JPH09113411A - Light-receiving apparatus - Google Patents

Light-receiving apparatus

Info

Publication number
JPH09113411A
JPH09113411A JP29326595A JP29326595A JPH09113411A JP H09113411 A JPH09113411 A JP H09113411A JP 29326595 A JP29326595 A JP 29326595A JP 29326595 A JP29326595 A JP 29326595A JP H09113411 A JPH09113411 A JP H09113411A
Authority
JP
Japan
Prior art keywords
light
light emitting
wafer
semiconductor wafer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29326595A
Other languages
Japanese (ja)
Inventor
Ryuichi Nakazono
隆一 中園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP29326595A priority Critical patent/JPH09113411A/en
Publication of JPH09113411A publication Critical patent/JPH09113411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Led Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light-receiving apparatus by which the quantity of emitted light and the emission spectrum of a semiconductor wafer are measured simultaneously by a method wherein the optical-fiber input part of an optical spectrum analyzer is installed vertically in the center of a light-receiving face at a photoelectric conversion device so as to receive light. SOLUTION: A semiconductor wafer 10 for a light-emitting device is placed on a wafer stage 1. A light-receiving part 3 is formed on the wafer 10, a power- supply device 5 is connected to the stage 1 and a probe 4, a current is supplied from the power-supply device, and the light-emitting part 3 emits light. The light from the light-emitting part 3 on the wafer 10 is received by an optical- fiber input part 12 at a photoelectric conversion device 11 installed at the upper part. The input part 12 is formed vertically in the center of the conversion device 11, and it is connected to a spectrum analyzer 9. In addition, the device 11 is connected to a quantity-of-light measuring device 8. Thereby, the spectrum of light emitted from the light-emitting part 3 on the semiconductor wafer 10 and the quantity of light in all directions are measured simultaneously. The interval between a light-receiving face at the input part 12 and the light-emitting face 3 on the wafer 10 can be brought close to 5mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、発光ダイオード
用半導体ウエハの発光光量と発光スペクトルを同一装置
で測定するための受光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light receiving device for measuring the amount of light emitted and the emission spectrum of a semiconductor wafer for light emitting diodes with the same device.

【0002】[0002]

【従来の技術】半導体の発光作用を利用した発光ダイオ
ードは、安価で長寿命の特徴があり、近年、いろいろな
光源装置やディスプレイなどに使用されている。この発
光ダイオードはpn接合を形成した板状の半導体結晶
(ウエハ)より作られる。発光ダイオードを形成する前
には、ウエハ状態での発光特性を把握する必要がある。
ここで発光特性とは、主に発光する光量と発光スペクト
ルを指す。ウエハ状での測定は通常次のようにして行わ
れている。まず、超音波等を利用した機械加工により、
ウエハにリング状の溝を設け、発光させるための電流制
限領域を形成する。そして、その領域に電極針を触れさ
せて通電し、光量と発光スペクトルを測定するのであ
る。
2. Description of the Related Art A light emitting diode utilizing the light emitting action of a semiconductor is inexpensive and has a long service life, and has been used in various light source devices and displays in recent years. This light emitting diode is made of a plate-shaped semiconductor crystal (wafer) in which a pn junction is formed. Before forming a light emitting diode, it is necessary to grasp the light emitting characteristics in a wafer state.
Here, the emission characteristics mainly refer to the amount of light emitted and the emission spectrum. The measurement on a wafer is usually performed as follows. First, by machining using ultrasonic waves,
A ring-shaped groove is provided on the wafer to form a current limiting region for emitting light. Then, the electrode needle is brought into contact with the region to conduct electricity, and the light amount and the emission spectrum are measured.

【0003】以下、具体的な測定例を図3を参照して説
明する。図3は従来技術での測定装置の配置例を示すシ
ステム全体の説明図である。即ち、ウエハステージ1上
に発光ダイオード用半導体ウエハ2が載置される。この
発光ダイオード用半導体ウエハ2には発光部3が形成さ
れている。電源装置5から上記ウエハステージ1と、一
方は発光ダイオード用半導体ウエハ2にプローブ4を接
触させ、電流を流すことにより発光ダイオード用半導体
ウエハ2の発光部3を発光させる。そして、発光部3か
らの光を上側に設置した光量を測定するための光電変換
装置(太陽電池セル)6により測定する。また、斜め上
方には発光スペクトルを測定するための光ファイバ入力
部7が配置され、これは光スペクトラムアナライザ9に
接続されている。
A specific measurement example will be described below with reference to FIG. FIG. 3 is an explanatory diagram of the entire system showing an example of arrangement of measuring devices according to the related art. That is, the semiconductor wafer 2 for light emitting diode is mounted on the wafer stage 1. A light emitting portion 3 is formed on the semiconductor wafer 2 for light emitting diode. The probe 4 is brought into contact with the wafer stage 1 from the power supply device 5 and the semiconductor wafer 2 for light emitting diode on the one side, and the light emitting portion 3 of the semiconductor wafer for light emitting diode 2 is caused to emit light by passing a current. Then, the light from the light emitting unit 3 is measured by a photoelectric conversion device (solar battery cell) 6 installed on the upper side for measuring the amount of light. An optical fiber input section 7 for measuring an emission spectrum is arranged diagonally above and connected to an optical spectrum analyzer 9.

【0004】[0004]

【発明が解決しようとする課題】発光ダイオード用半導
体ウエハ2の光量と発光スペクトルを測定する場合、図
3のように測定装置を配置して測定する場合、発光部3
の光量を正確に測定するために、光スペクトル入力用の
受光部を近づけることができないことが問題としてでて
くる。即ち、発光ダイオード用半導体ウエハ2にリング
状に溝を形成して作られた発光部3の発光量は、溝形成
の機械的荒れのため方向性にある程度のばらつきがある
ためである。このばらつきを考慮して発光量を正確に測
定するためには、発光部3の周囲の全方位で受光する必
要がある。
When measuring the light quantity and emission spectrum of the semiconductor wafer 2 for a light emitting diode, when the measuring device is arranged as shown in FIG. 3, the light emitting section 3 is used.
In order to accurately measure the amount of light of, the problem is that the light receiving part for inputting the optical spectrum cannot be brought close. That is, the light emission amount of the light emitting portion 3 formed by forming the ring-shaped groove on the semiconductor wafer 2 for a light emitting diode has a certain degree of variation in directionality due to mechanical roughness of the groove formation. In order to accurately measure the light emission amount in consideration of this variation, it is necessary to receive light in all directions around the light emitting unit 3.

【0005】また、発光スペクトル測定用の光ファイバ
入力部7を発光部3に近付けすぎると、光電変換部に影
ができてしまう。これを避けるためには、光ファイバ入
力部7をある程度発光部3から距離を置かなければなら
ない。ウエハ状態での発光は、通常発光量が小さいこと
と光ファイバ入力部7を発光ダイオード用半導体ウエハ
2の発光部3から離れると、光ファイバ入力部7に入力
させることのできる光強度が弱まることから、発光スペ
クトルを解析する分光器(通常、光スペクトラムアナラ
イザー)に到達する光量は非常に小さくなってしまう。
そのため、解析が十分に行うことができなくなる。
Further, if the optical fiber input section 7 for measuring the emission spectrum is brought too close to the light emitting section 3, the photoelectric conversion section will be shaded. In order to avoid this, the optical fiber input section 7 must be separated from the light emitting section 3 to some extent. The light emission in the wafer state is such that the normal light emission amount is small, and when the optical fiber input portion 7 is separated from the light emitting portion 3 of the semiconductor wafer 2 for light emitting diode, the light intensity that can be input to the optical fiber input portion 7 is weakened. Therefore, the amount of light reaching the spectroscope (usually an optical spectrum analyzer) that analyzes the emission spectrum becomes extremely small.
Therefore, the analysis cannot be performed sufficiently.

【0006】この発明はこのような点に鑑みてなされた
もので、発光スペクトル解析のための光スペクトラムア
ナライザーの光ファイバ入力部を、発光ダイオード用半
導体ウエハ2の発光部3に近づけられない欠点を解消
し、確実に光量とスペクトルが同時に測定することがで
きる改良された受光装置を提供することを目的とする。
The present invention has been made in view of the above point, and has a drawback that the optical fiber input portion of the optical spectrum analyzer for analyzing the emission spectrum cannot be brought close to the light emitting portion 3 of the semiconductor wafer 2 for light emitting diode. It is an object of the present invention to provide an improved light receiving device that can be resolved and reliably measure the light amount and the spectrum simultaneously.

【0007】[0007]

【課題を解決するための手段】この発明は、光電変換装
置の受光面の中央に光スペクトラムアナライザーの光フ
ァイバ入力部を垂直に設けた光電変換装置で受光させ、
発光ダイオード用半導体ウエハの発光光量と発光スペク
トルを同時に測定するようにしたことを特徴とする受光
装置である。
According to the present invention, a photoelectric conversion device in which an optical fiber input section of an optical spectrum analyzer is vertically provided in the center of a light receiving surface of the photoelectric conversion device is used to receive light.
The light receiving device is characterized in that the light emission amount and the light emission spectrum of the semiconductor wafer for light emitting diode are simultaneously measured.

【0008】このように光電変換装置の受光面の中央に
光スペクトラムアナライザーの光ファイバ入力部を垂直
に設けた光電変換装置で受光させることにより、光量を
全方位で測定するとともに、光スペクトラムアナライザ
ーへの光量を大幅に向上させることが可能になる。
As described above, the light amount is measured in all directions by receiving light by the photoelectric conversion device in which the optical fiber input portion of the optical spectrum analyzer is vertically provided at the center of the light receiving surface of the photoelectric conversion device, and the light is transmitted to the optical spectrum analyzer. It is possible to greatly improve the light amount of.

【0009】[0009]

【発明の実施の形態】以下、図面に基づいてこの発明の
実施例を説明する。図1は実施例の受光装置の構成を示
すシステム全体の説明図である。即ち、先に説明した図
3に示す従来例と同様に、ウエハステージ1上に発光ダ
イオード用半導体ウエハ10が載置される。この発光ダ
イオード用半導体ウエハ10には発光部3が形成されて
いる。電源装置5から上記ウエハステージ1と一方はプ
ローブ4を接続し電流を通電して発光部3を発光させ
る。そして、発光ダイオード用半導体ウエハ10の発光
部3からの光を上方に設置した、中央に垂直にスペクト
ラムアナライザー9に接続された光ファイバ入力部12
が設けられた光電変換装置11により測定するように配
置される。上記光ファイバ入力部12はスペクトラムア
ナライザ9に接続されるとともに光電変換装置11は光
量計測装置8に接続され、それぞれ発光ダイオード用半
導体ウエハ10の発光部3からの発光した光のスペクト
ルと全方位での光量を同時に測定するように構成されて
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of the entire system showing the configuration of the light receiving device of the embodiment. That is, the semiconductor wafer 10 for light emitting diode is mounted on the wafer stage 1 as in the conventional example shown in FIG. 3 described above. A light emitting portion 3 is formed on the semiconductor wafer 10 for light emitting diode. A probe 4 is connected from the power supply device 5 to the wafer stage 1 and one of them is supplied with a current to cause the light emitting unit 3 to emit light. Then, the light from the light emitting portion 3 of the semiconductor wafer for light emitting diode 10 is installed above, and the optical fiber input portion 12 is connected to the spectrum analyzer 9 vertically in the center.
Are arranged so as to be measured by the photoelectric conversion device 11. The optical fiber input unit 12 is connected to the spectrum analyzer 9 and the photoelectric conversion device 11 is connected to the light amount measuring device 8, and the spectrum of the light emitted from the light emitting unit 3 of the semiconductor wafer for light emitting diode 10 and the omnidirectional light are respectively obtained. Are configured to simultaneously measure the light intensity of.

【0010】発光ダイオード用半導体ウエハ10とし
て、赤色発光するシングルヘテロ構造のAlGaAs結
晶ウエハを用い、従来の測定方法での配置をとった場合
と、上記実施例の受光装置で測定した結果を説明する。
As the semiconductor wafer 10 for a light emitting diode, an AlGaAs crystal wafer having a single hetero structure emitting red light is used, and the arrangement is determined by the conventional measuring method and the results measured by the light receiving device of the above embodiment will be described. .

【0011】まず、従来での測定方法を説明する。図2
において、発光ダイオード用半導体ウエハ10の発光部
3からの光量を測定するために、φ20mmのSi製太
陽電池6を用いた。斜め上方に設置する発光スペクトル
測定用の光ファイバ入力部7としてφ1mmのセルフォ
ックレンズを設けた光ファイバを使用した。発光ダイオ
ード用半導体ウエハ10の発光部3とSi製太陽電池6
の距離は16mmである。また、発光部3から光ファイ
バ入力部7までの距離は12mmである。
First, a conventional measuring method will be described. FIG.
In, in order to measure the amount of light from the light emitting portion 3 of the semiconductor wafer for light emitting diode 10, a Si solar cell 6 having a diameter of 20 mm was used. An optical fiber provided with a selfoc lens of φ1 mm was used as the optical fiber input section 7 for obliquely installed for measuring the emission spectrum. Light emitting portion 3 of semiconductor wafer 10 for light emitting diode and Si solar cell 6
Is 16 mm. The distance from the light emitting unit 3 to the optical fiber input unit 7 is 12 mm.

【0012】この受光装置の配置で、20mAの電流を
電源装置5から通電して発光ダイオード用半導体ウエハ
10の発光部3を発光させて、光スペクトルアナライザ
ー9で得られた入力強度は、約−65dBmであった。
この程度の入力強度ではノイズが多くなってしまい、解
析するためにデータの積算等のデータ処理を施さなけれ
ばならなかった。
With this arrangement of the light receiving device, a current of 20 mA is applied from the power supply device 5 to cause the light emitting portion 3 of the semiconductor wafer for light emitting diode 10 to emit light, and the input intensity obtained by the optical spectrum analyzer 9 is about −. It was 65 dBm.
With this level of input intensity, there was much noise, and data processing such as data integration had to be performed for analysis.

【0013】一方、この発明による受光装置で図1に示
すように測定した結果、光スペクトルアナライザー9の
光ファイバ入力部12がSi製太陽電池11の受光面の
中央に設けてあるため、光電変換装置6の受光面と発光
ダイオード用半導体ウエハ10の発光面3との間隔を5
mmと近づけることが可能である。この配置で先程と同
様に発光ダイオード用半導体ウエハ10に電源装置5か
ら20mAの電流を通電して発光部3を発光させ、光ス
ペクトルアナライザー9での入力強度を調べたところ、
−53dBmが得られた。この程度の強度であればノイ
ズも殆どなく、容易にスペクトルの解析が行うことがで
きる。
On the other hand, as a result of measurement with the light receiving device according to the present invention as shown in FIG. 1, since the optical fiber input portion 12 of the optical spectrum analyzer 9 is provided at the center of the light receiving surface of the Si solar cell 11, photoelectric conversion is performed. The distance between the light receiving surface of the device 6 and the light emitting surface 3 of the semiconductor wafer 10 for light emitting diode is set to 5
It is possible to approach mm. In this arrangement, as in the previous case, a current of 20 mA was applied to the semiconductor wafer for light emitting diode 10 from the power supply device 5 to cause the light emitting section 3 to emit light, and the input intensity in the optical spectrum analyzer 9 was examined.
-53 dBm was obtained. With such an intensity, there is almost no noise, and the spectrum can be easily analyzed.

【0014】[0014]

【発明の効果】以上説明したとおり、この発明の受光装
置によれば、発光ダイオード用半導体ウエハの発光特性
(発光光量,光スペクトル)を計測する上で、従来光量
測定の都合上、光スペクトル測定用の光ファイバ入力部
が発光部に近づけられなかったのに対し、この発明の受
光装置では、光量を全方位に基づいて測定することがで
きるとともに、光量測定に支障を与えることなく入力部
を近づけることができる。その結果、光スペクトルアナ
ライザーに入力させる光量を大幅に向上させることが可
能となり、ノイズが少なく容易にスペクトルの解析が行
うことができる。
As described above, according to the light receiving device of the present invention, in measuring the light emission characteristics (light emission amount, light spectrum) of the semiconductor wafer for light emitting diode, the light spectrum measurement is performed for convenience of conventional light amount measurement. While the optical fiber input section for use in the light was not brought close to the light emitting section, in the light receiving device of the present invention, the light quantity can be measured based on all azimuth directions, and the input section can be operated without disturbing the light quantity measurement. You can get closer. As a result, the amount of light input to the optical spectrum analyzer can be significantly improved, and the spectrum can be easily analyzed with less noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の受光装置の構成を示すシステ
ム全体の構成図、
FIG. 1 is a configuration diagram of an entire system showing a configuration of a light receiving device according to an embodiment of the present invention,

【図2】従来の受光装置で実施例と比較するために配置
したシステム全体の構成図、
FIG. 2 is a configuration diagram of an entire system arranged for comparison with an embodiment in a conventional light receiving device,

【図3】従来の受光装置の構成を示すシステム全体の構
成図である。
FIG. 3 is a configuration diagram of an entire system showing a configuration of a conventional light receiving device.

【符号の説明】[Explanation of symbols]

1 ウエハステージ 2 発光ダイオード用半導体ウエハ 3 発光部 4 プローブ 5 電源装置 6 光電変換装置(太陽電池) 7 光ファイバ入力部 8 光量計測装置 9 光スペクトルアナライザー 10 シングルヘテロAlGaAsエピタキシャルウエ
ハ 11 光ファイバ入力部付光電変換装置 12 光ファイバ入力部
1 Wafer Stage 2 Semiconductor Wafer for Light Emitting Diode 3 Light Emitting Unit 4 Probe 5 Power Supply Device 6 Photoelectric Conversion Device (Solar Cell) 7 Optical Fiber Input Unit 8 Light Quantity Measuring Device 9 Optical Spectrum Analyzer 10 Single Hetero AlGaAs Epitaxial Wafer 11 With Optical Fiber Input Unit Photoelectric conversion device 12 Optical fiber input section

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/66 H01L 21/66 X 33/00 33/00 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/66 H01L 21/66 X 33/00 33/00 K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光電変換装置の受光面の中央に光スペク
トラムアナライザーの光ファイバ入力部を垂直に設けた
光電変換装置で受光させ、発光ダイオード用半導体ウエ
ハの発光光量と発光スペクトルを同時に測定するように
したことを特徴とする受光装置。
1. A photoelectric conversion device in which an optical fiber input section of an optical spectrum analyzer is vertically provided at the center of a light receiving surface of the photoelectric conversion device to receive light, and the amount of light emitted and the emission spectrum of a semiconductor wafer for light emitting diodes are simultaneously measured. A light receiving device characterized in that
JP29326595A 1995-10-17 1995-10-17 Light-receiving apparatus Pending JPH09113411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29326595A JPH09113411A (en) 1995-10-17 1995-10-17 Light-receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29326595A JPH09113411A (en) 1995-10-17 1995-10-17 Light-receiving apparatus

Publications (1)

Publication Number Publication Date
JPH09113411A true JPH09113411A (en) 1997-05-02

Family

ID=17792590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29326595A Pending JPH09113411A (en) 1995-10-17 1995-10-17 Light-receiving apparatus

Country Status (1)

Country Link
JP (1) JPH09113411A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892118B1 (en) * 2010-11-30 2012-03-07 パイオニア株式会社 Light receiving module for light emitting element and inspection device for light emitting element
WO2012073346A1 (en) * 2010-11-30 2012-06-07 パイオニア株式会社 Light-receiving module for semiconductor light-emitting element and inspection device for semiconductor light-emitting element
WO2013145132A1 (en) * 2012-03-27 2013-10-03 パイオニア株式会社 Measuring apparatus for semiconductor light emitting element
CN103370802A (en) * 2010-12-01 2013-10-23 日本先锋公司 Light-receiving module for semiconductor light-emitting element and inspection device for semiconductor light-emitting element
WO2015107656A1 (en) * 2014-01-16 2015-07-23 パイオニア株式会社 Optical measuring apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892118B1 (en) * 2010-11-30 2012-03-07 パイオニア株式会社 Light receiving module for light emitting element and inspection device for light emitting element
WO2012073345A1 (en) * 2010-11-30 2012-06-07 パイオニア株式会社 Light-receiving module for light-emitting element and inspection device for light-emitting element
WO2012073346A1 (en) * 2010-11-30 2012-06-07 パイオニア株式会社 Light-receiving module for semiconductor light-emitting element and inspection device for semiconductor light-emitting element
CN102686990A (en) * 2010-11-30 2012-09-19 日本先锋公司 Light-receiving module for light-emitting element and inspection device for light-emitting element
JPWO2012073346A1 (en) * 2010-11-30 2014-05-19 パイオニア株式会社 Light receiving module for light emitting diode element and inspection device for light emitting diode element
CN103370802A (en) * 2010-12-01 2013-10-23 日本先锋公司 Light-receiving module for semiconductor light-emitting element and inspection device for semiconductor light-emitting element
WO2013145132A1 (en) * 2012-03-27 2013-10-03 パイオニア株式会社 Measuring apparatus for semiconductor light emitting element
JPWO2013145132A1 (en) * 2012-03-27 2015-08-03 パイオニア株式会社 Measuring device for semiconductor light emitting element and measuring method for semiconductor light emitting element
WO2015107656A1 (en) * 2014-01-16 2015-07-23 パイオニア株式会社 Optical measuring apparatus
JPWO2015107656A1 (en) * 2014-01-16 2017-03-23 パイオニア株式会社 Optical measuring device

Similar Documents

Publication Publication Date Title
US9823198B2 (en) Method and apparatus for non-contact measurement of internal quantum efficiency in light emitting diode structures
CA1189721A (en) Fiber optical measuring device for measuring electrical and magnetic quantities by laterally controlled photo-luminescence
JP3155989U (en) Light emitting combination batch inspection device with solar battery
US6836014B2 (en) Optical testing of integrated circuits with temperature control
JPH09113411A (en) Light-receiving apparatus
US20220034959A1 (en) Inspection method and inspection system
EP0587091B1 (en) Method of inspecting wafers for manufacturing light emitting elements
JPH0388372A (en) Luminouse power measuring device for semiconductor light emitting device
JPH1126521A (en) Apparatus for evaluating solid state imaging device
JPS6025244A (en) Semiconductor valuation device
JPS62283684A (en) Optical probe unit
US6057918A (en) Laser testing probe
CN2408571Y (en) Luminous diode chip and epitaxy chip light intensity measurer
US7145353B2 (en) Double side probing of semiconductor devices
JPS61239680A (en) Testing method for light-emitting diode array
JP3768162B2 (en) Semiconductor processing equipment and wafer sensor module
JPH09283586A (en) Apparatus and method for receiving light
JPS6242537Y2 (en)
JPH11340512A (en) Semiconductor inspection device and method for inspecting edge surface-emission type light-emitting optical semiconductor element wafer
JPH04332841A (en) Inspecting method of semiconductor light-emitting device
JPS60100449A (en) Semiconductor measuring device
JPS5942666Y2 (en) Photometric device for light emitting elements
JPH05183192A (en) Inspecting device for surface light emitting/receiving element
JPS62211538A (en) Measuring method for light emission characteristic of semiconductor light emitting element
JPH03214750A (en) Semiconductor chip measurement apparatus