斜面103aが光ファイバ103の延在又は導光方向に対して傾斜していなくてもよい。図10(a)及び図10(b)のような形状であっても、LED101から出射された光を取り込むことは可能であるからである。
当然、図10(c)のように、図8及び図9のところで説明した形状である傾斜面103aがフォトディテクタ105と対向していても良い。As shown in FIG. 10, the
Specifically, the
Naturally, as shown in FIG. 10C, the
図11は、光ファイバ103の先端に導光部材123である透明部材123aを設ける変形例である。
FIG. 11 is a modification in which a
一般的に、波長測定部に導光するのに用いられる光ファイバは、保護チューブ及び先端の金具等が付属しており、その結果、その外形はφ10mm程度となっている。
一方、図4で示されるような実施形態で用いられる光ファイバ103は、その保護チューブのない状態で使用され、その外形はφ0.5mm程度となる。
このように、外形であるφが大きく異なるため、波長測定部121に導光するのに用いられる光ファイバを図4で示されるような実施形態で用いられる光ファイバ103にそのまま使用することができない。
ここで、波長測定部121に導光するのに用いられる光ファイバの先端及び先端からある程度の距離の範囲について、保護チューブを剥離して使用することも考えられる。
確かに、このようにすれば、波長測定部121に導光するのに用いられる光ファイバを図4で示されるような実施形態で用いられる光ファイバ103にそのまま使用することは可能となる。しかし、保護チューブのない光ファイバは、非常にもろく、わずかな接触等で破損の恐れがある。また、図11(a)、(b)及び(c)のように、光ファイバの透明部材傾斜面123cは先端の傾斜角度を加工する必要が生ずるが、その加工の際に、光ファイバを破損する恐れもある。
このような破損が生ずると、波長測定部121に導光するのに用いられるファイバを取り替える必要が生じてしまう。
そこで、波長測定部121に導光するのに用いられる光ファイバとは別に、透明部材123aを設けている。
このように、波長測定部121に導光するのに用いられる光ファイバとは別に、透明部材123aを設けた(導光部材123を光ファイバとは別部材で構成した)ことから、導光部材123を光ファイバよりも強度の高い材料によって形成することができ、接触等に強くすることが可能となる。
また、波長測定部121に導光するのに用いられる光ファイバとは別に、透明部材123aを設けた(導光部材123を光ファイバとは別部材で構成した)ことから、先端の傾斜角度の加工に適した材料を選択することも可能となり。さらに、万一加工等によって、透明部材123aが破損した場合にも、透明部材123aのみを交換すれば足りることになる。In general, an optical fiber used for guiding light to a wavelength measuring unit is provided with a protective tube, a metal fitting at the tip, and the like, and as a result, its outer shape is about φ10 mm.
On the other hand, the
As described above, since the outer shape φ is greatly different, the optical fiber used for guiding the light to the
Here, it is also conceivable that the protective tube is peeled off and used for the tip of the optical fiber used to guide the light to the
Certainly, in this way, the optical fiber used for guiding light to the
When such breakage occurs, it becomes necessary to replace the fiber used to guide the light to the
Therefore, a
As described above, since the
In addition, since the
さらに、以上の説明によると、波長測定部121に導光するのに用いられる光ファイバの先に透明部材123aを設けることが適切であるかにも思えるが、透明部材123aはできるだけ、短く構成したいとの要望がある。
なぜなら、透明部材123aは光ファイバほど光の透過率が高い材質で形成することは困難であり、その結果、透明部材123aを長く構成してしまうと光量が減少してしまうからである。
透明部材123aを長く構成したうえで、この透明部材123aを用いて波長測定部121に光を導光するには透明部材123aを曲げることも必要となる場合があるが、これをすると、曲がったことにより光量の減少が生ずるからである。
そこで、透明部材123aはできるだけ短く構成する必要がある。しかし、透明部材123aを短く構成してしまうと、ホルダ107の内部まで、φが10mmもある、波長測定部121に導光するのに用いられる光ファイバを持ってくる必要が生じてしまう。
そうしてしまうと、波長測定部121に導光するのに用いられる光ファイバが、LED101のごく近傍まで来ることになる。
そうすると、この波長測定部121に導光するのに用いられる光ファイバのφの分及びこれを保持するための空間のために、LED101とフォトディテクタ105とを離して形成しなければならなくなってしまう。
このことは、本実施形態の最も重要な点であるLED101とフォトディテクタ105とを接近させるということを困難にしてしまう。
そこで、さらに、この変形例では波長測定部121に導光するのに用いられる光ファイバと、透明部材123aとの間に、光ファイバ103を介在させる。
以上の様な構成を有することから、波長測定部121に導光するのに用いられる光ファイバによって、容易に、光ファイバを曲げて波長測定部に導光することが可能となる。
また、波長測定部121に導光するのに用いられる光ファイバとは別に、透明部材123aを設けた(導光部材123を光ファイバとは別部材で構成した)ことから、導光部材123を光ファイバよりも強度の高い材料によって形成することができ、接触等に強くすることが可能となる。
また、波長測定部121に導光するのに用いられる光ファイバとは別に、透明部材123aを設けた(導光部材123を光ファイバとは別部材で構成した)ことから、先端の傾斜角度の加工に適した材料を選択することも可能となり。さらに、万一加工等によって、透明部材123aが破損した場合にも、透明部材123aのみを交換すれば足りることになる。Furthermore, according to the above description, it seems that it is appropriate to provide the
This is because it is difficult to form the
It may be necessary to bend the
Therefore, the
If it does so, the optical fiber used for light guide to the
In this case, the
This makes it difficult to bring the
Therefore, in this modification, the
Since it has the above configuration, the optical fiber used to guide light to the
In addition to the optical fiber used to guide the light to the
In addition, since the
透明部材123aは例えば、透明誘電体で形成する。例えば、透明誘電体はガラス等である。
この透明部材123aは円柱形状である必要はなく、正方形の底面を持つ角柱形状であって良い。
さらに、場合によっては、長方形の底面を持つ角柱形状であって良い。例えば、板ガラスのような形状であって良い。
ここで、透明部材123aは導光部材123の一例である。また、透明部材123aと光ファイバ103とをあわせて導光部104を構成している。The
The
Further, in some cases, it may be a prismatic shape having a rectangular bottom surface. For example, the shape may be a plate glass.
Here, the
図11(a)、図11(b)及び図11(c)のように、透明部材123aの透明部材傾斜面123cは、図10での光ファイバ103と同様に様々な方向を向いていて良い。
そして、効果も図10での各方向を向いたものと同様である。As shown in FIGS. 11A, 11B, and 11C, the transparent member inclined
The effect is the same as that in each direction in FIG.
図12は、透明部材123aの外周部に反射部材123bである反射膜を設ける変形例である。
FIG. 12 shows a modification in which a reflective film as the
図12のように、透明部材123aの外周部に反射部材123bを設けることによって、光を確実に導光することが可能となる。なお、透明部材123aの透明部材傾斜面123cは、図11に示したように、様々な方向を向いていて良い。
As shown in FIG. 12, by providing the reflecting
図13は、反射部材123bのみを設ける変形例である。
FIG. 13 shows a modification in which only the reflecting
図13のように、導光部材123である反射部材123bのみを設けて、光を導光しても良い。
As shown in FIG. 13, only the
図14は、光ファイバ103をLED101の法線方向(θ=0°)に配置した場合の導光方法の説明図である。
FIG. 14 is an explanatory diagram of a light guide method when the
図14のように、LED101の法線方向に光ファイバ103を配置した場合には、傾斜面103aを光ファイバ103の延在方向(導光方向)に対して45°の角度を有し、かつ、フォトディテクタ105に対向させる。
このようにしたことによって、光ファイバ103の側面103bから入射した光が傾斜面103aによって反射させて、延在方向に導光することが可能となる。As shown in FIG. 14, when the
By doing so, light incident from the
図15は、傾斜面103aによって反射した光についての説明図である。
FIG. 15 is an explanatory diagram of light reflected by the
傾斜面103aに入射した光は、導光部104である光ファイバ103内部に入射するものと反射する光とに分かれる。
この反射する光を、フォトディテクタ105に受光されるように配置することが好適である。
このように構成すると、導光部104を例えば板ガラスのような大きな透明部材で構成しても、フォトディテクタ105によって受光される光りを少しでも多くすることができる。The light that has entered the
It is preferable to arrange the reflected light so that the
If comprised in this way, even if it comprises the
本発明の発光素子用受光モジュール1は、LED101に対向して配置され、LED101が発光する光を受光しその光量を測定するフォトディテクタ105と、LED101の発光する光を波長測定のための波長測定部121へ導く導光部104と、を有している。
導光部104は、LED101がフォトディテクタ105と対向する面が形成する平面と、フォトディテクタ105のLED101と対向する面が形成する平面とが形成する空間内に延在するように配置され、導光部104の延在方向は、LED101からの光軸と一致しないように形成される。
このように構成すると、フォトディテクタ105とLED101を近接させることが可能となる。そして、フォトディテクタ105とLED101を近接させたことによって、フォトディテクタ105にLED101から出射された光の多くを受光させることが可能となる。
その結果、様々な特性を有する(cos型でピーク位置が異なる特性を有する)複数のLED101を精度良く測定することが可能となる。The
The
If comprised in this way, it will become possible to make the
As a result, it is possible to accurately measure a plurality of
また、本発明は以上の実施形態に限定されるものではなく、様々な変化した構造、構成を行っていても良い。 Further, the present invention is not limited to the above embodiment, and various changed structures and configurations may be performed.
本発明における発光素子の一例がLEDである。つまり、発光素子とは、光を発光する素子であればどのようなものであっても良い。ここで、光は可視光に限定されるものではなく、例えば、赤外線、紫外線等であってよい。
本発明における受光部の一例が、フォトディテクタ105である。
本発明における導光部の一例が、光ファイバ103である。また、導光部は、光ファイバ103と導光部材123等によって形成されていて良い。つまり、導光部は光を導光可能であれば複数の部材から形成されていて良い。
本発明における導光部材の一例が、ガラス板、ガラス管、中空導波管等である。An example of the light emitting element in the present invention is an LED. That is, the light emitting element may be any element that emits light. Here, the light is not limited to visible light, and may be, for example, infrared rays or ultraviolet rays.
An example of the light receiving unit in the present invention is the
An example of the light guide unit in the present invention is the
An example of the light guide member in the present invention is a glass plate, a glass tube, a hollow waveguide, or the like.
1…発光素子用受光モジュール、3…発光素子用検査装置、101…LED(発光素子)、101a…発光面、103…光ファイバ(導光部)、103a…傾斜面、103b…側面、103c…クラッド、103d…コア、104…導光部、105…フォトディテクタ(受光部)、109…プローブ針、123…導光部材(導光部)、123a…透明部材(導光部)、123b…反射部材、123c…透明部材傾斜面、151…テスタ
DESCRIPTION OF
Claims (11)
前記発光素子の発光する光を波長測定のための波長測定部へ導く導光部と、を有し、
前記導光部は、前記発光素子の前記受光部と対向する面が形成する平面と、前記受光部の前記発光素子と対向する面が形成する平面とが形成する空間内に延在するようにかつ、前記導光部の延在方向が、前記発光素子からの光軸と一致しないように配置され、
更に、前記導光部には、前記導光部の導光方向に対して所定角度傾斜する傾斜面が形成され、
前記傾斜面は、前記受光部の前記発光素子と対向する面に対向するように配置されるとともに前記発光素子の光を前記導光部に取り込むための入射面である発光素子用受光モジュール。A light receiving unit that is disposed opposite to the light emitting element, receives light emitted from the light emitting element, and measures the amount of light;
A light guide that guides the light emitted from the light emitting element to a wavelength measurement unit for wavelength measurement,
The light guiding unit, so as to extend in the a plane in which the light receiving portion and the opposing surfaces of the light emitting element is formed, the space and the plane in which the light emitting element facing the surface of the light receiving portion is formed to form And the extending direction of the light guide part is arranged so as not to coincide with the optical axis from the light emitting element,
Further, the light guide part is formed with an inclined surface inclined at a predetermined angle with respect to the light guide direction of the light guide part,
The light-receiving element light-receiving module , wherein the inclined surface is disposed to face a surface of the light-receiving unit facing the light-emitting element and is an incident surface for taking light of the light-emitting element into the light guide unit .
請求項1に記載の発光素子用受光モジュール。The inclination angle of the inclined surface, emitting the light receiving module device of claim 1 wherein the light that will be illuminated is an angle derived refracted inside the light guide portion to the inclined surface.
請求項1又は2に記載の発光素子用受光モジュール。The light-receiving module for light-emitting elements according to claim 1.
請求項1〜3のいずれか1項に記載の発光素子用受光モジュール。The light-receiving module for a light-emitting element according to claim 1, wherein the light guide unit is formed of an optical fiber.
請求項4に記載の発光素子用受光モジュール。The light-receiving module for a light-emitting element according to claim 4 , wherein the inclined surface of the light guide unit is subjected to APC polishing.
前記導光部材は、先端部に前記傾斜面が形成され、前記光ファイバの先端に設けられている
請求項1〜3のいずれか1項に記載の発光素子用受光モジュール。The light guide part is formed by a light guide member and an optical fiber,
The light guide member, the inclined surface is formed at the distal end, the light receiving module light emitting device according to claim 1 that is kicked set to the tip of the optical fiber.
請求項6に記載の発光素子用受光モジュール。The light receiving module for a light emitting element according to claim 6 , wherein the light guide member is formed of a transparent dielectric.
請求項7に記載の発光素子用受光モジュール。The light receiving module for a light emitting element according to claim 7 , wherein the light guide member has a side surface along the longitudinal direction coated with a reflective film.
前記ホルダは、前記受光部の受光面周縁を覆う遮蔽部を有し、
前記遮蔽部は、前記受光部の中心と同軸となる円形開口部が設けられている
請求項1〜8のいずれか1項に記載の発光素子用受光モジュール。A holder for holding the light receiving unit;
The holder has a shielding part that covers the periphery of the light receiving surface of the light receiving part,
The shielding portion, a light receiving module for light emitting device according to any one of claims 1 to 8, a circular opening at the center coaxial with the light receiving portion is provided.
前記発光素子の電極に接触して電気的特性を測定するプローブ針と、
を有し、
前記プローブ針は、前記発光素子用受光モジュールより外側で保持される
発光素子用検査装置。The light receiving module for a light emitting element according to any one of claims 1 to 9 ,
A probe needle for measuring electrical characteristics in contact with an electrode of the light emitting element;
Have
The probe needle is held outside the light-receiving module for light-emitting elements.
その他の部分が水平に対して10°未満の角度に保持されている
請求項10に記載の発光素子用検査装置。The probe needle is bent at the tip that contacts the light emitting element,
The other part is hold | maintained at an angle of less than 10 degrees with respect to horizontal. The inspection apparatus for light emitting elements of Claim 10 .
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071409 WO2012073345A1 (en) | 2010-11-30 | 2010-11-30 | Light-receiving module for light-emitting element and inspection device for light-emitting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4892118B1 true JP4892118B1 (en) | 2012-03-07 |
JPWO2012073345A1 JPWO2012073345A1 (en) | 2014-05-19 |
Family
ID=45907915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011542399A Expired - Fee Related JP4892118B1 (en) | 2010-11-30 | 2010-11-30 | Light receiving module for light emitting element and inspection device for light emitting element |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4892118B1 (en) |
CN (1) | CN102686990A (en) |
WO (1) | WO2012073345A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140556A1 (en) * | 2012-03-21 | 2013-09-26 | パイオニア株式会社 | Light emission quantity estimating apparatus and light emission quantity estimating method for semiconductor light emitting element |
WO2013145132A1 (en) * | 2012-03-27 | 2013-10-03 | パイオニア株式会社 | Measuring apparatus for semiconductor light emitting element |
CN104501945A (en) * | 2015-01-17 | 2015-04-08 | 国家电网公司 | Optical power meter automatic metrological verification system and method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102829859A (en) * | 2011-06-17 | 2012-12-19 | 致茂电子股份有限公司 | Optical measurement system and optical measurement device |
WO2014020713A1 (en) * | 2012-07-31 | 2014-02-06 | パイオニア株式会社 | Light quantity measuring device and light quantity measuring method |
JP5567223B2 (en) * | 2012-07-31 | 2014-08-06 | パイオニア株式会社 | Light quantity measuring device and light quantity measuring method |
WO2014020768A1 (en) * | 2012-08-03 | 2014-02-06 | パイオニア株式会社 | Photometric device and photometric method |
JP6082758B2 (en) * | 2012-12-28 | 2017-02-15 | パイオニア株式会社 | Light intensity measuring device |
CN104034508B (en) * | 2013-03-08 | 2017-01-11 | 佳能株式会社 | Optical inspection apparatus and optical inspection system |
CN105571832A (en) * | 2015-12-20 | 2016-05-11 | 合肥艾斯克光电科技有限责任公司 | LED reception tube test method |
CN105606340A (en) * | 2015-12-20 | 2016-05-25 | 合肥艾斯克光电科技有限责任公司 | Method for testing LED transmitting tube |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04332841A (en) * | 1991-05-09 | 1992-11-19 | Mitsubishi Electric Corp | Inspecting method of semiconductor light-emitting device |
JPH05302956A (en) * | 1992-04-27 | 1993-11-16 | Mitsubishi Electric Corp | Inspection apparatus of semiconductor laser |
JPH07201945A (en) * | 1993-12-28 | 1995-08-04 | Ricoh Co Ltd | Semiconductor testing apparatus |
JPH09113411A (en) * | 1995-10-17 | 1997-05-02 | Hitachi Cable Ltd | Light-receiving apparatus |
JP2005283217A (en) * | 2004-03-29 | 2005-10-13 | Technologue:Kk | Led emission measuring device |
JP2008076126A (en) * | 2006-09-20 | 2008-04-03 | Oputo System:Kk | Photometric device and method |
JP2010091441A (en) * | 2008-10-09 | 2010-04-22 | Arkray Inc | Light quantity monitoring apparatus and light quantity monitoring method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09283586A (en) * | 1996-04-19 | 1997-10-31 | Hitachi Cable Ltd | Apparatus and method for receiving light |
JP2006214886A (en) * | 2005-02-03 | 2006-08-17 | Sharp Corp | Method and device for detecting defect of optical element |
JP2009257820A (en) * | 2008-04-14 | 2009-11-05 | Otsuka Denshi Co Ltd | Optical characteristic measurement apparatus and optical characteristic measurement method |
JP2010016110A (en) * | 2008-07-02 | 2010-01-21 | Fujitsu Component Ltd | Inspection device and inspection method for array type light-emitting device |
EP2423660B1 (en) * | 2009-04-22 | 2018-03-07 | Toyo Seikan Group Holdings, Ltd. | Method and device for measuring the output angle of optical fiber |
-
2010
- 2010-11-30 JP JP2011542399A patent/JP4892118B1/en not_active Expired - Fee Related
- 2010-11-30 CN CN2010800444197A patent/CN102686990A/en active Pending
- 2010-11-30 WO PCT/JP2010/071409 patent/WO2012073345A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04332841A (en) * | 1991-05-09 | 1992-11-19 | Mitsubishi Electric Corp | Inspecting method of semiconductor light-emitting device |
JPH05302956A (en) * | 1992-04-27 | 1993-11-16 | Mitsubishi Electric Corp | Inspection apparatus of semiconductor laser |
JPH07201945A (en) * | 1993-12-28 | 1995-08-04 | Ricoh Co Ltd | Semiconductor testing apparatus |
JPH09113411A (en) * | 1995-10-17 | 1997-05-02 | Hitachi Cable Ltd | Light-receiving apparatus |
JP2005283217A (en) * | 2004-03-29 | 2005-10-13 | Technologue:Kk | Led emission measuring device |
JP2008076126A (en) * | 2006-09-20 | 2008-04-03 | Oputo System:Kk | Photometric device and method |
JP2010091441A (en) * | 2008-10-09 | 2010-04-22 | Arkray Inc | Light quantity monitoring apparatus and light quantity monitoring method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140556A1 (en) * | 2012-03-21 | 2013-09-26 | パイオニア株式会社 | Light emission quantity estimating apparatus and light emission quantity estimating method for semiconductor light emitting element |
WO2013145132A1 (en) * | 2012-03-27 | 2013-10-03 | パイオニア株式会社 | Measuring apparatus for semiconductor light emitting element |
CN104094091A (en) * | 2012-03-27 | 2014-10-08 | 日本先锋公司 | Measuring apparatus for semiconductor light emitting element |
JPWO2013145132A1 (en) * | 2012-03-27 | 2015-08-03 | パイオニア株式会社 | Measuring device for semiconductor light emitting element and measuring method for semiconductor light emitting element |
CN104094091B (en) * | 2012-03-27 | 2016-08-24 | 日本先锋公司 | Semiconductor light-emitting elements determinator and semiconductor light-emitting elements assay method |
CN104501945A (en) * | 2015-01-17 | 2015-04-08 | 国家电网公司 | Optical power meter automatic metrological verification system and method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012073345A1 (en) | 2014-05-19 |
WO2012073345A1 (en) | 2012-06-07 |
CN102686990A (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4892118B1 (en) | Light receiving module for light emitting element and inspection device for light emitting element | |
JP4975199B1 (en) | Light receiving module for semiconductor light emitting device and inspection device for semiconductor light emitting device | |
JP2007526468A (en) | Optical measuring head | |
JP2015014748A (en) | Optical receptacle and optical module | |
US9207124B2 (en) | Colorimetry apparatus | |
TWI460405B (en) | Light amount measuring device and light amount measuring method | |
CN102043209A (en) | Compact tap monitor | |
CN212009027U (en) | Optical fiber FA structure and high return loss light receiving device | |
WO2012073346A1 (en) | Light-receiving module for semiconductor light-emitting element and inspection device for semiconductor light-emitting element | |
EP1630545B1 (en) | Device for measuring with enhanced sensitivity optical absorption characteristics of a sample | |
CN111367027A (en) | Optical fiber FA structure and high return loss light receiving device | |
JP2004526979A (en) | Sensor device for quick optical distance measurement according to the principle of confocal optical imaging | |
JP6082758B2 (en) | Light intensity measuring device | |
US20050163435A1 (en) | Optical module including an optoelectronic device | |
CN211236361U (en) | Silicon photonic chip optical power measuring device and equipment | |
KR101897225B1 (en) | Surface Inspection Apparatus | |
CN212255789U (en) | High return loss photoelectric detector and light receiving device | |
JP2007155477A (en) | Surface plasmon resonance sensor | |
JP5213147B2 (en) | Semiconductor light emitting device inspection equipment | |
CN220437360U (en) | Near infrared spectrum confocal sensor | |
JP5813861B2 (en) | Measuring device for semiconductor light emitting element and measuring method for semiconductor light emitting element | |
TWI442031B (en) | Optical measurement system and the device thereof | |
CN113916151B (en) | Device and method for confocal measurement of surface shape or thickness of spectrum black hole | |
WO2024175392A1 (en) | Optoelectronic device with damage probing system | |
JP5567223B2 (en) | Light quantity measuring device and light quantity measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20111130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4892118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141222 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |