JPS60100449A - Semiconductor measuring device - Google Patents

Semiconductor measuring device

Info

Publication number
JPS60100449A
JPS60100449A JP21850084A JP21850084A JPS60100449A JP S60100449 A JPS60100449 A JP S60100449A JP 21850084 A JP21850084 A JP 21850084A JP 21850084 A JP21850084 A JP 21850084A JP S60100449 A JPS60100449 A JP S60100449A
Authority
JP
Japan
Prior art keywords
silicon wafer
light
wafer
transparent electrode
lifetime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21850084A
Other languages
Japanese (ja)
Other versions
JPS6320016B2 (en
Inventor
Noriaki Honma
本間 則秋
Tadasuke Munakata
忠輔 棟方
Katsumi Takami
高見 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21850084A priority Critical patent/JPS60100449A/en
Publication of JPS60100449A publication Critical patent/JPS60100449A/en
Publication of JPS6320016B2 publication Critical patent/JPS6320016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Abstract

PURPOSE:To obtain a simple and inexpensive device for measuring the lifetime of minority carrier in a silicon wafer in noncontact by detecting the photovoltaic power produced upon emitting of a light by the variation in a potential by the capacitive coupling of a transparent electrode with the silicon wafer. CONSTITUTION:A light emitting diode 3 emits a light in the order of sequentially generating the light from the end of an optical fiber 4 opposed to a silicon wafer 1 in a direction parallel to the paper surface, thereby performing the primary scanning. The fiber 4 emits the wafer 1 as a spot light source to generate an electromotive force in an ultrafine region. The light is AC-modulated, and even if a transparent electrode 5 is separated from the wafer 1, the electromotive force is externally produced readily by the capacitive coupling. When the phase difference between the voltage of a power source 8 and a signal voltage is measured by a phase detector, the value of the lifetime of the minority carrier in the wafer can be measured in noncontact.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体測定装置、特にシリコン・ウニ・中の少
数キャリヤのノI命の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor measuring device, and more particularly to a device for measuring the concentration of minority carriers in silicon.

〔発明の背景〕[Background of the invention]

従来、半導体中の少数キャリヤの寿命は、/リコン・ウ
ェハにオーミック接触を有する電極を取り付け、キセノ
ン・ランプ光をインパルス照射して、出力信号の減衰を
測定することによってめていた( JIS規格1−IO
604,1978)。この方法は接触法であり、抜取り
検査にしか向かない。また測定をオン・ラインで行なう
ことができない。
Conventionally, the lifetime of minority carriers in semiconductors has been determined by attaching electrodes with ohmic contact to a silicon wafer, irradiating them with impulses of xenon lamp light, and measuring the attenuation of the output signal (JIS Standard 1). -IO
604, 1978). This method is a contact method and is suitable only for sampling inspections. Also, measurements cannot be performed on-line.

他方、非接触で測定する方法として、光を照射してキャ
リヤを注入し、さらにマイクロ波を当て、その吸収の時
間的応答から、少数キャリヤの寿命を知る方法を挙げる
ことができる。しかしながら、この方法は、高価で複雑
なマイクロ波発信機、受波器、その他を必要とし、装置
全体が抜屑1てかつ高価となるという欠点がある。
On the other hand, as a non-contact measurement method, there is a method in which carriers are injected by irradiating light, microwaves are further applied, and the lifetime of minority carriers is determined from the temporal response of absorption. However, this method has the disadvantage that it requires expensive and complicated microwave transmitters, receivers, etc., making the entire device wasteful and expensive.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、したがって、非接触てシリコン・ウェ
ハ中の少数キャリヤの寿命を測定するだめの、簡単で安
価な半導体測定装置を提供することである。
It is therefore an object of the present invention to provide a simple and inexpensive semiconductor measuring device for measuring the lifetime of minority carriers in silicon wafers in a non-contact manner.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明による半導体測定装
置は、測定しようとするシリコン・ウェハを載置する、
一方の電極の役をする架台と、上記架台の上に載置され
たシリコン・ウェハの上にそれと容量結合するように設
けられた透明電極と、一端が上記透明電極を介して上記
シリコン・ウェハと対向するように設けられた複数個の
光学ファイバと、上記複数個の光学ファイバの他端に設
けられた発光ダイオードと、上記発光ダイオードを所定
の順序にしたがって順次発光させるための制御回路と、
上記透明電極に発生した電位を検出するための検出器と
から成り、光照射に伴って生じる光起電力を上記透明電
極のシリコン・ウェハとの容量結合による電位の変化を
検出することを要旨とする。
In order to achieve the above object, a semiconductor measuring device according to the present invention includes a method for placing a silicon wafer to be measured.
a pedestal serving as one electrode; a transparent electrode provided on the silicon wafer placed on the pedestal so as to be capacitively coupled thereto; and one end connected to the silicon wafer through the transparent electrode. a plurality of optical fibers provided to face each other, a light emitting diode provided at the other end of the plurality of optical fibers, and a control circuit for sequentially causing the light emitting diodes to emit light in a predetermined order;
and a detector for detecting the potential generated in the transparent electrode, and the gist is to detect the change in potential due to the capacitive coupling of the transparent electrode with the silicon wafer, and the photovoltaic force generated due to light irradiation. do.

本発明によれば、電位の変化を非接触で捕え、しかも光
学ファイバでスポット照射するので、少数キャリヤの寿
命を分布として測定することができる。さらに、光源と
して発光ダイオードを用いるので、電子回路によって簡
単に光変調することが可能であり、測定系に最適な変調
周波数を自由に選択することができる。さらに、発光ダ
イオードから成る光源は小型で応答か速いので、電子ス
イッチにより多数個の発光ダイオードを順次切り換え、
走査することができ、寿命の分布を短li、′l、 I
llにかつ極めて簡単に行なうことができる。
According to the present invention, changes in potential are captured in a non-contact manner and spot irradiation is performed using an optical fiber, so that the lifetime of minority carriers can be measured as a distribution. Furthermore, since a light emitting diode is used as a light source, light can be easily modulated by an electronic circuit, and the optimum modulation frequency for the measurement system can be freely selected. Furthermore, since the light source made of light emitting diodes is small and has a fast response, an electronic switch can be used to sequentially switch a large number of light emitting diodes.
can be scanned, and the distribution of lifetimes can be shortened to li, ′l, I
It can be done easily and extremely easily.

〔発明の実施例〕[Embodiments of the invention]

以下に、付図を参照しながら、実施例を用いて本発明を
一層詳細に説明するけれども、それらは例示に過ぎず、
本発明の枠を越えることなしにいろいろの変形や改良が
あり得ることは勿論である6、第1図は、シリコン・ウ
ェハ1を紙面に垂直な方向には機械的に移動させ、紙面
に平行な方向には光学ファイバを配置することによって
走査を1ノなう、本発明による半導体測定装置の構成を
示すブロック図である。移動架台2は金属で構成され、
接地電極の役も兼ね、シリコン・ウェハlはこの上に真
空チャックで固定される。光学ファイバ4の一端は発光
ダイオード3と対向するように設けられている。光学フ
ァイバ4の他端はアレーを形成し、その上にIn、03
等のネサ膜で構成される透明電極5が設けられている。
Hereinafter, the present invention will be explained in more detail using examples with reference to the accompanying drawings, but these are merely illustrative.
It goes without saying that various modifications and improvements can be made without going beyond the scope of the present invention.6 In Figure 1, the silicon wafer 1 is mechanically moved in the direction perpendicular to the plane of the paper, and the silicon wafer 1 is moved parallel to the plane of the paper. FIG. 2 is a block diagram showing the configuration of a semiconductor measuring device according to the present invention, which performs one scan by arranging an optical fiber in the same direction. The movable frame 2 is made of metal,
It also serves as a ground electrode, and the silicon wafer l is fixed onto this using a vacuum chuck. One end of the optical fiber 4 is provided to face the light emitting diode 3. The other end of the optical fiber 4 forms an array on which In, 03
A transparent electrode 5 made of a Nesa film such as the above is provided.

電源8から制御回路9を介して所定の順序にしたがって
発光ダイオード3を順次発光させ、その光照射に伴って
生じる光起電力の変化が前置増幅器6および位相検出器
7によって検出される。
The light emitting diodes 3 are sequentially caused to emit light in a predetermined order via a control circuit 9 from a power source 8, and a change in photovoltaic force caused by the light irradiation is detected by a preamplifier 6 and a phase detector 7.

本発明による半導体測定装置の動作はっぎのようにして
行なわれる。制御回路9によって発光ダイオード3は、
光学ファイバ4のシリコン・ウェハ1と対向する方の端
から光が紙面に平行な方向に逐次発生するような順序に
発光させられ、そのようにして−次元走査が行なわれる
。光学ファイバ4は点光源としてシリコン・ウェハ1を
照射シ、微小な領域に起電力を発生させる。光は交流変
調されており、透明電極5がシリコン・ウェハ1から離
れていても、上記起電力は容量結合によって容易に外部
に取り出される。電源8の電圧と信号電圧との位相差を
位相検出器で測定すれば、シリコ/・ウェハ中の少数キ
ャリヤのノJ命の値は非接触で測定できることになる。
The operation of the semiconductor measuring device according to the present invention is performed as follows. The control circuit 9 causes the light emitting diode 3 to
Light is emitted from the end of the optical fiber 4 facing the silicon wafer 1 in an order in which the light is generated successively in a direction parallel to the plane of the paper, and in this way, -dimensional scanning is performed. The optical fiber 4 serves as a point light source that irradiates the silicon wafer 1 and generates an electromotive force in a minute area. The light is alternating current modulated, and even if the transparent electrode 5 is away from the silicon wafer 1, the electromotive force can be easily extracted to the outside by capacitive coupling. By measuring the phase difference between the voltage of the power source 8 and the signal voltage with a phase detector, the value of the minority carriers in the silicon wafer can be measured without contact.

架台2は紙面にiTi、ll′lな方向に移動させられ
、電気的に行なわれる一次元走査とあわせて二次元の走
査が行なわれる。
The pedestal 2 is moved in the direction iTi,ll'l on the plane of the paper, and two-dimensional scanning is performed in addition to electrical one-dimensional scanning.

第2図は光学ファイバのシリコン・ウェハとχ・j向す
る方の端をモザイック状に配置し、機械的に行なわれる
走査をなくした実施例を示す。この実施例においては、
走査はすべてエレクトロエックスによって行なわれるの
で、装置は簡単となり、安価に構成される。
FIG. 2 shows an embodiment in which the ends of the optical fibers facing the silicon wafer are arranged in a mosaic pattern, eliminating mechanical scanning. In this example,
Since all scanning is done by electrox, the device is simple and inexpensive to construct.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、非接触でシリコ
ン・ウェハ中の少数キャリヤの寿命を(同定する、簡単
で安価な半導体測定装置を得ることができる。
As described above, according to the present invention, it is possible to obtain a simple and inexpensive semiconductor measuring device that non-contactly identifies the lifetime of minority carriers in a silicon wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施の態様における半導体測定装置
の構成を示すブロック図、第2図は本発明による、走査
をすべてエレクトロエックスによって行なう実施の態様
における、光学ファイバのシリコン・ウェハと対向する
方の端の平面図である。 1・・・シリコン・ウェハ 2・・架台 3・・・発光ダイオード 4・・・光学ファイバ 5・・・透明電極6・・・前置
増幅器 7・・・位相検出器8・・・電源 9・・・制
御回路 代理人弁理士 中村純之助 ?1 図 ?′2トl
FIG. 1 is a block diagram showing the configuration of a semiconductor measuring device according to an embodiment of the present invention. FIG. 2 is a block diagram showing the structure of a semiconductor measuring device according to an embodiment of the present invention, and FIG. FIG. 1... Silicon wafer 2... Mount 3... Light emitting diode 4... Optical fiber 5... Transparent electrode 6... Preamplifier 7... Phase detector 8... Power supply 9. ... Control circuit agent patent attorney Junnosuke Nakamura? 1 Figure? '2 tol

Claims (1)

【特許請求の範囲】[Claims] 測定しようとするシリコン・ウェハを載置する一方の電
極の役をする架台と、上記架台の上に載置されたシリコ
ン・ウェハの上にそれと容量結合するように設けられた
透明電極と、一端が上記透明電極を介して上記シリコン
・ウェハと対向するように設けられた複数個の光学ファ
イバと、上記複数個の光学ファイバの他端に設けられた
発光ダイオードと、上記発光ダイオードを所定の順序に
したがって順次発光させるための制御回路と、上記透明
電極の電位を検出するための検出器とから成ることを特
徴とする、シリコン・ウェハ中の少数キャリヤの寿命を
測定するための半導体測定装置。
A pedestal serving as one electrode on which a silicon wafer to be measured is placed, a transparent electrode provided on the silicon wafer placed on the pedestal so as to be capacitively coupled thereto, and one end. a plurality of optical fibers provided to face the silicon wafer through the transparent electrodes, a light emitting diode provided at the other end of the plurality of optical fibers, and the light emitting diodes in a predetermined order. A semiconductor measuring device for measuring the lifetime of minority carriers in a silicon wafer, comprising a control circuit for sequentially emitting light according to the following, and a detector for detecting the potential of the transparent electrode.
JP21850084A 1984-10-19 1984-10-19 Semiconductor measuring device Granted JPS60100449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21850084A JPS60100449A (en) 1984-10-19 1984-10-19 Semiconductor measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21850084A JPS60100449A (en) 1984-10-19 1984-10-19 Semiconductor measuring device

Publications (2)

Publication Number Publication Date
JPS60100449A true JPS60100449A (en) 1985-06-04
JPS6320016B2 JPS6320016B2 (en) 1988-04-26

Family

ID=16720899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21850084A Granted JPS60100449A (en) 1984-10-19 1984-10-19 Semiconductor measuring device

Country Status (1)

Country Link
JP (1) JPS60100449A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697248A (en) * 1992-09-16 1994-04-08 Shin Etsu Handotai Co Ltd Life time measuring device and measurement therewith
CN108762316A (en) * 2018-06-13 2018-11-06 华北电力大学 A kind of photoelectric sensor, solar energy heating control system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697248A (en) * 1992-09-16 1994-04-08 Shin Etsu Handotai Co Ltd Life time measuring device and measurement therewith
CN108762316A (en) * 2018-06-13 2018-11-06 华北电力大学 A kind of photoelectric sensor, solar energy heating control system and method

Also Published As

Publication number Publication date
JPS6320016B2 (en) 1988-04-26

Similar Documents

Publication Publication Date Title
KR950010389B1 (en) Semidoncutor defects determining method
KR100193977B1 (en) Photovoltaic Oxide Charge Measurement Probe Technology
US10274551B2 (en) Magnetometer sensor with negatively charged nitrogen-vacancy centers in diamond
EP0147587B1 (en) Imaging defects in a semiconductor body
US5025145A (en) Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements
JPH06222087A (en) Voltage detector
US7019513B1 (en) Non-contact method and apparatus for measurement of sheet resistance and leakage current of p-n junctions
US7414409B1 (en) Non-contact method and apparatus for measurement of leakage current of p-n junctions in IC product wafers
US7642772B1 (en) Non-contact method and apparatus for measurement of leakage current of p-n junctions in IC product wafers
US4464627A (en) Device for measuring semiconductor characteristics
US5177351A (en) Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements
US8941824B2 (en) Semiconductor inspection method and semiconductor inspection apparatus
US4581578A (en) Apparatus for measuring carrier lifetimes of a semiconductor wafer
JPS593360A (en) Optical fiber measuring device
US20080036464A1 (en) Probes and methods for semiconductor wafer analysis
KR20160071453A (en) Method and apparatus for non-contact measurement of sheet resistance and shunt resistance of p-n junctions
CN112432936A (en) Rapid quantitative imaging characterization method for life space distribution of semiconductor wafer excess carriers
JPS60100449A (en) Semiconductor measuring device
CN109490750B (en) Instrument and method for detecting LED chip
US4887037A (en) Electron spin resonance spectrometer
US4238686A (en) Method of analyzing localized nonuniformities in luminescing materials
JPS6242537Y2 (en)
JP2002168798A (en) Defect analytical device
JP2648947B2 (en) Inspection equipment for semiconductor devices
JPH0513522A (en) Charged optical probe