JP2008076126A - Photometric device and method - Google Patents

Photometric device and method Download PDF

Info

Publication number
JP2008076126A
JP2008076126A JP2006253756A JP2006253756A JP2008076126A JP 2008076126 A JP2008076126 A JP 2008076126A JP 2006253756 A JP2006253756 A JP 2006253756A JP 2006253756 A JP2006253756 A JP 2006253756A JP 2008076126 A JP2008076126 A JP 2008076126A
Authority
JP
Japan
Prior art keywords
measurement
light
light emitting
main body
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006253756A
Other languages
Japanese (ja)
Inventor
Kenichi Ikeda
研一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTO SYSTEM KK
Original Assignee
OPUTO SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTO SYSTEM KK filed Critical OPUTO SYSTEM KK
Priority to JP2006253756A priority Critical patent/JP2008076126A/en
Publication of JP2008076126A publication Critical patent/JP2008076126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photometric device and method which automatically and continuously measures the radiation output and the wavelength characteristic, etc. of a light emitting element. <P>SOLUTION: The photometric device comprises an integrating sphere having a highly diffusive inner wall with high optical reflectance of a split constitution of an element holding part 1 and a measurement main body 2, wherein a light receiving element disposed in the measurement main body 2 receives a radiation from a light emitting element disposed in the element holding part 1. The device also includes: a transporting part which moves the element holding part 1 toward the measurement main body 2 almost integrating both parts prior to the measurement operation, while it moves the element holding part 1 away from the measurement main body 2 when a measuring operation is finished; and an operation control part which makes the light emitting element emit light at the measurement operation and makes the light receiving element receive a diffuse wave after having almost integrated the element holding part 1 with the measurement main body 2. Light amount of the light emitting element held in the element holding part 1 and sequentially transported is continuously measured by repeating the operation of the transporting part and the operation control part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発光素子の放射出力や波長特性などを自動的に計測できる測光装置及び測光方法に関する。   The present invention relates to a photometric device and a photometric method that can automatically measure the radiation output, wavelength characteristics, and the like of a light emitting element.

発光ダイオードやレーザダイオードなどの発光素子の製造メーカでは、最終の検査工程において、光度Iv(Candela)、光束Φv(Lumen)、輝度Lv(cd/m)などの特性評価が必要となる。また、波長毎の放射強度の波長特性も問題になる。 Manufacturers of light emitting elements such as light emitting diodes and laser diodes need to evaluate characteristics such as luminous intensity Iv (Candela), luminous flux Φv (Lumen), luminance Lv (cd / m 2 ) in the final inspection process. In addition, the wavelength characteristic of the radiation intensity for each wavelength also becomes a problem.

しかしながら、発光素子には、放射強度に指向性があり、しかも、それが素子毎に微妙に異なるので、特性検査を自動的に実行するのが困難であった。   However, the light emitting element has directivity in the radiation intensity, and it is slightly different for each element, so that it is difficult to automatically perform the characteristic inspection.

なお、指向性を平滑化するため積分球を利用する計測装置は提案されているが(特許文献1、特許文献2)、何れも、連続的な特性検査を実現できるものではない。
2003−297884号公報 2002−318156号公報
In addition, although a measuring apparatus using an integrating sphere for smoothing directivity has been proposed (Patent Document 1 and Patent Document 2), none of them can realize continuous characteristic inspection.
No. 2003-297844 2002-318156

この発明は、これらの問題点に鑑みてなされたものであって、発光素子の放射出力や波長特性などを自動的に連続して計測できる測光装置及び測光方法を提供することを目的とする。   The present invention has been made in view of these problems, and an object of the present invention is to provide a photometric device and a photometric method capable of automatically and continuously measuring the radiation output and wavelength characteristics of a light emitting element.

上記の目的を達成するため、請求項1に係る発明は、光反射率が高く高拡散性の内壁を有する積分球を、素子保持部と計測本体部の分割構成とし、前記素子保持部に配置された発光素子からの放射光を、前記計測本体部に配置した受光素子で受ける測光装置であって、計測動作に先立って、前記素子保持部を前記計測本体部に向けて移動させて両者を略一体化させる一方、計測動作が完了すると、前記素子保持部を前記計測本体部から遠ざける搬送部と、前記素子保持部を前記計測本体部と略一体化させた後、計測動作時に前記発光素子を発光させ、積分球の内壁で拡散された拡散反射波を前記受光素子で受光させる動作制御部と、を有し、前記搬送部と前記動作制御部の動作を繰り返すことによって、前記素子保持部に保持されて順次搬送されてくる前記発光素子の放射光を連続的に計測するよう構成されている。   In order to achieve the above object, the invention according to claim 1 is configured such that an integrating sphere having a high light reflectivity and a highly diffusible inner wall is divided into an element holding part and a measurement main part, and is arranged in the element holding part. The photometric device receives the radiated light from the light emitting element received by the light receiving element arranged in the measurement main body part, and moves the element holding part toward the measurement main body part prior to the measurement operation. On the other hand, when the measurement operation is completed, the light-emitting element is moved during the measurement operation after the transfer unit that moves the element holding unit away from the measurement main body unit and the element holding unit are substantially integrated with the measurement main unit when the measurement operation is completed. The element holding unit by repeating the operations of the transport unit and the operation control unit, and an operation control unit that causes the light receiving element to receive the diffuse reflection wave diffused by the inner wall of the integrating sphere. Held in order Is configured to measure the emitted light of the light emitting elements come being continuously.

ここで、好ましくは、前記発光素子から前記受光素子に至る直線上に遮光部材が配置され、計測動作時の直接波を遮光するよう構成される。また、前記計測本体部には、計測動作に先立って導通部材を移動させて前記発光素子に接触させる可動部が配置されているのが好ましい。また、前記計測本体部には、発光素子の発光を波長計に伝送するファイバケーブルが取付けられているのが好ましい。   Here, preferably, a light-shielding member is arranged on a straight line from the light-emitting element to the light-receiving element, and is configured to shield direct waves during the measurement operation. Moreover, it is preferable that the measurement main body portion is provided with a movable portion that moves the conducting member and contacts the light emitting element prior to the measurement operation. Moreover, it is preferable that a fiber cable for transmitting light emitted from the light emitting element to the wavelength meter is attached to the measurement main body.

請求項4に係る発明は、光反射率が高く高拡散性の内壁を有する積分球を、素子保持部と計測本体部の分割構成とし、前記素子保持部に配置された発光素子からの放射光を、前記計測本体部に配置した受光素子で受ける測光方法であって、計測動作に先立って、発光素子の配置された前記素子保持部を、前記計測本体部に向けて移動させて両者を略一体化させる準備工程と、その後、前記発光素子を発光させ、前記内壁による拡散反射波を前記受光素子で受光させる計測工程と、前記計測工程が完了すると、前記素子保持部を前記計測本体部から遠ざけると共に、別の発光素子を前記素子保持部に配置する移行工程とを有し、前記準備工程、前記計測工程、及び前記移行工程をこの順番で繰り返すことで、複数の前記発光素子の放射光を連続的に計測するようにしている。   According to a fourth aspect of the present invention, an integrating sphere having a high light reflectivity and a highly diffusive inner wall is divided into an element holding part and a measurement main part, and the emitted light from the light emitting element arranged in the element holding part Is received by a light receiving element disposed in the measurement main body, and prior to the measurement operation, the element holding portion in which the light emitting element is disposed is moved toward the measurement main body so that both are substantially omitted. A preparatory step for integration, a measurement step for causing the light-emitting element to emit light, and a diffused reflected wave from the inner wall received by the light-receiving element; and when the measurement step is completed, the element holding unit is removed from the measurement main body unit. And having a transition step of disposing another light emitting element on the element holding portion, and repeating the preparation step, the measurement step, and the transition step in this order, thereby emitting light from a plurality of the light emitting elements. Continuously It is to be measured.

上記した本発明では、積分球を計測本体部と素子保持部に分割し、その一方を移動可能に構成しているので、発光素子の放射出力や波長特性などを自動的に連続して計測することができる。   In the present invention described above, the integrating sphere is divided into the measurement main body part and the element holding part, and one of them is configured to be movable, so that the radiation output, wavelength characteristics, etc. of the light emitting element are automatically and continuously measured. be able to.

以下、実施例に基づいて本発明を詳細に説明する。図1は、実施例に係る測光装置の概略構成を図示したものである。この測光装置は、発光ダイオードなどの発光素子を保持する素子保持部1と、複数の測光器具を配置した計測本体部2とが分割可能に構成されており、全体として積分球を形成している。   Hereinafter, the present invention will be described in detail based on examples. FIG. 1 illustrates a schematic configuration of a photometric device according to an embodiment. This photometric device is configured such that an element holding unit 1 that holds a light emitting element such as a light emitting diode and a measurement main body 2 in which a plurality of photometric instruments are arranged can be divided to form an integrating sphere as a whole. .

ここで積分球とは、球面状の内壁が約100%の反射率に形成された球体を意味する。この実施例では、300nm〜1300nm程度の波長帯域の光を測定する場合には、球面状の内壁を、所定厚の硫酸バリウムでコーティングする。一方、波長帯域250nm〜2500nmの光を測定する場合は、PTFE(ポリテトラフルオロチレン)の粉末を押し固めた内壁とされ、また赤外域の波長帯域1μm〜2μmを測定する場合には、内壁を金メッキするのが好ましい。   Here, the integrating sphere means a sphere having a spherical inner wall formed with a reflectance of about 100%. In this embodiment, when measuring light in a wavelength band of about 300 nm to 1300 nm, the spherical inner wall is coated with barium sulfate having a predetermined thickness. On the other hand, when measuring light with a wavelength band of 250 nm to 2500 nm, the inner wall is made by compacting PTFE (polytetrafluoroethylene) powder, and when measuring the infrared wavelength band of 1 μm to 2 μm, Gold plating is preferred.

何れにしても、積分球は、高反射率の内壁を有するので、積分球の内部に光源を配置すると、光源からの放射光は、高反射率の内壁で拡散反射され、この拡散反射光が、繰り返し積分球の内壁に当たり拡散されることになる。その結果、放射光の指向性が積分されて、積分球内の計測位置に拘わらず、ほぼ均一な明るさを得ることができる。   In any case, since the integrating sphere has a highly reflective inner wall, when a light source is arranged inside the integrating sphere, the emitted light from the light source is diffusely reflected by the highly reflective inner wall, and this diffuse reflected light is Then, it repeatedly hits the inner wall of the integrating sphere and is diffused. As a result, the directivity of the radiated light is integrated, and almost uniform brightness can be obtained regardless of the measurement position in the integrating sphere.

この計測値は、光源の全光量に比例するので、基準光源(マスタワーク)による基準出力値で校正することで、測定対象の光源の光量を特定することが可能となる。   Since this measurement value is proportional to the total light amount of the light source, the light amount of the light source to be measured can be specified by calibrating with the reference output value from the reference light source (master work).

図1に示す通り、素子保持部1と計測本体部2とは、積分球を水平切断面CUTで区分して構成されており、水平切断面CUTは、この実施例では、積分球の直径Rの15%程度の高さ位置に形成されている。   As shown in FIG. 1, the element holding part 1 and the measurement main body part 2 are configured by dividing an integrating sphere by a horizontal cut surface CUT, and in this embodiment, the horizontal cut surface CUT is a diameter R of the integrating sphere. It is formed at a height position of about 15%.

素子保持部1は、図2の矢印aの方向に水平面を往復移動すると共に、矢印bの方向に垂直面を往復運動する検査テーブル3と、水平切断面CUTで切断された下部積分球4とで構成されている。   The element holding unit 1 reciprocates in the horizontal plane in the direction of arrow a in FIG. 2 and reciprocates in the vertical plane in the direction of arrow b, and the lower integrating sphere 4 cut by the horizontal cut surface CUT, It consists of

下部積分球4の底部は、開口して検査テーブル3に固定されており、また、下部積分球4の底部には、測定対象物WK(サンプルワーク)を載置可能な載置台5が設けられている。そして、載置台5には、校正処理用のマスターワークMSも載置可能に構成されている。なお、測定対象物WKは、例えば、発光ダイオードやレーザダイオードである。   The bottom of the lower integrating sphere 4 is opened and fixed to the inspection table 3, and a mounting table 5 on which a measurement object WK (sample work) can be placed is provided on the bottom of the lower integrating sphere 4. ing. The mounting table 5 is configured so that a master work MS for calibration processing can also be mounted. The measurement object WK is, for example, a light emitting diode or a laser diode.

測定対象物WKは、計測作業に先だってロボット機構によって載置台5に配置され、計測作業を終えるとロボット機構によって、次の測定対象物WKと入れ替えられる。一方、マスターワークMSは、数日又は数ヶ月に一回の校正作業時に、載置台5に配置されるに過ぎず、計測作業時にマスターワークを使用する必要はない。すなわち、図2のマスターワークMSは、便宜上、記載されているに過ぎない。   Prior to the measurement work, the measurement object WK is placed on the mounting table 5 by the robot mechanism. When the measurement work is completed, the measurement object WK is replaced with the next measurement object WK by the robot mechanism. On the other hand, the master work MS is merely arranged on the mounting table 5 at the time of calibration work once every several days or months, and it is not necessary to use the master work at the time of measurement work. That is, the master work MS in FIG. 2 is only described for convenience.

計測本体部1は、図1に示す通りであり、積分球の水平中心線上で対面する第1検出部6及び第2検出部7Aと、垂直中心線上の頂部に位置する第3検出部7Bとが設けられている。第1検出部6は、測定対象物の光量を計測する部分であり、具体的にはフォトダイオードが配置されている。一方、第2検出部7Aと第3検出部7Bは、波長計の一部を構成しており、2つの検出部7A,7Bには、波長計に至るファイバケーブルの端部が配置されている。本実施例では、検出部を2つ設けているので、必要に応じて何れか一方を選択して使用することができる。なお、検出部7A,7Bの先端には、透光性を有する拡散板が配置されているので、積分球の機能が阻害されることはない。   The measurement main body 1 is as shown in FIG. 1, and includes a first detection unit 6 and a second detection unit 7A that face each other on the horizontal center line of the integrating sphere, and a third detection unit 7B that is positioned on the top of the vertical center line. Is provided. The 1st detection part 6 is a part which measures the light quantity of a measuring object, and specifically, the photodiode is arrange | positioned. On the other hand, the second detection unit 7A and the third detection unit 7B constitute a part of the wavelength meter, and the two detection units 7A and 7B are arranged with the end portions of the fiber cables reaching the wavelength meter. . In this embodiment, since two detection units are provided, any one can be selected and used as necessary. In addition, since the diffusion plate which has translucency is arrange | positioned at the front-end | tip of detection part 7A, 7B, the function of an integrating sphere is not inhibited.

また、計測本体部1には、測定対象物WKやマスターワークMSからの直接光を遮光する遮光板8が、第1検出部6と載置台5の中間位置に配置されている。そのため、測定対象光が、直接光として第1検出部6に入射されるおそれはない。   In the measurement main body 1, a light shielding plate 8 that shields direct light from the measurement object WK and the master work MS is disposed at an intermediate position between the first detection unit 6 and the mounting table 5. Therefore, there is no possibility that the measurement target light is incident on the first detection unit 6 as direct light.

遮光板8の下方には、プローブニードル9を上下移動させる可動部10が設けられている。この可動部10は、測定動作時には、降下してプローブニードル9を測定対象物WKの通電端子に接触させる。そして、プローブニードル9との接触により、測定対象物が通電状態となり、測定対象物WKから放射光が放射される。この放射光には指向性があり、放射方向によって強度が異なるが、放射光は、積分球の内壁で反射を繰り返すので、放射強度が受光位置に係わらず一定化される。   Below the light shielding plate 8, there is provided a movable portion 10 for moving the probe needle 9 up and down. During the measurement operation, the movable unit 10 is lowered to bring the probe needle 9 into contact with the energization terminal of the measurement object WK. Then, due to the contact with the probe needle 9, the measurement object is energized, and radiated light is emitted from the measurement object WK. This radiated light has directivity and the intensity varies depending on the radiation direction. However, since the radiated light is repeatedly reflected on the inner wall of the integrating sphere, the radiant intensity is constant regardless of the light receiving position.

ところで、本実施例の測光装置は、積分球を分割して構成されるので、素子保持部1と計測本体部2の対向面に生じる隙間δや、可動部10に生じる隙間から検査光が漏れる弊害がある。そこで、図3に示すように、可動部10には、遮光片11を設けるのが好ましい。   By the way, since the photometric device of the present embodiment is configured by dividing the integrating sphere, the inspection light leaks from the gap δ generated on the opposing surface of the element holding unit 1 and the measurement main body unit 2 or the gap generated in the movable unit 10. There are harmful effects. Therefore, as shown in FIG. 3, it is preferable to provide a light shielding piece 11 in the movable portion 10.

また、素子保持部1と計測本体部2の対向面についても、重合部分を設けるのが好ましい。図3は、計測本体部2の下方終端部2aを折り曲げ形成しており、素子保持部1が限界位置まで上昇した計測動作時には、隙間δが実質的に消滅する(δ=0)。但し、この実施例では、マスターワークMSによる校正処理を設けているので、隙間を0.5mm〜1mmに抑制すれば、図1のように、特に、重合部分を設けなくても実質的な弊害を解消できる。   Moreover, it is preferable to provide a superposition part also about the opposing surface of the element holding | maintenance part 1 and the measurement main-body part 2. FIG. In FIG. 3, the lower end portion 2a of the measurement main body 2 is bent, and the gap δ substantially disappears (δ = 0) during the measurement operation in which the element holding portion 1 is raised to the limit position. However, in this embodiment, since the calibration process by the master work MS is provided, if the gap is suppressed to 0.5 mm to 1 mm, as shown in FIG. Can be eliminated.

続いて、以上の構成からなる測光装置について使用方法を説明する。   Next, a method of using the photometric device having the above configuration will be described.

先ず、ロボット機構により、素子保持部1に測定対象物WKを取り付け、水平搬送機構の動作に基づいて、素子保持部1を計測本体部2の下方位置まで移動させる(図2の矢印a)。   First, the measurement target WK is attached to the element holding unit 1 by the robot mechanism, and the element holding unit 1 is moved to a position below the measurement main body 2 based on the operation of the horizontal transfer mechanism (arrow a in FIG. 2).

その後、垂直搬送機構の動作に基づいて、素子保持部1を上昇させ、計測本体部2の対向面とほぼ接触する位置で停止させる(図2の矢印b)。なお、この状態では、素子保持部1と計測本体部2の対向面の隙間δは1〜0.5mm程度に管理されている。   Thereafter, based on the operation of the vertical transport mechanism, the element holding unit 1 is raised and stopped at a position substantially in contact with the facing surface of the measurement main body unit 2 (arrow b in FIG. 2). In this state, the gap δ between the facing surfaces of the element holding portion 1 and the measurement main body portion 2 is managed to be about 1 to 0.5 mm.

続いて、可動部10を降下させて、プローブニードル9を測定対象物WKに接触させる。すると、測定対象物WKは発光するので、その放射光の光量を、第1検出器1のフォトダイオードPDで計測する。また、検出部7によって分光感度特性も計測する。なお、放射光は、積分球の内壁で反射を繰り返すので、放射光の積分値に比例した値が計測される。   Subsequently, the movable part 10 is lowered and the probe needle 9 is brought into contact with the measurement object WK. Then, since the measuring object WK emits light, the amount of the emitted light is measured by the photodiode PD of the first detector 1. Further, the spectral sensitivity characteristic is also measured by the detection unit 7. Since the radiated light is repeatedly reflected on the inner wall of the integrating sphere, a value proportional to the integrated value of the radiated light is measured.

以上のようにして計測処理が完了するので、次に、可動部10を上昇させた後、垂直搬送機構の動作に基づいて、素子保持部1を降下させる。また、水平搬送機構の動作に基づいて、素子保持部1を原点位置まで後退させる。そして、計測処理を終えた測定対象物を取り外すと共に、別の測定対象物を取り付けて、再度、上記の動作を繰り返す。   Since the measurement process is completed as described above, next, after the movable unit 10 is raised, the element holding unit 1 is lowered based on the operation of the vertical transport mechanism. Further, the element holding unit 1 is retracted to the origin position based on the operation of the horizontal transport mechanism. And while removing the measuring object which finished the measurement process, another measuring object is attached, and said operation | movement is repeated again.

このように、本実施例によれば、発光素子の光量を正確に計測することができ、しかも、この検査工程を完全に自動化することができる。   Thus, according to the present embodiment, the light quantity of the light emitting element can be accurately measured, and this inspection process can be completely automated.

以上、本発明の実施例について具体的に説明したが、具体的な記載内容は何ら本発明を限定するものではない。例えば、図1の実施例では、プローブニードル9を移動可能に構成したが、プローブニードル9を設けることなく、固定的な導通部材を素子保持部1に設けても良い。   As mentioned above, although the Example of this invention was described concretely, the concrete description content does not limit this invention at all. For example, in the embodiment of FIG. 1, the probe needle 9 is configured to be movable, but a fixed conducting member may be provided in the element holding portion 1 without providing the probe needle 9.

この場合には、可動部10が存在しないので、遮光片11を設けるまでもなく、可動部10の隙間から、測定対象物の放射光が漏れるおそれがない。また、可動部10を設けない構成では、測定対象物WKを載置台5に保持した段階で、導通部材も測定対象物に接触される。したがって、簡易性の観点からは、測定動作に先立って、測定対象物WKへの通電動作を開始しても良い。   In this case, since the movable part 10 does not exist, it is not necessary to provide the light shielding piece 11, and there is no possibility that the radiated light of the measurement object leaks from the gap of the movable part 10. In the configuration in which the movable unit 10 is not provided, the conductive member is also brought into contact with the measurement object when the measurement object WK is held on the mounting table 5. Therefore, from the viewpoint of simplicity, the energization operation to the measurement object WK may be started prior to the measurement operation.

以上、本発明の実施例について具体的に説明したが、具体的な記載内容は特に本発明を限定するものではない。例えば、図1では、波長計用の検出口を2つ設けているが、使用するのは通常一箇所であるから、何れか一方の検出口のみを設けたので足りる。また、検出口には、透光性を有する拡散板が配置されると説明したが、測定対象物からの光量が弱いために計測に時間を要する場合などは、波長分布に大きな影響がでないことを確認した上で、直射光を受ける構成を採っても良い。   As mentioned above, although the Example of this invention was described concretely, the concrete description content does not specifically limit this invention. For example, in FIG. 1, two detection ports for the wavelength meter are provided. However, since only one location is usually used, it is sufficient to provide only one of the detection ports. In addition, it has been explained that a light-transmitting diffuser is placed at the detection port. However, if the time required for measurement is low because the amount of light from the measurement object is weak, the wavelength distribution should not be significantly affected. After confirming the above, it may be configured to receive direct light.

実施例に係る測光装置の概略構成を図示したものである。1 schematically illustrates the configuration of a photometric device according to an embodiment. 図1の一部を示す斜視図である。It is a perspective view which shows a part of FIG. 図1の別の一部を示す斜視図である。It is a perspective view which shows another part of FIG.

符号の説明Explanation of symbols

WK 発光素子
1 素子保持部
2 計測本体部
8 遮光部材
WK Light emitting element 1 Element holding part 2 Measurement main body part 8 Light shielding member

Claims (5)

光反射率が高く高拡散性の内壁を有する積分球を、素子保持部と計測本体部の分割構成とし、前記素子保持部に配置された発光素子からの放射光を、前記計測本体部に配置した受光素子で受ける測光装置であって、
計測動作に先立って、前記素子保持部を前記計測本体部に向けて移動させて両者を略一体化させる一方、計測動作が完了すると、前記素子保持部を前記計測本体部から遠ざける搬送部と、
前記素子保持部を前記計測本体部と略一体化させた後、計測動作時に前記発光素子を発光させ、積分球の内壁で拡散された拡散反射波を前記受光素子で受光させる動作制御部と、を有し、
前記搬送部と前記動作制御部の動作を繰り返すことによって、前記素子保持部に保持されて順次搬送されてくる前記発光素子の放射光を連続的に計測するよう構成された測光装置。
An integrating sphere having a high light reflectivity and a highly diffusive inner wall is divided into an element holding part and a measurement main part, and the emitted light from the light emitting element arranged in the element holding part is arranged in the measurement main part. A photometric device that receives light received from
Prior to the measurement operation, the element holding unit is moved toward the measurement main body unit so that the two are substantially integrated.On the other hand, when the measurement operation is completed, the conveyance unit for moving the element holding unit away from the measurement main body unit,
After the element holding part is substantially integrated with the measurement main body part, an operation control part that causes the light emitting element to emit light during a measurement operation and receives the diffuse reflected wave diffused on the inner wall of the integrating sphere by the light receiving element; Have
A photometric device configured to continuously measure the emitted light of the light emitting elements held by the element holding unit and sequentially conveyed by repeating the operations of the transfer unit and the operation control unit.
前記発光素子から前記受光素子に至る直線上に遮光部材が配置され、計測動作時の直接波を遮光する請求項1に記載の測光装置。 The photometric device according to claim 1, wherein a light shielding member is disposed on a straight line extending from the light emitting element to the light receiving element, and shields a direct wave during a measurement operation. 前記計測本体部には、計測動作に先立って導通部材を移動させて前記発光素子に接触させる可動部が配置されている請求項1又は2に記載の測光装置。 3. The photometric device according to claim 1, wherein the measurement main body is provided with a movable portion that moves a conductive member to contact the light emitting element prior to a measurement operation. 前記計測本体部には、発光素子の発光を波長計に伝送するファイバケーブルが取付けられている請求項1〜3の何れかに記載の測光装置。 The photometric device according to any one of claims 1 to 3, wherein a fiber cable for transmitting light emitted from a light emitting element to a wavelength meter is attached to the measurement main body. 光反射率が高く高拡散性の内壁を有する積分球を、素子保持部と計測本体部の分割構成とし、前記素子保持部に配置された発光素子からの放射光を、前記計測本体部に配置した受光素子で受ける測光方法であって、
計測動作に先立って、発光素子の配置された前記素子保持部を、前記計測本体部に向けて移動させて両者を略一体化させる準備工程と、
その後、前記発光素子を発光させ、前記内壁による拡散反射波を前記受光素子で受光させる計測工程と、
前記計測工程が完了すると、前記素子保持部を前記計測本体部から遠ざけると共に、別の発光素子を前記素子保持部に配置する移行工程とを有し、
前記準備工程、前記計測工程、及び前記移行工程をこの順番で繰り返すことで、複数の前記発光素子の放射光を連続的に計測するようにした測光方法。
An integrating sphere having a high light reflectivity and a highly diffusive inner wall is divided into an element holding part and a measurement main part, and the emitted light from the light emitting element arranged in the element holding part is arranged in the measurement main part. A photometric method received by a light receiving element
Prior to the measurement operation, the preparatory step of moving the element holding part on which the light emitting element is arranged toward the measurement main body part so that both are substantially integrated,
Then, a measurement step of causing the light emitting element to emit light and receiving the diffuse reflected wave from the inner wall by the light receiving element;
When the measurement step is completed, the device holding unit is moved away from the measurement main body unit, and another light emitting element is arranged in the device holding unit,
A photometric method in which the preparation step, the measurement step, and the transition step are repeated in this order to continuously measure the emitted light of the plurality of light emitting elements.
JP2006253756A 2006-09-20 2006-09-20 Photometric device and method Pending JP2008076126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253756A JP2008076126A (en) 2006-09-20 2006-09-20 Photometric device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253756A JP2008076126A (en) 2006-09-20 2006-09-20 Photometric device and method

Publications (1)

Publication Number Publication Date
JP2008076126A true JP2008076126A (en) 2008-04-03

Family

ID=39348369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253756A Pending JP2008076126A (en) 2006-09-20 2006-09-20 Photometric device and method

Country Status (1)

Country Link
JP (1) JP2008076126A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986044B1 (en) * 2008-10-23 2010-10-07 주식회사 에피밸리 Apparatus for measuring optical power of semiconductor light emitting devices
KR101008846B1 (en) 2010-06-23 2011-01-19 (주)큐엠씨 Apparatus for testing electronic element
WO2011068281A1 (en) * 2009-12-01 2011-06-09 Korea Research Institute Of Standards And Science Integrating sphere photometer and measuring method of the same
JP2011151340A (en) * 2010-01-19 2011-08-04 Gallant Precision Machining Co Ltd Method and system for inspecting light-emitting diode
JP2011226869A (en) * 2010-04-16 2011-11-10 Sharp Corp Emission measuring device
JP2012039080A (en) * 2010-08-11 2012-02-23 Dnc Engineering Co Ltd Led package inspection sorting device
JP4892118B1 (en) * 2010-11-30 2012-03-07 パイオニア株式会社 Light receiving module for light emitting element and inspection device for light emitting element
JP4932045B1 (en) * 2011-06-20 2012-05-16 西進商事株式会社 Light source inspection device
JP4975199B1 (en) * 2010-12-01 2012-07-11 パイオニア株式会社 Light receiving module for semiconductor light emitting device and inspection device for semiconductor light emitting device
CN102607696A (en) * 2012-04-01 2012-07-25 深圳市矽电半导体设备有限公司 Integrating sphere used for LED (light emitting diode) tester
CN102829865A (en) * 2012-09-24 2012-12-19 上海汉谱光电科技有限公司 45-degree annular illumination reflection spectrum spectrophotometric light path device
KR101229904B1 (en) 2009-09-25 2013-02-05 후가 옵토테크 인크. Apparatus for measuring optical parameters of light-emitting element and measuring method using the same
WO2013054379A1 (en) * 2011-10-13 2013-04-18 Otsuka Electronics Co., Ltd. Optical measurement system, optical measurement method, and mirror plate for optical measurement system
JP2013156080A (en) * 2012-01-27 2013-08-15 Yokogawa Electric Corp Luminescence property measuring device and method
JP2013532839A (en) * 2010-08-02 2013-08-19 コリア リサーチ インスティテュート オブ スタンダーズ アンド サイエンス Integrating sphere photometer and measuring method thereof
WO2013186913A1 (en) * 2012-06-15 2013-12-19 パイオニア株式会社 Photometric device
JP2015014590A (en) * 2013-06-07 2015-01-22 本田技研工業株式会社 Integrating sphere
CN104458209A (en) * 2013-09-24 2015-03-25 惠特科技股份有限公司 Measurement device and measurement method
CN110044582A (en) * 2019-04-26 2019-07-23 广东天圣高科股份有限公司 A kind of photochromic electric auto testing instrument of high-precision
WO2020117947A1 (en) * 2018-12-04 2020-06-11 University Of Massachusetts System and methods of fluorescence microscope calibration
CN114354543A (en) * 2021-12-22 2022-04-15 广东省中山市质量计量监督检测所 Photometric sphere coating reflectivity measuring device and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962481A (en) * 1972-07-28 1974-06-17
JP2006226749A (en) * 2005-02-16 2006-08-31 Unitec:Kk Reflective membrane, integrating sphere and forming method for reflective membrane
JP2006234497A (en) * 2005-02-23 2006-09-07 Seiwa Electric Mfg Co Ltd Optical characteristic measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962481A (en) * 1972-07-28 1974-06-17
JP2006226749A (en) * 2005-02-16 2006-08-31 Unitec:Kk Reflective membrane, integrating sphere and forming method for reflective membrane
JP2006234497A (en) * 2005-02-23 2006-09-07 Seiwa Electric Mfg Co Ltd Optical characteristic measuring instrument

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986044B1 (en) * 2008-10-23 2010-10-07 주식회사 에피밸리 Apparatus for measuring optical power of semiconductor light emitting devices
KR101229904B1 (en) 2009-09-25 2013-02-05 후가 옵토테크 인크. Apparatus for measuring optical parameters of light-emitting element and measuring method using the same
WO2011068281A1 (en) * 2009-12-01 2011-06-09 Korea Research Institute Of Standards And Science Integrating sphere photometer and measuring method of the same
US8625088B2 (en) 2009-12-01 2014-01-07 Korean Research Institute Of Standards And Science Integrating sphere photometer and measuring method of the same
JP2011151340A (en) * 2010-01-19 2011-08-04 Gallant Precision Machining Co Ltd Method and system for inspecting light-emitting diode
JP2011226869A (en) * 2010-04-16 2011-11-10 Sharp Corp Emission measuring device
KR101008846B1 (en) 2010-06-23 2011-01-19 (주)큐엠씨 Apparatus for testing electronic element
JP2013532839A (en) * 2010-08-02 2013-08-19 コリア リサーチ インスティテュート オブ スタンダーズ アンド サイエンス Integrating sphere photometer and measuring method thereof
JP2012039080A (en) * 2010-08-11 2012-02-23 Dnc Engineering Co Ltd Led package inspection sorting device
WO2012073345A1 (en) * 2010-11-30 2012-06-07 パイオニア株式会社 Light-receiving module for light-emitting element and inspection device for light-emitting element
JP4892118B1 (en) * 2010-11-30 2012-03-07 パイオニア株式会社 Light receiving module for light emitting element and inspection device for light emitting element
JP4975199B1 (en) * 2010-12-01 2012-07-11 パイオニア株式会社 Light receiving module for semiconductor light emitting device and inspection device for semiconductor light emitting device
JP4932045B1 (en) * 2011-06-20 2012-05-16 西進商事株式会社 Light source inspection device
KR101781249B1 (en) 2011-10-13 2017-09-22 오츠카 일렉트로닉스 가부시키가이샤 Optical measurement system, optical measurement method, and mirror plate for optical measurement system
WO2013054379A1 (en) * 2011-10-13 2013-04-18 Otsuka Electronics Co., Ltd. Optical measurement system, optical measurement method, and mirror plate for optical measurement system
CN103477196A (en) * 2011-10-13 2013-12-25 大塚电子株式会社 Optical measurement system, optical measurement method, and mirror plate for optical measurement system
US9239259B2 (en) 2011-10-13 2016-01-19 Otsuka Electronics Co., Ltd. Optical measurement system, optical measurement method, and mirror plate for optical measurement system
JP2014507665A (en) * 2011-10-13 2014-03-27 ラブスフェア・インコーポレイテッド Optical measurement system, optical measurement method, and mirror plate for optical measurement system
TWI560430B (en) * 2011-10-13 2016-12-01 Otsuka Denshi Kk Optical measurement system, optical measurement method, and mirror plate for optical measurement system
JP2013156080A (en) * 2012-01-27 2013-08-15 Yokogawa Electric Corp Luminescence property measuring device and method
CN102607696A (en) * 2012-04-01 2012-07-25 深圳市矽电半导体设备有限公司 Integrating sphere used for LED (light emitting diode) tester
WO2013186913A1 (en) * 2012-06-15 2013-12-19 パイオニア株式会社 Photometric device
JPWO2013186913A1 (en) * 2012-06-15 2016-02-01 パイオニア株式会社 Photometric device
US9442010B2 (en) 2012-06-15 2016-09-13 Pioneer Corporation Light measurement apparatus
CN102829865A (en) * 2012-09-24 2012-12-19 上海汉谱光电科技有限公司 45-degree annular illumination reflection spectrum spectrophotometric light path device
JP2015014590A (en) * 2013-06-07 2015-01-22 本田技研工業株式会社 Integrating sphere
CN104458209A (en) * 2013-09-24 2015-03-25 惠特科技股份有限公司 Measurement device and measurement method
WO2020117947A1 (en) * 2018-12-04 2020-06-11 University Of Massachusetts System and methods of fluorescence microscope calibration
US10890838B2 (en) 2018-12-04 2021-01-12 University Of Massachusetts System and methods of fluorescence microscope calibration
US11392016B2 (en) 2018-12-04 2022-07-19 University Of Massachusetts System and methods of fluorescence microscope calibration
CN110044582A (en) * 2019-04-26 2019-07-23 广东天圣高科股份有限公司 A kind of photochromic electric auto testing instrument of high-precision
CN114354543A (en) * 2021-12-22 2022-04-15 广东省中山市质量计量监督检测所 Photometric sphere coating reflectivity measuring device and method thereof
CN114354543B (en) * 2021-12-22 2024-06-04 广东省中山市质量计量监督检测所 Device and method for measuring reflectivity of photometric sphere coating

Similar Documents

Publication Publication Date Title
JP2008076126A (en) Photometric device and method
JP4796160B2 (en) Thin film inspection apparatus and inspection method
US7599049B2 (en) Apparatus for testing light transmission through lens
JP3496644B2 (en) Lighting equipment for inspection
TWI645182B (en) Miniaturized imaging apparatus for wafer edge
JP4767706B2 (en) Integrating sphere adapter and photodetecting device having the same
EP2823748B1 (en) Optical measurement device and method for associating fiber bundle
TW455685B (en) Line illuminating apparatus
KR20110061158A (en) Integrating sphere photometer and measureing method of the same
KR20160004099A (en) Defect inspecting apparatus
KR20160143536A (en) Polishing apparatus
TW201910791A (en) Optical inspection system
JP2010217109A (en) Light emitting element measurement device
US20080165349A1 (en) Apparatus for testing reflectivity of lens
JP2012159457A (en) Integrating sphere device and light measuring method
TW200913107A (en) Methods and apparatus for identifying thin films on a substrate
US8666202B2 (en) System and method for measuring properties of a thin film coated glass
JP2007024646A (en) Optical measuring instrument
JP4630945B1 (en) Defect inspection equipment
JP2010139483A (en) Inspection system and inspection method of optical waveguide
TW201625908A (en) Measuring device and control method
CN209311330U (en) Detection device
TWI854322B (en) Probes that define retroreflectors, probe systems that include the probes, and methods of utilizing the probes
TW201502465A (en) Method of measuring narrow recessed features using machine vision
CN212567282U (en) Detection device and detection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090918

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101