JPS62283684A - Optical probe unit - Google Patents

Optical probe unit

Info

Publication number
JPS62283684A
JPS62283684A JP61125742A JP12574286A JPS62283684A JP S62283684 A JPS62283684 A JP S62283684A JP 61125742 A JP61125742 A JP 61125742A JP 12574286 A JP12574286 A JP 12574286A JP S62283684 A JPS62283684 A JP S62283684A
Authority
JP
Japan
Prior art keywords
light
semiconductor
probe
light emitting
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61125742A
Other languages
Japanese (ja)
Inventor
Takeshi Kato
猛 加藤
Kenichi Mizuishi
賢一 水石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61125742A priority Critical patent/JPS62283684A/en
Publication of JPS62283684A publication Critical patent/JPS62283684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To simply obtain an optical probe of semiconductor by introducing a probe light from the end sphere of an optical fiber incident to a semiconductor light emitting element, and observing a photovoltaic current or a photovoltaic voltage generated at the semiconductor while moving the incident position to simplify the configuration of an optical probe unit to shorten the measuring time. CONSTITUTION:A semiconductor light emitting element 1 of an article to be measured is of an InGaAsP/InP buried hetero structure semiconductor laser, and emits 1.3mum of wavelength. The radius of curvature of an end sphere 3 formed at one end of a single mode optical fiber 2 in a spherical shape is 10mum. The light emitted from a light source 4 equal in oscillation wavelength to the emitting light wavelength of the element 1 is propagated in the fiber 2, then emitted from the sphere 3, and incident as a probe light to the element 1. An optical current or voltage generated at the element 1 by the probe light is measured by a detector 5. The fiber 2 is held by a chuck 6, which is moved by a fine adjusting unit to finely move the incident position of the light to the element 1 in X and Y directions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光プローブ装置に係り、特に非破壊で筒便に半
導体発光素子をプローブするのに好適な光プローブ装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical probe device, and particularly to an optical probe device suitable for non-destructively probing a semiconductor light-emitting element in a tube.

講演論文集、分冊1 、 p 、 171 (1985
)に記載のように、半導体レーザモジュールに気密固定
された多モード先球ファイバからの出射光をヒートシン
ク上の半導体レーザの活性層に入射させ、これにより発
生する半導体レーザの端子電圧を観測しながら半導体レ
ーザと多モード先球ファイバとの光軸調整を行なってい
た。
Collected lecture papers, volume 1, p. 171 (1985
), the light emitted from the multimode spherical fiber hermetically fixed to the semiconductor laser module is incident on the active layer of the semiconductor laser on the heat sink, and the terminal voltage of the semiconductor laser generated thereby is observed. The optical axis of the semiconductor laser and the multimode spherical fiber was adjusted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は光軸調整に関するものであり、半導体発
光素子に光を入射し光電流と光起電圧を測定して特性解
析をするような光プローブを行なったものではない。
The above-mentioned prior art relates to optical axis adjustment, and does not involve an optical probe in which light is incident on a semiconductor light emitting element and the photocurrent and photovoltage are measured to analyze the characteristics.

光プローブを行なうためには、従来構造のようにモジュ
ールに光ファイバや半導体発光素子を固定する必要はな
い、また先球ファイバは単一モードのものであっても良
い。
In order to perform an optical probe, it is not necessary to fix an optical fiber or a semiconductor light emitting element to a module as in the conventional structure, and the tipped fiber may be of a single mode.

半導体発光素子の活性層近傍にバンド・ギャップ以上の
光子エネルギーをもつ光、すなわち発光素子の発光波長
と等しいかまたは短い波長の光が入射すると、光の吸収
が起こり電子−正孔対が発生するにれらのキャリアのう
ちの少数キャリアに着目すると、少数キャリアは平均し
て拡散長だけ四方に拡散したのち多数キャリアと再結合
して消滅する。しかし少数キャリアのうちの一部はpn
接合やペテロ接合で生じた空乏層に到達し、空乏層内を
電界の力によりドリフトする。す数キャリアが空乏層を
通過することはすなわち光電流の発生を意味する。ここ
で発光素子の電極間を短絡にすると光電流を、開放にす
ると光起電圧を測定することができる。光電流と光起電
圧とは入射光量と吸収率、少数キャリアの濃度や拡散定
数や寿命などの関数であるが、その関数形は異なる。
When light with a photon energy greater than the band gap, that is, light with a wavelength equal to or shorter than the emission wavelength of the light-emitting device, enters the vicinity of the active layer of a semiconductor light-emitting device, light absorption occurs and electron-hole pairs are generated. Focusing on the minority carriers among these carriers, the minority carriers diffuse in all directions by the diffusion length on average, and then recombine with the majority carriers and disappear. However, some of the minority carriers are pn
It reaches the depletion layer formed at the junction or Peter junction, and drifts within the depletion layer due to the force of the electric field. The passage of the number carriers through the depletion layer means the generation of photocurrent. Here, if the electrodes of the light emitting element are short-circuited, the photocurrent can be measured, and if the electrodes are opened, the photoelectromotive voltage can be measured. Photocurrent and photovoltage are functions of incident light intensity, absorption rate, minority carrier concentration, diffusion constant, lifetime, etc., but their functional forms are different.

概して、光電流は入射光の位置が吸収率の高い部分にあ
るときに主に発生し、光起電圧は接合近傍の吸収率が低
い部分でも発生し易い。従って光電流と光起電圧の両方
を測定することにより、より多くの情報を得ることがで
きる。従来例では光軸合わせが目的であるので、光電流
と光起電圧の・うちの一方の光起電圧しか測定されてい
なかった。
In general, photocurrent is mainly generated when the position of incident light is in a region with high absorption rate, and photovoltaic voltage is also likely to be generated in a region with low absorption rate near the junction. Therefore, more information can be obtained by measuring both photocurrent and photovoltage. In the conventional example, since the purpose was to align the optical axis, only one of the photocurrent and photovoltage was measured.

光起電圧についても、従来例では電圧ピーク値の検出し
か行なわれておらず、入射光位置に対する光起電圧のプ
ロフィールから半導体発光素子の特性解析を行なったも
のではない。
As for the photovoltaic voltage, in the conventional example, only the voltage peak value is detected, and the characteristics of the semiconductor light emitting device are not analyzed from the profile of the photovoltaic voltage with respect to the position of incident light.

本発明の目的は半導体発光素子の光プローブを行なうの
に好適な光プローブ装置を提供することにある。
An object of the present invention is to provide an optical probe device suitable for optical probing of semiconductor light emitting devices.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、光ファイバの先球部から出射したプローブ
光を半導体発光素子に入射させ、その入射位置を動かし
ながら半導体に生じた光起電流もしくは光起電圧をa測
することにより、達成される。
The above objective is achieved by making the probe light emitted from the tip of the optical fiber incident on the semiconductor light emitting element, and measuring the photovoltaic current or photovoltage generated in the semiconductor while moving the incident position. .

〔作用〕[Effect]

上記手段を使い半導体発光素子を光プローブすることに
より、発光素子上の入射光の位置に対応する光電流値も
しくは光起電正値が得られる。光電流値は主として光に
よるキャリアの発生数に依存していることから、発光素
子の活性層に関する情報が得られる。光起電正値からは
活性層近傍の情報も得られる。こうして半導体発光素子
に関する有用な情報を非破壊で簡便に得ることができる
By optically probing a semiconductor light emitting device using the above means, a photocurrent value or a positive photovoltaic value corresponding to the position of incident light on the light emitting device can be obtained. Since the photocurrent value mainly depends on the number of carriers generated by light, information regarding the active layer of the light emitting device can be obtained. Information on the vicinity of the active layer can also be obtained from the positive photovoltaic value. In this way, useful information regarding semiconductor light emitting devices can be easily obtained in a non-destructive manner.

〔実施例〕〔Example〕

以下1本発明の実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による光プローブ装置の第1実施例を示
す図で、第2図は第1実施例の部分拡大図である。第1
@および第2図において、被測定物の半導体発光素子1
はInGaAsP/InP系埋込みへテロ構造半溝埋込
−ザであり波長1.3μmで発光する。光ファイバ2に
は単一モード光ファイバを用いた。光ファイバ2の一端
を球状に加工した先球部3の曲率半径は10μmである
FIG. 1 is a diagram showing a first embodiment of an optical probe device according to the present invention, and FIG. 2 is a partially enlarged view of the first embodiment. 1st
In @ and FIG. 2, the semiconductor light emitting device 1 of the object to be measured is
is an InGaAsP/InP-based buried heterostructure half-groove buried laser and emits light at a wavelength of 1.3 μm. A single mode optical fiber was used as the optical fiber 2. The radius of curvature of the spherical tip portion 3, which is formed by processing one end of the optical fiber 2 into a spherical shape, is 10 μm.

光源4は波長1.3μmで発振する半導体レーザであり
、その発振波長は半導体発光索子1の発光波長に等しい
、光源4から放出された光は光ファイバ2に入射し、光
ファイバ2の中を伝搬したのち先球部3から出射し、半
導体発光素子1の表面にプローブ光として入射する。半
導体発光素子1の表面でのプローブ光のビームスポット
半径は約1.5μm、光のパワーは2mWとした。この
プローブ光により半導体発光素子1に生ずる光電流もし
くは、光起電圧を検出器5により測定した。
The light source 4 is a semiconductor laser that oscillates at a wavelength of 1.3 μm, and its oscillation wavelength is equal to the emission wavelength of the semiconductor light emitting cord 1. After propagating, the light is emitted from the tip sphere 3 and is incident on the surface of the semiconductor light emitting device 1 as a probe light. The beam spot radius of the probe light on the surface of the semiconductor light emitting device 1 was approximately 1.5 μm, and the light power was 2 mW. The photocurrent or photovoltage generated in the semiconductor light emitting device 1 by this probe light was measured by the detector 5.

検出器5は半導体発光素子1の電極と電気的に接続して
いる。光電流の場合は検出器5の入力インピーダンスを
半導体発光素子1の抵抗に比べて充分小さくして半導体
発光素子1の電極間を短絡とし、光起電圧の場合は充分
大きくして開放とした。
The detector 5 is electrically connected to the electrode of the semiconductor light emitting device 1 . In the case of photocurrent, the input impedance of the detector 5 was made sufficiently smaller than the resistance of the semiconductor light emitting element 1 to short-circuit the electrodes of the semiconductor light emitting element 1, and in the case of photovoltaic voltage, the input impedance of the detector 5 was made sufficiently large to create an open circuit.

光ファイバ2はチャック6により保持されており、チャ
ック6は図示していない微調整装置により動かすことが
できる。すなわちプローブ光の発光素子1への入射位置
を第2図のX方向及びY方向に微動させることができる
The optical fiber 2 is held by a chuck 6, and the chuck 6 can be moved by a fine adjustment device (not shown). That is, the position of incidence of the probe light on the light emitting element 1 can be slightly moved in the X direction and the Y direction in FIG.

第4図は第1実施例により測定を行なった結果である6
第1図の検出器5とチャック6の微調整装置とを連動さ
せて、結果をXYレコーダにより出力した。第3図の縦
軸は光電流あるいは光起電圧、横軸は入射光の位置であ
る。X=Y=Oの原点は半導体発光素子1の活性層の中
心を表わす。
Figure 4 shows the results of measurements made in the first example6.
The detector 5 and the chuck 6 fine adjustment device shown in FIG. 1 were linked together, and the results were output by an XY recorder. The vertical axis in FIG. 3 is the photocurrent or photovoltaic voltage, and the horizontal axis is the position of incident light. The origin of X=Y=O represents the center of the active layer of the semiconductor light emitting device 1.

本実例によれば、半導体レーザの構造に起因する特性の
解析に役立つ。本実施例では単一モード光ファイバを用
いたが用途によっては多モードのものを用うろこともで
きる。またプローブ光の波長を変えたり、半導体発光素
子の電極間にバイアスをかけた状態で測定をしたり、プ
ローブ光を連続光ではなくパルス光として光応答をみる
ことも可能である。
This example is useful for analyzing characteristics caused by the structure of a semiconductor laser. Although a single mode optical fiber is used in this embodiment, a multimode optical fiber may be used depending on the application. It is also possible to observe the optical response by changing the wavelength of the probe light, by applying a bias between the electrodes of the semiconductor light emitting device, or by using the probe light as pulsed light rather than continuous light.

第4図は本実施例の第2実施例を示す図である。FIG. 4 is a diagram showing a second embodiment of this embodiment.

先球部3から半導体発光素子1に入射した光のうち一部
は吸収され光電流の発生に寄与し、一部は散乱される。
A portion of the light incident on the semiconductor light emitting device 1 from the tip portion 3 is absorbed and contributes to the generation of photocurrent, and a portion is scattered.

この散乱光のうち先球部3にもどってきた光は、プロー
ブ光とは逆方向に光ファイバ2の中を伝搬し、ハーフミ
ラ−7で反射されたのち分光器8に入る。分光器8では
散乱光の波長分析が行なえる。こうして、光プローブ装
置により半導体発光素子1の光電流と光起電圧を測定し
ながら同時に、ラマン散乱などの光散乱信号を観測する
ことができた。
Of this scattered light, the light that returns to the tip sphere 3 propagates through the optical fiber 2 in the opposite direction to the probe light, is reflected by the half mirror 7, and then enters the spectrometer 8. The spectrometer 8 can perform wavelength analysis of the scattered light. In this way, it was possible to simultaneously measure the photocurrent and photovoltage of the semiconductor light emitting device 1 using the optical probe device and observe light scattering signals such as Raman scattering.

本実施例によれば、光電流と光起電圧の他に光散乱信号
も同時に測定でき情報量が多くなるので半導体発光素子
の特性解析により一層の効果がある。
According to this embodiment, a light scattering signal can be measured simultaneously in addition to a photocurrent and a photoelectromotive voltage, increasing the amount of information, so that the characteristic analysis of semiconductor light emitting devices is more effective.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、装置構成が簡単である上に測定時間も
短いので、簡便に半導体の光プローブを行なえる効果が
ある。
According to the present invention, since the device configuration is simple and the measurement time is short, there is an advantage that optical probing of semiconductors can be performed easily.

また光ファイバを伝搬し出射した光はガウシアンビーム
で良く近似できるので、測定結果の理論解析が容易に行
なえる効果がある。
Furthermore, since the light propagated through the optical fiber and emitted can be well approximated by a Gaussian beam, there is an effect that the theoretical analysis of the measurement results can be easily performed.

光ファイバの先球部の曲率半径と先球部と半導体発光素
子間の距離を調節することにより、プローブ光のスポッ
トサイズを回折限界にまで絞ることができるので、微細
構造の局所的な解析に適している。
By adjusting the radius of curvature of the tip of the optical fiber and the distance between the tip and the semiconductor light emitting element, the spot size of the probe light can be narrowed down to the diffraction limit, making it suitable for local analysis of fine structures. Are suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す図、第2図は第1実
施例の部分拡大図、第3図は第1実施例の測定結果を示
す図、第4図は本発明の第2実施例を示す図である。 1・・・半導体発光素子、2・・・光ファイバ、3・・
・先球部、5・・・検出器。 一ヘ 早 71 奉 22 1 判欅体発lC,駐 2・・尤フマイへ 3 L抹舒 4、L還 5 検=籠 6  +ヤ・ソ り 早 3 口 屯 へ(μ笥ジ 第 4 の 8・・分り器
Fig. 1 is a diagram showing the first embodiment of the present invention, Fig. 2 is a partially enlarged view of the first embodiment, Fig. 3 is a diagram showing measurement results of the first embodiment, and Fig. 4 is a diagram showing the measurement results of the first embodiment. It is a figure showing a 2nd example. 1... Semiconductor light emitting device, 2... Optical fiber, 3...
- Tip bulb, 5...detector. Ichihe early 71 Hou 22 1 Bankey body departure lC, Garrison 2...Yufu Mai to 3 L Eliminate 4, L return 5 Ken = Kago 6 + Ya So Rihaya 3 To mouth tun (Mubanji 4th 8. Separator

Claims (1)

【特許請求の範囲】 1、半導体発光素子を被測定物として光ファイバと光源
より成る光プローブ装置において、 前記光ファイバはその一端が球状に加工された先球部を
持ち、前記光源の光の波長は前記半導体発光素子の光の
波長と等しいかまたは短く、前記光源から発して前記光
ファイバ内を伝搬し前記先球部から出射した光プローブ
光として前記プローブ光を前記半導体発光素子に入射さ
せ、その入射位置を動かしながら前記半導体発光素子に
生じた光電流もしくは光起電圧を観測することを特徴と
する光プローブ装置。
[Claims] 1. In an optical probe device that uses a semiconductor light emitting device as an object to be measured and is composed of an optical fiber and a light source, the optical fiber has a spherical tip at one end, and the light from the light source is The wavelength is equal to or shorter than the wavelength of the light of the semiconductor light emitting element, and the probe light is emitted from the light source, propagates within the optical fiber, and is emitted from the tip bulb, and the probe light is made to enter the semiconductor light emitting element as an optical probe light. An optical probe device, characterized in that a photocurrent or photovoltage generated in the semiconductor light emitting element is observed while moving its incident position.
JP61125742A 1986-06-02 1986-06-02 Optical probe unit Pending JPS62283684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125742A JPS62283684A (en) 1986-06-02 1986-06-02 Optical probe unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125742A JPS62283684A (en) 1986-06-02 1986-06-02 Optical probe unit

Publications (1)

Publication Number Publication Date
JPS62283684A true JPS62283684A (en) 1987-12-09

Family

ID=14917667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125742A Pending JPS62283684A (en) 1986-06-02 1986-06-02 Optical probe unit

Country Status (1)

Country Link
JP (1) JPS62283684A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090794A (en) * 1988-11-21 1992-02-25 Sharp Kabushiki Kaisha Method for driving a multi-layered-type liquid crystal display device
JPH065961A (en) * 1992-01-29 1994-01-14 American Teleph & Telegr Co <Att> Laser device
CN103529525A (en) * 2013-10-29 2014-01-22 东南大学 One-time target insertion type adjustable light excitation device and tuning method thereof
JP2020197430A (en) * 2019-05-31 2020-12-10 株式会社アドバンテスト Test device, test method, and program
KR20210040800A (en) * 2019-10-04 2021-04-14 가부시키가이샤 니혼 마이크로닉스 Optical probe, optical probe array, test system and test method
WO2021145182A1 (en) * 2020-01-14 2021-07-22 株式会社日本マイクロニクス Optical probe, probe card, measuring system, and measuring method
US11788885B2 (en) 2021-02-26 2023-10-17 Advantest Corporation Test apparatus, test method, and computer-readable storage medium
US11800619B2 (en) 2021-01-21 2023-10-24 Advantest Corporation Test apparatus, test method, and computer-readable storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090794A (en) * 1988-11-21 1992-02-25 Sharp Kabushiki Kaisha Method for driving a multi-layered-type liquid crystal display device
JPH065961A (en) * 1992-01-29 1994-01-14 American Teleph & Telegr Co <Att> Laser device
CN103529525A (en) * 2013-10-29 2014-01-22 东南大学 One-time target insertion type adjustable light excitation device and tuning method thereof
CN103529525B (en) * 2013-10-29 2015-04-08 东南大学 One-time target insertion type adjustable light excitation device and tuning method thereof
JP2020197430A (en) * 2019-05-31 2020-12-10 株式会社アドバンテスト Test device, test method, and program
KR20210040800A (en) * 2019-10-04 2021-04-14 가부시키가이샤 니혼 마이크로닉스 Optical probe, optical probe array, test system and test method
WO2021145182A1 (en) * 2020-01-14 2021-07-22 株式会社日本マイクロニクス Optical probe, probe card, measuring system, and measuring method
US11800619B2 (en) 2021-01-21 2023-10-24 Advantest Corporation Test apparatus, test method, and computer-readable storage medium
US11788885B2 (en) 2021-02-26 2023-10-17 Advantest Corporation Test apparatus, test method, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
US5025145A (en) Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements
Garín et al. All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region
Hu et al. Free‐space radiation from electro‐optic crystals
Fattinger et al. Terahertz beams
CN1793874B (en) Equipment and method for measuring photoelectric performance of semiconductor nanometer structure
CN102194914B (en) Optical element, optical device and terahertz time-domain spectroscopic apparatus including the same
US5177351A (en) Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements
US4464627A (en) Device for measuring semiconductor characteristics
US20040106265A1 (en) Avalanche photodiode for photon counting applications and method thereof
JP6418542B2 (en) Inspection apparatus and inspection method
CN101159243A (en) Method for measuring semiconductor doping concentration
CN108827914B (en) Terahertz transient absorption spectrum detection system and carrier life measuring method
JPS59141238A (en) Carrier life measuring device
JPS62283684A (en) Optical probe unit
JPH0388372A (en) Luminouse power measuring device for semiconductor light emitting device
US6922067B1 (en) Determination of minority carrier diffusion length in solid state materials
JP6489421B2 (en) Light intensity setting method, inspection method, and inspection apparatus
CN217443165U (en) TDLAS gas detection device
CN113295669B (en) Folding type multi-reflecting cavity for enhancing gas Raman signal
US4238686A (en) Method of analyzing localized nonuniformities in luminescing materials
JPS63248141A (en) Measuring device for optical semiconductor characteristic
JP3221743B2 (en) Electric field type total reflection measuring device
JPS59178739A (en) Device for measuring carrier mobility
JPH02216844A (en) Measurement of photoelectric characteristic of semiconductor
CN115561208A (en) Phase-locked carrier radiation test system and method for semiconductor material/device